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MATHEMATICAL PHYSICS 

ON THE STABILITY OF INVERSE PROBLEMS 

By A. N. TIKHONOV, Correspolidlng Member of the Academy 

Many objects of Nature have properties that are not well fi~ted to, or e_ve!1 alto­
gether defy, direct investigation. In such cases so~e of their characteristics are 
studied whose manifestation can be measured. Our Judgment on the structure of 
the earth crust, for instance, may in certain cases be based on th_e investiga_tion of 
its characteristics, such as density, or electric conductivity, which determme the 
respective physical field accessible to measurement at the surface of the earth­
the gravitational field, the field of electric current. 

Given a certain characteristics of the medium ( distribution of density ar of elec­
tric conductivity), we are usually able to compute (precisely or approximately) the 
physical field determined by this structure in the region where the measurements. 
are made. Yet, the problem to be solved here is the reverse to this. Namely, the 
physical fjeld is known, while the structure of the medium which determines 
it is sought. 

The customary way to solve the inverse problems is by selection. \Vithin an 
arbitrarily chosen (sufficiently wide) class of possible structures of the medium the 
corresponding physical fields are computed and the solution of the problem arri­
ved at by selecting some admissible medium, for which the calculated physical 
field shows hut a small deviation from observation. 

In order to put the method of selection upon a solid foundation, it is necessary 
to establish ( or admit) the existence of certain regularities: 1) One has to establish 
the uniqueness theorem for the direct correspondence, i. e. to prove that no two 
different types of medium have a single corresponding field. Then we have also 
the right to speak of a reverse correspondence. Without this the method of selec­
tion has no sense at all. 2) The coincidence between the calculated and observed 
field is not an absolute one (if only because the selection is made in an approximate 
way). We therefore have, moreover, to prove the stability of the inverse problem 
(or the continuity of the inverse mapping), that is, to make sure that with slight 
deviation of the auxiliary field from observation the respective structure of the· 
medium cannot possibly deviate strongly froni the actual. 

_In studying th~ st~bility of the inverse problem, a number of questions of quali­
tative and quantitative character may be raised. 

In the present paper set theoretical conceptions are applied to one of these 
problems, which consists in proving that under certain conditions the stability of 
the inverse. problem. is a direct consequence of. the uniqueness theorem. We sha!l 
also apply it to the mverse problem of the potential and to the study of the conti­
nuous dependence of the solutions of ordiaary differential equations upon the· 
parameter. . 

1. In the theory of continuous mappings there takes place the following theorem 
(1' 2) .• 

Let a set{ of elements {x} forming a metric space R be mapped continuously upon 
another set of elements {x*} forming a metric space R*. If the mapping x• = f(x) 

I 
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is one-to-on~ and contin~ous and if the space R is compact, then the inverse mapping 
z:.:::-r 1 (~*)_is. also contmuous. 

o e fi n1 t 1 on. Let a set of elements {x} be mapped by a function / (x) on to 
another s~t, of e~em~nts {x*} : x* = I (x). This mapping is said to be one-to-one 
at the pomt x 0 if xo = f (xo) -=I= f (x) for any element x distinct from x

0
• 

It is easy to prove the followmg theorem. 
Let a metric space R be mapped continuously on to another metric space R* 

x* = I (x) (x ER, x* ER*). 

If thi~ mapping is one-to-one at _the point ~o and the space R is compact, 
then the mvers~ mapping~= /- 1 (x*) 1s like~ise continuous at the point x;. 

The continuity of the mverse mapping 1s understood to mean that for any 
£ > O there exists a o (e) such that if • 

p(x*, x:) <o(e), 

then 
p (x, x0) < e 

where x is any prototype of the point x*. 
Though we formulate these theorems for metric spaces, they also hold in a 

::nore general case. 
2. Among the direct problems of the potential theory there is one that con­

sists in computing for the surface z = 0 the potential of a bounded body T filled 
up with a homogeneous mass of density p. and lying beneath that surface (z < 0). 
We shall demonstrate that the inverse problem has a stable solution. 

Suppose approximately that the position of the disturbing body T is known 
to be inside a given surface S. Le· us examine the totality of bodies {T} satis­
fying the following conditions: 

1°. Each of the bodies T belongs to a given bounded surface S lying in the 
region z < 0. 

2°. Each of. the bodies T is stellate with respect to its centre of gravity, so 
that the equation of the surface :E, bounding the- body T • may in the spherica L 
system of coordinat~s with their centre at the point P be represented in the form 

Z=/(rp,8). 

3°. Function f (~, &) has its derivative numbers bounded by a number M, 
common to all bodies of the class R. 

Let us determine the degree of proximity of two different bodies T 1 and Ts 
from the class R by means of the number • 

p (T
1

, T.)=max {p (P 1, P 1), maxl/1(f, 8)-/s(cp, &) n 
wher~ /

1 
and i

1 
are functions defining th.e surface equations of the bod,ies T 1 and 

T z with respect to their centres of gravity P 1 and P 2· 

We shall prove the following theorem. . . 
Whatever may be the degree of accura~y of e and the class R of t~e podies, 

sue~ number a (e) may be indicated that if the values of _the potentials (or of 
their derivatives) v 

1 
(x, y) and V 

2 
(x, y) for any two bodies T 1 and T 2 of the 

class R 'differ from each other at z = 0 by less than 8 (e) 

IV 1 (x, y) - V 1 (x, y) I < 8 ( e), 
then these bodies are separated by a distance less than e 

p (T 11 T 2 ) < e. 

b ~ n fact, with the notion of distance determined as p (T 11 T 1) '· the totality of 
odies of the considered class R form a metric space. If the distance betw0en 
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the potentials (or their derivatives) V 1 (x, y) and Vs (x, y) be eTaluated by the 
number 

p(V
11 

V
2
)=maxjV 1 (x, y)-V,(x, y)I 

(the maximum exists indeed), then the set of functions {V} presents a metric 
epace R•. 

The oorres pondenoe between the bodies T and the values of their potentials 
( or derivatives) determines the mapping 

V = I (T) 

of the space R on to the space R*. . . 
This mapping is continuous and one-to-one, for, rn virtue of a v.ell known 

theorem by P. S. Novikov, no two different bodies T 1 and T 2 , stellate with 
respect to their centre of gravity, may have equal potentials corresponding to 
them. And the centre of gravity has its position determined by the value of 
the potential at the surface (3

). _ 

The class under consideration, R, forms a com_pact family. Direct applica­
tion of the theorem mentioned in § 1 just proves the theorem. 

Modifying t~e notion of distance between the bodies or that of proxi_mity of 
potentials (or of potential derivatives), one may easily establish other theorems 
of stability. 

It is well to note that without the conditions of type 1 ° or type 3° the 
stability of the inverse problem does not hold any longer. 

3. Caratheodory has established the following theorem on the continuous 
dependence of the solutions of a system of ordinary differential equations upon 
the parameter('). 

Let the functions fk (x; Y1, ... , Yn; t), (k = 1, ... , n) be given, satisfying 
the conditions: 

a) For every value of t inside a certain neighbourhood Uta of the point t0 

every function fk (x; y1, ... , Yn; t) is measurable with respect to x \\.hen Yk 
are fixed, and is continuous with respect to y1, ... , Yn when x is fixed, x va­
rying within the region a< x < b; and, moreover, there exists such a measu­
rable (in the region a< x < b) function, independent of t, that 

I /k (x; Yt, .. . , Yn;t) I< M (x) (k = 1, ... , n). 

b)Fori=t 0 andarbitraryvalues of Yt, ... ,yn the functions fk(x;y1, ... ,yn;t) 
are continuous with respect to Yt, ... , Yn; t. 

c) For t = t0 and '1i (t0) = '1k there exists a sole system of functions 
Yk (x, t0 ) = y'l) (x) satisfying the equations 

X 

Yk (x, t) ='1k (t) + ~ fk (t; y 1 (x, t), .. . , Yn (x, t); t) dx (k = 1-, .. _., n). 
(1) 

X 

If, under these conditions, 
lim '1k (t) = '1~0), (2) 

t ➔ to 

the~ for any system of solutions (1) at any point of the region under conside­
ration 

lim Yk (x, t) = y~0> (x). 
t_ ➔ t 0 . 

1 
Let us examine the tota~ it_y of all possible systems of solutions of equation 

( ) when t C Uto• Defmmg the distance between the elem nts 
y - 'yrt) (x) <O ( )} y . ''') <!l) 

1- l 1 , • • • ,yn x , 2 ={yt (.r), .. . ,yn (x)} as 

p (Yi, y i) = v·[y~I) (x) -y/> {x)] 2 + ... + [y,1> (x)-y;,t) ( ·H1 

we obtain a ~etric space R whi?h is compact by virtue of the obvious fa_ct 
that the funct10ns Y1t (x) are umformly bounded and uniformly continuous rn 

178 



th ir totality [thi is a consequ noe of the existence of M (x) and the condi-
~ion (2) if onl 10 i mall nough]. 

Toe ry l m nt Y = {y1 ( ·) ... , Yn (x)} of the space R we make corres­
pond a p int of an n-dim nsional Euclidean space {cx1, ... , (Xn}, putting 

cxh=y 1, ( •0 ) (k= 1, .. . , n). 

The distance b tween the images of two elements being less than that bet-
we n h l ments, it will be obvious that this is a continuous mapping. 

In irtue of the conditions of the theorem this mapping is also one-to-one 
at th point {Yt (x, t0 ), ••• , Yn (x, t0)}. 

ppl ing the theorem of § 1, one sees that the inverse correspondence is 
on inuous in the sense that for any e there exists such o (e) that if 

V (cx~O) - cxl)2 + ... + (a.tO; - a.n)2 < a (e), 

t,ben, whatever the solution {y1 (x), ... , Yn (x)} corresponding to 
{1111 ... , :x.-:} : Yn (x0 ) = cxh may be, we shall have 

[y~OJ (x) -y1 (x)]• + ... + [y~O) (x)-y,n (xH'<i 

and t_his proves •the theorem. 
Many examples can easily be put on the stability of inverse problems. 
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