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ITERATIVE METHODS FOR CONCAVE PROGRAMMING 

HIRO UMI UZAWA 

1. Introduction 

In order to approach sadd l -points of th Lugrn11giun of th ·on •ave 

programming prol>l m, w huv o, in ~hupt rs 6, 7, and 8, consid rod a 

system of differonlial equat ions- th so-call d grudiont m thod. In tho 

present chapter we shall formulat tho gradi •nt method in a system of 

difference eq uations and inv est igat e the stability of th e solution. l.l 

will first be shown that the solution monotonically converges to any 

given nei g hborhood of a saddle-point provided the rat e of change is 

sufficiently small. Then the method will be slightly modified so that the 

system consists of the Lagrangian multipli ers, and the approximate 

stability of the modified system will be shown. Especially, for the caBe 

where the restrictions are linear, the system is proved to be stable 

provided the rate of change is small. Finally, linear programming will 

be reduced to strictly concave quadratic programming and the above 

iterative methods will be applied to solve linear programming. 

2. Concave Programming and Saddle-Point Problem 

Let f(x) and g(x) = (a1(x), • • • , g'"(x)) be functions defined for x = 
(x1, • • • , x 11) _ 0, and consider 

PROBLEM A. Find a vectm· x that maximizes f(x) subject to the restric­

tions 

( 1 ) X ~ 0 , g(x) _ 0 . 

It will be assumed that 

(a) f (x) and g.(x), · · · , g,,.(x) are concave functions in x ~ 0 and 

have continuous partial derivatives, and 

(b) there exists a vector x0 such that 

( 2 ) x° ~ 0 , g(z0
) > 0 , 

Then the Kuhn-Tucker Theorem on concave programming (Chapter 3, 

Theorem 2) may be applied : a vector x is an optimum solution to the 

problem if, and only if, there is an m-vector u such that (x, u) is a 

saddle-point of the Lagrangian 

( 3 ) cp(x, u) = f(x) + u • g(x) 

in x ~ 0 and u ~ 0 ; i.e., 

( 4) <p(x, u) = max <p(x, u) = min <p(x, u) . 
.c,; U u ,; O 

Therefore, solving concave programming is reduced to finding a saddle­

point of the Lagrangian cp(x, u). 

We shall denote by X and {J the sets of the x-components and the 

u-componen ts of saddle-points of 'f'(X, u.) ; i.e., 
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X = {x I (x, u) is a saddle-point of 'P(x, u) for some u} , 

U = {u I (x, u) is a sadd le-point of 'P(x, u) for some x} . 

155 

It will be noted that the set U is compact (i.e., closed and bounded) . 
Let x e X, 

( 5 ) 

( 6) 

u e U. Then 

ii• g(x) = o , 
flx) + u • g(x) < f(x) , for all x > O. 

Take the vector x~ for which (2) is satisfied. Then (6) implies that 

o < u ~ f(x) - .f(x°) 
- I; - gt(x°) 

(k = 1, · • · , m) , 

which shows that U is bounded. Since u e U 1s characterized by (5) 

and (6), U is closed. 
In the following sections it will be assumed that 
(c) f( x ) is strictly concave in x . 
The optimum solution x is then uniquely determined. 

3. The Arrow-Hurwicz Gradient Method 

Consider a system of difference equations defined by 

(I) {x(t + 1) = max {O, x(t) + pcp,,(x(t), u(t))} , 
u(t + 1) = max {O, u(t) - P'Pu(x(t), u(t))} , 

with an initial position (x(O), u(O)) such that 

x(O) > 0 , u(O) > 0 , 

where p is a given positive number, 'Pz and 'Pu stand for the partial 
derivatives of cp with respect to x and u, respectively: 

'Pz(x, u) = fz(x) + U • gz(x) , 

'fu(X, U) = g(x) . 
We shall define the system (I) as *-stable if the following condition 

is satisfied : 
(*) For any initial position (x(O), u(O)) > 0 and any positive numb er 

c > 0, there exists a positive number Po > 0 such that, for the solution 
(x(t), u(t)) of the tmstem (I) with p < p0, there is an intege1· to with the 
properties 
( 7) V[x(t + 1), u(t + 1)] < V[x(t), u(t)] , for O < t < to , 

and 

( 8) 
where 

V[x(t), u(t)] ~ c , for t > to, 

V(x, u) = min {Ix - x 12 + I u - u 12} • 

iie ii 

Now we prove 
THEOREM 1. Let Problem A satisfy (a), (b), and (c). Then the system, 

(I) is *-stable. 
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l ROOF. It is first noted that, by concavity of cp(x , u) in x, 

( 9) (x - J ;) • cp%) - (u - u ) • cp., > 0 , for x =t-x or u ¢ U. 

Now from the first equation of (I) we have 

I x(t + 1) 11 ~ I x(t ) I~ + 2px(t) · cp,,(x (t), u(t)) + p2 I cp,,(x (t) , u( t )) 12 
, 

- 2x. x(t + 1) < - 2x • x(t) - 2px • cp,,(x(t), u(t)) . 

Hence, we get 

(10) I x(t + 1) - x 12 ~ I x(t) - x 1
2 

- 2p(x - x(t)) • cp,,(x(t), u(t)) 

+ p2 I cp,,(x(t), u(t)) 1~ . 

Similarly, from the second equation of (I) we have 

I u(t + 1) 12 ~ I u(t) 12 
- 2pu(t) • cp,.(x(t), u(t)) + p2 I 'Pu(x(t), u(t)) 12 

, 

-2u · u(t + 1) ~ -2u · u(t) + 2pu • cpu(x(t), u(t)) . 

Hence, we get 

(11) I u(t + 1) - u 12 ~ I u(t) - u 12 + 2p(u - u(t)) • cp,.(x(t), u(t)) 

+ p2 I 'Pu(x(t), u(t)) 12 
• 

From (10) and (11), 

(12) [I x(t + 1) - x 12 + I u(t + 1) - u 12] < [I x(t) - x 12 + I u(t) - u 12] 

- p {2[(x - x(t)) • cp,,(x(t), u(t)) - (ii - u(t)) • cp,.(x(t), u(t))] 

- p[l cp,,(x(t), u(t)) 12 + I cp,.(x(t), u(t)) 12] } • 

Let c be a given positive number. We define p0 as the minimum of 

the following two numbers : 

min {✓ (s/2) I Vi(x u) < ~} 
I 'Pz 12 + I 'Pu 12 1 

= 2 

and 

. { (x - x) . 'Pz - (u - u). 'P•tt I~ < Vi( ) < K - u} 
mm I 'Pz 12 + I cp,. 12 2 = x, u = I u E I 

where 
K = max {s, V(x(0), u(0))} > 0 . 

By (9) and compactness of U, {(x, u) I V(x, u) < c/2} and {(x, u) I s/2 ~ 

V(x, u) ~ K}, Po is positive. 

Let (x(t), u(t)) be the solution of (I) with p ~ p0• Then (12) and the 

definition of p0 imply that, for any u e U, 

(13) I x(t + 1) - x 12 + I u(t + 1) - u 12 < I x(t) - x 12 + lu(t) - u I\ 
if s/2 < V(x(t), u(t)) < K, 

and 

(14) I x(t + 1) - X r' + I u(t + 1) - u 12 < C ' if V(x(t), u(t)) < c/2. 

Since V(x(0), u(0)) ~ K, we have 

V(x(t), u(t)) < K (t = 0, 1, 2, • · ·) . 

Hence, the sequence {(x(t), u(t))} is bounded. Let (x * , u*) be a limiting 
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point of {(x (t), u(t)) } such that V(x , u ') is th e · minimum amonO' th 
limiting points, i.e., '"' 

(15) V(x*, u* ) s; V(x** , u ** ), 

for any limiting point (x ** , u ** ) of {(x(t), u(t))} 

Then we have 

(16) V(x * , u * ) ~ c/2 . 

In order to show (16), we may without Joss of generality assume that 

(x * , u*) = lim (x(t v), u(t v)) 
)I co 

such that (x(t11 + 1), u(t11 + 1)) wiJI converge, say to (x** , u ** ). Then 
*'* x = max {O, x* + pcp.r.(x*, u *)} , 

u** = max {O, u * - pcp,.(x* , u *)} . 

If we had assumed V(x*, u*) > c/2, then, by a formula similar to (13), 

V(x ** , u** ) < V(x *, u * ), 

which would contradict (15). By (13), (14), and (16), there is an integer 
to for which (7) and (8) are satisfied, q.e.d . 

4. A Modified Arrow-Hurwicz Gradient Method 

In this section we consider an iterative method, which is a modifica­
tion of the one described in Section 3. 

Here the maximum problem may be formulated as follows: 
PROBLEM B. To find a vector x that maxim ,izes f( x) subject to the 

1·esfriction 

(17) g(x) ~ 0. 

The non-negativity restriction on x, if there is any, may be included 
in (17), so that Problem A can be reduced to the problem in this section. 

It will be assumed that Problem B satisfies (a), (b), (c), and 
(d) for any u > 0, cp(x, u) has a finite rnax1:mum, iui th r espect to x. 
In this case, a vector x is an optimum solution to the problem if and 

only if there is a vector u such that (x, u) is a saddle-point of the 
Lagrangian cp(x, u) in x unrestricted and u ~ 0; i.e., 

(18) cp(x, u) < cp(x, u) < cp(x, u) for all x unrestricted and u ~ 0. 

Now, for any given u > O, the vector that maximizes cp(:i;, u) with 
respect to unrestricted x is uniquely determined by u. We shall denote 

it by x(u) : 

(19) cp(x(u), u) = max cp(x, u) . ,. 

The vector x(u) is characterized as the solution of <p., = 0, 1.e., 

(20) f,,(x(u), u) + u • g.,(x (u)) = 0 . 

We may consider the kth component u., of u as an im~uted pric e ~f 
the kth factor, and x(u) as the optimal level of production that maxi -

mizes the net profit 
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f( X) + U • g( X) , 

supposing there be no factor limitations . Then Ut(x (u)) represents the 

excess of supply over demand of the kth factor for the price system u. 

Therefore in setting the ut in the next stage, it may be reasonable to 

determine ut higher if there is an excess demand, i.e., gt(x(u)) < 0, and 

lower if there is an excess supply, i.e ., gt(x(u)) > 0; the rates of in­

crease and decrease are proportional to the amounts of the excess demand 

and excess supply, respectively. Furthermore, we have to take into con­

sideration that the imputed price Ut should not be negative. 

The above consideration leads us to the following formulation of an 

iterative method : 

(II) u(t + 1) = max {0, u(t) - pg(x(t))} (t = 0, 1, 2, • .• ) , 

with an initial position u(O) ~ 0, and a given rate of change p > 0, 

where 

(21) x(t) = x(u(t)) (t = 0, 1, 2, · · ·) . 

We define the system (II) as *-stahle with respect to u(t) if, for any 

initial position u(0) > 0 and any positive number c > 0, there exists a 

positive number p0 > 0 such that, for the solution u(t) of the system 

(II) with p < Po, there exists an integer t0 with the properties : 

(22) V(u(t + 1)) < V(u(t)) , for O < t < t
0 

, 

and 

(23) 

where 
V(u(t)) < c , for t > t0 , 

V(u) = min I u - u 12 • 

ue ii 

THEOREM 2. Let Problem B satiefy (a), (b), (c), and (d) . Then the 

system (II) i s * -stable with respect to u(t). 

Co~equently, x(t) converges to an arbitrary small neighborhood of x 
provi ded the rate of change p is sufficiently small. 

PROOF. Since x(u) uniquely maximizes ~(x , u) = f(x) + u • g(x) with 

respect to x, we have 

(24) f( x) + u • g(x) < f(x(u)) + u • g(x(u)) for x * x(u) . 

Let u ¢ U and u e U. If x(u) -=t= x = x(u), then 

(25) f(x) + u • g(x) < f(x(u)) + u • g(x(u)) , 

(26) Jtx(u)) + u • g(x(u)) < Jtx) + u . g(x ) . 

Summing (25) and (26), and noting that g(x) ~ o, u • g(x ) = O, we have 

(
27

) (u - u) · g(x(u)) > 0 , for any u ¢ U and u e U . 

. If x(u)_ = x , th en U•g(x(u)) > 0 and U•g(x(u)) = O. Therefore, the rela­

t10n (27) 1s also valid. 

Now, from (II), 
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I u(t + 1) 1
2 

< I u(t) 1
2 

- 2pu(t) • g(x(t)) + p2 I g(x(t)) 12 , 

-2u • u(t + 1) < - 2u • u(t) + 2µu · g(x(t)) . 

Then we have 

159 

(28) I u(t + 1) - u 12 ~ I u(t) - u 12 
- p{2(u(t) - u). g(x(t)) - p lg(x(t))l 2 } • 

Let Po be a number defined by 

(29) Po = min { min Vtj2 min (u - u)• g(x(u))} 

vcn) :. •12 I g(x(u)) I ' e/2:.yc,!!:.K I g(x(u)) 12 
ue u 

where 
K = max {c, V(u(0))} . 

By (27), Po is positive. 

Then, (28) and the definition of Po imply that, for the solution u(t) of 

(II) with p < Po, 

(30) I u(t + 1) - u 12 < I u(t) - u 12. 
and 

(31) I u(t + 1) - u 12 < c , 

if c/2 < V(u(t)) < K, u E U, 

if V(u(t)) < c/2, u E U. 

Similar to the proof of Theorem 1, (30) and (31) imply the monotonic 

convergence of u(t) to the c-neighborhood of U, q.e.d. 

A careful examination of the proof of Theorem 2 shows that the 

system (II) is *-stable for a broader class of the problems; namely, we 

can easily prove the following theorem. 

THEOREM 3. Let the Lagrangian 

'P(X, u) = f(x) + u • g(x) 

satisfy the following conditions: 

( i) There exists a closed set A of n-vectors such that, f m· any u ~ 0, 

'f(x, u) has a finite maximum with respect to x E A and the vector x,.(u) 

maximizing 'P(X, u) in A is uniquely determined. 

(ii) There is a saddle-point (x .. , ii .. ) of 'P(X, u) in x E A and u _ 0. 

Then the system 

(II)' u..(t + 1) = max {0, u..(t) - py(x..(t))} (t = 0, 1, 2, • • •) , 

with x..(0) E A, is *-stable. 

It will be noted that, in Theorem 3, we do not assume concavity of 

functions f(x) and g(x). 

5. Concave Programming with Linear Restrictiom 

We shall now consider the case where the restric tions are linear, i.e., 

u(x) = b - J3J; , 

and show that the method explained in Section 4 converges to U, pro­

vided p is sufficiently small. 

It is again assumed that 
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(b) there is ~ such that b - B~ > 0, 
(c) f(x) is strictly concave and has continuous partia l derivat i'Ves f u , 
(d) for any u > 0, max 9'(X, u) is finite. 

:,; 

The Lagrangian r,>(x, u) in the present case becomes 

(32) r,>(x, u) = fix) + u · (b - Bx) . 

For any u 2: O, the vector x(u) that maximizes r,>(x, u) in x is charac­
terized by the solution of the following equation : 
(33) fx(x(u)) - B'u = 0 . 

The system (II) in this case will be written as follows : 

(Ill) u(t + 1) = max {O, u(t) - p(b - Bx(t))} (t = 0, 1, 2, • • •) . 

THEOREM 4. Suppose f(x) and g(x) = b - Bx satiefy the conditions (b), 
(c), and (d) . Then there exists a positive number Po > 0 such that the 
solution u(t) of (Ill) with p ~ p0 monotonically converges to a vector u e fl. 
Consequently the corresponding x(t) converges to the optimum vector x. 

PROOF. Let x be the unique optimum vector for the problem and II 
be the set of corner indices; i.e., II= {k I g1.(x) > O}, and I= {l,• ··, m} 
- II. 

Then, for any u e U, we have 

(34) u11 = 0 . 

By (33) and (c), x(u) is a continuous function of u, so that there exists 
a positive number e > 0 such that 

(35) V(u) ~ e implies g11(x(u)) > 0 . 

For this e, let Po(u(O), e) be the positive number defined by (29). 
Since f(x) is strictly concave, the matrix ( fu) is negative definite. 

Let us denote by A(x) the maximum value of characteristic roots of 
B( -fzz)- 1B' at x. Then 

(36) A(x) > 0 . 
Let 

(37) Po = min {p0(u(O), e), min 1 } . 
Y(u )=,! A(x(u)) 

By (36) and compactness of the set {x(u) I V(u) < c}, Po is posit ive . 
We shall now show that, for any p < Po, the solution u(t) of (III) 

converges to a u e V. We may, by Theorem 3, suppose that 

(38) V(t) :5: e , for t = O, 1, 2, •••. 

It will be first noted that there is an integer t such that 

(39) u,i(t) = 0 , for t > t . 
In fact, (35), (38), and compactness of the ~et {u I V(u) < e} imply that 

min Ua:(x(t)) > 0 , for k e II (t = O, 1, 2, • • •) . 
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Ther efore there is an integer t such that 

u 11 (t - 1) - pg11 (x(t - 1)) ~ 0 . 

Then 
Zl11(t) = 0 , 

and (39) is sa tisfied. 
Now, from (III), we have 

I u,(t + 1) 12 < I u,( t) 12 
- 2pu,( t) · (b, - B, x,(t )) + fl' I b, - B,x,(t) 1~ , 

-2 u, · u,(t + 1) < -2 u, · u,(t) + 2pft , · (b, - B, x ,(t)) , 

where 

( 

u,(t)) 
u(t) = , 

U11(t) 
( 
b, ) (B,) 

b = , B = . 
bll Bil 

Then we have 

(40) I u, (t + 1) - u, 12 < I u,(t) - u, 12 
- p {2(u,(t) - ii,) • (b, - B, x(t)) 

- p I b, - B,x(t) 11
} • 

Now, by the definition of I, we have 

(41) b1 - B,x = 0. 

Hence, 

(42) b1 - B, · x(t) = Bi(x - x(t)) . 

Now the relations (33) and (39) imply, for t > t, 

(43) ( df) - B~u,(t) = 0 , 
dx .i:C,> 

(44) ( df)_ - B~u, = 0. 
dx .r: 

On the other hand, we have 

(45) ( :;t<,> = ( !:)z + (f~ %)(x(t) - x) , 

where 

f ~.c = (Jute, x6 = x + O(x(t) - x) , 0 < 0 < 1 . 

Equations (43), (44), and (45) imply 

(46) B~(u,(t) - u1 ) = ( - f ~.r) • (x - x(t)). 

Since (Pr .. ) is non-singular , 

(47) x - x(t ) = ( - Pz .. )-1B~ • (u ,(t) - it,) . 

Substit uting (47) into (42), we get 

(48) br - B, • x(t) = B 1(- Pz .. )- •B~ • (u,(t) - u,) , 

Therefore, by (37), (47), and (48), we have 



Scanned by CamScanner

162 IT ERATIV E M ETHODS FOR CONCAVE PROGRAMM ING 

(49) 2(u,(t) - u,) . (b, - B, x(t)) - p I b, - B, x(t) I' 
= (x - x(t)) . (-J: ,) • (x - x(t)) 

+ (ur(t ) - u,) . B,( - f~.J- 1B~ . (u,(t) - u,) 
- p(u,(t) - u,). (Br( - .f°:rxt 1B~)2. (u,(t) - u,) 

{ 
> 0 , if x(t) * x , 2: (x - x(t)) • (-f: x) · (x - x (t)) ~ o otherwi se. 

Hence, by (40), we have, for any u E U, 
(50) I ui(t + 1) - U1 I ~ I ui(t) - U1 I , 
with the strict inequality for x(t) * x. 

For u e U, let u* be a limiting point of the sequence u(t) such that 
(51) I u* - u I < I u** - u I 
for any limiting point u** of u(t). Take a sub-sequence {u(ty)} such that 

lim u(ty) = u* . 
~ 

We may, without loss of generality, assume that u(t y + 1) also con-
verges, say to u**. 

Then 
u** = max {0, u* - pg(x(u*))} . 

By a formula similar to (50), we have 
I u ** - u I < I u* - u I , 

which, by (51), implies 
I u** - u I= I u* - u I. 

Hence, by (50), 
x(u*) = x and u* e U. 

Since the inequality (50) holds for any u e U, we may put u = u* in (50). Then we know that the sequence {u(t)} itself converges to u*. Con­
sequently, 

lim x(t) = x, q.e.d. 
t->oo 

The modified gradient method will be applied to solve concave quad­ratic programm ing : find a vector x that maximizes a'x - x'Ax /2 subject to Bx < b, where A is positive definite. 
The Lagrangian is given by 

(52) q,(x, u) = a'x - l.x'Ax + u'(b - Bx) . 2 
For u > 0, the vector x(u) that maximizes cp(x, u) with respect to un­restricted x is characterized by 

a - Ax( u) - B ' u = 0 . 
Therefore, 

(53) x(u) = A- 1(a - B 'u) . 
The modified gradient method may be written as follows : 

-
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(IV) { 
x(t) = A - 1a - A - 1B'u(t) 

u(t + 1) = max {O, (/ - pBA- 1B')u(t) - p(b - BA- 1a)} 

(t = 0, 1, 2, · • ·) . 

Since we can beforehand compute I - pBA- 1B' and p(b - BA - 1a), the 

computation of u(t) by (IV) will be easily performed. 

THEOREM 5. The solution x(t) of the 81/Stem (IV) converges to the 

optimum solution '[Jrovided p is a sufficiently small positive number. 

6. Linear Programming 

In the maximum problem with which we have been concerned so far, the 

maximand has been assumed to be strictly concave. We shall in this 

section treat linear programming problems and show how the above 

method can be applied. 
Linear programming is formulated as follows: 

PROBLEM C. To find a vector x that maximizes a'x subject to Bx < b. 

The following conditions will be assumed to be satisfied : 

(b) There is a vector zO such that BzO < b. 

( e) The feasible set is b(lUnded. 

LEMMA. Consider Problem C' : Maximize c' x subject to Bx < b. Then 

there exists a positive number a > 0 such that, if I c - a I < a, then every 

ovtimum vector x for Problem C' is also optimum to Problem C. 

PROOF. Since the feasible set is a bounded convex po1yhedral set, there 

exists a matrix 

K = (k 1 ••• kN) = . . . . 
( 

ku · • • k1a) 

kn1 • • • knN 

such that a vector x satisfies Bx < b if and only if 

x=Kw, w=(:J>o, 
We may without loss of generality assume that 

a . k1 = ... = a . kr > a . kr+I > ... > a . kN . 

Let 

a = min { a · (k ' - k1') j 1 ~ v ~ r < µ ~ N} > 0 . 
2 I k" - k"' I - - -

and I a - c I ~ a. Then 

I a• (k " - k"') - c • (k" - k"') I ~ I a - c 11 k" - k"' I < a• (k" - k"') , 

for any 1 ~ v < r < µ < N . 

Therefore, 

c • (k" - Id") > 0 , for 1 < v ~ r < µ ~ N . 
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Hence, if a vector x is optimum for Problem C' , then 
r r 

x = ~ w,k' , w, z O, E w, = 1. 

Therefore , x is optimum for Problem C, q.e.d. 
Now we shall consider the following strictly concave quadratic pro­

gramming problem : 
PROBLEM C,. Find a vector x that maximizes a'x - cx'x/2 subject to 

Bx < b, where c: fa a given positive number. 
Since the optimum vector for Problem C, is unique, we denote it by 

XE. 

We shall prove the following : 
THEOREM 6. There exists a positi ve number c0 such that the optimum 

solution x, of Problem C, with c < c0 is optimum for Problem C. 
PROOF. According to the Kuhn-Tucker Theorem, a vector xis optimum 

for Problem C, if and only if there exists a vector u such that (x, u) 
is a saddle-point of the Lagrangian form SoE(x, u)=(a 'x-sx' x /2)+u · (b-B x) 
with x unrestricted and u > 0. Any saddle-point (x" u) is characterized 
as the solution of 

(54) 
{ 

a - sx, - B'u = 0 

b - Bx,> 0 

u > 0, u · (b - Bx,) = 0 . 

But (54) shows that (xe, u) is also a saddle-point of 

<f!(X, u) = (a - sx,)'x + u'(b - Bx) 
with x unrestricted, u > 0. 

Therefore x, maximizes (a - sx,)'x subject to Bx < b. 
Let 

Co=; 
where iJ is the positive number in the Lemma, and 

K = max Ix I. 
:r : r611l!lblu 

Since the feasible set is compact, K is finite, and co is 'pos-i ti v . Th n, 
by the Lemma, if O < e ~ e0 , x, is optimum for Probl em , q. e .rl. 

By Th eorem 6, solving linear programming Problem C is reduc ed to 
solving the strictly concave programming Probl em , with O € ~ €o, 
to V.:hich the modified gradi ent me thod will be applied. The modified 
gradi ent method for Probl em C, is now written as follows: 

(V) l u(t + l) = m•x jo, (1 - 7°BB')u(t) - (pb - : Ba )I 
x(t) = 1- a - .!_B'u(t) 

e e 

( t = 0, 1, 2, • • • , u( O) z O) . 
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JTEH/\TIVE METHOD F H N /\VE PROGH/\MMINt; 

The above method can be applied to the cue wh r A it:1 only po1:1itiv 

semi -definite. In this case, the it erat ive method (IV) will L, mudin tld 

as follows: 

(IV)' {x(t) = (A+ cl)- 1(a - B 'u(t)) , 

u(t + 1) = max {O, [I - B(A + cl)-'B 'lu(t) - plb - B(A 1 sl) - 'ul) 

(t = 0, 1, 2, · · ·) . 

The system is stable provided p and e are sufficiently 1:1mull po1:1itiv 

numbers. 


	



