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ITERATIVE METHODS FOR CONCAVE PROGRAMMING

HIROFUMI UZAWA

1. Introduction

In order to approach saddle-points of the Lagrangian of the concave
programming problem, we have, in Chapters 6, 7, and 8, considered
system of differential equations—the so-called gradient method. In the
present chapter we shall formulate the gradient method in a system of
difference equations and investigate the gtability of the solution. [t
will first be shown that the solution monotonically converges to any
given neighborhood of a saddle-point provided the rate of change ig
sufficiently small. Then the method will be slightly modified so that the
system consists of the Lagrangian multipliers, and the approximate
stability of the modified system will be shown. Especially, for the case
where the restrictions are linear, the system is proved to be stable
provided the rate of change is small. Finally, linear programming will
be reduced to strictly concave quadratic programming and the above
iterative methods will be applied to solve linear programming.

2. Concave Programming and Saddle-Point Problem

Let f(x) and g(x) = (0u(%), +++ , gm(x)) be functions defined for x =
(@, +++,x,) =0, and consider

PROBLEM A. Find a vector & that maximizes f(x) subject to the restric-
tions
(1) =0, g@=0.

It will be assumed that

(a) f(x) and g(x), -+, ga(¥x) are concave functions in « = 0 and
have continuous partial derivatives, and

(b) there ewists a vector x° such that
(2) @=0, g@@)>0.

Then the Kuhn-Tucker Theorem on concave programming (Chapter 3,
Theorem 2) may be applied : a vector  is an optimum solution to the
problem if, and only if, there is an m-vector u such that (z, %) is a
saddle-point of the Lagrangian

(3) ¢(x, u) = fw) + u - g(x)

inx>0and u=0; ie.,

(4) ¢(Z, ) = max ¢(x, ¥) = min ¢(T, u) .
rab wz0

Therefore, solving concave programming is reduced to finding a saddle-

point of the Lagrangian ¢(x, w).
We shall denote by X and U the sets of the x-components and the
u-components of saddle-points of ¢(x, w); i.e.,
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X = {Z| (%, u) is a saddle-point of ¢(x, u) for some u} ,
U= {u]| (%, u) is a saddle-point of ¢(x, u) for some z} .
It will be noted that the set U is compact (i.e., closed and bounded).

Let ze X, w e U. Then

(5) u-g@ =0,
(6) flx) + u - g(x) < A7), for all 2 > 0.
Take the vector a2’ for which (2) is satisfied. Then (6) implies that
0 <7, = @ —J) k=1, m),
gk(x )

which shows that U is bounded. Since % e U is characterized by (5)
and (6), U is closed.
In the following sections it will be assumed that

(¢) flx) 18 strictly concave in x.
The optimum solution Z is then uniquely determined.

3. The Arrow-Hurwicz Gradient Method
Consider a system of difference equations defined by
(1) {:v(t + 1) = max {0, 2(t) + pe.(2(t), u(?))} ,
u(t + 1) = max {0, u(t) — peu(x(t), u(®)} ,
with an initial position (x(0), 2(0)) such that
#0) =0, u(0)=0,
where p is a given positive number, ¢, and ¢, stand for the partial
derivatives of ¢ with respect to = and u, respectively :
(2, u) = fi(z) +u - g:(2) ,
eu(, u) = g() .
We shall define the system (I) as *-stable if the following condition

is satisfied : N
(*) For any initial position (x(0),u(0)) =0 and any positive number

e >0, there exists a positive number p, > 0 such that, for the solution
(x(£), u(t)) of the system (1) with p < p,, there is an integer t, with the

properties

(1) Vst +1),ut + D] < V@), u@®)], for 05t<t,
and

(8) Viz(t), u@®)] e, Sfortzt,

where

Viz,u) = min {|z — F + |u — @[} .
uweuv

Now we prove
THEOREM 1. Let Problem A satisfy (a), (b), and (c). Then the system

(I) is *-stable.



156 ITERATIVE METHODS FOR CONCAVE PROGRAMMING

PROOF. It is first noted that, by concavity of ¢(x, u) in z,
(9) (.E—J')~<f,—(z2—u)-¢-u150, for x + z or u¢ U.
Now from the first equation of (I) we have
Lot + 1) P < | 2() | + 2e2(t) - eola(t), u(®)) + p* | ¢.la(t) , u(@®) |,
—2% « 2(t + 1) £ —2% - 2(t) — 2p7 - ¢ (2(t), u(t)) .
Hence, we get
10)  Jalt + 1) — FF < |a(t) — [ — 20(F — 2(8)) - ¢.((t), u(t)
+ £ | p(a(?), u(d)) | .
Similarly, from the second equation of (I) we have
lu(t + 1) < | ult) [ — 20u(t) - pula(t), u(®)) + £ | pula(t), w@) [
—2u - u(t + 1) < —2u - u(t) + 20u - eu(x(t), u(?)) -
Hence, we get
A1) lut+1) — < lu@) — ulF + 2p@ — ult)) - pula(?), ul?))

+ p* | pul(t), u®)) | .
From (10) and (11),

12) [l 2 +1) —ZF + lu +1) — w1 < [a®) — 21+ |u®) — % l]
— p2lE — a(t)) - ¢u(x(t), u(t)) — (@ — u(t)) - u(x(t), u())]
—pll 0.(2(t), u(t) [F + | ula(?), u(®)) I} .

Let ¢ be a given positive number. We define p, as the minimum of
the following two numbers :

. (¢/2) 13
min {)/]% F 4 [ooT V(z, u)éE}
and
s (E—x)-gox—(l_l,—u)-gpu _E_ - T
mln{ [(pzll+|(pul‘ Zév(xru)gK:MEU}v
where

K = max {e, V(«(0), »(0))} > 0.

By (9) and—ecompactness of T, {{z, u) | Viorw) = ¢f2l-and {(xrw) Fef2 =
Vi) = i, pu—iﬁ positive.
Let (x(t), u(t)) be the solution of (I) with p < p,. Then (12) and the
definition of p, imply that, for any % € U,
18) x4+ 1) —ZP 4+ luE+ 1) —n P <|at) —FP+ ) —ul
if /2 < V(x(t), u(t)) = K,

and
(14) |2t +1) —FP + lut+ 1) —uP=<e, if V@), ud) = ¢/2.
Since V(x(0), u(0)) < K, we have

V(a(t), u(t)) = K (t=0,1,2,--+).
Hence, the sequence {(z(t), u(t))} is bounded. Let (z*, u*) be a limiting
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point- of {(..r(t), ?l.(ff))} such that V(e*, u*) is the minimum among the
limiting points, 1.e.,
(15) V(x*, u*) = V(a**, ur*y
for any limiting point (z**, u**) of {(x(t), u(t))} .

Then we have
(16) Viz*, u*) < ¢/2.

In order to show (16), we may without loss of generality assume that

(x*, u*) = 1112 (x(t,), u(t.))

such that (x(t, + 1), u(¢, + 1)) will converge, say to (x**, u**). Then
** = max {0, 2* + py,(x*, u*)} ,
u** = max {0, u* — pe,(x*, u*)} .
If we had assumed V(a*, u*) > ¢/2, then, by a formula similar to (13),
V(x**, u**) < V(ia*, u*),
which would contradict (15). By (13), (14), and (16), there is an integer
t, for which (7) and (8) are satisfied, q.e.d.

4, A Modified Arrow-Hurwicz Gradient Method

In this section we consider an iterative method, which is a modifica-
tion of the one described in Section 3.

Here the maximum problem may be formulated as follows :

PROBLEM B. To find a vector x that maximizes f(x) subject to the
restriction
(17) g(x) = 0.

The non-negativity restriction on z, if there is any, may be included
in (17), so that Problem A can be reduced to the problem in this section.

It will be assumed that Problem B satisfies (a), (b), (c), and

(d) for any u =0, ¢(x, u) has a finite maximum with respect to .

In this case, a vector Z is an optimum solution to the problem if and
only if there is a vector # such that (Z %) is a saddle-point of the
Lagrangian ¢(x, ») in x unrestricted and » = 0; i.e.,

(18) oz, 1) < ¢(Z, ) < ¢(@, u) for all 2 unrestricted and u = 0.

Now, for any given u = 0, the vector that maximizes ¢(x, #) with
respect to unrestricted x is uniquely determined by «. We shall denote

it by x(u):

(19) ¢(x(u), w) = max ¢(x, u) .

The vector x(x) is characterized as the solution of ¢. = 0, i.e.,
(20) Fula(w), u) + u - g.(x(w)) = 0.

of « as an imputed price of

We i he kth component '
may consider ¢ : roduction that maxi-

the kth factor, and x(u) as the optimal level of p
mizes the net profit
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flx) + u - g(x),

supposing there be no factor limitations. Then g.(x()) represents the
excess of supply over demand of the kth factor for the price system .
Therefore in setting the u, in the next stage, it may be reasonable tq
determine u, higher if there is an excess demand, i.e., g«(@(u)) <0, and
lower if there is an excess supply, i.e., ge(x(w)) > 0; the rates of in-
crease and decrease are proportional to the amounts of the excess demand
and excess supply, respectively. Furthermore, we have tq take into con-
sideration that the imputed price u, should not be negative.

The above consideration leads us to the following formulation of an
iterative method :
(II) u(t + 1) = max {0, u(t) — po(=(t)} (¢ =0,1,2.-.),
with an initial position %(0) = 0, and a given rate of change p > 0,
where
(21) 2(t) = z(u(t)) t=0,1,2:+2).

We define the system (II) as *-stable with respect to u(t) if, for any
initial position %(0) = 0 and any positive number ¢ > 0, there exists a
positive number p, > 0 such that, for the solution u(¢) of the system
(II) with p < p,, there exists an integer ¢, with the properties :

(22) V(u(t + 1)) < V(u(®)) , for 0=t <t,,
and

(23) Vu(t)) < ¢, for t = t,,

where

V(u) =min |u —u [*.
ueuv

THEOREM 2. Let Problem B satisfy (a), (b), (¢), and (d). Then the
system (I1) is *-stable with respect to wu(t).

Consequently, x(t) converges to an arbitrary small neighborhood of Z
provided the rate of change p is sufficiently small.

PROOF. Since x(x) uniquely maximizes ¢(x, u) =f(z) + u - g(x) with
respect to x, we have
(24) f@) +u - g(@) < flw(u)) + u - gx(n))  for x + a(u) .

Let w¢ U and we U. If x(u) + 7 = z(x), then

(25) @) + u - 9(@) < flw(u)) + u - gla(w)) ,
(26) faw)) + u - gzw)) < AZ) + % - 9(&) .

Summing (25) and (26), and noting that ¢(#) = 0, @ - g(z) = 0, we have
(27) (u — %) - g(x(u)) >0, forany wg U and 7 € U.

. If () = Z, then u-g(x(u)) > 0 and #-g(x(u)) = 0. Therefore, the rela-
tion (27) is also valid.

Now, from (II),
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lu@@ + 1) = [w(®) P — 2ou(t) - g(2(t)) + p* | gla(t) |,
—2u - u(t+1) = —2u - w(t) + 2pu - g(x(t)) .
Then we have
(28) lu(t+ 1) —ul = |u@)—ul — p{2u(t) — u)- g(x(t)) — p|g(=(t) P} .
Let p, be a number defined by

(29) Lo = min{ min ———1/5/_2 , min (u—ﬁ)-y(m(u))}
vaosen | gla(u)) | ensionsx | gla(u))
where
K = max {¢, V(u(0))} .
By (27), p, 18 positive.
Then, (28) and the definition of p, imply that, for the solution u(t) of
(II) with p = py,
(30) lut+1) —ap<|u@®)—ulp, ife2=Vut)=<K unel,
and

(31) lut +1) —wP<e, if Vut) <¢?2, wel.

Similar to the proof of Theorem 1, (30) and (31) imply the monotonic
convergence of u(t) to the e-neighborhood of U, q.e.d.

A careful examination of the proof of Theorem 2 shows that the
system (II) is *-stable for a broader class of the problems ; namely, we
can easily prove the following theorem.

THEOREM 3. Let the Lagrangian

e(z, u) = f@) + u - 9(x)
satisfy the following conditions :

(i) There exists a closed set A of n-vectors such that, for any u = 0,
oz, u) has a finite mazimum with respect to x € A and the vector x(u)
mazimizing oz, ) in A 18 uniquely determined.

(i) There is a saddle-point (T4 ii,) of ¢(x,u) in xeAand u = 0.

Then the system
(1Iy ut + 1) = max {0, u(t) — po@t))}  (E=0,1,2,---),
with z,0) € A, is *-stable.

It will be noted that, in Theorem 3, we do not assume concavity of
functions f(z) and g(x).

5. Concave Programming with Linear Restrictions
We shall now consider the case where the restrictions are linear, i.e.,
g(w) = b — Bx,
and show that the method explained in Section 4 converges to U, pro-

vided p is sufficiently small.
It is again assumed that
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(b) there is o® such that b — Bx" > 0, .
(¢) flx) is strictly concave and has continuous partial derivatives f,

(d) for any u = 0, max ¢(x, u) is finite.
The Lagrangian ¢(x, u) ;n the present case becomes
(32) ¢, u) = fle) + u - (b — Bx) .
For any u = 0, the vector x(u) that maximizes ¢(x, %) in z is charac-
terized by the solution of the following equation :

(33) fa(w)) — Bu=0.
The system (II) in this case will be written as follows:
(I11) u(t + 1) = max {0, u(t) — p(b — Ba(t)}  (t=0,1,2,...).

THEOREM 4. Suppose f(z) and g(x) = b — Bz satisfy the conditions (b),
(¢), and (d). Then there exists a positive number p, > 0 such that tfie
solution u(t) of (III) with p < p, monotonically converges to a vector ue U,

Consequently the corresponding x(t) converges to the optimum vector Z.
PROOF. Let Z be the unique optimum vector for the problem and II

be the set of corner indices ; i.e., II = {k|g,(Z) > 0}, and I = {1,---, m}
— 11,

Then, for any % e U, we have
(34) #; =0.

By (33) and (c), (u) is a continuous function of u, so that there exists
a positive number ¢ > 0 such that
(35) Vw)<e  implies g,,(x(x)) >0 .

For this ¢, let py(u(0), €) be the positive number defined by (29).

Since f(x) is strictly concave, the matrix (fzz) 18 negative definite.
Let us denote by A(x) the maximum value of characteristic roots of
B(—f,.)'B’ at 2. Then

(36) Az) = 0.
Let
37 = mi in 1
(37) Po mmhmwﬁbmgaﬂmﬁ.

By (36) and compactness of the set {z(u) | V(u) < ¢}, p, is positive.
We shall now show that, for any p =< p, the solution u(t) of (III)

converges to a %z € U. We may, by Theorem 3, suppose that

(38) Vit)<e, fort=0,1,2,....
It will be first noted that there i8 an integer t such that
(39) uy(t) =0, fort>7.

In fact, (35), (38), and compactness of the set {u | V(u) < e} imply that
mingy(a(t) >0, forkell (£=0,1,2, -+).
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Therefore there is an integer ¢t such that
“u(i —-1) — .”Q'n(-r(5 —1)=0.
Then
ull(t-) - O y
and (39) is satisfied.
Now, from (III), we have
lu,(t + 1) < lu,(t) [P — 2pu,(t) - (b, — Bz, (t)) + ¢ 1b, — B, (t) [P,
—2u, - u,(t +1) = —24, - u,(t) + 2pu, « (b, — B,x,(t)) ,
where
ul’(t) b[ B,
u(t) = , b= ., B =
uy,(t) b, B,
Then we have
(40) o (8 4+ 1) —a, P = () — @, P — p{2w,(t) — u,) - (b, — B,x(t))

—p b — Bx(t) I’} .
Now, by the definition of I, we have

(41) b, — B =0.
Hence,
(42) by — B, - 2(t) = By(Z — (1)) -
Now the relations (33) and (39) imply, for ¢ =t,
ar @ _
(43) (&), —Bu® =0,
ar\ _ ps

(44) (;E); B, =0.
On the other hand, we have

af af _
45 = = (&L ] _
(45) (dx );m (da; ); + (fL)=() — 2)
where

= (fer)o, =T+ 0x(t)—7), 0<0=1.
Equations (43), (44), and (45) imply

(46) B (u,(t) — u;) = (—f1) - (2 — 2(2)) .

Since (f%,) is non-singular,

(47) T —a(t) = (—Sfu)"'B; - (u,(t) — @) .
Substituting (47) into (42), we get

(48) by — B, - 2(t) = B(—f1L.)"'B; - (u,(t) — u,), t =1t .

Therefore, by (37), (47), and (48), we have
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(49) 2(2{,(15) - ﬁl) * (bl - le(t)) i I bl - Blm(t) lz
=@ — a(t) - (—f2) - (@ — «(?)) B
+ (uy(t) — u,) « By(—f2.)7'B - (u,(t) — u,)
- P(ul(t) - E!) - (-BI(—.fg'r)_]B;)z * (ul(t) — Uy)
>0, if «(t) + 7,
=@ —alt) - (=fL) - @—ae) {0

Hence, by (40), we have, for any #% € U,
(50) [, (6 +1) — %, | = |u,(t) — %,
with the strict inequality for wx(¢) + 7.
For % € U, let u* be a limiting point of the sequence u(t) such that
(51) lu* —u| < |u** —%|
for any limiting point u** of u(¢). Take a sub-sequence {u(¢,)} such that
liIn u(t,) = w* .
We may, without loss of generality, assume that u(f, + 1) also con-

verges, say to u**.
Then
u** = max {0, u* — pg(z(u*))} .
By a formula similar to (50), we have
lw*™* —u| < |u* —u],

which, by (51), implies

[w** — % | =|u* —u].
Hence, by (50),
2w*)=z and w*eU.

Since the inequality (50) holds for any % e U, we may put % = u* in
(50). Then we know that the sequence {u(t)} itself converges to u*. Con-
sequently,

E.T 2(t) = 7, q.e.d.

The modified gradient method will be applied to solve concave quad-
ratic programming : find a vector ¥ that maximizes a'x — &’ Ax/2 subject
to Bx < b, where A is positive definite.

The Lagrangian is given by

(52) o(z,u) = a'z — %m'Ax + u'(b — Bx).

For u = 0, the vector x(u) that maximizes ¢(z, u) with respect to un-
restricted # is characterized by

@ — Ax(u) — Bu=0.
Therefore,
(53) x(u) = A~Na — B'u) .
The modified gradient method may be written as follows :
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(1V) {m(t) = A'a — A'B'u(t)
u(t + 1) = max {0, (I — pBA'B')u(t) — p(b — BA 'a)}
t=0,1,2 --+).

Since we can beforehand compute I — pBA™'B’ and p(b — BA 'a), the
computation of wu(¢) by (IV) will be easily performed.

THEOREM 5. The solution z(t) of the system (IV) converges to the
optimum. solution provided p is a sufficiently small positive number.

6. Linear Programming

In the maximum problem with which we have been concerned so far, the
maximand has been assumed to be strictly concave. We shall in this
gection treat linear programming problems and show how the above
method can be applied.

Linear programming is formulated as follows :

ProBLEM C. To find a vector z that maximizes a’x subject to Bz < b.

The following conditions will be assumed to be satisfied :

(b) There 13 a vector x° such that Bx® < b.

(e) The feasible set i8 bounded.

LEMMA. Consider Problem C': Maximize c'z subject to Bx =<b. Then
there exists a positive number 6 > 0 such that, if |c —a| =4, then every
ontimum vector T for Problem C' is also optimum to Problem C.

Since the feasible set is a bounded convex poiyhedral set, there

PRoOOF.
exists a matrix
kn Lo s km'
K= (k- k%)= eee
| .
such that a vector z satisfies Bx < b if and only if
W N
x = Kw, w=[ : |20, Yow,=1.
wN y=1

We may without loss of generality assume that
G-k =-=a-kr>a-k"=---Za-k".

Let

a- (k" — k) 1§v§r<#§N}>0.

2|k — k|

and |a —c| £ 4. Then
Ia-(k"—k*‘)—c-(k’—lc")lg|a—c|lk"—k“|<a-(k"—k“),

forany 1=sv=r<pgp=N.

a“:min{

Therefore,
c-(k—k)>0, forlsv=sr<p=N.
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Hence, if a vector z is optimum for Problem C’, then

r r
r = E 'l(",]l"' , w, g 0 ’ E w, = 1 .
y=1

V=1
Therefore, # is optimum for Problem C, q.e.d.

Now we shall consider the following strictly concave quadratic pro-
gramming problem :

PROBLEM C,. Find a vector x that maximizes a'x — x'z/2 subject to
Bx < b, where ¢ is a given positive number.

Since the optimum vector for Problem C, is unique, we denote it by
x..

We shall prove the following :

THEOREM 6. There exists a positive number &, such that the optimum
solution x, of Problem C, with ¢ < g, is optimum for Problem C.

PrOOF. According to the Kuhn-Tucker Theorem, a vector z is optimum
for Problem C, if and only if there exists a vector u such that (z, %)
is a saddle-point of the Lagrangian form ¢.(x, u)=(a'x—cx'x/2)+u - (b—Bx)
with z unrestricted and « = 0. Any saddle-point (x., %) is characterized
as the solution of

a—¢ex,— Bu=0
(54) b—Bx, =0
uz=z0, u-0b—-—Bx)=0.
But (54) shows that (x,, %) is also a saddle-point of

¢z, u) = (¢ — ex.)z + w'(b — Bx)
with z unrestricted, » = 0.
Therefore x, maximizes (a — ex,)’z subject to Bx =<b.
Let

0

K
where 3 is the positive number in the Lemma, and

K = max |z|.

x: feasible
Since the feasible set is compact, K is finite, and ¢, is positive. Then,
by the Lemma, if 0 < ¢ < &, x, i8 optimum for Problem C, q.e.d.

Bg./ Theorem 6, solving linear programming Problem C is reduced to
solvmgt the strictly concave programming Problem C, with 0 < ¢ < &,
to »»{hlch the modified gradient method will be applied. The modified
gradient method for Problem C, i8 now written as follows :

u(t + 1) = max {o, (1 - f-mx')u(t) - (pb - .g’_zm)}

2(t) = La - iB’u(r)
3 3

V)

(t=0|1-21"'| u(O)_Z_O)-
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The above method can be applied to the case where A is only positive
semi-definite. In this case, the iterative method (IV) will be modified

as follows :
(IV) {x(t) = (A + el)'(a — Bu(t)) ,
u(t + 1) = max {0, [I — B(A + el)"'B'Ju(t) — plb — B(A + el)'al}
(t=20,1,2 ).
The system is stable provided p and ¢ are sufficiently small positive
numbers.



	



