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INTRODUCTION

This monograph is a collection of some results, published previously but mostly
without detailed proofs, of investigations in the theory of probability distributions.
of the three chapters making up this book, the first contains only auxiliary informa-
tion. The division of the whole content into two chapters (II and III) corresponds to
the two main themes of the investigations. The second and third chapters have in
common the geometric character of the problems studied and the related definite
unity of methods, although in content these chapters are formally independent of
each other. A study of the measure of a solid angle in a Hilbert space occupies one
of the central places in the second chapter, which deals with the properties of sample
functions of random processes; the problem of the properties of the sample functions
is studied in terms of the geometry of a certain subset of the Hilbert space determined
by the random process and the relevant property of the realization. On the other
hand, the basic theorem of the third chapter, whose proof makes up the content of
§10, can be naturally stated as a result on the extreme points of the infinite-dimen-
sional analogue of the so-called “Hungarian polyhedron” determined by specifying
the marginal distributions of two statistics (two measurable decompositions) and con-
sisting of all the measures having the given marginal distributions. The remaining sec-
tions of the third chapter are closely related in substance to this result or are directly
based on it.

The first area of probability theory in which the methods of functional analysis
feceived a wide application, beginning with the work of Kolmogorov [61] —[64] and
Cramér [20], was the theory of stationary random processes, where the spectral de-
eomposition of the one-parameter group of linear operators associated with the process
:":es 2 fundamental tool of investigation. Later, Karhunen [54] introduced into

¥ the specialists in probability theory the spectral decomposition of the integral
opeml(:rs}‘:’hose kernel is the correlation function of the random process. .
afbitmry r::(lld be mentioned, however, that, although the possibility -Of regarding an
Meter seq Om process as a probability measure in a space of functions on the para-

Ppeared from the time of the proof of Kolmogorov’s theorem on the ex-
of a Compatible system of finite-dimensional distributions to a measure, the
clear (:3; ?If sthuzsgg?emly carrying throl-Jgh .this point of view beca‘metisuffz?it:}ri;l):neth-
Of functiony] s, W.he'n a further widening of the area of application of e
Possible Nal analysis in the theory of random processes took place. Here 1
i fot to mention the appearance in 1953 of Doob’s monograph [24], espe-
Y the origin of e concept of a “generalized random process” (I. M. Gel'fand [34],
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[35); K. Ito [43]) and the systematic investigation o.f functional-analytic methodg in
the question of convergence of probability measures in separable metric and iy, parti.
cular, in normed linear spaces, with application of the general results obtaineg to the
study of convergence of random processes (Ju. V. ,Prohorov [86]). One of the im.
portant problems that presented itself to both Gel'fand an.d Proborov, and to thej;
students, was the problem of a criterion for the existence in a linear space (in part;.
cular, in a normed linear space) of a measure generating a given system of compatib,
finite-dimensional distributions (i.c., having a given positive definite functional as itg
characteristic functional).

R. A. Minlos [76], [77] and V. Sazonov [103], independently of each other
and in different terms, established criteria for a Hilbert space (Sazonov, using the 1.
sults of [86]) and for the space dual to a nuclear countably normed space (Minlos,
after proving a conjecture of Gel'fand). The connection of the theorems of Minlos
and Sazonov and their equivalence was observed by Kolmogorov [67] (see also [15]).
It later bacame clear (Sudakov [115]) that for certain separable Banach spaces a cri-
terion for the existence of a measure with a given characteristic functional cannot in
principle be formulated in terms of the continuity (as in Sazonov’s theorem) of this
characteristic functional in some topology determined by the space under consideration.
However, for Gaussian measures it was shown in [15] that such a critical topology
always exists, though it has not been described in the non-Hilbert case (except in cer-
tain particular cases, for example, for the /P spaces). It was not clear in terms of
which mutual characteristics of the Banach space and the correlation operator deter-
mining the Gaussian weak distribution one should solve the problem of extension of
a weak distribution to a measure; at the same time, the complete solution of the prob-
lem for the Hilbert case, given by the Minlos-Sazonov theorem, did not yield suffi-
ciently nice necessary or sufficient conditions for such concrete Banach spaces as
spaces of bounded or continuous functions.

The idea of using e-entropy characteristics here is due independently to several
authors. At the 1966 International Congress of Mathematicians in Moscow the present
author presented conditions for extendibility of a Gaussian weak distribution to a
measure in a space £ dual to some separable Banach space F, expressed in terms of
the e-entropy of the unit ball Vi C F with respect to the Hilbert norm generated by
the correlation operator. It turned out that the condition p(Vg) < 2 is necessary, and
the condition p(Vy) < 2 is sufficient for the extendibility of a Gaussian weak distri
bution to a measure in £, i.e. for the boundedness of the supremum of the set of
Gaussian variables V. (p(A) is the entropy index). However, as was then remarked,
necessary and sufficient conditions for the extendibility of a Gaussian weak distribu-
tion to a measure in an arbitrary (or even an arbitrary separable or the dual of sepa-
rable) Banach space cannot be formulated in terms of e-entropy.

In 1967, independently of this, R. M. Dudley published an article [25] in Whicl
he proved that the condition Jo (”Vp(e))' 12 de < oo, where H 4 () is the e-entropy of
the set A (weaker than the condition pP(Vg) <2, but, of course, more restrictive than
the condition p(V};) < 2), ensures the boundedness of the supremum of the set K of
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Jssian cariables and even the continuity with probability 1 of the realizations x(c,)

a : . ] i . w),

GE K. of the Gaussian process in the relative (Hilbert) metric of the “parameter” set
e

K, regarded as 2 subset of the Hilbert'Space of all rand-om variables with variance. At
the same time Dudl.e).f stated as a’C_Onje?ture the assertion (already proved at that
me) that the condition p(K) > 2 lmphe‘s the unboundedness of the paths with prob-
bty {. What was fund:.amenta.lly new in Dudley’s work was the study of the conti-
ity of the sample functions with respect to the topology on K (with regard to the
{ using €-€ntropy Dudley refers to V. Strassen).
As was subsequently observed ([121], [125]), our method enables us in g
completely uniform way to get, besides necessary conditions (which were not the aim
of Dudley’s method), also sufficient conditions. Later, Dudley [26]improved the nec-
essary (for the continuity of realizations) condition p(K) < 2, proving that the condi-
tion lim SUPe—o e In MK, €) < < is necessary for the boundedness of realizations
(MK, €) is the cardinality of a smallest e-net). Our method allowed us [131] to
sharpen somewhat the result and to show that for continuity it is necessary that the
condition lim sup €% In MK, €) = 0 holds (Dudley had remarked earlier that this condi-
tion was satisfied in all the examples considered by him). By the same token, neces-
sary conditions for boundedness and continuity of the paths of Gaussian processes
were separated for the first time in the language of e-entropy.

Femique proved recently [32] that Dudley’s e-entropy sufficient condition is
also necessary in the class of stationary Gaussian processes; the e-entropy methods had
thereby led to a solution of an old problem in the theory of Gaussian processes. Jain
and Marcus [44] then succeeded in completely eliminating mention of e-nets in the
stationary case, expressing the e-entropy of the corresponding spiral in terms of the
monotone rearrangement of the covariance function of the process and reformulating
the Dudley-Fernique condition in this language. The continuity criteria based on the
use of eentropy enable one, in particular, to re-prove all the continuity conditions for
Gaussian processes that have appeared up to this point. The same can be said also
about the e-entropy conditions for discontinuity of paths. The e-entropy conditions
for boundedness and continuity of realizations of a Gaussian process x,, t € T, are
formulated in terms of the metric on the parameter set T given by the formula d(z, s)
= (U1~ B(s, 1)))!/2, where s, t € T, and B(s, £) is the correlation function of the pro-
cess (assumed to be standardized). However [121], it can be shown that any Banach
*Pace £ with a countable total set of linear functionals on it is contained in the set of
Alinear forms on £ that are bounded on ¥, and contains the set of all linear forms
o F that are bounded and continuous on ¥ in the Hilbert topology, where F is a
BVen total set of linear functionals on E, and V is the polar of the unit ball Vg C E.

s, any Banach space is “sandwiched” in the set-theoretic sense between the.space
(which coincide when £ is reflex-

(which thus

idea ©

f’f bounded and the space of continuous forms on Vg
Ye). Therefore, sufficient conditions for continuity, applied to the set Vp o
B regarded a5 parametric), are simultaneously sufficient conditions for the extend..lbllll:y
2 compatible system of finite-dimensional Gaussian distributions to a measure in E;
and Recessary conditions for boundedness can be regarded as necessary conditions for
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realizations of the process to have the “property E” with probability 1. we Mentioy
also that the zero-one law is proved for Gaussian measures of linear spaces in [115] and
[121].
The essence of the method presented in [120], [121], [125] and [131] lies i
the following. Exact criteria for continuity and boundedn;ss of realizations of 5 Gauss.
ian process K, regarded as a subset of the Hilbert space L%(£2, P), can be formulageq
in terms of the Minkowski mixed volume of the first degree of homogeneity h, (K)
(Theorems 1 and 3), which is proportional to the integral of the supremum of tpe set
of functions K C L? (Proposition 14). For this, it is proved that the problem of
verifying the boundedness of realizations of the process K is equivalent to the prob.
lem of the positivity of the measure of the solid angle in the Hilbert space that js
polar to the cone generated by a certain translate of the set K. The problem of the
measure of a solid angle leads naturally to the consideration of an infinite-dimensiona|
Cauchy measure, which is simply related to Gaussian measure (Propositions 6, 7, and
8, 10), since the conditional measures for the Gaussian measure under the decomposi-
tion of a linear Gaussian measure space into rays are §-measures (Proposition 5).

The connection between the asymptotic behavior of the Cauchy measure of the
homotheties of the set K° and the value of the functional 4, (K) is described in Prop-
osition 21. An estimate of the value of /,(K) in terms of the probability of exit from
the unit level is given by Proposition 18 (a less sharp estimate can be obtained by
using results of Skorohod [109] or Fernique [30]; to get our estimate we use the
solution of the isoperimetric problem on the n-dimensional sphere). Using the “geo-
metric” origin of the Cauchy measure and its connection with the functional &, (K),
we can prove a monotonicity property for 4, (K) (Theorem 2 and its Corollary) that
is very essential for us (and is new even in the finite-dimensional version) and that
permits us to estimate 4, (K) from below and from above in terms of the e-entropy
of the set K by comparing the e-nets and the e-lattices for simple sets such that /,(K)
can be calculated or estimated directly (Propositions 31, 33, 34, and their corollaries).
In investigating the continuity of the paths of a process K we study the structure of
the space of continuous forms on K (Propositions 26 and 27), we consider the “oscil
lation” of the process (the functional §(K) = sup{d: y(dK°) = 0}), and we find its
connection with the functional 4, (K) (Proposition 30). Determining the connection
between these quantities allows us to get a lower estimate of the oscillation 8(K) in
terms of the e-entropy characteristics of the process (Proposition 35), and an upper
estimate is essentially contained in the estimates of Propositions 30 and 33. A de-
finitive formulation of the e-entropy conditions is given in Theorem 4.

The second chapter is concluded with a study of arbitrary (non-Gaussian, in
general) processes K C L2(%, P) (“‘with second moments™); we clarify what informa-
tion about the boundedness or the continuity of the paths of the process is carried
by the geometry of the set K (i.e. the correlation function of the process). Theorem
5 gives an exhaustive answer to this question.

The third chapter is the longest. Its main result is contained in §10. The com”
plete proof presented in this section involves many technical details and hence may
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seem tedious (the proof here, as also in other places, is preceded by a brief sketch of
the basic scheme of the arguments). The result can be stated very simply in terms of
the theory of measurable decompositions: If two measurable decompositions ¢ and n
of a Lebesgue space (M, m) with purely continuous marginal measures are “quasi-in-
dependem" (the definitions are collected in Chapter [), then there exists a third
measurﬂble decomposition { that is simultaneously an independent complement to £
and (Theorem 8; [122], [124], [127]); an improvement that is important for sub-
sequent applications is given in Theorem 8*.

Theorem 8 provides the solution of a problem posed by Birkhoff in [11]; it can
pe regarded as a substantially improved “continuous” version of the well-known
Birkhoff-von Neumann theorem on the extreme points of the set of all doubly stochas-
tic square matrices of given dimension (the extreme points turn out to be the doubly
stochastic (0, 1)-matrices). While for infinite matrices, as the investigations of many
authors have shown (a survey is given at the beginning of the third chapter), the situa-
tion is on the whole analogous to the finite-dimensional case, the picture in the contin-
uous version turns out to be qualitatively more complicated, and for a long time it
was not clear when it is possible to guarantee that a measure with given marginal dis-
tributions with respect to a pair of given measurable decompositions has a decomposi-
tion analogous to the Birkhoff-von Neumann decomposition of a doubly stochastic
square matrix. The set of extreme points of the compact set of all probability mea-
sures with given marginal distributions has a very complicated structure and, anyway,
does not consist only of measures analogous to the doubly stochastic (0, 1)-matrices,
i.e. those corresponding to isomorphisms of the marginal measure spaces (M/E, m[§)
and (M/n, m/n). This circumstance barred the use of the Choquet-Krein-Mil'man theo-
rem on representation of the points of a compact set as barycenters of measures on
the set of extreme points, and made it necessary to find a direct proof.

Other points of view about the result contained in Theorem 8 (operator-theo-
retic, statistical, connection with the theory of Latin squares) are discussed in detail
at the beginning of the third chapter.

The questions in §10 arose from statistical problems, especially from the investi-
gations carried out by Ju. V. Linnik and his students concerning the Behrens-Fisher
problem. The concluding papers [45], [71] in this direction, in which the existence
of nonrandomized tests in the Behrens-Fisher problem for samples of different parity
is proved, make essential use of a lemma of I. V. Romanovskii and the author [93],
which is a vector version of a result preceding the proof of Theorem 8 (a description
of the set of extreme points in the compact set of bounded doubly stochastic den-
Sities with zero sets containing a given subset; see Propositions 43 and 43a).

In spite of all its unwieldiness, the proof of Theorem 8 has a central P .
is the proof of the approximation theorem (Theorem 7). Moreover, essential use s
made of a condition for the existence of a subprobability measure m on M having
given marginals and majorized by a given measure m (Theorem 6): to answer the
Question of the existence of such a measure 7 it suffices to answer the analogous
Question for 2 x 2 matrices. The work of authors who obtained related results (usu-

oint. This
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ally involving a less general situation) are carefully noted each time, as far ay Possible

in the footnotes.

The area of research to which the results in §10 belong can be called Continuey,

combinatorics. ' _
In §11 we study criteria for the existence of measures with given marginal .
tributions and concentrated on a fixed subset of the product of two spaces [129],

[130]. Unlike all the other authors who have studied related problems (Kellorer (5]
[57] and Strassen [113]), we do not assume any additional structures (for example,
topologies) on our measure spaces, sO that the class of subsets of the product X « y
for which the solution of the problem is given (Theorem 9) is described in terms of
pure measure theory, and in the topological case, for example, it turns out to be a
strictly wider class than the closed subsets, for which the results of Strassen can be
used. However, the main result of §11, of which essential use is made in the sequel,
is contained in Theorem 10 and, apparently, cannot be obtained as simply as Theorem
9. Theorem 10 gives necessary and sufficient conditions for the existence of a doubly
stochastic density on a particular subset of the product of two spaces, i.e., a measure
that is absolutely continuous with respect to the product of its marginal distributions.
The difficulty that must be overcome here has to do with the noncompactness of the
set of doubly stochastic densities, which rules out the possibility of a simple passage
to the limit.

§12 occupies an essentially independent position in the third chapter and is
connected with the other sections only informally. In it we prove that in the case of
an independent sample the marginal sufficiency of a statistic implies its sufficiency
[126]. The apparatus used and the situation when we consider a number of measur-
able decompositions on one space relate §12 with the other parts of the third chapter.
The author included this section as a memorial to Ju. V. Linnik, who suggested the
problem to him and, with unexpected enthusiasm, pointed to the method of its solu-
tion.

Finally, §13 can serve as an example of the application of the basic results in
§810 and 11. Here we solve the problem of determining sufficient conditions for the
existence of a one-to-one optimal plan in the Monge problem on transport of mass in
Minkowski spaces. The method presented is essentially based on Kantorovic's theo-
rem on the existence in the Monge problem of a potential function, by means of
which the optimality of this or that plan of transport is tested.

In conclusion the author wishes to express his gratitude to L. N. Dovbys, W
out whose constant help and support this work could not have appeared.

ith-
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AUXILIARY INFORMATION

1. The structure of a measure space, measurable decompositions, Lebesgue space

2. Other structures associated with a measure space (9). 3. Linear measure spa-

(7-
ces (9):

In this chapter we recall some definitions of concepts to be used later, and we
make more precise the meaning of terms for whose use there is no universally recog-

pized tradition.

1. The basic object (more precisely, the basic structure) with which we shall have
to deal is the structure of a measure space. In the following the word “measure” usual-
ly means a measure on a Lebesgue space, i.e. a probability (nonnegative normalized)
measure on a c-algebra of subsets of some set such that there exists a one-to-one recip-
rocally measurable mapping, defined almost everywhere, of this space onto a subset of
full measure in a measure space that is the union of a (possibly degenerate) segment
with Lebesgue measure and a (possibly zero) number of point masses. Every separable
metric space with a Borel probability measure is a Lebesgue space.

We frequently consider other structures simultaneously on a measure space (topo-
logical, or algebraic, or both these and others). The compatibility of the structures usu-
ally lies in the fact that some natural o-algebra of subsets determined by the topologi-
cal (or algebraic) structure is a generating o-algebra for the g-algebra on which the mea-
sure is defined (thus, each Lebesgue measurable set is Borel mod 0, i.e., its symmetric
difference with some Borel set has measure 0). In other words, the o-algebra on which
the measure is defined is the completion of such a natural g-algebra (is obtained by ad-
joining all subsets whose outer and inner measures coincide). Of course, the completion
of a 0-algebra depends on the specific form of the measure on it.

In the case of a Lebesgue space the o-algebra on which the measure is defined is
countably generated, i.., is the completion of the smallest o-algebra containing some
“ountable collection of subsets. Such a system of subsets is called a basis.
ton i:: decomposition of a measure space is said to be measurable if it is a. decomposi-

0 the sets of constant value (“level sets”) of some measurable function. The
;‘:tc':)h;‘);et.i(f limit of a re.ﬁning sequence of measurable‘ decompositions is a meas'v.i.r:Illei:\E
it isl:n Sition. A function is said to be measurable with respect to a decompositi

€asurable with respect to the g-algebra of all measurable subsets made up of
elements of £.
"~11f.E is a measurable decomposition of the space (§2, ¥, u), then th: measure. ulE
Make | 15 defined in the natural way on the set of eleme:nts ct C.Q, Ct €&, Whlc%‘
P the quotient space §2/t, by means of the canonical mapping Q — Qf%;

=u

7



8 I. AUXILIARY INFORMATION
this measure will frequently be called the marginal measure, or margina distribug,
corresponding to the measurable decomposition ¢. The decomposition int, points?‘
usually denoted by ¢, and the trivial decomposition by v; thus ufe = i, ang Wy o 5s
(the §-measure).

A system of measures {1} (C runs through the set of elements of 5 Measurap,
decomposition §) on the space (82, ) is said to be a system of conditiona] meaSUrese
corresponding to £ if uC = 1 for any C €&, and for any 4 € ¥ Fubini’s formy,

holds:

pd= { p Ad ().
2t

If (22, ¥, p) is a Lebesgue space, then there is a system of conditional measyre
for each measurable decomposition of this space.

Lattice operations V and A are introduced in a natural way in the set of measura.
ble decompositions of a Lebesgue space (2, ¥, w); if & and 1 are measurable decomposi.
tions, then £ < n means that £ # n and 7 is a subdecomposition of £. With this order
relation the set of all decompositions is a complete lattice set (in the terminology of
Bourbaki). A decomposition 7 is said to be a complement of the decomposition £ if
tVn=-eand £ Ay =vr. We usually write {n for £ V n.

Let £ and n be measurable decompositions of a Lebesgue space (82, ¥, u). We
consider the canonical mapping m, x m,: @ — Q/¢ x Q/n. If the image u(m, x )
of u under this mapping coincides with the measure u/¢ x u/n, then we say that £ and
n are independent. And if u(m, x nn)_‘ is absolutely continuous with respect to u/¢ x
u/n, then £ and n are said to be quasi-independent.

Let (X, ¥, u) and (Y, B, v) be Lebesgue spaces. A measure m on the product
(X x Y, U ® B) is said to be (u, v)-doubly stochastic (or simply doubly stochastic) if
u=mny' and v = mnyl.

The characteristic property of Lebesgue spaces, which distinguishes them among
all spaces with measures defined on countably generated o-algebras, is their complete-
ness with respect to any (or some kind of) basis. This means that the mapping deter-
mined by a basis {B,, k = 1, ... } from the set  into the countable product K=
{0, 1} assigning to each point x €  the element of K with kth coordinate equal to
1 or 0, depending on whether x & B,, carries  into a set that is measurable (and °.f
full measure) with respect to the Borel o-algebra on the compact set K, completed with
respect to the measure on K having the same marginal distributions with respect t0 &
coordinate decomposition as the marginal distributions of the measure itself with ¢
space to the decomposition £, = {B,, Q\B,}; and analogously for any finite sets. of
coordinates. (On a compact set any compatible system of marginal distributions 18
generated by a measure.)

Therefore, the countably generated measure spaces that are not Lebes :
are isomorphic to nonmeasurable subsets of outer measure 1 in the compact metri¢
space K with a Borel measure (or in a segment with Borel measure) and are thus ™
real objects. This remark justifies restriction to the class of Lebesgue spacess although
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many (but not all) of the proofs of the propositions to follow are true for arbitrary

arbitrary countably generated measure spaces.
or -
A measure of the form apu, where 0 < a <1 and g is an ordinary measure. is
,

called a subprobability measure.

2. Each countably generated measure space can be completed and thereby turned
into a Lebesgue space. Many important structures associated with a measure space are
not changed under completion, but at the same time regenerate the measure space in a
canonical way in the class of complete spaces. The metric structure of the equivalence
classes of measurable subsets is such a structure (the distance is defined as the measure
of the symmetric difference). If {B,} and {B;c} are bases in two measure spaces, and
the aforementioned measures on the compact set K = {0, 1}¥ corresponding to these
bases coincide, a canonical isomorphism is thereby established between the completions
of these spaces. Let SJu = S(£2, U, u) be the space of all (classes of M-equivalent) mea-
surable functions on (€2, ¥, p). Then S . 18 a ring and, simultaneously, a partially or-
dered space (a Riesz space). A ring isomorphism of two spaces S“i and Suz’ as well as
an isomorphism of their Riesz lattices, generates in a canonical way an isomorphism of
the metric structures of the measurable sets and an isomorphism mod 0 of the corre-
sponding Lebesgue spaces (£2,, U, ) and (2,, U,, p,), so that a study of Lebesgue
spaces can be carried out in terms of the corresponding rings of measurable functions
or the Riesz lattices. Analogously, an isomorphism of the rings of bounded measurable
functions L*(2,, ¥,, u,) and L™(Q,, ¥ ,, u,) (and also of the natural Riesz lattices
on these spaces) implies in a similar canonical way an isomorphism of the corresponding
Lebesgue spaces. We remark that an isomorphism of the same spaces in the sense of
an isomorphism of linear topological spaces does not lead to an isomorphism of the
measure spaces (£2,, ¥,, u,) and (R2,, ¥,, p,), as is shown by the example of the
spaces [~ and L™ [0, 1].

3. We dwell in somewhat more detail on the case when the measure space under
consideration is equipped with the additional structure of a linear space: on the struc-
ture of a linear measure space. A linear measure space is a Lebesgue space that is simul-
taneously a linear space, where the o-algebra is generated by some collection of linear
forms. If, as is natural, we consider linear measure spaces to within an isomorphism
(ie. we identify any two measure spaces for which there exist linear subsets of full
Measure that are isomorphic with respect to both structures simultaneously), then it
tumns out, for example, that there are as many Gaussian measure spaces as there are
dimensions; in particular, there exists only one infinite-dimensional countably generated
linear Gaussian measure space. In the following we understand a linear measure space
to be such 4 space, considered to within the isomorphism described. However, when
fecessary, we speak of a particular linear measure space. .

Alinear measure space is specified if we are given a weak distribution, i.e. a com-
Patible syster of finite-dimensional distributions. A weak distribution is a linear map-
Ping of a linear set F7 of measurable linear functionals generating the g-algebra into
Some space §, = S(Q, ¥, p); that is, to each finite set of measurable linear functionals
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we assign a distribution in R", with the observance of the obvious compatibility o, q
_ . co s ndj.
tions. A weak distribution can be described by specifying on the space 7 tp, Chara l
. . 4 c-
teristic functional defined as the restriction to the image of F of the fundamental f
unc.

tional y on S“ defined by

x ()= | e/ dp.

Q

It is convenient to state various characteristics of a weak distribution in termg of the
functional x.

If (£, ) is a linear measure space, then we can consider the subset | of the Space
S(E, u) = s“ consisting of all the measurable linear functionals. When a Gaussian ran-
dom process is considered, it is sometimes convenient to work with a Gaussian measyg,
in a linear space, and sometimes convenient to work with a so-called Gaussian subspace
H C L*(Q, 1) C S(82, u) consisting of Gaussian measurable functions. Any two Gauss.
ian subspaces of the Hilbert space L2(£2, i) that separate points are carried one into
the other by an orthogonal transformation that is the adjoint of some automorphism
of the Lebesgue space (£2, u). In any case a closed (in L*(Q, p)) Gaussian subspace is
a maximal Gaussian subspace consisting of the functions that are measurable with re-
spect to a certain decomposition (into the maximal subsets on which all the functions
of the Gaussian subspace are constant).

Let (E, ) be a linear space (of countable dimension) with Gaussian measure, and
L the space of all measurable linear functionals. Obviously, L C L%(E, v). If H* C
(E, ) consists of all the continuous (with respect to the Hilbert norm) linear forms on
L (the so-called kernel), then H* C E,, for any realization of (£, ) in the form of a
concrete measure space (E,, v). Moreover, H* is a maximal subset having this proper-
ty, and yH™ = 0. The unit sphere of the Hilbert space H* (the polar of the unit
sphere of the Hilbert space L C L?) is called the variance ellipsoid of the Gaussian
measure vy. The kernel H* coincides with the set of quasi-invariant translations of the
space (E, 7). If E, is a Hilbert space, then the imbedding H* C E is Hilbert-Schmidt.
Of course, the space H* can be defined in a similar way for any measure p for which
L C L¥(E, p).

Finally, we define the concept of barycenter of the measure u in a linear
space (£, u). The point x| € E is said to be the barycenter of y if the set L of me¥
surable linear functionals on (E, u) is a subset of L!(E, u), and for any f € L

| fap = (a,, p.

E

measure

The barycenter of the normalized restriction of a measure for which L C L*(E w o
any subset of positive measure belongs to the kernel //*. We mention here the Cho-

quet-Krein-Mil'man theorem: each point of a convex compact subset of a linear top?-
logical space is the barycenter of a measure on the set of extreme points of this €™
pact set.
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§1. Statement of the problem

0. In this chapter we study questions connected with the problem of extension
of a weak distribution to a measure in a Banach space. Basically, we consider random
processes with second moments and certain other processes that are closely related
them (for example, Cauchy processes; see below). The fundamental aim of the invegy;.
gations is to determine conditions permitting us to judge from the correlation function
of a process whether the sample functions of the random process belong with probability
1 to some Banach space of functions on a parameter set (sometimes understood in a
somewhat extended sense).

In the case of Gaussian processes with zero mean the correlation function is
known to carry complete information about the process, and our approach permits us
in many cases to formulate necessary and sufficient conditions for the possibility of ex-
tending a weak Gaussian distribution to a measure in a Banach space. Study of the geo-
metric characteristics introduced for a process leads to the establishment of several new
inequalities for the Gaussian measures of convex sets that, in turn, allow us to obtain
convenient (for checking) conditions in terms of the e-entropy of the parameter set. A
special role is played by conditions for the boundedness of realizations of a Gaussian
process and for their continuity with respect to the metric that arises naturally on the
parameter set.

For an arbitrary process with second moments and with given correlation func-
tion we prove the alternative: either its sample distribution functions are bounded and
continuous (in the natural metric) with probability 1, or the finite-dimensional distri-
butions of the process, which are compatible with the given correlation function, can
be chosen in such a way that the realizations of the process are certainly unbounded.
A criterion is given for checking which case actually holds.

. 1. As usual, let (2, ¥, P) be a probability space. We assume that the o-algebrd

?1 s countably generated (as is practically always the case) and that this measure space
I complete ([92]; the terminology is discussed in the first chapter). We recall that &
mcorflplete measure space is an object that is just as imaginary as a subset of a seS"‘e"t
that is not Lebesgue measurable. Let {x,(w), t € T} be a random process in the usual
Sen.se. We consider the space S, of all measurable functions on the space (2, % P)
which is metrizable with respect to convergence in probability, and the closed linear
S‘ubspace L = Lp € Sp of it generated by the elements x, €ESp, t ET. 1f we now %
sign to'e.ach finite set of elements x ,(w), ... » Xp(w) € L their joint distribution (a
probability measure in R"), we get a compatible system of finite-dimensional
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disn-jbutions. or, in other words, a weak distribution or generalized random process [35],
which determines a linear measure space (£, P) to within an isomorphism (see [14] |, and
also Chapter I of the present book). It is always possible (by Kolmogorov’s theorem [66]
on the extension of a compatible system of finite-dimensional distributions to a measure,
or by the Minlos—Sazonov theorem [77], [103]) to select a concrete form for the lin-
ear space £ with measure P such that the elements of the space L are measurable linear
functionals (for more detail see [141] and [139]). It frequently happens that it is not
exactly the concrete form of the linear space £ that is important, but only the struc-
ture of the measure space (£, P), which is completely determined by the original ordin-
ary random process x,(w), t €T. It is convenient to represent the passage from the
measurable functions x (w) to measurable linear functionals on a linear measure space
as a process of linearization of the set 2; the linear space £ is the very same set £,
and comparison of the measurable functions on (£2, P) and the measurable linear func-
tionals on (£, P) with the same distributions establishes (see Chapter I) an isomorphism
mod O of the measure spaces (£2, P) and (£, P).

It is easy to see that, to within an isomorphism of linear measure spaces, there is
a unique linear space with an infinite-dimensional (of countable dimension) Gaussian
measure, and from our point of view (which differs from the usual) it is frequently ap-
propriate to speak, for example, not of “Gaussian measures in Hilbert space” or in some
concrete separable Banach space, but simply of Gaussian measure (i.e., of linear Gaus-
sian measure space). This remark is relevant, in particular, to the problem of the abso-
lute continuity of the measures corresponding to two generalized random processes, the
solution of which is, of course, determined only by the weak distributions and does
not depend on the concretization of the space E. (The concept of isomorphism of
measure spaces is discussed in [115]. The axiomatic approach is studied in Versik’s
paper [139].)

A systematic feature of the following presentation is the consistent adherence to
the point of view that in investigating the question of extending a weak Gaussian distri-
bution to a measure it is more natural to consider, not the various Gaussian weak dis-
tributions on a fixed Banach space with the purpose of distinguishing those of them
that can be extended to measures in this space, but the various Banach subspaces of
linear Gaussian measure space with the purpose of determining their Gaussian measure.

2. We shall now study Gaussian measures in more detail. Let {x (), r €T} be
2 Gaussian random process; this means that L C Sp is a Gaussian subspace, i.c. a closed
linear subspace A of the Hilbert space of random variables L2(2, ¥, P) that consists of
Measurable functions with Gaussian distributions and separates the points of §2. (If the
latter condition were not satisfied, it would be sufficient to pass to the corresponding
Quotient space.) As shown by Versik [140], a Gaussian subspace of L*(Q, U, P) “’i_th
Purely continuous measure P is unique to within an orthogonal transformation that is
the adjoint of some automorphism of the measure space (£, ¥, P). The space H .of
Gaussian variables will always be equipped with the Hilbert norm induced by the inclu-
Sion H C L,2(Q, 91, P), so that the value of the covariance function (s, n,s,t€T,
coincides with the value of the usual scalar product of the elements x, and x; of H.
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wing when we speak of Gaussian random processes, we shy|; for
simplicity have in mind Gaussian processes with z¢.3r0. mean value, so that the norm of
an element x of H coincides with its standard deviation ax.-

Let (E, ) be a linear Gaussian measure space. The linear space £ (considereq "
within the complement of a measurable linear subspace of full measure) necessarily ¢op,.
tains the subspace H* C E consisting of all continuous. linear functionals on the lHilben
space H of Gaussian variables. (The subspace A * consists ott all the vectors such thy
translations by them preserve these measures, and therefore it does not depend on 4
realization of the linear measure space.) In the infinite-dimensional case we
— 0. Thus, the set H of all measurable linear functionals on a lineyy
s with the set of continuous linear functionals on the

Everywhere in the follo

concrete
always have YH*
Gaussian measure space coincide
Hilbert space H*.

PrOPOSITION 1 (the zero-one law for Gaussian measures; cf. [115] and [121]).

1) Let (E, 7) be a linear space with Gaussian measure vy, and E, C E a measur-
able linear subspace. Then either E, = E (mod 7), or E; =@ (mod ). In other
words, either YE, = 1, or YE| = 0.

2) Let {L,} be a sequence of closed subspaces of finite defect in the Gaussian
space H. If the set M C (E, ) is such that for almost all w € E the inclusion w €M
is determined by the values on the element w of the functions x(w) € H that are or-
thogonal to all the subspaces L, , beginning with an arbitrarily large number, then either
™ =0, o0ryM=1.

ProOF. 1) We choose in H an arbitrary orthonormal basis {e,(w), k = 1,2, ...}
We construct the mapping e: (E, v) — R” that acts according to the formula e(w) =
(e, (w), e5(w), ...) €R”. Under this mapping the Gaussian measure y on E goes Over
into the standard countable-dimensional Gaussian measure Yo: Yo = 'ye_l, where 7, i
the product of a countable number of standard one-dimensional Gaussian measures.
The space H in this concrete realization of the linear Gaussian measure space (E, 7)

coincides with the space /2, and the characteristic functional, which on the original
space H equals

% (#) = | exp iz () dr = exp(— L= [3),

E

can now be written in the form

Xy, (%)) = exp (— %E -"’?c) ,

where (x,, k= 1,...) €.
If there existed a measurable linear subspace E, C (E, ) of intermediate y-med:
sure, we could associate with it a y,-measurable subspace L, C R of the same inter-

mediate measure. Let 2 = {(y,,k=1,...)} C R™ be the space of sequences with

convergent series of squares. (The s 2 " . Cod
above.) R~, 7o) is the space H™ men

We consider two cases.
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[, Suppose that there is a vector y € R™ such that y € 12, but y ¢ 1,, 1t s
j known ([30], Chapter v, §5.2, Theorem 3) that the Gaussian measure 7 is quasi-
we ot with respect to translations by elements of the set H* = j2 R from which
?m::[llows that Yol-1 = 0, since in the opposite case we would have, by quasi-invariance
:nuncountable number oi‘ disjoint sets L+ Ay, X € R, with positive measure. ,
[I. Suppose that #/* C L ; then all the finite-dimensional subspaces spanned by
Jementary pasis vectors of the space R™ (i.e., the vectors of the form ©,...,0,1,0,
e £ R™) are also contained in L. This means that for an element Y ER” the
'perty of belonging to L, is determined only by the members of the sequence y =
O Y2 ....) that are arbitrarily far out. In other words, we apply the Kolmogoroy
ze;loone law [66] to the event L, C (R”, y,).
The proof of 1) is concluded. By passing to the space (R”, 7o) the assertion 2)
is reduced directly to the Kolmogorov zero-one law. ®
Further, we mention that the topology defined by the norm and the topology
defined by the inclusion H C S (the topology of convergence in probability) coincide
on the Gaussian space H. See, for example, [94].
3. Let B be a Banach space of functions on the parameter set 7. We are inter-

pro

ested in the question of whether it can be assumed that the sample functions of a parti-
cular process (for definiteness we speak first of Gaussian processes) belong to the space
B with probability 1.

As mentioned, the parameter set 7 can be assumed to lie in the Gaussian space H
(we assign to a point ¢ € T the point x, € H). The imbedding T C / permits us to
carry a metric, and, together with it, a Borel structure, from the space # to the set 7.
To connect the Banach space structure on B and the structure of the weak distribution
we assume that some subspace L of the space B* of continuous linear functionals on B
that separates the points of B consists of measurable linear functionals, i.e., is identified
with some (generally nonclosed) subspace of A. As a rule (but not always) the func-
tionals “value at the point + € T” turn out to be continuous on B. The assumption
that Z does not coincide with B* is interesting in the nonreflexive case, as will be clear
from the examples given below.

First of all, we show that without loss of generality we can assume that the sub-
ace L C B* is closed, i.e. is a Banach space, and that the image of its unit ball under
the inclusion £, C 4 is precompact in . We prove a more general assertion that is rele-
Yant not only to Gaussian weak distributions, and then we give some examples.

PROPOSITION 2. Let B be a Banach space, L C B* a linear subspace that sepa

. . at
94 the points of B (i.e.., is weakly dense in B*) and contains a countable subset th

| B
% nom dense in it ana i a probability measure on the o-algebra U, of sf;bsets "j; "
Senerated by the functionals in L. Let LS C B* be the smallest sequentially wea g

' he following

i the topology o(B*, B)) closed subspace of B* that contains L. Then 1
asserﬁons are trye:

D L IS countably generated.
s 2) The elements of L ® are measurable with respect 1o e
7¢d as elements of the space L, of all w-measurable linear functiondts

A, and can thus be con-
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3) The subspace LY is closed in B* an_d_ is thus a Banach space,

, . 78 . —
4) The image of the unit ball Vg in L° under the mapping L —, L

Cs
. , "
established in 2) is a bounded subset of the linear metric space S, 4

Prookr. The statement 1) follows from the assumption about the separabily
the set L C B*, since the pointwise limit of a sequence of functions is measurap, with
respect to a g-algebra with respect to ‘ihBiCh all the members of the sequence are Meg.
surable. To prove 2) we observe that L~ can be obtained as the union of the nonde.
creasing transfinite sequence of successive sequential weak closures of L over a]] count.
able transfinite ordinal numbers (the Borel superstructure over L, i.e. the union of the
Baire classes constructed beginning from the elements of L). Since there is no count.
able sequence of ordinal numbers that is cofinal in the set of all countable transfinite
ordinal numbers, each weakly convergent sequence of elements of the space L8 thus
constructed actually belongs to one of the spaces in the union (whose transfinite num.
ber can be determined as the supremum of the countable set of numbers of the spaces
to which the members of the convergent sequence belong), and the limit function then
belongs to the space that is next in order. We have proved the sequential weak closed-
ness of the space L 8 thus constructed; moreover, it is obvious that this space is the
smallest sequentially weakly closed superspace of L, and its elements are measurable
with respect to the o-algebra U, , since they appear in the Baire hierarchy over L. The
statement 3) is now almost obvious; in fact, it is sufficient to verify the norm closedness
for sequences, and norm convergence implies weak convergence. Before proceeding to
the proof of the assertion 4), we observe that the mapping L 8 1| . can be assumed
to be an imbedding (passing in the opposite case to a quotient space), i.e., we can as-
sume that the measure y is such that no o(B, L)-closed subspace has full measure (tak-
ing in the opposite case instead of B the smallest such subspace, which exists and coin-
cides with the polar of the subspace L, C L of linear functionals having a Eo-distribu-
tion). The space L is norm closed in L (since it is sequentially weakly closed) and is
clearly separable, so that its polar can be represented as the intersection of a countable
number of hyperplanes, each of which is a subset of full measure.

We prove the boundedness of the set VzB C Sn' Boundedness of some set AcC
S, means that for any neighborhood ¥ of zero in S, there is a number A > 0 such

that M4 C V. In our case a fundamental system of neighborhoods in S, is formed bY
the sets of the form

Vi={z(0):p{o]z©)|<e) >1—e}.

For fixed € > 0 there is a number r > 0 such that u(rvg) > 1 —¢. Since for x(w? €
Vg we have that |x(w)| < 1 for w € ¥ and x € Vg, we get from the bilinea™
with respect to x and w that |x(w)| < € for w € rV‘;L and x Eer! Vo8 which €0
cludes the proof of Proposition 2. ®

REMARKS. 1) If B is a separable reflexive space (in particular, Hilbert SE o
then any linear set of functionals that separates points (i.e., is weakly dense in B*) 1S
norm dense (for convex subsets of the dual space closedness and weak closedness are

equivalent [12]), so that we can always assume that the weak distribution is v "
whole dual space.

ace),
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2) In this case the image of the unit ball VTB of B

in the space Su is compact
topology of convergence in measure,
78

in the For, as noted above, we can assume that
(he mapping L Weak convergence implies convergence in

i ak topolo g i . it i :
measure, but in the weak topology the ball Vg is compact; hence it is compact in the

onvergence in measure. In particular, in the case of a Gaussian measure

— S, is monomorphic.

is a compact sub-

3) In the case of an arbitrary Banach space B the norm closure of the space
L, C B* does not necessarily coincide with the whole space B*, even if B*

is separable
(and L separates the points of B).

ExaMmpLE. B = c is the space of sequences converging to a limit. In this exam-
ple B* = I' x R, and we can take L = I = ' x {0} & B* We note that the space
1! is not sequentially weakly o(l 1 c¢)-complete, and that the norm closed subspace
L C B* is weakly dense in B,

4) The last observation can be given a general character: if the space B is sepa-
rable, then always L% =p*. Indeed, in this case L 2 is weakly closed in B*, because
its intersection with any closed ball in B* is sequentially weakly closed (as the inter-
section of two sequentially weakly closed sets) and hence weakly closed, since on the
bounded sets in the dual space of a separable space the weak topology is metrizable,
and it is sufficient to verify weak closure for weakly convergent sequences. On the
other hand, by a theorem of Banach ([6], Chapter VIII, §5), the weak closedness of
the intersection L& N Ve implies the weak closedness of L 8 and, consequently, by
the weak density of it in B* (totality), the condition L& = B*.

5) The separability of B in the preceding item cannot be omitted.

ExampLe: B =17, L =1'. Since /' is sequentially weakly o(I®, I°)-complete
[6], we have L® = 11 although /! is weakly dense in (I*)*. We remark, further, that,
although Z® does not necessarily coincide with B* (I' ¢ (I°)*), it can happen that
¢ach functional in (1™°)* coincides almost everywhere with some functional in /! (the
o-algebra is assumed to be complete with respect to the given measure). In particular,
this will be the case if in 7*° we consider a Gaussian measure 7y corresponding to a se-
guence of independent trials; moreover, yco, = O (the last observation is due to B. S.

irel'son).

_ +5
6) For measures in a nonreflexive space the image in S, of the unit ball of L
fieed not be totally bounded.

EXAMPLE. Let B = 1=, L = 11, and let the measure u be determined by the char-

- 1
. Acteristic functional on £: x(x) = x((x;, ...)) = N7 cos x,, x = (X, ) ELD (e,

ormesponding to the distribution of a sequence of independent random variables taking
Values +1 and - 1 with probabilities 1/2). In this case the space of all measurable
N€ar functionals on the space (I, 1) coincides with the space /2, in which .the set o-f
(ie., the independent random variables mentioned) is contained in the unit
ball of I
7) If the measure 1 is Gaussian, then, as will be clear from the following, the set
I8CHC S, is relatively compact (totally bounded). In the following the order of

its .
©€ntropy in the metric of H is estimated.
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8) Even in the case of a Gaussian measure the set VIB C H need not be ¢,
pact. Its closure in L, (or, what is the same, in /) consists of all H-Measurabe &
forms x(w) on the space (8, u) for which ess sup , ¢y, IX(w)l < 1.

However, contrary to the case of a separable reflexive space B, in the genera]
ation it can happen that some of these forms are not p-equivalent to any “Bajre»
form over L, i.e. to any element of L&

ExAMPLE. We consider the sequence of Gaussian variables e (w) = Ckeﬁc(w) Y
eq(w), k=1, ..., where eg(w) and e} (w) are ortho-Gaussian.

If ¢, = O((In k)"'/?), then the realization of such a random process belongs {,
I*. The space L of measurable continuous linear forms on [” in this example can be
represented as the space R™: the linear span of the “coordinate functionals”; thay i,
we consider on 2 the smallest g-algebra with respect to which all the random variapje
€., k =1, ..., are measurable. The norm closure in (I7)* of the space R™ = [ jg the
space I, which is well known to be sequentially weakly complete, and consequently it
coincides with L. It is easy to verify that the unit ball of the space H;' C1” (the
“variance ellipsoid™) for this Gaussian measure is the set

Sity.
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and the pre-Hilbert norm induced on /! by its imbedding in A is given by
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(we can also say that this functional defines the imbedding of /! = L® into H). Ob-
viously, e, — e, (in probability, and hence in the mean square), i.e., ¢, € H. On the
other hand, the functional e(-) cannot be identified with any element of I'. Indeed,
when ¢, = o((In k)"'/2), we have for almost all « that ¢, e;(w) — 0 and ,(w)
ey(w), i.e., yc = 1, where, as usual, ¢ C I denotes the space of sequences converging
to a limit. The functional eq(-) is defined on the space ¢ by the equation eo(w) =
eo((yy, ...)) = lim y, and is equal to zero on the space ¢, of sequences converging 1©
zero, i.e., on a total set of functionals in /*, and therefore it is not generated by 2"
element of /'. A continuous linear functional with unit norm defined on the st 0“;.
measure ¢ C I can, by the Hahn-Banach theorem, be extended to the whole space /
with preservation of linearity and norm (a “Banach limit” of the bounded Seq“ences)'
but each such Banach limit is nonmeasurable with respect to the o-algebra Ql,v and th¢
construction of particular examples of such functionals is just as problematical 8% N ]
construction of particular examples of subsets of a segment that are not Lebesg! ’ me:
surable. In the case when ¢, = (In (k + 1))/ and y¢ = 0, the value of the functi®
al e, can be obtained for almost all w € I™ as the limit of the sequence fu@)=
(2 ex(w))/n € 1", which a fortiori does not converge in /1.

9) We mention that a norm closed subspace B, of (B, v) that contain$
ance ellipsoid E; can have zero measure.

Sl

<1}, >~f+>.gg1},

N

the vari'



§1. STATEMENT OF THE PROBLEM 19

ExAMPLE. B=1",B, =c,, £ = (o W= ), Z In(k + Dyi <1}, U, =

0 10) If the original random process x, f € T, is such that in the Banach space B

of functions o T all the functionals of the type “evaluation at a point” are continu-

ous, i.c. the norm IIIl g majorizes the topology of pointwise convergence, then the
parametef set Tis a Sl-JbSCt of the space L. In the following it is convenient in many
cases t0 regard the unit ball st C L, as the parameter set. Of course, if the func-
tionals X € Lp are only u-mea‘surable,_agd not continuous functions on B, then the
true parameter set is not contained in L”. Such is the case, for example, in clarifying
(with the help of the Minlos—Sazonov theorem, or directly [94]) the question of when
the realizations of a Gaussian process on some segment [, ] belong to /.2 [a, b], or,
more precisely, when the classes of functions that are Lebesgue-equivalent on [a, b] to
realizations of the process x, belong to L2,

11) Finally, we touch on the question of measurability of realizations. Let
kcCS, be a convex bounded balanced set whose linear span L = | (K) is a Banach
space in the norm II-llx. On the set K we consider the o-algebra® induced from the
space S ,- We now consider the space L™ of all linear forms on L that are bounded
on K (linear functionals) and measurable with respect to . The space L(*) is a sub-
space of the dual space L* of (L, || - || x ), but, generally speaking, does not coincide
with it.

ExampLE. Let H C S be a Gaussian subspace, e, € H an orthonormal basis in
H,and K = {x: Kx, ep)| < c.}, where (-, -) is the intrinsic scalar product in H. Then
the space (L, || - Il ), where L = L (K), is isometric to /*, and L™ is isometric to /1
(but not to the whole space (17)*).

Given a set X of the indicated type, it is natural to consider the question of
whether realizations of a random process with parameter set K are almost surely bound-
ed. In other words, we can consider the question of extending the weak distribution
that arises to a measure in L*. The example given shows that L* can contain function-
s that are nonmeasurable with respect to the o-algebra B on the parameter set. How-
E¥er, it turns out that we can limit ourselves to the problem of extending the weak dis-
fribution to a measure in the space of Borel linear functionals L®*). Namely, it can be
$hown that if a weak distribution can be extended to a measure in L*, then it can be
®tended to a measure in L™, i.e. that it is always possible to assume that the realiza-
tions in our senge are Borel. (Compare with Doob’s theorem on the existence of a mea-
Wrable modification of a process in [24], p. 61. Doob’s theorem coincides with the
%ove assertion neither in the hypothesis nor in the conclusion.)

We consider that (L™, QLL’ u) is a Lebesgue space; consequently, it suffices tu‘
lt-lok for a solution of the problem of finding conditions for the boundedness of realiza-
t.lons of processes with separable (in the metric of §,) parameter sets in telrmsg(l)ftt}}::
sulj:r Measure space (£, u), which is, by definition, a Lejbesgue space. Alt 10\;) ]9)

Pace L™ C 1 * is 1orm closed, it is o(L*, L)-dense in L*, and, as shown by %),
the assertion that, always, u*L™ = 1 is not trivial (u* is the outer measure) (see §9).
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4. In the following we assume that Lt = L, in the opposite case €xtending the
weak distribution from L to L B Now it is true that we cannot assume that the B,.
nach space L is separable; but it contains a norm closed weakly dense (in the topolo
o(L, B)) separable subspace, i.e., it is in any case weakly separ?ble. [t is clear from tp,
above presentation that the solution of the problem of exte.ndlng a Gaussian wea dis.
tribution to a measure in some Banach space B lies in describing all the variance ellip.
soids E* C B corresponding to Gaussian weak distributions that are extendible g ,
measure. In [15] the author gave necessary and sufficient conditions for the extensiop
of a weak distribution to a measure in the space IP (p < 2) precisely in terms charac.
terizing the distribution of the variance ellipsoid of a Gaussian measure in this space
(see also the more general result of Vahanija in [135] and [136]). The conditions
amount to the structural boundedness of the ellipsoid E* in the corresponding I Space,
i.e. to the condition Z7 of < oo, where o2 is the variance of the kth coordinate func.
tional. It is possible to describe a certain class of boundedly complete vector lattices
[53] for which the structural boundedness of the variance ellipsoid E * is a necessary
and sufficient condition for the extendibility of a Gaussian weak distribution to a mea-

sure.

If B is separable and reflexive, then the unit ball V; of the space L is compact in
H [Remark 2) after Proposition 2] and L = B* and B = L*; that is, B consists of all
the linear forms that are bounded on ¥,. Therefore, necessary or sufficient conditions
for the boundedness (or continuity in the natural metric of the parameter set) of the
sample functions are automatically necessary or sufficient conditions for the extendibil-
ity of a Gaussian weak distribution to a measure in the separable reflexive Banach space
(the unit ball ¥; = V. C H of the dual space serves as the parameter set).

Not so is the situation in the nonreflexive case. If (B, 7y) is an arbitrary Banach
space with a Gaussian measure, then, generally speaking, the space H of Gaussian vari-
ables does not contain a subset K C H for which B is the space of all linear forms that
are bounded on K or the space of all linear forms that are continuous on K in the to-
pology induced from H.

ExaMPLE. We consider a sequence of independent Gaussian variables £, with vari-
ances o — 0 such that the sample distribution sequence converges to zero with prob-
ability 1 (we recall that we always assume, unless a statement to the contrary is made,
that the mean values of our Gaussian variables are equal to 0). Let (!, 7) and (o> V)
be the spaces of sample distribution sequences /™ and ¢, with the Gaussian measure
corresponding to this sequence of Gaussian variables and with the o-algebras generated
by the coordinate functionals.

1) The space H of all measurable linear functionals on the space (I, v) does!
contain a set K such that (I”, v) is precisely the set of all linear forms on K (i.e:, "
the linear span L(K)) that are continuous on K in the topology induced by H. Indeed,
suppose that the spaces L(K) C H and I” are in duality (in the opposite case the me#”
sure 7 is not reproduced by K). Necessarily, L(K) C I', where I' C H is the space of
all measurable linear functionals that are bounded on the unit ball V.. Sincel” =
(I')*, each strongly closed (with respect to the norm lI-1,,) subspace of / 1 js also

10!
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v closed and, therefore, cannot be in duality with ;=

: -'m ;' On the other hand, since, by assumption, the el
- ous functions on LK) C 1" C H (in the metric || I
glso on the closure of K in /" in the metric “'”11 (if x

Consequently, [ (K) is
ements of /™ are continy.
#7), they are continuous functions

1 n € L(K) and X, 7 X in the norm
' of I, then the value on the element x € I' of any functional Y €17 is equal to the limit

' jm(x,.»)) By the same token, the set L(K) can be assumed to be closed in ! ,and con-
- sequently it coincides with /' But on /! with the metric Il (for which llex(w)lly; = o
 where e, is the kth coordinate functional,i.e., H 5 e, +(0,0,...,0,1,0,..)¢e 1) notk

~ all elements in I are continuous functions; for example, e, Il i 0, but, if y = (1.-1

? 1.-1,...) €I, then (e, v) does not converge to a limit. With this, assertion 1) is proved.
E L

|

|

. 2) The space H of all measurable linear functionals on (¢, 1) does not contain a
' set K such that (cq, Y) is precisely the set of all linear forms that are bounded on K.
| Indeed, in the opposite case ¢, would be the space dual to L(K), the latter equipped
with the norm dual to the norm of ¢, while Co is not the dual of any space (its unit
ball does not contain extreme points, whereas the unit ball of any dual space is com-
pact in the weak topology and therefore contains extreme points).

We now consider the space (I7, y) x (¢g> 7). From 1) and 2) it follows at once
that the space H ® H of all measurable linear functionals does not contain a subset K
for which (I, ) x (¢g» 7) coincides with the set of all continuous or with the set of
all bounded (measurable) linear forms on K.

5. Thus, if we do not assume that the space B is reflexive, then the unit ball
- ¥, CHof L does not permit the description of the linear forms in B in some standard
| way, even under the assumption of completeness (the Banach property) for B. The set
_' of all linear forms that are bounded (or bounded measurable) on ¥, can be (though
Dot necessarily, even in the nonreflexive case) considerably broader than the set of all
- continuous (in the metric || - || ) linear forms (in the norm dual to the norm of B each
bounded form is clearly continuous). However, it turns out that continuity (in the met-
- 1ic ||+ 1l,;) and boundedness are “extremal” properties. We prove that the space B is

] enclosed (with respect to inclusion) between the spaces of all continuous and all bound-

“ ProposiTION 3. Suppose that a Gaussian weak distribution is given on the Ba-
1 Mach space B by the inclusion I C H. Then B consists of linear forms that are bound-
}Gdon Vi, and it contains the set of all linear forms that are continuous on Vy C H

1‘ With respect to the metric Il Il

PROOF. The first assertion is trivial (it means that B C L*). To prove the sec-

g (fnd one, we use a theorem ([91], Chapter VI, §1, Proposition 2) saying that if two

. "® spaces (L, B) in duality are given, and A is a weakly closed bounded subset of L,
- en a Jinear form y on the linear span L(4) belongs to the completion of 8 with re-
et to the A-norm if and only if y~1(0) N A is closed in the topology o(L, B). ln
30'“ Case the role of A4 is played by the unit ball ¥, and if y is a linear form tha't is
Tmﬁnﬂous on ¥, in the metric || - |l, then y~1(0) N ¥V, is closed in L in the Hilbert
- flomm, ang, along with this, in the topology o(L, B). Indeed, o(L, B) majorizes the



22 II. SAMPLE FUNCTIONS OF RANDOM PROCESSES

topology o(L, H*) (since H* C B), and the latter is the weak topology of the py,
space H, which coincides on totally bounded sets [see Remark 7) after Pr()p(”‘itl(,nc;
with the topology generated by the Hilbert norm, so that y 1o)yn V.., which is chl
in ¥, in the Hilbert norm, is also o(L, B)-closed, and it follows from the norm comfﬂed
pleteness of B that y € B. ®

REMARK. Actually, in solving the problem of extendibility of a weak distribygj,
to a measure in the Banach space B it suffices to assume that B consists only of linearn
forms that are measurable on ¥, (Borel linear functionals) [see Remark 11) after Prop.
osition 2]. The set of linear functionals in B that are Borel functions on ¥, C 14 al
ways a norm closed (and even sequentially weakly closed) subspace of B.

We summarize what has been said. Suppose that we are given a Banach space
and a Gaussian weak distribution on it determined by a continuous linear mapping (we
can assume it is an imbedding) of some set L of linear forms on B (which can be as-
sumed to be sequentially weakly complete) into a separable Hilbert space # of Gaussian
random variables. We regard the unit ball ¥; C ff of L as the parameter set of a Gauss-
ian random process. If the realizations of this process are unbounded with probability
1 (or at least with positive probability), then by the same token they do not belong to
B with probability 1, i.e., the Gaussian weak distribution does not extend to a count-
ably additive measure in B. Conversely, if the realizations of a process are continuous
in the natural metric on ¥, with probability 1 (or at least with positive probability),
then the weak distribution extends to a Gaussian measure in B. Moreover, if B is the
dual space of L (with the norm induced by the duality (Z, B)), or the subspace of the
dual space of L consisting of all linear forms that are bounded on V7, and measurable
with respect to the g-algebra ¥, on ¥ induced by the imbedding ¥, C H, then the
question of extending a Gaussian weak distribution to a measure in B is equivalent to
the question of boundedness of realizations of a Gaussian process with parameter set
V,. Therefore, the basic problem considered below is the problem of boundedness of
realizations of an arbitrary Gaussian process with zero mean. In passing we also obtain
some additional conditions for the continuity of the sample functions (besides the fact
that each condition that is necessary for boundedness is also necessary for continuity,
and each condition that is sufficient for continuity is also sufficient for boundedness:
every linear form defined and measurable on the whole Banach unit ball ¥, is a norm
continuous linear functional and, in particular, is bounded on V).

Thus, we are interested in the class of subsets K of the Hilbert spac

. aliza-
the property that a Gaussian random process with natural parameter set K has 1¢ :
tions that are bounded in modulus. This property, and with it also the whole clas$ ¢

. s . € GB means
subsets having it, is called GB, following Dudley [25]. In other words, K oo
that any subset of a Gaussian subspace H of the Hilbert space L3, U, P) that is 13(}
metric to K is structurally bounded from above and below in the space S(§2, Q[,P)O-
all measurable functions (in such a case K is also bounded in L?). In fact, the stru®
tural boundedness of K means that there exists a modification of the process K for
which the set {x(w): x € K} is bounded for almost all w € Q. -

A subset K C H corresponding to a Gaussian process with realizations that

e H llﬂvmg
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pounded and continuous on K in the natural (induced by H) topology is said to have
e oc pr()pc”)’- By definition, each GCset is a GBget. However, the converse is

e’ if e, € H is an orthonormal sequence in a Gaussian space, then

K={(Z-Inky'2¢} € a,
put K € GC (the paths of the process K are bounded with probability 1, but, with
probﬂblllty l)

lim inf [
\V2TIn &

l%(’”)]}?h

while (2 - In k)"'/e, — 0 in the natural topology on K).

The basic aim of the immediate investigations is to find conditions permitting us
to judge from the intrinsic geometry of the set K whether the property K € GB is sat-
isfied, or, what is the same, to judge from the geometric properties of subsets of a Gauss-
an subspace H C L? whether they are structurally bounded.

§2. Problem of the size of a convex solid angle
in Hilbert space and the infinite-dimensional Cauchy distribution

1. We reduce the problem of verifying the property K € GB to the problem of
the size of a certain convex solid angle in Hilbert space, which enables us to obtain an
equivalent geometric reformulation of the problem of bounded realizations and several
important inequalities for the Gaussian measures of convex sets that reduce to conven-
ient conditions in terms of the e-entropy of K.

A Gaussian process is determined by the intrinsic geometry of the set K and its
distribution in the Gaussian space H C L%(£2, P). However, the GB property is easily
seen to depend neither on the isometric transformations of K (since they are the ad-
joints of measure-preserving transformations of the space (§2, P)) nor on translations
(since a translation is an addition to each of the random variables appearing in K of
some single random variable). There arises the natural desire to give a characteristic of
the GB property in terms determined only by the intrinsic geometry of K. This char-
acteristic will be shown to be simultaneously a characteristic of every cone in Hilbert
%pace whose polar cone has positive measure (precise definitions are given below). It
tuns out that the class of GB-sets coincides with the class of sets having a finite Min-
kowski mixed volume 4, (K) of the first degree of homogeneity.

The more detailed investigation of the properties of the functional h, to be car-
ried out Jater permits us to obtain an important and nontrivial characteristic of it that
felates 1o the finite-dimensional case: the monotonicity of this functional on the clas?
°f polyhedrons with respect to comparison of the lengths of corresponding fdges- This
Monotonicity property allows us in many cases to get estimates of the magnitude of
(k) by comparison with those simple sets for which A (K) can be calculated (rec- )
tangular parallelepipeds) or well estimated (finite sets of pairwise urthogo?al vectors O
*ual length). The basic tool of the investigation is infinite-dimensional Cauchy mea-lj .
Sure, which, in turn, arises from the problem of the positivity of the measure of a so

| angle polar 10 5 given one.
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ate a criterion for the continuity of realizations of Gaugg
process K, i.e. for the validity of the condition K € GC, in terms of the functiony) han
(or in terms of the Cauchy measure).(1) From this general criterion, which is difficy
as for the GB property, we derive a convenient (for checking) cn.
necessary for GC-sets, but not necessary for GB-sets (the cen.
tropy sufficient conditions available for the GB property are at the same time Sufficien,
also for the GC property). This e-entropy language for checking the GB (or Go) bion,

urns out to be very successful, as was mentioned in the Introduction. Neverthejey,
e verification of the GB property, a5 wella,s

Finally, we f ormul

to apply directly,
tropy condition that is

erty t
as examples show, an exact criterion for th
for the verification of the positivity of the measure of a solid angle, cannot be forpy,.

lated in terms of e-entropy.

2. We proceed to the problem of the measure of a solid angle in a Hilbert space,
We consider closed convex cones with vertices at zero in a Hilbert space, including
“wedges”, i.e. cones containing linear subspaces not coinciding with the whole space.
We first consider the finite-dimensional case. We can assign to each cone in the finite-
dimensional Euclidean space R” its measure: the measure of the solid angle, equal to
the measure of the intersection of this cone with the surface of the unit ball with re-
spect to the normalized spherically invariant measure on the surface of this ball. In in-
finite-dimensional Hilbert space there does not exist a spherically invariant measure on
the surface of the unit ball (see, for example, [30]), but, for example, it is clearly nat-
ural to assign to each polyhedral cone (wedge) formed by the intersection of a finite
number of closed half-spaces the “measure” possessed by the orthogonal projection of
this wedge onto the orthogonal complement of the largest linear subspace contained in
this wedge. For example, if we consider the cone formed by the two half-spaces {:
(x;,»> <0} and {y: (x,, ) <0}, then it is natural to take the number 1/2 = @
- arccos ((x,, x5)/(lx, 1 - lx, 1)) to be the “measure” of the solid angle obtained by in-
tersecting these half-spaces. If we now define the size of an arbitrary closed convex
solid angle as the infimum of the “measures” of the wedges of finite defect containing
it, then we obtain an additive (but not countably additive) function defined on the col
lection of closed convex cones and their finite unions. This “measure’ is invariant with
respect to orthogonal transformations but, of course, not with respect to arbitrary isomet-
ric transformations of the Hilbert space into itself; and, therefore, the magnitude of the
“measure” of a convex cone (or its intersection with the unit sphere) depends not only
on its intrinsic geometry, but also on its position in the containing Hilbert space. 1t pos:
fnble, however, to state the problem of the “measure” of a solid angle in such a W&y that
its magnitude remains dependent only on the intrinsic geometry of the particular set, but
not on the character of its imbedding in the containing space.

-

(1) The original version of the theorem on e-entropy criteria [121) was obtained without
the help of mixed volumes. However, the method used in [121] is, in essence, based on the use
Olf the properties of the functional hy(K); a clear separation of it isluseful (even if we do not €O
sider the monotonicity theorem obtained for it, which is a curiosity in itself) (see (1251, and al5?
[131], where, in particular, the author notes the relation A K) = (217)1/2 . E sup {x(w): ¥ W)
50 that the monotonicity property of h, is precisely equivallent to the monotonicity of (!
x € K}, which was proved independently by Chevet [19]): see also [33] and Proposition
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urn to the finite-dimensional case. On the surface 3.

g of the unit ball Ve
, ‘uclidean space we consider the normals is invariar
mensmna[ I malized measure m that is Invariant

ect to all orthogonal transformations. Let p — R" be another copy of n-di-
with ,rcSI,l] Fuclidean space, whose elements serye g (continuous) linear functiong]
mension: rc‘sponding bilinear form is denoted by (x, ), x € F.yepr o
- al case it would be possible to identify the elements of £ ang
dimenslz is. thinking ahead of the infinite-dimensional generalizations,
pot do .;se, convenient to consider in the space F jts intrinsic scalar pr
in anzazs of which it is possible, for example, to measure the angles b
by M To each subset Q of the surface X .. of the unit ball in F,or, w

each cone con Q in F, there corresponds a closed spherically cony
o
hat is the same, a closed convex cone con Q*

wC [C'

; the cor In the finite.

F, but we do
However, it is
oduct (x', x"),
etween rays in £
hat is the same,

eX subset Q' C 3
= (con Q)', the polar with respect

or, W
to the form (x, y)

i-
|
:
;
:

(conQt={y:y€E, Vr z€conQ = (z, y, < 0}.

With what geometric characteristics of Q is the size of the solid angle of con ot
(.. the quantity mQ") connected? From spherical geometry it is well known that, for
b example, in the case n = 3 the quantity mQ"* is equal to 1/2 — p/2n, where p is the

length of the perimeter of the spherical convex hull of the set Q C Zp
~ section of the convex hull of con Q and the sphere Zp).

(i.e. the inter-

However, in the case n = 4 even for the simplest set Q consisting of four points
of Zp in general position, the measure of the spherical simplex polar to Q is not ex-

1 pressible in an elementary way (and, in general, at all simply) in terms of the pairwise
angular distances between the points of Q. Even the calculation of the asymptotic be-
l havior of the measure of a regular spherical simplex is not at all simple.

An important property of mQ"* as a function of Q is the fact that it is complete-
ly determined by the intrinsic metric of Q induced by the imbedding Q C Z, C F and
does not depend on the dimension of the space F (while Q" itself is defined only simul-

- laneously with the fixing of the whole space R"). We mention also that if 0, C Q,
| then mQl > ot

In the finite-dimensional case (i.e., if Q is isometric to a subset of the unit ball of
4 finite-dimensjonal space), we have mQ* = 0 if and only if the spherically convex hull
@ contains pairs of points between which the angular distance is arbitrarily Close.to
mie.if and only if the closure of the spherically convex hull contains, together with
F Some vector x, also the vector —x.

Much more complicated is the question of estimating the measure of a. POlaf. an-
pe Mependently of the dimension n and thereby suitably for the inﬁnite-dm?ensxolr:fl
cc:;‘:tlslen Qisa sybset of the unit ball of the Hi]-bert space H =_ Pi"n (Zl;;:tjlocni r::n :;1:
i et of detem}ming such estimates, and, especially, of detfermlfl 31  irfitedimen-
- Siony) °" the positivity of the quantity mQ*. Properly Speaing, ™ tion of what
“ €43¢ we can state the problem of the positivity of mQ" without men
- Sphericy

di Invariant measure ifying fo i C I, the con-
- itj, Invariant sure is in this case, clarifying for which sets Q F
- Slon

=

y TR
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inf (mQ}:Q, C Q, dim @, < m} >0

is satisfied (as was explained, it is not necessary to indicate each time in whjc}, Space

we are considering the measure m). The value of this infimum is the exact analogye

of mQ* for finite-dimensional Q. However, for our purposes it is useful also jn the ip.
finite-dimensional case to have a real (countably additive) measure m that s invarign;
with respect to rotations. Moreover, only an analysis of the specific properties of the
infinite-dimensional distributions that do not exhibit themselves (exhibit themselyes on-
ly asymptotically) in the finite-dimensional case enables us to find the approach ¢, the
problem that is presented below.

3. As already mentioned, no measure in the Hilbert space A * of continuous lin-
ear functionals on F = H can serve as the “spherically invariant” measure m; however,
we can regard as spherically invariant any weak distribution on H* whose characteris-
tic functional, which is defined on H, depends only on the norm |[|-||;. Let (E, m) be
a linear measure space given by such a spherically invariant characteristic functional,
Each element of H is a measurable linear functional on (£, m). We show that (con Q)
as well as mQ*, where Q C = fp» can be correctly defined also in this case. For this, it
suffices to set

(con Q) = {w: (sup {z}) (v) < 0},
z€Q

where the sup is taken in the sense of the usual partial order structure on the set S,
of all measurable functions. [By the Minlos—Sazonov theorem, we can also choose
some concrete extension B of H™* in which the weak distribution extends to a measure
m, and manage with the help of those elements of A (forming a dense subset of H)
that are continuous functionals on B.] The spherical invariance of m means, in particu-
lar, that each orthogonal operator in A is the adjoint of some automorphism of the lin-
ear measure space (E, m). It is also natural to call this automorphism an m-orthogonal
transformation of (E, m). In the case of a concrete realization (B, m) an m-orthogonal
operator is defined only on a linear subspace of the Banach space B having full m-mea-
sure., |

In the finite-dimensional case it is natural to call the measure m> concentrated
on the surface Z of the unit ball an elementary spherically invariant measure. Any other
spherically invariant measure m can be obtained by means of mZ in the following way:

o
m(4)= | m? (04) a (do),
0

where a(do) is some Borel probability measure on [0, ). If we consider the (measur
able) decomposition A of a finite-dimensional measure space (£, m*) into the rays 8°
ing out from the origin (it is assumed that the zero point does not have positive med-
sure), then the conditional measures on the rays are obviously §-measures concentmted‘
at unit distance from the origin, i.e., the decomposition A is equivalent to the decomP‘.)
sition into points, and for X the conditional measures on the rays of (£, m) with an
bitrary spherically invariant measure are the measures a(do).
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In the inﬁnite-dimensional case the standard Gaussjan measure plays the same
1 e among the spherically invariant measures as the measure m® in the finite-dimen-
10

| sional case:
propoSITION 4. Let (E, m) be a linear measure space, and m{0} = 0. The de-
- omposition A of (E, m) into rays is measurable,

co

prooF. The decomposition X is equal to the product of a countable number of
’ measurablc decompositions into pairs of half-spaces. ®

proposITION 5. Let (E, ) be a linear Gaussian measure space. Then the de-
composition \ into rays is equivalent (in the sense of equivalence of measurable decom-
positions of Lebesgue spaces) to the decomposition € into points, Le., the conditional
measures on the rays are 6-measures (at some point of each ray).

Proor. We realize the space (£, y) as the space (R, o) where R™ = {(y,,

-y, .} S the space of all numerical sequences, and 7o is the standard Gaussian prod-
-~ uct measure. For almost all elements of R™ we have

. 1 n
lim < X =1, ()
1

but on each ray this equality cannot be satisfied at more than one point. The point at
- which it holds is the support of the conditional §-measure. ®

CoroLLARY 1 (Schoenberg’s theorem [106]). For the function F(r), r = 0,

to be a positive definite function in the n-dimensional space R" = {(x, ... ,x,)} for
(‘_ any n, where r = (x2 + -+ + x2)112 it is necessary and sufficient that F(r) admits
. the representation

F(r)= Se‘"”a (du).
0

: Indeed, a(du) must be taken to be the conditional measure on a ray for an (in-

; ﬁIlite-dimensional) spherically invariant measure with characteristic functional x(h) =
F(In,,).

] : A direct proof of Schoenberg’s theorem takes several pages of calculations (even

i the simplified presentation in [1D.

COROLLARY 2. Any spherically invariant measure m can be represented in the
Jollowing form:

T 2
m(4)={ v (4) e (da), @
0
°(4) = ¥(0A) is the Gaussian measure determined by the characteristic func-

_Where Y
omal x(x) = exp (- (ollxll,)2/2).

(This js essentially a reformulation of Corollary 1)
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4. We return 1o the problem of the measure of a solld angle. 1t is much More
ihsets Q of the unit sphere and the polars Q' ang

s they span, but with arbitrary subsets of the Hilber¢
analysis) polars of them. We transform the prob.

common to work, not with st

(con Q)" of them and the cone
val (for functional
casure of a polar solid angle, formulating it in new e

8,

y finite-dimensional) and @ a set on its unit sphere

space and the us
lem of the positivity of the m
Let /4 be a Hilbert space (possibl
Let f, be an arbitrary unit vector in # for which

(/o @) >0 (forany x(QCLy 3)

(if Q has a center of symmetry, it is natural to take it to be /).
In /* we consider the hyperplane Hy = (x:x €I, (x, fy) = 1} tangent to I, at

fo. We assign to the set Q the set K = K(Q) of central projections of the points of @

onto the hyperplane H:
K(Q)={x:xCl, x )" € Q).
The set Q = Q(K) is identically reproduced by K. We remark that con K(Q) = con (.
In the Gaussian measure space (/, y) we now consider the hyperplane £ = {w:
w EE, (fy, wy = —1}. (This is a proper definition in the infinite-dimensional case,
because the decomposition of (£, ) into hyperplanes parallel to £ is measurable, and
it is easy to write out explicitly the characteristics of the conditional Gaussian measure

on each one-parameter family of such hyperspaces.) Next, let
Hy = (oo, oy wy=—1}.
It follows from (3) that each ray lying in (con Q)" intersects E,.
We now construct the central projection m along the rays of the whole half-space
E' = {w: (f,, w) <0} into the hyperplane E. Each ray lying in this half-space inter-
sects £, and therefore we can consider the image yn~ ! of ¥ (more precisely, the part
of it that is concentrated in £') under the mapping m. Obviously,

7(con QP == ((con QO)- N E,).
On the affine space H, we now consider a new linear structure compati
the affine structure already there, taking f, as the new zero point. In other words, if

x,,%, € H, and +; and - ; denote addition and mutiplication by scalars in the new
sense, then

ble with

oy + oy o T = o (2 — fo) A= oy (0, — fo) + o

Similarly, we introduce a new linear structure in £, taking as the new zero point 8 ¥¢¢
tor w, € HY i = : i

"-’o. Hy for which [lwgll, » = 1. The linear spaces H, and HY become Hilbert
spaces if they are equipped with the norms

Iy, =lz—fol Joly=1]o— ol

The Hilbert spaces H, and H are in a natural duality defined by the bilin
(%, Wy ={x = fy, w = wy), and we can regard the elements of H, as measurable 1"
ear functionals on (E,, yn~'). We use the notation 4° for the polar of the set Ain

the sense of the duality (H,, H: ). If4 C H,, then, as shown above, the following s

is well defined:

ear form
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A {m: o, oo 1 for » (A,

Now let Q € Zp, K = K(Q). Then

K( — {ul L ( l‘.'” Ty e 1 for « (—: R}
= {w:iw & ""vm € - fm 0 — ”’o> Q\ 1 for z - [\}
Al a 4 .
s {(n . m(' l"l‘ £y 0 — fm “)> — <.T, (UM -}_ g f” M, = 1 , T (, ]"}

={0roCl, Zr, o, < 0|for ¢ Ky =E,N(con ).

1 Thus, the polar K° of an arbitrary set K C H, coincides with the intersection of
(con K)* with the space (hyperplane) £; therefore, to find the y-measure of (con Q)*
it is necessary to find the (yn~')-measure of the polar of K = K(Q) C H,.

It remains to describe the measure k/2 = yn~! on E,. If w € E', then n(w) =
~w/(fy, w. We represent E "in the form of a direct product,

E'—=E XR*, E,={0:{f, o>=10), R*= (1, >0},

‘ assigning to the element w € E' the pair (w,, \), where w, = w + wy{f,, w) and
A= {fp, W

fw=(w,,\)EE, x R*, then m(w) = (w,/A, 1) € E; moreover, w, has a

. normal distribution that is orthogonal to the projection of the standard distribution v,
* and \ is independent of w, and has the distribution of the positive part of a one-di-
mensional standard Gaussian variable. It is well known (see, for example, [37], §24,
. Example 4) that the ratio of a standard multidimensional normal variable to a one-di-
mensional standard normal variable (or its modulus) that is independent of it has a mul-
. tidimensional standard Cauchy distribution; consequently, the distribution k /2 on E,| in
. any finite-dimensional case, and hence in any case, is described by the characteristic

~ functional

Vi (@) = 5 0xp (—| z ), 2 € Ho )

‘:‘ The coefficient 1/2 in front of the exponent appears because, in the sense of our defi-
| mitions, the measure y7~! = /2 is not a probability measure, but a “semi-probability”
I °ne.ie,kE /2 = 1/2 (the measure of a convex nondegenerate solid angle is not great-
- ° than one-half), By exact analogy with the finite-dimensional case, We call the mea-

~ SUre k having characteristic functional

X (r) =exp(—|z[,), z€H, )
2 Cauchy measure also in the infinite-dimensional case.

We summarize what has been said in the following statement.
ce, and H the Hil-
a subset of the unit
0, and K = K(Q)
ess with natu-
H, such

E | PROPOSITION 6. Let (E, y) be a linear Gaussian measure spa
€t Space of all measurable linear functionals on (E, v)- Let Q be
?’;re Zy of H, f, € Q a vector such that (x, fo)y > 0 Jor all x <
5 o N con Q, where Hy = (x: (x, fodu = 1}. Considfr a Cauchy .proc
. Parameter st K | that is isometric to K and located in the Gaussian space
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that the zero point of H, corresponds to the point f, € K, ie., a random sy
characteristic function is given on H by (5), with H replaced by H . The, the me.
of the solid angle (con Q)" is equal to one-half of the probability tha; realizatiop, .
such a Cauchy process do not exceed one:

7 (con Q) = <K,

The proof of Proposition 6 was given above.

In the following we use the notation H both for the space of measurable line,;
functionals on a Gaussian measure space, and for the space of measurable linear fyp,.
tions on the space with the corresponding Cauchy measure; in this second case the Iy
bert norm in H is, of course, not the trace of the norm in L2, since # N LYE, k) =

{0}, but it is identically reproduced by the characteristic functional of the Cauchy me,.
sure according to (5).

§3. Cauchy measure and Gaussian measure

1. As does any spherically invariant infinite-dimensional measure, the Cauchy
measure admits the representation (2), where a(do) is the conditional measure on a typ-
ical element ! of the decomposition of the space (E, k) into rays, and the scale on the
half-line {0} == R" is chosen so that the conditional measure of the countable-di-
mensional normal spherically invariant distribution 7 is the §-measure at the point 1
(see Proposition 5). This choice of scale on the ray [ is called standard (with respect to
the measure ). We determine the concrete form of the measure a(do).

PROPOSITION 7. For any measurable set A C (E, k)

<=1 406 ds ©

0
where

r@= 3 Fexp(—o%). ®
and the Gaussian measure Y® has the characteristic functional
Lo (2) = exp (—.. % (5] x ")2) )
The following identity can be verified directly:

exp (—r)-— i‘uxp( % (r;))(l_f_'J “Nl'( ;‘l—‘—))‘h' ®

()
we find that

Proor.,

Indeed, denoting the right-hand side by y,

—

y' = —r '/ -‘3‘: ‘ nxp(~~ %(r;n)"‘)n.\;p( - :-i'_r)‘“

0

and, after the substitution ¢ = 1/rr, we get that
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a

2 (I
y'=- l/ ?\ vxp( ‘ 2?‘-)""[’( ;-Tzr'“')_{; dv— —y.

0

9)

Obviously, y = 1 for 7= 0, and this, together with (9), proves (8). But, since
exp (—(UHX")z/z) is the chafra.ctenstlc' functional of the Gaussian measure 7% and
exp (- lIxIl) is the characteristic functional of K, this identity (8
o the equality (6) of interest to us. @

The density p(o) is thus the

) is precisely equivalent

density of the conditional measure on a ray for the
Cauchy measure . However, we might expect this result, if we recall that the Cauchy
measure characterizes the distribution of the ratio of a standard infinite-dimensiona]
Gaussian variable to the modulus of an independent standard one-dimensional Gaussian
variable, and on almost every ray the infinite-dimensional Gaussian variable is constant
(Proposition 5), its value being used for choosing a scale of the ray. But the density
p(0) characterizes exactly the distribution of the variable |£[71, where £ is a standard
Gaussian random variable. Henceforth, we say that the Cauchy measure « is standard
with respect to the Gaussian measure v if the characteristic functional of x has the
form (5), where |lx|l;; is the usual norm of the function x(-) € # in L*(E, v).

2. The expression for the conditional Cauchy measures permits us to get useful
and simple estimates connecting the Cauchy and Gaussian measures of convex sets.

PrROPOSITION 8. Let Q C (E, k) be a measurable subset that is star-shaped with

respect to zero, k a Cauchy measure on E, and vy a Gaussian measure on E with respect
to which « is standard. Then:

) 10> tlo:qq , Where ¢ — V% § exp (—— % 1:2) dr~ 0.3174;
0

2) 10< % xQ.

PROOF. Let A be the measurable decomposition of (E, k) into rays, and let k /A
and y/X denote the measures on the quotient spaces (£, k)/A and (E, v)/A. Obviously,
K\ = Y\, Let I € \ be an arbitrary ray, and u(Q, !) the length of the segment / N Q

in the scale that is standard with respect to y. By the definition of conditional mea-
Sures,

o Sd(x/).) u(og,n ?iexp(z% ds,
0

T ol
En

Q=) {l:u@, 1) =1},
from whicp, we find that

1 [s¢]

W= § 4+ | < [ awm]+ | aem]<

w1y (w1 w1y 0 {u>1) 0
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< g V2L exp(gh)ds - (/) (<D () (> 1y

© o
0

- Q =y
=(1—=1Q)a+QR=>1W0=1—.
Similarly,
1

Q= [ aum{y

{(u=1) 0

'z

5 exp (z%) ds=q(Q.®

3. The “geometric” origin of the Cauchy measure k leads to the circumstance
that is is frequently more convenient to get estimates for it than for Gaussiap measure,
At the same time, the problem of extending a Gaussian weak distribution in a linear
space is equivalent to that of extending a Cauchy weak distribution.

PROPOSITION 9. The zero-one law for linear subspaces is valid for any spherical-
ly invariant measure m (i.e., Proposition 1 holds with the measure m substituted for 7).

ProOOF. Since a linear subspace is invariant with respect to homotheties, any lin-
ear subspace £, C (E, m) either has the property y°E ; = 1 for any ¢ > 0, or has the

property y’E; = 0 for 0 > 0, and the required assertion then follows from the repre-
sentation (Corollary 2 to Proposition 5). ®

ProPOSITION 10. Let V C (E, k) be a measurable set that is star-shaped with re-
Spect to zero and such that k \J,,_, nV =1. ThenkV > 0.

PrOOF. If k¥ = 0, then u(V, I) = 0 for (x /N)-almost all I, and, since u(nV, 1)

= nu(V, 1), we would have g UT n¥ = 0 (see the formula for the conditional Cauchy
measures). ®

COROLLARY. If V C E is a convex subset containing zero, then the condition
YL(V) = 1 is equivalent to the condition kV > (.

4. Finally,

we mention another useful property of a Cauchy measure: its special
kind of monotoni

city with respect to the measures of the polars of sets subject to 2
certain class of transformations. Originally this property permitted one to establish €
entropy conditions without using the concept of the mixed volume 4, [121] (in cof
trast to the method of presentation useq below). In the sequel we prove the monotor
city of ,(K) with respect to the same class of transformations, which makes it possible
not to use the monotonicity of the Cauchy measure. Therefore, we give the corre:
sponding assertion here without proof. It is proved with the help of a theorem of

Schlaefli more simply than the monotonicity property of the functional 4, (Theor¢™
2).

PRrRoOPOSITION 11. Let A, BCH, and Suppose that there exists a mapping v of
A onto B such that forf,g€ A
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e < (4, bg) + 1
(I el 0 1) (g2 4 1)

Then wd” SkB
§4. The GB property and mixed volumes
1. We recall that the Minkowski mixed volume of the first degree of homogeneity
for 8 CONYEX bounded subset K C R" of n-dimensional Euclidean space is defined (see
or ; -1 . ’
5 example, [14]) to be the coefficient wg”_)l - wﬁ,"_’,(K) of €1 in the expansion in

powers of ¢ of the quantity

i (K, &) = vol, (K +eV) = wf (K) +w{" (K) - ... L (K) (10)

(which is 2 polynomial of degree n), where V is the unit ball in R”, and vol,, Q denotes
the (n-dimensional) volume of Q. It is natural to consider the functionals w,(")(K) to
within a multiplicative constant, and then the concrete form of the set ¥ ceases to play
2 role. Another definition of the functional wi(K), 0 <i<n, is the following:

wi (K) = | vol,_, Pr, K ds, (1)
[+

where Pr, K is the orthogonal projection of K onto the subspace L C R", L runs
through the set of all subspaces of dimension n — i, and 7 is a measure on the corre-
sponding Grassmann manifold G" ™' that is invariant with respect to the transformations
adjoint to the orthogonal ones.

We are interested in the functional anwft"_)l(K), a, = const, of the first degree of
homogeneity, henceforth denoted by 4, (K), where we choose the normalizing factor
a, so that, for a rectilinear segment /, the value of 4, (/) is equal to its length. With
this normalization the value h,(K') for any finite-dimensional convex compact set K
does not depend on the dimension of the Euclidean space R” in which we consider the
%t K, but is determined only by its intrinsic metric. We define k, also on arbitrary
(not necessarily convex) finite-dimensional affine sets, setting #,(K) = h,(conv K).
For planar convex figures K C R? the value h(K) is the semiperimeter; for a convex
body K C R? the value h,(K) is proportional to the integral of the mean curvature.
In particular, if X is a convex polyhedron, then

by (K) =52 9y (v — 9) o
k

Where 1, is the length of an edge of K, and g, is the magnitude of the dihedral angle
2t this edge; the summation runs over all edges. More generally, let K be an arbitfary
“0nvex polyhedron, and P, one of its vertices. We locate it at the origin of ci‘”dmates
“dlet 0, < con (K; P) = U, . AK, a convex cone. We note that Z; ""Qi =1. We
nfnw consider an edge P;P; and let K; be the orthogonal projection qf K 'w1th kernel of
dmeHSion 1 and such that the line P,.P,. passes into the point P, v.vluch is, thus, a ver-
1€X of the polyhedron Kii' Then, analogously to the three-dimensional case,

hy (K) = X 1, jm (con (K5 P 12)
i, J
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varlant measure, (The formula (12) is casily derjyeq di
rect.

where m is the apherically In .
a polyhedron.) Fora ball v ¢ gn
n

ly from (10), applied to (he case when K 18 ' of unj,
radius the normalized value of the “generalized length” hy (V,) can be calculageg as

‘ 1
' ]("(,‘;)) Nrn (n 1),

For a parallelepiped K ¢ R" the value of s (K) is the sum of the lengths of 4
the sum of the lengths of the edges forming g .

hy (V) Ve 1)

the edges, multiplied by 20" (ie.,
imal set of pairwise perpendicular edpes).
2. We can now define the value of the functional hl(K) for subsets K C Hf of

an infinite-dimensional Hilbert spuce /1, setting

hy (K) = sup hy (K').

K'c K, dlm LI(K') <w
ProrositioN 12. h,(K) = h,(K) for any K C H.

The proof follows from the fact that any finite-dimensional set K, C X can be

approximated by a finite-dimensional set K; CK.e®

ProrosiTion 13. Let K, C K, C -+ ,and K =UT K,,. Then
b, (R) = lim by (K,)-

Proor. By Proposition 12, it suffices to prove that hl(UT’ K,) =lim h,(K,).
We fix an arbitrary ¢ > 0 and choose a finite-dimensional set K, C K such that #,(K,)
> h,(K) - e. Without loss of generality we can assume that all the sets K, together
with K, are convex. We consider the expanding sequence of finite-dimensional affine
spaces L., C L, C -+ spanned by the corresponding sets K,. The set K is contained
in some space !."0; consequently

Ii’m (KO L) 2z hy (K) >k (K) —e.

By the obvious monotonicity of &, with respect to inclusion and the arbitrariness
of €, we get the desired conclusion. ®

We mention several of the simplest properties of the functional h .

1) Homogeneity of degree 1 (obvious).

2) Additivity with respect to algebraic addition: h,(Z; K)= Z hl(Kl') (the ad:
ditivity is proved in the same way as for the finite-dimensional case).

3) Lower semicontinuity (Proposition 13).

4) Upper semicontinuity in the finite-dimensional case: if R" O K, 2 Ky 2
and K = K, then h (K) = lim h (K,).

In the infinite-dimensional case we have only the inequality and it is Possible e
give an example in which < holds.

ExAMPLE. Let K| CH, K ={*Q2 Inn)y"2¢ pn=1,...}, where (e, 82"
orthonormal sequence in the Hilbert space /. It will b':e shown that K € GB, and,
therefore, /1, (K') < eo; however, K & GC, and from this, as will be shown, it folloWs
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that if
. _,.‘ ! ) f— «
A, \: G O n=m--1, m+.3,.,,}_

en 1, (K) > &> O although N, K, = and N,, conv K, = (0}.
¢ . .

3 For what follows it is important to obtain a direct expression, analogous to
1), for the quantity / (K) with the help of Gaussian measure.

(1) (for# =1~
propoSITION 14. Let K C H, where H is the Hilbert space of measurable linear

ﬁ,m-riorwls on a linear Gaussian measure space (E, y). Then

hy (K) =12x S sup x (v) dy.

E xCA

Proor. We first prove the assertion for a finite-dimensional set K C H. Let
K CR", and let E in this case denote the dual space of R” (another copy of R™),
equipped with the standard Gaussian measure. For such sets we use (11). Let A be
the decomposition of (E, v) into rays /, so that w = (I, 0), where w € E, I €}, and o
is the distance from w to the origin. If e is an arbitrary unit vector in the Euclidean
space R" O K, then the length of the projection vol, Pr, K of the set K onto the line
L running through e is

sup (z, e) — inf (z, e) =sup (z, e) 4 sup (z, —e).
€K xeK IEK zCK
Therefore,

w(") (K) = S vol, PryKd~= S sup z (0) m* (dw)
G'll 5 xcK

= S sup m* (dw) = S sup z (1, 1) - (m¥/)) (dl),
g *€X EN

where mZ is the spherically invariant measure on the unit sphere 2 C E=R"*" If
NOW m is an arbitrary spherically invariant measure, and g(do) is the conditional mea-
Sure on (almost) every ray /, then, assuming that o 0q(do) = ¢ <, we have

Sgasrlel[;x(w) m (dw) = S (mjh) (d‘A)OS sn:_px (s, 1) q(dd)

EN

= S (m/%) (dl) sup z (1, 1) ch (do) = cw"] (K)-
EN 0

In Particular, for the Gaussian measure y we get also that

by (K) = a,w) (K)=¢, S sup & (w) dy- (13)
E
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To find the value of the constant ¢,, it suffices to take K to be a segmen; unit

length, placed symmetrically with respect to zero:

ne)
-x'/2

| — rLS ~|x|e dr, ie. c,=\/2x.
vVan

-0

lul —

The fact that the normalizing constant does not depend on n permits ys ¢, as.
sume that the measure 7 in (13) is standard countable-dimensional Gaussian for any f.
nite-dimensional K. 1f now K is an arbitrary set and K, C K, C--- CKisa sequence
of finite-dimensional sets such that K C UT X, then h (K,)) — h(K) (Proposition
13), and the sequence of functions {supxex" x(w)} converges monotonically upwargs

to the function sup,cx X(w); therefore,

‘ sup z (0) dy = \/E S sup z (v) dy.@
= K

E " E

hy (K)=l1im 2y (K,) =lim V2=

COROLLARY. If (B, ) is @ Banach space with a Gaussian finite- or countable-di-
mensional measure, then h,(V;) = (2m)'/? [zl yllg dy, where V; C H is the unit ball
of the space L, in duality with B, on whose elements the weak distribution is given.

4. In particular, Proposition 14 allows us to get a lower estimate (by Cebysev’s
inequality) of the quantity yK° in terms of h,(K), from which, by Proposition 1, it
follows that the finiteness of 4, is sufficient for the condition X € GB. For our pur-
poses it is especially important to get a sharp upper estimate of yK° in terms of h,(K)
(from which, in particular, the necessity of the finiteness of 4 (K) for the condition
K € GB will follow).

We first study the problem of a “one-sided bound” for a Gaussian process (a de-
tailed summary of the known results is found in [109]), and we consider the class GB*
of processes whose realizations are bounded above with positive probability. The finite-
ness of #,(K) is trivially not necessary for the condition K C GB™ (as shown by the
example of the process x (w) = £xX(w), t € [0, + ), x(w) a Gaussian variable). How-
ever, we show that if the convex hull of K contains the origin of coordinates and vK°
> 1/2, then h (K)< °°, and we get a sharp estimate. With this aim, we determine for
what kind of convex set K CR",0€K, v, K° = p >0 (y,, is the standard Gaussian
measure in R"), the maximum of A (K) is attained.

PROPOSITION 15. Let V C (R", v,) be a convex subset containing the origin.
Then
0 (V) =rr,V — [l Py,

E_ 1=1 In
14

where || - || is the Euclidean norm in R".

Proor. If Tk,l is the operator of dilation by a factor of A in the direction of

the axis x, , then
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"
— b o P .
2 = 2 Z 15”"‘};

=1

7! .
iS“'SC"F ({.L,...dx,,:{ﬁg...gw *k (Ltl...da:n
,‘”~ ¥ 4
T X

from which, since

we arrive at the desired conclusion. ®

COROLLARY. In the class ¥),  of convex sets V C R" containing the origin and
such that v,V = p, the minimum of (@/dN)\=, v,(\V) is attained simultaneously with
the maximum of [y llxI1 d,,.

The next proposition is related to a lemma of Landau and Shepp [69]. The
original preprint of Shepp [107] contained an error: the corresponding proposition
was formulated for the class of centrally symmetric convex bodies; in this case the ar-
guments connected with the solution of the isoperimetric problem on the sphere are
not applicable, and for the correction the path presented below was suggested. This
path turned out to be close to the course of the arguments in [69].

ProposiTION 16. Let m,, , be the spherically invariant measure in R" concen-
trated on the surface of the ball of radius r, and B n,F.p the class of convex subsets
W CR" containing 0 and such that m, ,W=p. Then forp < 1/2 the maximum of
the (nonpositive) quantity dm,, W|dr on the class 8, ,
tained at an arbitrary convex cone with solid angle of magnitude p, while for p > 1/2
this maximum is attained when W is a half-space (containing 0).

is equal to zero, and is at-

PrROOF. The first part is obvious. Let A = A(W, r) denote the boundary of the
%t WN {x: x|l = r} on the surface Z, of the ball. We define on A a function b(x)
Whose value at x € A is the minimum of the distances to the origin from the hyper-
Planes passing through x and supporting W. Obviously,

W = e | S i o
A

Mhere dm is the “surface area” differential of the boundary A of the set W0 {x:

II'x|| =}, and ¢ is a positive constant independent of the choice of W€ By, 5. Ob-

Viously, for any W € Rn .. and for p > 1/2 the value of b(x) at any point x € A C
is not less than the cor'ls,timt value of the function b(x) constructed for a set Hfo < .
nrp that is a half-space. Since a “cap” ([105], [134]) is the solution of the isoperl-

Metric problem on a sphere of arbitrary dimension, i.e., among all subsets WE 8,

P . o S
the Minimum of the integral [5 () dm!y is attained at a set W, that is a half-spac

{x: (x, Yo) < a}, we get that for a layer both the integrand and the total magnitude of
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. inimi ich the desired st
the measure m'y A in (14) are minimized, from which atement folly, |

j 2
PROPOSITION 17. On the class .@n,p the maximum of [, ||x|| dy, for p < h
is attained for an arbitrary convex cone with center at 0, and for p > | 12 this maxi
mum is attained for a half-space V, € @,,’ P

ProoF. The first part is obvious. Supposg that p > 1/2 and V' )
lows from Proposition 16 that if m (V) — m(V},) # 0, then this difference
for increasing r only one time, and from plus to minus (this is true fo'r an
vex set ¥ C R" containing zero, independently of the condition ¥V € @n,p). Moreo\:er,
Sy lIxII? dy,, = 4 r*m (V) dx,,, where X,, is the conditi;)nal measure on a ray (the
square of the variable having the distribution x,, has a x? distribution with n degrees
of freedom); therefore

n,p* lt f()l-
changes sign
arbitrary con.

@

V2P dv,— {2 dy, = [ (n, (V) —m, (V) dy, <0,

v, 0

since [g7 m, (V) dx,, = [ m,(V,) dx,, = p, and r* is monotonically increasing. ®
We remark that instead of llx|I*> we could have used an arbitrary nondecreasing
function of the length of the radius: see also [133].

PROPOSITION 18. For a subset V C R" in the class g),,’p , 0> 1/2,

. 1 =@y —
MV <g=ge + py2r.

Here V° C R™ is the polar of V, and &~ s the inverse of the function
t

D (t)= ‘/1?_1‘ S exp (—— —;—u'-’)du.

PROOF. By Propositions 14 and 17, and the corollary to Proposition 15,

(Vo) =2 |

) sup (@, y)d,1,= 2= 03 My, (\V)]

1
@® 1

— 2z § My, (1V)] 4 2= {rary, vy <V2x { dfy, (07)]
1 0

+\/Z§um<mn=pm+§°

1

@71 (p) exp (— 5[ (p) 7«]’) dx

1
1 — g [ (p)p
iy ¢ +pV2r.@

REMARK. There are sup

Sets V for which h (V) = in the class ),  forp <
1/2 (for example, cones with " "

vertex at the origin),
S. The following lemma is used later.

LEMMA (Shepp [107], via Proposition 16, or Landay ang Shepp [69], directly)-
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iven @ sphcncally invariant measure m in R" such that the Radon- -Nikodym
suppose & mdm, where m " = m((1/M\)A), depends monotonically on the norm of a

dm
deﬂyaﬁ‘;’t Ve pe a half-space and V an arbitrary convex body containing the origin
int. he[haf mV =mV,. Then m(tV) = = m(tV,) for any t > 1.
and SUC

timates in Propositions 8 and 18 permit us to write out two-sided estimates

e es
T:ng 1K), vK°, and kK°. The use of Proposition 21, to be proved below, is
anec

| actuﬂny all nght

PROPOSITION 19. Let K be a convex subset of a Hilbert space that contains zero,

g Iy @ segment of length one with an endpoint at the origin. Then
0
#K° <z (hy (K) 1o)°.

PROOF. It is easy to see that Shepp’s lemma can be carried over to the infinite-
dimensional case by passage to the limit. From Proposition 7 it follows that the Cauchy

" measure satisfies the conditions of this lemma. We assume that

2K° >« (hy (K) Io)o.
Let A, <1 be such that
K°®=x(\fty (K) Iy)°.

. By Shepp’s lemma,

x (eK)° 2> x (ehehy (K) I,)°

for any € < 1; consequently, since k{0}° =1,

d o d .
Tl CEY =g x (e (K) 1),

ie., hy(K) <h,(\oh,(K)I,;) = N\yh,(K) (Proposition 21), which contradicts the as-
Sumption, since Ap<1.e

We now write out some estimates of the Gaussian and Cauchy measures of the
polar of a convex set K C H in terms of the value (). Proposition 21 (proved later)
is used for the proof of the inequality 2), but is not based on these inequalities.

ProPosITION 20. et K C H be a convex set containing the origin, and ®(x) =

172
(1 2 exp(-12/2) dt. Then:

° 1 .
1) 1K > 1 —g=hs (K)

2) xK°> 1——h (K);

1
K 1 — 5 (@7 (YK°))
1 )<®‘1(1K°)e

o1, 1 1
4) Y.K g-i-{-;al‘ctg m-

)
~

— [+] 1-
+ V2 yKS, i KT >3

P
ROQOF, 1) By Proposition 14,
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hy (K)= Vor SSI:{[).’E(M)) dy —\/2r S dy =2z (1 — 1K)

E {Hlll(pl>l}

2) We prove that k(eK)® is a convex function of €. Preserving the Notatjop
USed

for the proof of Proposition 8, we can write
u((eK)°, 1)

2 (eK)° = S d («/1) S V%Gizexp(~2%)d3f:1
B\ 0

€
u( K, t) —_

— (e | ]/% exp (— 4 )dt.
E/x 0

The convexity of k(eK)® is now clear from the fact that the Gaussian density gp.
pearing as the inside integrand is a decreasing function. The inequality 2) holds be.
cause, by Proposition 21, the slope of the graph of k(eK)" at zero is = (K)/n.

3) See Proposition 18. Another(?) (sharper) estimate could be obtained by using
an idea of Fernique [30] (taking Proposition 14 into account):

hy (K) < \/Z_TCTKO(1 —+ exp (— 21—4 In 1—1—[21?)), 7K°>%,

4) See Proposition 19, computing k(h,(K)/;)". From the proof of Shepp’s
lemma in his formulation the inequality kK® < (2/m) arctg (2/h(K')) would follow for
centrally symmetric sets K. @

COROLLARY 1. If yK° = 0, then h,(K) = (2m)!/? (from 1)). If vk — 1,
then lim sup h,(K,) < (2m)'/? (from 3)).

COROLLARY 2. If h (K) <°o, then h (AK) < (2m)"/? for some \ > 0, and then
YQAK)® > 0 by the inequality 1), i.e., K € GB. Conversely, if K € GB, then, by Prop-
osition 1, y[(AK)" N (=AK)°] > 1/2 for some \ > 0, from which a fortiori y(AK) >
1/2, and h (K) < o by 3).

6. Summarizing what has been said, we formulate once more the statements
proved above about the various equivalent forms of the property that a Gaussian Pro
cess has bounded realizations.

THEOREM 1. Let K C H be a subset of the Hilbert space H. The followin§
Stetements are equivalent: -

1) A4 random Gaussian process with natural parameter set K has with probabil’
1 sample functions that are bounded in modulus (K € GB).

2) kK° >0, where « is the standard Cauchy measure. d

3) If 1 is an arbitrary nonzero vector perpendicular to the affine uall o,(K . le
originating at some point of the convex hull of K, then the measure of the solid azgis
of the cone polar to the cone with vertex at the endpoint of f and ge"emred it
positive,

4) h(K) < oo,

' (2) See also the paper of Skorohod [109].
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Here h, is the normalized Minkowski mixed volume of first de

gree of homogen-
The values yK”, kK", and h,(K) are connected by the inequal

ities in Proposition
20.
§5. Monotonicity of the functional h,

1. Although each of the properties 1)—4) in Theorem 1 characterizes the GB-sets
and,conseque"”y* can formally t.)e used for solving the problem of extension of a Gaussian
weak distribution to a mc?asure m4 a Banach space, the practical verification of these
properties for a process given by its correlation function is difficult. Neverthéless, a
study of the geometrical characteristics of GB-sets leads to convenient estimates that
allow us to give nice conditions that are easily checked for the GB and GC properties.

We recall Schlaefli’s formula from spherical geometry; it has an application also
in statistics.()

THEOREM (L. Schlaefli [104]). Let Q be a spherical polyhedron on the unit
sphere Z,, C R™ with center at O having vertices at the points 11 « € Z,, and given by
the Gram matrix I" of the system of vectors or,,I'= rQ - (,/k)’ T = (OHI., 01, =
€08 Yj» where @;, is the angle between the vertices ﬂj and Il,. Let m be a Spherically
invariant measure in R". Then

]

L _ . \L
drjkm(cml Q)= —— = mconQ_ .,

where Q jx IS the spherical polyhedron on the sphere Z,_, determined by the Gram
matrix T, = PQ-/’k = (ryp-jx) Of its vertices, and

Twy Tuj Tk
Tj, 1 rj".
Thy rkj 1

Fu.. i — .,k;V i k).
Fa-1k 1 ruj Tpk 2 1 Tyj Tyk f2 (P'%] 7&]’ )
rij 1 ’jk . rj,, 1 rjk
rku r,..j 1 Tiy rkj 1

The matrix I is known in mathematical statistics as the matrix of partial (con-
ditional) correlation coefficients [3]. The geometrical meaning of the polyhedron Q.
i the following. The vectors OIT,.;, that are directed from the center to the vertices
©f this polyhedron are the normalized projections of the vectors OI1; (i # j, i # k) onto
the orthogonal complement of the linear space spanned by the vectors OII; and OII,. If
all the elements of the matrix I are close to 1, then the spherical polyhedron Q is simi-

. 10 2 “plana” polyhedron (of dimension n — 1), and then con Q. is the cone ob-
fained if the orthogonal projection of Q onto the subspace forming the orthogonal com-
Plement of (he edge I111, is subjected to an infinite positive homothety with center
at the Projection of ﬂ;ﬂ X .

We make a remark with regard to the use of the words “polyhedron” and “edge”.

¢ dimension of the space in which we consider the polyhedra is unrestricle.d; there-
f_ori*_eﬁpt for “degenerate” cases, all polyhedrons under consideration are simplexes

. sidera-
ti &) Slepian [110] first applied Schlaefli’s theorem to the circle of problems under con
on,
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(in a space of appropriate dimension). Similarly, by “edge” we always undey
diagonal (which in the “nondegenerate™ case turns out to be a real edge),
Schlaefli’s formula shows the monotonicity (in the small), with respect to g,
lengths of the edges, of the measure of the solid ang.le of the cone polar ¢, the ¢gn,
generated by a spherical polyhedron. Indeed, replacing diffetrentiation with Tespect
r;x by differentiation with respect to the angle ;,, we rewrite Schlaeflj’ formuly i,

Stanq any

the form

1
——_a m (con Q) = — Z—Em(con Q-jk)L,
Ufjk

(15)

from which it is obvious that the right-hand side is nonpositive.

Since the measure of the solid angle of the cone standing after the derivatiye sign
on the left-hand side of (15) can be written in terms of the Cauchy measure, and fo,
small sizes of the spherical polyhedron Q the lengths of the edges of its centra Projec.
tion K = K(Q) onto the affine hyperplane tangent to the sphere £ D Q at some point
in Q are close to the lengths of its own edges, it is natural to use Schlaefli’s formu, in
trying to get a theorem on the monotonicity of the Cauchy measure of the polar of
the set K with respect to contractive mappings (such an approach was used in [121]).
However, the Cauchy measure of the polar of K depends not only on the intrinsic met.
ric of K, but also on its position with respect to the zero point of the space H, while
the GB property is invariant with respect to any translations. Moreover, it is good to
use Schlaefli’s formula for investigating small sets K that differ only slightly from their
projections Q(K) onto the unit sphere. It seems preferable to us, therefore, to work,
not with Cauchy measure, but with the mixed volume h,, for which Schlaefli’s formu-
la can be used to prove an interesting property of monotonicity with respect to a cer-
tain class of “contractive” mappings, and this monotonicity can be used to obtain con-
venient conditions for the finiteness of /,(K) and estimates of the Gaussian and Cauchy
measures of the polar of K.

2. We first prove some auxiliary propositions.

PROPOSITION 21. Let K C H be a set such that the zero point belongs 10 ifS
closed convex hull. Then
dr (e K)° 1
E = ).

di e=() - ks

: ° (in
PROOF. As before, let u(l, K°) denote the length of the intersection / Nk’ (

. » sure
the scale determined by the position of the §-measure that is the conditional me?
of Gaussian measure on the ray [). Let w = (I, 0); then

1

Sup2) (4 ) = gy

and, consequently,
(16)

u(l, K% °
E/\

— /o dy  __ (/M) (dD)
) =V2r | e = V2 | ey
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- purtherm®™® o
| —x(eK) = S (x/2) (dl, S 2 Lexp (——) ds
B Lo, ke
u(l,'E") — ‘
:,,S; (/) (@) OS Zexp(—)at (=)

cinally, we get, by (16):

__i(“,_‘o ’
ek -——]/2 (1) (@) (,“Kf,))

==0:_— ?Vznhl K

PROPOSITION 22. In a Euclidean space suppose that the affine hyperplane L is
tangent to the unit sphere T at the point x, and the points x, x, € L are each at a
distance not greater than € > 0 from the point of tangency. Moreover, suppose that
the segment X X, IS rotated through an angle \y around x . Then the following asser-
tions are true:

1) The angle ¢ at which the segment x X, is seen from the center of the sphere

% satisfies the inequalities

| 12, |
1+ 52<?<‘$1$2|’
where |x,x, | is the length of the segment joining x, and x,.
2) For a rotation of the segment through an angle Y around x ,

P
la—q" \<\ e,
The proof is elementary.

3. We proceed to the proof of the monotonicity of &,. From Proposition 14 it
follows that

x(eK)O:'l ——;—hl (K) —|—520 (1)
th of some edge

If we differentiate this equation formally with respect to the leng
divide by € and

lix (without specifying, for the time being, what this means), and then

%te = :
te=0, then we get, successively,

d
(K" = —.‘hl(K)+325f_
1 0 1 0
e al“‘x(eK) —-;d_h (K)+s’)lik

When ¢ is made small, the left-hand side, by Schlaefli’s formula (15) (€K approxi-

Mmat :
% Q(eK), and I, approximates ¢;;), passes into

—% m (con O-.’k L — _—-:T m ((-,on (Kik' P.‘k)) Y

Whi .
hile the second term of the right-hand side vanishes, and we arrive at the equation



44 1. SAMPLE FUNCTIONS OF RANDOM PROCESSES

_;_’_hl (K)— m (con (K ;5 Pa))*
I) il
In this argument we have not considered that the quantity k(eK) depends

only on the lengths of the edges I;;, but also on the position of the zerg Dol Z;)t

why we could write lim e(3/3l;) O = 0 was not justified. We now present this. ) 50,
Igu-

ment in a rigorous sense. gu

TIoN 23. Let K be a nondegenerate convex polyhedron specifieq )

i.e., suppose that for some & > 0 there exist polyhedr, i ::e

1
such that |l;; — 1;1 <8. Then

PROPOSI
lengths of all its edges Lis
arbitrary lengths of sides ll.'i

0
— (K)= m (con(K,, P, ;)= 0. (17

ij
PROOF. We consider the family of polyhedra K, whose members differ from one
another by the length of only one fixed edge, so that

1M =1, 4N W=, i 7))

toJ0

By the nondegeneracy assumption, the family {K,} contains polyhedra for all \
in a 8-neighborhood of zero. Let the total number of vertices of the polyhedron X be
n. We now consider the unit sphere £ C R” tangent at the vertex 1”,.0 to the polyhe-
dron €K, which lies in some hyperplane of R”. Together with the polyhedron we
consider its central projection @y, = Q(eK,) onto Z. Let 5 (\) be the lengths of the
projections of the edges el onto Z. From Proposition 22 and the nondegeneracy of
K it follows that

dei s

= | <Gy (K) e, (19)
dot
' cPro.iu —= < C"o}.o (K) 82. (19)

Therefore

l.:‘;

(6K = 1 (Ko ) ot (el () |y == () - 5 2 Uty ()

=X

= (K01 [f*—_g.(er(d_jiﬁ_e))JrE g ifgr] UL

. ox d¥s ox d95;
= (Ko’ —l_"[w_ﬁ]_o‘i' E;E‘,L d;'J
tolg ' —ry :

$, J

fojo Pij
Consequently
L1 —«(eK,)
c —x (e )))
= —nekp) —i | 2 (1 4 L (Bl 120
) T T T T—e))_'_EﬁTf‘ ar Jht
4 Prop®™

. If for ‘ﬁxe'd A, IN < 8, we now let € go to zero, then, by (18), (19), &0 that
tion 21, taking into account that, by Schlaefli’s theorem, |3k/dg;| < 1- W° ‘
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' ‘]' o ,,1- l o K ]
4;(1._1(;\,\))—‘ S = (eK)?) on (:K)°
}\ rkp"uin '
quen(l)"

. K o o 1 I _ . Ja (2 K o\O

' ’M)— <=l (K) ——=h, (K)) <l inf [ —"( Ks)
— TRLAT 7‘ L = 5 ,

fim SO0\ e, ‘ ’ = R0, 3) 9 iyi

<5608 ‘ o0

; 15),
pdas d — 0, since, by (15)

v (. K)°
d?'-ofu

{
—_— ? In C()ll (Kl'ojo’ P’-o.jo)-L,

we find at last that
d - .
ﬁhl([{x) =mcon (K, ;, P;;) >=0.0

In the following we shall only need the qualitative part of the last assertion,
which is expressed by the inequality.

RemARK. The inequality (17) means the local monotonicity of #,(K) as a func-
tion of the lengths of the edges. The condition of nondegeneracy used in the proof is,
in fact, not essential, and (17) is carried over by continuity to all polyhedra for which
it makes sense. (Every polyhedron can be approximated by nondegenerate ones.) The
differentiation with respect to the length /;; of an edge can be replaced by differentia-
tion with respect to the direction of any vector with positive coefficients consisting of
some of the 1,.]-.

4. We now prove the global monotonicity of A,(K) as a function of the numbers
1,-,~,i= ,...,n—-1,i<j<n.

We consider the space R*("~1/2 and in it the subset

n (n=1)

i=1,...,n—1, i<j<n))}cR 7

D — {(l"j
of all points for which there exist polyhedra with lengths /;; of edges (different points
@n correspond to congruent polyhedra). Let D C D be the set of points corresponding
'0 nondegenerate polyhedra. We first describe the set D C R"("~ /2 in other terms.

PrOPOSITION 24. For the numbers I,]., i=1,...,n—1,i<j<n, to be the
“nghs of the eqg

es of some nondegenerate polyhedron, i.e., for the condition I =

lye .,
WED 1 hold, it is necessary and sufficient that the matrix

1 ik

V=g
1
A(R) =
B -
1— 2R3 1 nxn

Posit; .
Ive definite for il R > R, (for some R,).
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Proo¥F. Necessity. Let 1= () € D. We show that for some R, = Ry

matrix A(R) is positive definite. Let the polyhedron K(I) with lengths of edges (1 N

located on some hyperplane in R", and let £, C R" be a sphere of sufﬁciently lalri b
¢

radius R that is tangent to this hyperplane at a point in K(/). The unit vectors o
k

drawn from the center of Zg in the direction of the vertices Py, k=1, . of'R

K(!) form on the unit sphere >, with the same center as Zp the vertices of 5 Nonde.
generate spherical simplex. The Gram matrix 'y & = ((¢; g» € g)),, «,, Of these Vet
is therefore positive definite. The angle ;. iR between the vectors e; g and - diff:?
from /;;/R by an infinitesimally small quantity having order O(1 /R?), and the \'falue s
) of the cosine of this angle (the element of the Gram matrix) differs from

)2/2 by an infinitesimally small quantity having order O(1/R*); hence

Cm e =1—+(%+0(z)) +0()

12, 3y
='1—-2—R42—i—7{%, where |i3.-,-|<c<0°-

(e;,r> €.R
1=(;r

—

From the geometric meaning of the size of the determinant of the Gram matrix it fol-
lows immediately that for increasing radius R the quantity det I'p has order of decrease

det I'p= O(I_f%) ,

and from the nondegeneracy of the system of vectors {e; | } it follows that this estimate
of the order of det I'p is sharp, i.e., for some ¢ >0

det ' > aery for R> 1. (20
(We recall that the determinant of the Gram matrix of a system of vectors is equal to
the square of the volume of the parallelepiped determined by these vectors.)

The verification of the positive definiteness of the matrix A(R) consists of verify-
ing the positivity of its principal minors. We prove that for sufficiently large R they
really are positive. The following equality is obvious:

1 (eI:R’ 621 R) """ (eI,R! eil, R)
d_e[, (eZ,R: el,R) 1 (82'12, e,,,n)
(e".R! el.R) (en, Ry 32,8) ...... 1

(L ? ) B 1 N2 | 3y, p (1) | B

2 R +ET 3 "R? +ﬁ: —5 R T

))2 (| B
1 LGS | By 1 (2 an
=del ! o R CR T I

1 (12 8 1 ()2 8

1 T 3 T R® + 25 —‘7(’};4) -I-'}’.:,—i 0
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1 ({2 g (/N2 -
 — 1 W Pia 1 D)? | 3,
0 5 R TR —5 -t
2 (7))2 Y
) B _ WD GO
L Oy b TR L L
+del +
WY (g ¢
AL et 0
1(,:(1'))2 8
0 —g il b 1
1 (15)" _{_Bﬂ. 0
e s tEe 0 L. 1
i
__1_(117'1}))2__*_?’& _L(lglé))z :3712
TR TR T3 R TRE e 1
L@ g (/)2
0 T \gp B12 1(l )
2 R? +m T2 A '+E1%
CTR N 15Dy | 8
tdet| T 2R T 0 —2 & TR
E ...... i ’
| U R W (/4
T R TR Ty TRy 0

From this representation of det I'y, it is clear that the principal term, which has

' order (as could have been foreseen) O(1/R?("~V), does not depend on the values f,

* which contribute only to the terms of order not less than 1 /R?" and, as mentioned,
the coefficient of this principal term is trivially nonzero (see (20)). From this and from
the boundedness of the quantities B,.]- it follows that for sufficiently large R (R > R))
the sign of the whole expression coincides with the sign of the principal term. There-
fore, since det I';, > 0 always, the determinant of the matrix A(R), which is a principal
part of det 'z, is positive for R > R,.

_ The positivity of the other principal minors for R > Ry, k=2, ..., 1,1 estab-
lisheq similarly, and this concludes the proof of the necessity: Ry = MaX;<i<n Ry-
Sufficiency. Suppose that the matrix A(R) is positive definite for some sequence
R} of values R,R, — o=, To prove the existence of a polyhedron with lengths of
edges equal to I, we use the obvious closedness of the set DC R” and construct a se-
qUence of polyhedra K m> €ach having n vertices, such that Isim) — Iy (the Ii(im) are the
I8ths of the edges of K ). With this aim, we consider for each m 2 spherical POthe'

tmn on the unijt sphere £, for which A(R,,) is the Gram matrix. Then we subject E-l,

?gether with the polyhedron, to a homothety that increases its radius to R, we con

Sider some hyperplane tangent to the sphere T at a point of the spherical polyhe-

drfm on jts surface, and we project this polyhedr"(;n from the center of the sphere foil;:

m:; fﬂngem hyperplane; let X , be this projection. Asm — o all t%w eler;en)tsisothe

X AR, ) converge to 1; hence the spherical polyhedron for which AR,
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Gram matrix contracts, and its diameter converges to zero as /R, .
Proposition 22, the lengths of the edges of the spherical polyhedra o
differ from the lengths of the edges of their central projections ontg

Therefore, 1,

n the Sphere, 3
the tangent hy:e'"

planes by quantities of order O(1/R,,). On the other hand, the lengths of the .
i e
of the spherical polyhedra on T, are equal, respectively, to arccos(] — 1.'2-/R2 ; dgeg
1" m)s anq on

T, the lengths of the edges of the corresponding polyhedron are equal to
m

Ii;
R, arccos (l - -R—)_; L

m

With this, it is proved that the polyhedra K, approximate some polyhedrop with
lengths of edges II-,-. The proof of Proposition 24 is concluded. ®
For the proof of the global monotonicity of h, we prove that the set p

dratically convex”.

is “qUa_

ProposITION 25. Let K@ and K (D) pe two polyhedra with the same Number
of vertices, and let II.(jk), k = 0, 1, be the lengths of the corresponding edges. Then for
any number \, 0 < \ < 1, there is a polyhedron K, with the same number of vertices

for which the lengths of the corresponding edges are

10) = VT (T — 1) 197 (21)

PrROOF. We first assume that K(® and K1) are nondegenerate, i.c., that the
points / @ ;M € Dcorresponding to these polyhedra belong to the interior D of D.
Let R, > 0 be such that the matrices A)(R), k = 0, 1, R > R, formed with respect
to the numbers I,-(j") are positive definite (Proposition 24). By the convexity of the
cone of positive definite matrices, for each A, 0 <\ < 1, the matrices

1 i
1— 27\

A® (R)= B , R>R,

SR
| — S5
2R? 1 / X
are positive definite, and then there exists a polyhedron with lengths of edges l,-(,-”-
Now if one or both of the points /*), k = 0, 1, lies on the boundary Ofg» weD
consider two sequences of points l,(r’f) k=0,1;m=1,2,...), l,(,f) —1®, ’r(n €
and for each m we consider a curve A — I, \ € [0, 1], lying in the set D as de-nOI
scribed above and joining the points /£ and 1{1) " Obviously, the limit curve doe$ ‘
go outside of D and is described by the same equation (21) as the sequence curves.
The global monotonicity of h, is now simple to prove.

ver
THEOREM 2. Let K@ gnd K™ be two polyhedra with the same n)um;’;’ :f
(1), The

tices such that I{9 < 1,.(’-” for any pair of corresponding edges 1,-(j°) and

h (KO <h (KD). L
(0) an

PRrOOF. Let 1 and /() be the points of the subset D corresponding 0
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). By proposition 25, these points can be joined by a curye A —

),

™Wep e
jescribed by (21). By Proposition 23 and the accompan

_ ying remark, if pr de-
tion of the tangent to this curve at the point 1(?\)’ then

0
s " (K) >0

s to the point [N), Therefore, we get

o, 11, ¢
potes the direc

(K{” correSPO“d

1
0
hy (KD) — by (K@) = S 5 P (K™ @10 >0.0
0

CoroLLARY. Let K| and K, be subsets of the space H, and 7
K. subsets of them such that K, C conv Z, and K, C cony Z,. If
! 0: Z, — Z, such that

1 €K, and Z, C
there exists gn epi-
marphism

|7 =ZI<le @)~ @) 2, ¢z,
then h, (K ) <hy(K,).

Indeed, let x; € Z, be a dense subset of Z, such that {
Then (Proposition 13)

by (K)) =lim k ({z,, k=1, ..., n}),
(K =1lim by ({9 (20), k=1, ..., n))

and the required relation follows from Theorem 2.

@(x,)} is dense in Z,.

§6. Mixed volumes and the continuity of paths

1. Here we prove a certain criterion for the continuity of realizations of a Gauss-
ian process, formulated in terms of the functional /,. As in the case of the GB prop-
trty, this criterion appears at first glance to be difficult to apply, but it enables us later
| foobtain nice conditions in the more convenient e-entropy language. We first prove an
xiliary statement, [et K C H be a bounded, convex, balanced subset of Hilbert space,

= LK), and F (x) the space of all linear forms on F that are bounded on K and con-
-~ tiny

OUs on K in the Hilbert weak topology.

» ProrosiTion 26, Let {L,,n =1, ...} be a decreasing sequence of closed lin-
ear . :
Ubspaces of H with finite defects and intersection zero. Then

22
Fru:nkU(KnLn)o’ (22)
2A>0

Wh .
¢ the polar is understoogd in the sense of the duality (F, F*), F'* being the strong

b al of the space (F, | ) (the norm ||| x is generated by the unit ball determined
Y the se; K)

: and
aly tl}1R00F. We first observe that the right-hand side of (22) consists of those

%%¢ elements y € £* for which

m, (y) — sup | y (1;) | -—-:DO. (23)

z6KNLy nex

y T T e T
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me sequence x, €K N/, we have |
Indeed, if m,(y) = a > 0, then for :_(:L ¥ fox il 5 " L i'.'e Y s
a2 > 0; consequently y & (a/2) (K n

y¢5UKNL,)°
d a fortiori y € M, A U, & N L,). Conversely, if m,(y) — 0, then fo; any \

nd a o 0
:nd any n > N(\) we have that y EX(K N L) ie., y €A Un (K n L,y ang e
N '7\ U, (K NL,). Now suppose that y € F( . Then for any sequence X, €Kn
L Awe ha'\lre y(x,) — 0, from which it follows that m_ (y) — 0, and, by the sbove,

n n o
yen;ﬂ\u,,(KnLn) .

Conversely, let y € (1, AU, (K N L,)°. We prove the continuity of y oy g
It suffices to verify continuity with respect to sequences converging to zero,

Let X, €

K, x; — 0 (weakly in ). From the weak convergence it follows that X, is approxi.
s Mk . )

mable in any closed subspace of finite defect with respect to the norm Il*llg; in partj.

cular, any of the subspaces L, (the quotient space by L, is finite-dimensional, and op
it all forms of convergence coincide). Since y € F*, ie., is bounded, we have that

@) 1<m, @)+ 1yl_sup [ —al

and as k — o we find
]im | Y (xk) ‘ ‘g mn (y)‘
k—>co

ie., by (23), ¥(x;) — 0, whence y € F(*). °
As a corollary of this characteristic of the set F (%) Of linear forms that are bound-
ed and continuous on K we get a statement of Dudley

ProrosiTion 27 (Dudley [33]). LetK C H be a Gaussian process. If the mes-
sure of the space F(*)(K) of linear forms that are continuous and bounded on K is

equal to zero, then for some ¢ > 0 the realizations are not bounded in modulus by the
humber ¢ with probability 1, and conversely,

PrRoOOF. For any A > 0 the set M

=AU, (convk N L,) satisfies the condi-
tions of applicability of Kolmogorov’s zer

0-one law (the assertion 2) of Proposition lzl
since the inclusion y € M, depends only on the behavior of the values ¥(x) for x €5
Wwith arbitrarily large number n, Consequently, if YFwy =7 M, M, = 0, then Zﬁho
= 0 for some Ao >0,1ie., we can take e = ). Conversely, if ™, , = 0, then als
'YF(*) ='rﬂ,\M,\ =0.0

Thus, K € GB « 5(K)

<e,and X € GC » 8(K) = 0 (Proposition 27).
ProposiTION 28. Let

sed b

K CHbpeg convex balanced set, and L C H @ o

Space of finite defect. Then the Jollowing assertions are true:
D IfyQa + €)K®) =

0 for some ¢ > 0, then (K N Ly = 0.
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ke = 0, then also ¥(Pr; K)" = 0 (Pr, is the operator of orthogonal pro-
) I

sction OM1° L).
]

The second assertion follows at once form the fact that the conditional
F.

res of the set K° under the decomposition into the cosets in the factor-
Gaussian me?s‘ e equal to zero. We prove 1). We can assume that the defect of the
- jpation bYP ?r If v, € H* C F, Iy ll;e = 1,is a functional on & having 1, as ker-
qubspace LK‘Sn -L)° N K° + {\y.: N ER}. We consider the measurable decomposition
nel, thelj ( y into lines parallel to the line {Ay, }. The space (E, A) can be regarded as
(b:t Z,f measure spaces: the product of the line {Ay 1} with standard one-dimen-
a produc ussian measure and the Gaussian measure space (£}, 7, ), where £, can be
'ﬂ'ona?fcez with the subspace of E on which a function x L € H orthogonal to £, vap.
E f::::he variance ellipsoid of the measure Y, coincides with the intersection of the
; it ball Ve with B, By the boundedness of K C H, the line {Ay_} intersects K°
in 2 nondegenerate segment, i.e., in a set of positive conditional (one-dimensional)
Gaussian measure, and, because of the convexity of K° and the boundedness of K C H,
each line parallel to the line {Ay; } and intersecting K° intersects (1 + e)K”° in a non-
degenerate segment. But from the condition ¥[(1 + €)K°] = 0 it then follows that the
set of lines intersecting K° has (y/£; )-measure zero, with which the proof is concluded.
A more exacting argument would show that it is even possible to assume that e = (. @

PrOO

oy of

CoroLLARY. If K C H is a convex balanced set and L C H q clos

ed subspace of
finite defect, then

3 (K)="5(K N L) =3 (Pr,K).

PROPOSITION 29. Let A, be an op
by a factor of \ (\ > 1)
balanced subser v E.

erator in the space (E, v) effecting a dilation
in some fixed direction. Then YA, V) = vV for any convex

_ PROOF. It suffices to limit ourselves to the case when y = v, is standard Gaus-
Sian measure in R”; then A, is an arbitrary selfadjoint operator with spectrum (1, ...
Lya>, Let L C R” be the characteristic subspace corresponding to the eigen-
Ve | of 4,, and let L, =L+ te,, where |le || = 1 and Aye, = Ae,. Let Pr; be

th T i

sue orthogona] Projection onto L, and Yn—1 the standard (conditional) Gaussian mea-
[
€on [ (7n—l =7, przl). Then

Pr (A, VL) =Pr, (VL. (24)

Tom ¢ .
he convexity of the set V it follows that

Lﬁi(vﬂ[ﬁ) +%(VHL_¢) cVNLy

Or .
) What 18 eqUiValem

Lt
L VL) e (VAL ) € P (v A L) (25)
© sets py '
othEI_ L(VﬂL

B ) CL and Pr, (WN L_,) C L are centrally symmetric to each
Y a

*orem of Zalgaller [146] (based on application of the Brunn—Minkowski

——

-
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inequality for mixed volumes to the left-hand side of (23

: . | ) see, for exam
ter VIII, §3), if A and A are WO convex bodies that are centra))y, Ple,

s.‘“’lmcm [2] Ch':&

other and 0 <a < 1, then y(a4 + (1 —a)4) 2 4. In our cae A=p ) Sy |
and Zalgaller's theorem gives LU"-\‘L,L |
(== P VALY == P (VALY > b vy
By (25) and (24), we can write -
1.1 Prr (4,VvnNL,) > 1',_:Pr;d'r1L,.\, .
Ky

but

"

WV =\ 7..Pn (VAL dn. (V) = \ ‘.'le‘z‘-”’ﬂL\v(dn
Jd . . d

— 2

and (26), which holds for each r, leads to the desired conclusion. ®

ProrosiTiON 30. Ler K C H C L*(E, y), K € GB, be a convex balanced Subser
of the Gaussian space H, {L_,-_. j=0,1, ...} a sequence of subspaces such thar § =
LyoL, D, ML ={0}dimLj/L,, <«j=0,1,... and Pr=P,, Then

1) sup Pr, K — 8(K) in L?; ’

2) sup(K NL)— 8(K)inL?;

3) if A > 8(K), then y(MPr; KY) # 1. and if X <3(K), then y(\(Pr; KY) =0;

4) if X > 8(K), then y(MK N L)) 7 1, and if X < 8(K), then y(MK N L))=C:

5) hy(Pr; K) ¥ (2m)!28(K);

6) hy(K N L)\ (2m)/25(K).

PrOOF. Each of the Gaussian spaces L; can be regarded as the space of (Gaussin
linear functionals on (E, ) that are measurable with respect to the measurable decor
position n; of (£, ) into the subspaces parallel to the finite-dimensional subspace L;¢
H*CE. LletL ;i C L3(E, y) denote the subspace consisting of all (and not only fes)
functions that are measurable with respect to n;, so that L,- =HN Z, Pr; 8 The oper
tor of passage to the conditional (in the narrow sense) mathematical expectation

We first prove the assertions 2), 4), and 6). The sequence of sets K N L de
creases in the set-theoretical sense; therefore the sequence of nonnegative measu?h.l:
functions sup (K N L;) decreases monotonically; consequently it converges ! hn:l By
that is measurable with respect to each of the decompositions 7;, ie. tod Consw:-,;ml-
Proposition 28, this constant coincides with §(K). The assertion 6) now follows
Proposition 14, and 4) follows from Proposition 28. )

We now prove 1). If Pr is the operator of conditional (in the naffo\;\:e :bvious

mathematical expectation, then sup Pr K < Prsup K (a generalization of I
equeé

inequality sup, (x, + ¥x) <sup, x, + sup, y). For each k 2 0 the $ Wil theore™
Prl- sup Pr, K (j =k, k + 1, ...) forms a martingale, and, by the well-kn® oWl i

. . mo

of Doob [24], it converges in the mean square to some constant Cx > 0; n - ,k* b
is easy to see that co>c, >---. Indeed,c, = E Prj sup Pry K for any !.

.. ; in particular, ¢, = E sup Pr, K, and, by the corollary to Theorem 2+
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tion operator does not increase distances, we find that hy(K) = h,(Pr, K) >
0jec 0P i.e. (taking Proposition 14 into account) ¢, = N
- U2 Now we can write (7 = k)

H ,K-—C|<EIS“pPij“PF,-SUpPl-,‘K|
+E|Prjsup Pry K — ey 4| e, —c),

f k and / ar¢ sufficiently large, then the right-hand side is made arbitrarily sma]
¥ tlhe monotonicity mentioned above,
(Y

E|Prsul Pr, K —sup Pr, &« | = E (sup Pr; K — Prsup Pr, K)

=0 — ¢,
d for fixed k, in view of the convergence Pr; sup Pr;, K — ¢, the second term s
abitrarily small if j is sufficiently large), whence the convergence of sup Pr,- Ktoa
constant € in the mean is proved. Actually, there is even mean-square convergence: by
he monotonicity in & and by the well-known properties of martingales, the set of sec-
ond moments of the variables Prj sup Pr, K is bounded, so convergence in the mean

 implies convergence on a dense set, and (considering the boundedness of the norms) we
nave Hilbert weak convergence; moreover, by a property of martingales,

| Pr; sup PrK 12 = ¢

and by monotonicity,
| Pr sup Pr K== |sup Pr K|z —c;

T ————

| weak convergence and convergence of the second moments imply convergence in the

. mean square (see, for example, [49], Chapter VIII, §1.3, Theorem 4). From Proposi-
tions 28 and 29 it follows that ¢ = §(K). To prove 3) it now suffices to use Proposi-
| tion 29 (the limiting case A = +°) and the second assertion of Proposition 28. The

| assertion 5) is proved just as 6). ®

CoroLLARY. If YK° = 0, then the constant (2m)"? in the inequality h,(K) =
- @) is best possible (see Proposition 20, inequality 1)).

Indeed, beginning with any set K for which yK° = 0 and 8(K) = 1 (or 1 + ¢), it
j ffices to consider the set K N L; for sufficiently large ;.
We describe the qualitative picture by the following theorem, which has, in es-
%ence, already been proved.

i 9 'THEOREM 3. The validity of any of the following conditions is necessary and
| Gg_iaem for a convex balanced subset K of the Hilbert space H to belong to the class
D) There is a sequence {L,,j=0,1, ...} of subspaces of H having the proper
nCSH::L > Jj° y 1y - hth(PrK)__,o
(g 120 N Ly = (0}, and dim L /L4 < o such that 1 (5%

15 1ne projection onto L).

2 There is a sequence {L;} of subspaces having the indicated prop
Mt hy (& /

1 L,’) — 0.

gﬂ 0 3) For any sequence {L;} of subspaces having the indicated properties,

erties such

h, (Pr; K)
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4) For any sequence {1;} of subspaces having the indicated Propertie
h(KNL)— 0.

The theorem follows from 5) and 6) in Proposition 30, e

Theorem 3 enables us to give convenient criteria for the continuit

Y of the
functions in terms of the e-entropy of K. Sampj,

87. e-entropy conditions

1. The criteria proved above for checking the conditions K € GB ang Kege for
mulated in terms of the functional &, and the properties established for this fUHCtioml
enable us to derive conditions for the continuity and boundedness of realizationg of 3
Gaussian process directly in terms of the correlation function, i.e., the intrinsjc Metric
of the set K C H: in terms of the e-entropy of K in the metric induced from g

ProrosiTioN 31. For a regular (n — 1)-dimensional simplex S, With edges of
unit length the following inequality holds:

h(S,)<V2rlnn.

PROOF. Let e,(w), ... be a sequence of independent standard Gaussian variables,
As shown in [21] (p. 376), for &, = max{e,, ..., e,} we have the estimate

In lnn+ln4n—27+0

1 , ,
— —) (7 is Euler’s constant),
2v2Inn

Eé —=\2Inn — I

where, as follows from the proof, the remainder term is nonpositive. By Proposition
14, h,(S,) = (2m)'2E(271/2¢,,), from which the proof follows.(%)

2. DEFINITION (see, for example, [28] or [79]). The entropy index, or entropy
type, of a precompact subset K of a metric space is defined to be the number

A(K) = limsup (log log N(X, €)) (log (1/e))",
where V(K €) is the cardinality of a smallest e-net of the set K.
Prorosition 32. If p(K) <2, then = 27% (log, N(K, 27¥))!/? <.
PrRoOF. Suppose that p(K) = p < 2, and let p < g < 2. For sufficiently large K
we have k™! log, log, MK, 27%) < g <2, je., log, MK, 27%) < 29%, and
227 (log,N(k, 2-K))1 /2 < 3o@/2-1)k <o, @

ing in€
PROPOSITION 33. For an arbitrary precompact subset K C H the followiré "
quality holds:

@

h(K)< 22 3 2-* Vieg, N (K, 27%).

’-.':~u)

PrOOF. To prove this inequality we use the monotonicity of A, (2 corollary

0
' [bragi®®
(%) For an estimate of the values of hy on regular octahedra the author consu"edb) whert
[41]. With regard to the distribution of the largest order statistic see also [145] (§9:6(
references are given.
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fheore 7) and construct a set § C H for which there is 5 contractive mapping of 5

- gubset of it onto a dense subset of K, while & (S) can be estimated by the right-hang

gde of the desired inequality. Let £ be a minimal e-net for K constructed for ¢, = 27k

. ko——] = E‘k ¢
Lot E = U Ex- Let S, be a regular simplex with length of edges equal to 1 al’ldodj.
+1, kg +2,...); moreover, the S are located in pairwise or-
thogonal subspaces of the Hilbert space H. We set § = E;:oﬂ 8¢,.S,.

By the additivity property of &, we find (Proposition 31)

e}

‘ hl(S):(q 2 2“”11 (S))<8 2 2‘1\‘ \/’27'!“] (A’Vk—i— l)\’\‘/s\"—-)-ﬁlll.'; 2 VIIT)(_":V‘L-

* 10 the points x{/
ko

|
|

—re
k=ky+] k=kg+1 =

I=—cp
Jt remains to describe a certain subset of S whose image under some contractive map-
ping is the set E. We describe an injective mapping of £ into S whose inverse will be
the desired contractive mapping. In the set £ we introduce an order relation in the fol-
lowing way. Letx € E, and y € E, . We say that y follows x if y lies in the €, -
neighborhood of x. To each element y € E, except for the element forming the €ko”
net, we can assign at least one predecessor. For each such element Y € E we mark and
fix one of its predecessors; in this way the elements of £ are arranged in the form of a
tree. The order relation corresponding to this fixed tree structure will be denoted by
>. Thus, if y > x, then there exists a chain x < 2, <z,< - <z,_, < y for which
L€E ., x€E, and y € Ep, and each member of this chain, except y, is the desig-
nated predecessor of the next member. Now if x; € E"i ((=1,2,3),x3< x,, and
X3<x, (ky <k,, ky <k,), then

ky—1
1 1

ke=k,

and ||x, —x, || < PAMERES consequently, [lx, — x,|l < 2732,

Now let ai’”, aS‘”, ey a}cN ©) be the vertices of the simplex 8¢,S, (we can as-
Sume that 4‘0) = 0 for all k), and let x;‘l)’ o xS‘Nk) € E, be the points of the €, -net
E,. We now assign to the point xi‘g € £}, the point

by = Y a" s,
K

=ky+1

+1 the respective points
b =alh+ 3 AV €S,
k=2
i . (Ig=1) > oo x(D
g, in general, if the point xﬁl’) €FE,, s>k, is such that xi"‘) > Xty > "‘o
e aba T 't
N We place it into correspondence with the point

bi"):a(k',,iﬂ“) - ... *‘“'.1'1") {-al = A}_, aj

k) Uky) c g
Moreover, it is easily seen that if for the points X ' € £y and Xy 5 k2

' the e (k3 e g e if
; the Infimum in the sense of the order on the tree is attained at x € f’"a' '

¥

4
E
i
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5 .

) , i’ o
Bk — (Lgl' ,;.‘i.l) oo asr'."“) + ﬂfr:,'?',"') + ok Y af"
Iy ‘o kwmjc, 4y " !
M 0
, { | s ' y
o) — ol - el b S g
g 0 'krf] v

(fk3+1) (ikz+1)
where A4 41 @i 5+1

Jopr) — 050 | > 8 =g > bl — o8]

, then

which proves the contractive character of the inverse of the mapping just described. o

CoROLLARY 1. If p(K)<2,then K € GB, and vK° (and kK°) can be estimateg
from below by means of the inequalities in Propositions 32, 33, and 20.

CoroLLARY 2 (Dudley’s theorem [33]). If £ 27% (log, MK, 27¥))!12 < o
then K € GC; in particular, p(K) <2 = K € GC.

Indeed, we can assume that the set K is convex and balanced. If the sequence
{L,} of spaces satisfies the conditions of Proposition 30, then for any € > 0 only a fi-
nite number of members of the sequence V(K N L,, €),7=0,1, ..., are different
from 1, from which it follows that the right-hand side of the mequahty in Proposition
33, with K N Lj substituted for K, converges to zero, and, by 6) in Proposition 30, it
follows from this that §(K) = 0, i.e., K € GC (Proposition 27). ®

3. Let M = M(K, €) be the cardinality of a largest subset F' C K consisting of
elements such that the pairwise distances between them are greater than e (an e-lattice).

PrOPOSITION 34. If M = M(K, €) > 10, then for any € > 0

m(K) > (1= )Y ey,

ProoF. From the inequality 1) in Proposition 20 it follows that A (&) Z
o~ '2mY2(1 - y(cK)®). If B, is the simplex whose vertices are the vectors 2° 12

1/2
, 274 e,, where e, ..., e, are unit basis vectors, then, by Theorem 2, we ﬁ“d
that

hy (K) > hy (eBy(x,e))-
Consequently (see, for example, [27], Chapter 5),

V2/es

Y
o
I (K) 2 (1 — ¢ (e Ba)0) =V (1"[% ) exp(—%”")d”])

—00

__Vor (1 —[1 —zcjﬁexP( anlea)(i _a(:_ez))]ﬂ)’ where 0 < (2 )<L¢.

For oe <1 we continue the chain of inequalities:
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\/21‘5( { l az
>, — 1|1 —e | —=_ 1
— {1 —expia v exp(~m)]})

Vor

‘__T(1 — exp [—-OXD[-G‘2],—2+|11M+I||L' |)
) 4Vr|f)

WV

Since the function z% In (zM/[4n'12) i monotonically increasing with respect to
;. and since, a8 is easily checked, z2 In EM/4n'2) > 1 for M > 10 and z = 2(1n ppy~ 12
v;e find that if 0 and e satisfy the condition —(0e)> +In M + In (05/4"1/2) =0, then ’
e < 2n Mm% <1,and 0 < 2/e(In M2 from which the desired inequality follows
immediately. ®

CorOLLARY. If lim sup €2 In M(K €) = o (in particular, if P(K) > 2), then
h,(K) == and K ¢ GB.

Indeed, it is well known [68] that M(K, €) = N(K, €); hence, if p(K)=p>2,
then for some sequence €, \ O we find that In M(K, €) > q In(1/e,) for some g > 2,
ic., €l In MK, €,) > 1, and €, (In M(K, €))% — oo with regard to the condition
K & GB see Theorem 1. ®

If lim sup,_, o e In M(K, €) < o, then the condition K € GB may or may not
hold.

For example, let @, = (k In k)™, k = 2, ..., and let 7 be the set of vertices of
a rectangular parallelepiped whose edges have lengths a,. By the additivity of the func-
tional h, we have h (1) = Za, =, ie., 7 ¢ GB. We prove that

lim e*log M (x, e)=0.
>0

Itis known [68] that M(K, €) < N(K, €/2), and so it suffices to prove that €2 log M(r, €)
= 0. If for fixed € > 0 we choose a number m = m(e) such that the subset M, Cm
composed of the vertices of some rectangular parallelepiped with lengths of edges a,,
*++» @y 4y forms an e-net in the set , while the set m,,—, does not, then we get that
N, ¢) <2m© ang log, N <m(e). If m,, is an enet in m, then Zi_ 4, (k In k)2
<€, and, by assumption, T_ ., (k In k)2 > €. Since

@™ @
dt 1 9 S dt
S t2In?¢t (m - 2) In® (m + 2) t2In3¢’
m+2 +

it follows from this that

4]

1 1 dt 2 1
mlu"‘m>(m+2) InZ (m + 2) > Sztz ln2t> k2 In*k

m+ k=m+3
= ——L 1 —_— > 52 Y ] hl3 m
kzm ITE T 2P In® (m-2) (m - 9) It (m £ 3) "
=m+

ad hepce

1 2_ 0.
e?log, N < &’m () <W+mln”m :30
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A more careful calculation would show that [ €d(In N(n, ¢)) > _

&)
o g
ous to note that with the help of the methods of estimating e-entropy develg tis Cup. ]
- . Al e 5
Mitjagin in [79], it can be shown, using the Minlos- Sazonov theorem (or Ourp d by |
Cstim

that in the class of ellipsoids E (sets of the form {x: X (x, “'k)zf?\i <1y " i
is an orthonormal basis) the condition f(; e2d(In M(E, €)) > —oo jg necessar » Wherg ,
cient for the condition E € GB. An example in which K € GB ang

lim sup €2 In M(K, ¢) > 0
was given by Dudley in [26]. In the same place Dudley remarked that i all knowy

examples of GC-sets K the condition lim__, €% log N(K, €) = 0 holds, Our methog
permit us to prove a more precise statement.

PrROPOSITION 35. The following inequality holds:

8(K)>é(1 —%)lim supeyin M (K, e).

e—>»0

ProoF. For any linear subspace £ C H of finite defect d = dim (H/L) the or.
thogonal projection Pr; K of a precompact set K onto this subspace has the same order
of growth of e-entropy:

limsup 2lnM (Pr, K, €) = lim sup €2 In M(K, ¢).
It suffices for us to observe that, since K is contained in the orthogonal sum of the set
Pr; K and some d-dimensional bounded set, we have the estimate M(Pr; K, €) >
M(K, €)c(K)/e?, where ¢(K) is a constant. From this it follows that

lim supey/InM (K, e) <limsupeyIn M (Pr,K, e).

From Proposition 34 we get, as ¢ — 0,
h, (K) 2> lim sup(i —%)V—;ie\/lnM (K, €)
and consequently, for any subspace L, dim (H/L) < oo,

hy (Pry K) > lim sup (1 — %) V%e VinM (K, e)-

Now if {L;} is a sequence of such subspaces that decreases to zero, then by the

assertion 5) in Proposition 30 we get, finally,
3(K)= \/;——ﬂlijm by (Pry K) > %(1 — ie) lim supe \/m

As was mentioned earlier, in the case of stationary Gaussian processes the e-entropY
language permits us to give necessary and sufficient conditions for the continuity ©
sample functions. sion for

4. Unfortunately, we cannot hope to get g necessary and sufficient condl“o;at
the condition K € GB or K € GC in terms of e-entropy. It was shown in [IZHE ¢)
for any increasing function H(e) there is an ellipsoid E for which H(ae) <108 X ;
< H(be). Now let H(e) = log N(m, €), where 7 is the rectangular paranelepiped from
lengths of edges a, = (k In k)~ described above. As noted, fo e2dH(e) ~ -



. it follows that an ellipsoid E with the same growth of ent
- which

tion, each ellipsoid having the GB property also has the (;
E ton,

= e A
b

: realization. For e
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ropy belongs to the
GB,while hy(m) = Zay =+, and 1 ¢ GB,
ass VT

It can also be shown that it is not
¢l olp {0 characterize the class GB in terms of (he sequence of finite-di;
posst

nensional djg.
ters. Regarding the G:C property, it follows that, as will be cle
meters:

ar from the next sec-

C property (just as any con-
. set that is the unit ball of a reflexive space); therefore, the example given with the
Ve

arallelepiped 7 and the ellipsoid E, both having the same growth of entropy, shows
fhal the class of GC-sets cannot be exactly characterized by entropy Criteria.

5. The basic results of this section can be summarized in the following form (Pr,
is the orthogonal projection onto the subspace I, C {4 ).

THEOREM 4. For the convex balanced precompact subset K

of the Hilbert spyce
H to belong to the class GB it is necessary that

lim sup ¢2 log, N (K, e) < 0.
>0
Moreover, if M(conv K, €) > 10, then
hy (K) 2 0.65¢ \/In M (K, e), 3(K) .1()

ST Tim sup e in g (K, e
e—>(
and, in particular, if K € GC, then

lim sup e* log, ¥ (K, e) =0,
Moreover,

hy (K) <22 Y, ok Vieg,V (K, 27%)
k=—o

and, in particular, if £>_ 2_"(log2 NK, 27*)12 < oo then K € GC.

§8. The non-Gaussian case

1. We now try to determine what the

geometric characteristics can yield in in-
Vestigating the questions of bounde

dness and continuity of realizations of arbitrary (not
fecessarily Gaussian) random processes. Let K C L2(.Q,, u) be an arbitrary subset of
the space of Square-integrable functions, which, as before, we regard as a random pro-
%55, When we are interested in the question of boundedness (with probability 1) of
::;a:‘zljhfunctions xX(w), x €K, of this process, none of the structures on K con-
With (he lc S(_)m‘? Property of the parametrization are esserlfial; but if we are concerned
that ¥ has()il}:mlllly of th.e realization x(w) of the pI?cess K, then we a]\,\.zays assume

: € topology induced by the imbedding K C L2 (we shall be interested

Tiainly in Preco

’ mpact sets K, so we need not specify which topology on the Hilbert
¢ Sgace H is used

does not 1 It i.S not' hard to see that the specification only of the ge(')mejtry Of'
OW provide, in al) Cases, an answer about boundedness or continuity of a
Sisson pre Xample, from a geometric point of "Jiew the stzu.xdurd Wiem?r atllnd
o adVisab(iesses, regarded on the same intervals of time, are eqUIVillEIlt. It is 1ere-'
® 10 try to find geometric characteristics of the process K that would guar-
Ness or continuity independently of the location of K in L2, i.e., in-
he more subtle properties that are detectable only with the help of the

aNteg its boun ded
ependenﬂy of t
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finite-dimensional distributions, the higher moments, the propertijes Connectey

( .72 ‘+h the structure of the partially ord W

ring structure in 2 ith tl ‘ P Y ordered set, gy In o "

words, we want {0 isolate the whole class of those subsets of a Hilbert Space g, e

resent random Processes with bounded (or continuous) realizations for any tre
s rir ATebimast . 0

Hilbert space with distinguished subset in the form e

- . “ . . f a Hilber[ §
grable functions with respect to a probability Measure
g i

or w

realization of the
L3, w of square-inte
s We first study the property of boundedness of realizations, T, 2y g
2. \ .

process K C L3(Q, w) has bounded realizations with probability 1 is to say gy, i
™o s T 3 ¢
le function sup K with values in {R, + o} is almost everywhere finite it

measurab _
ak of the class of equivalence mod 0 of such functions), tha
» 1L, that

more precise 1o spe

the subset K CL3(Q w C S, w) is structurally bounded in S(Q, 1),

We consider the following characteristic of a compact balanced subset  of the
Hilbert space H.

DEFINITION (see [116]). Let K C H be an arbitrary subset of a Hilbert space,
Then the s<characteristic of K is defined to be the number

s (K)==sup {“ sup K I3 (e ok

where X is the image of K under a (linear) isometry of H onto some space L(Q, ),
the inside sup is taken in the sense of the natural partial order structure in L¥(Q, p),
and the outside sup runs over all possible such isometries. Sets K for which s(K) <=
are called Schmidt sets, or s-sefs.

We remark that the value of s(K) would not change if the outside sup were taken
only over the discrete measures, i.e., with respect to all possible isometries of Honto .
As is shown below, the class of Schmidt sets coincides with the class of jubsetsof
Schmidt ellipsoids; for ellipsoids E the value of ||sup El LG where E is the unage
of E under an isometry of H onto L3(€2, ), does not depend on the choice of ti
Isometry.

THEOREM 5. Let K C H. If s(K) < o, then K is the image of some bounded

subset of the unit ball of H under a Hilbert-Schmidt transformation whose square
x € K, of any random pe

frace equal to s(K): moreover, the sample functions x(w), _
ous (with ®

cess K C L3(Q, p) that is isometric to the set K are bounded and confint 7
Sp’ew to x €K in the relative topology). But if s(K) = o, then for some subset :
L*(Q, ) isometric to the set K C H the sample functions of the random P "t“ﬁ o f0b
unbounded with probability 1, i.e., sup K = 4o (mod 0). The condition s('ft) ch
lows from the finiteness of || sup K| for any K C L? that is isometric 10

) m the folo"™*
of con'®

L2(Q,u
We precede the proof by a number of auxiliary statements. Fro
arguments it will be clear that we can limit ourselves to the consideration
symmetric (with respect to zero) compact sets K C H. The half-lengths © W
SPect to the basis {e, } are defined to be the numbers g, (K) = SUPxeK e 8 e 8
prove that for each sset K in an infinite-dimensional separable Hilber! SpacE odime"
th psoid containing it with the same s<haracteristic. It is curious that i mft umﬁ"OI
Sional spaces the last statement ceases to be true (although the fact of the ¢
an s-ellipsoid containing X is then trivial).



o
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The proof given below is close to the arguments in [116]. Other proofs of the

ment characterizing s-sets as subsets of s-ellipsoids are now known (see [111] or
state

(73])-

PROPOSITION 36 vef E - f{bbe.an e”ipSOid’ {bn} the Iengths Of its semia.xes,
arbitrary orthonormal basis; then
and (e} a1

s (B) = X¢;. (B) = Y.

prooF. It suffices to prove the second equality. Suppose that in the system
0} the ellipsoid E is given by the inequality
eﬂ

. e'g,(l) 2
zﬁi—b?—)gl, z= e, & = 2, Grnel0).
n n

{

Obviously,
gi(E) =sup (7, €x)* =sup (2,0, = Fbia},, T¥bla, = 0. @

PrOPOSITION 37. Given the n points x, ..., x, in the Euclidean space R™, let

K=T(x, ... , X,) be their convex balanced hull. There exists a unique ellipsoid E
containing K and such that s(E) = s(K).

Proor. We first suppose that the vectors Xy, ..., X, are linearly independent.

The proof is carried out by induction on n. For n = 2 we locate X in a rectangle P so
that the points x, and x, lie on adjacent sides of P, and the diagonals of P are parallel
tox, +x, and x; —x,. It is easy to see that there is an ellipse contained in P and
passing through x, and x,. Let e, and e, be unit vectors orthogonal to the sides of

P ED K; consequently s(E) > s(K); but s(E) = g2(K) + g3(K) <s(K), ie., s(E) =
$(K). Since there is only one ellipse in P that passes through x, and x,, every other
¢llipse has half-lengths in the system of coordinates e, e, that are not less than g, and
8, respectively.

Now suppose that the proposition has been proved for n — 1. We consider K =
Py, ... »X,) C R" (the vectors Xy, ... ,X, are assumed to be linearly independent).
We consider an orthogonal basis e,,...,e, in which s(K) is attained and let P be the
fectangular parallelepiped whose (n — 1)-dimensional boundaries are orthogonal to the
vectors e, and are supporting hyperplanes for X (we call P the extremal parallelepiped
f‘” K). We remark that any boundary of P is the extremal parallelepiped for the pro-
Jection onto it of K. In particular, the (# — 1)-dimensional boundary G,, orthogonal to
E,,.is the extremal (5 - 1)-dimensional parallelepiped for the projections onto it of the
Imets ¥1>-+.,x,_,. From this it follows that there exists an (n — 1)-dimensional el.-
].;fsmd Eo lying in the hyperplane passing through the points 0, x, .-+ » Xp—1> °°‘_‘tam'
t & these points, and contained in the cylinder with generatrix parallel to ¢, 'and direc
"X G,. There obviously exists a (one-parameter) family of balanced ellipsoids {E,}
cofltained in our cylinder and containing the points X, ..., X,_; (E, is a degenerate
f’-IhPSOid Contained in our family). Let us now assume that the boundary Gn. does not
Mersect Eo- In this case there is an ellipsoid E,, for which G, is a S“ppoftm_g hypefr-
Plane, Let x, be a point of tangency of G, and E,. Considering the projections ©
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Pand E,  onto the plane L(e;. €,), k= _1’ f ,ﬂn - 1’_ ant(.l using the theo
n =2 and the remark about the extremality of the projections of P, e ¢
coordinates of x|, coincide with those of x,. '

It remains to show that the boundary G, never ‘mer?eCtS’Eo- We tr
parallel to itself, and at each of its POS.IUOTIS we mark 2111 point x* on 1.t from the fougw.
ing condition: for each & < n the projection of the whole parallelepiped ¢y out frop,
our cylinder by the hyperplanes of G, and —'Gn onto the 1.)1an.e L(ey, e,) is ap Xtre.
mal rectangle for the parallelogram with vertices at the projections of X and x' The
set T thus obtained contains all possible points of tangency of the ellipsoids in{E } gng
the hyperplanes of G, ; however, in addition to them it can contain also other points,
for example, lying on the other side of the hyperplane containing E, from the point
e, , but for which (x',e,) > 0. We note first of all that x, € T Next, considering
that (x,,, e,) > 0, we show that x,, and e, lie on the same side of Eo- Indeed, if thig
is not so, then we consider K' = T'(x, ..., X,_,, X,,), where x, is symmetric to x,
with respect to the hyperplane of E,. Since s(K) = s(K"), and X is not contained iy
P (since (x,,, e,) > (x,,, €,)), P cannot be the extremal parallelepiped for K. A direct
calculation shows that the projection of T onto each coordinate plane L(ey, e,)isa
hyperbola x,, = C, /[x,, from which it is clear that the curve T itself is a branch of a
hyperbola. Each point x € T lying on the same side of E, as e,, lies on some hyper-
plane of G, disjoint from the ellipsoid E, ((x, e,) > 0). This concludes the proof for
the case of points lying in general position. For linearly dependent vectors the propo-
sition is now proved by passage to the limit.

The uniqueness of a minimal ellipsoid is proved just as in the case n = 2. ®

REMARK. Suppose that the linear span of the compact set K = I'(x,, ... s Xp)
has dimension m and that on the (m — 1)-dimensional boundary of the minimal ellip-
soid E there are k of the points (of course, k > m). Then s(K) = s(E) already in k-
dimensional space. Indeed, we can regard the vectors x,, ..., x,, as limiting cases of
linearly independent vectors; here the limiting extremal parallelepiped is not more than
k-dimensional, since, if x, lies inside the m-dimensional ellipsoid E, then the correspor d;
ing boundary of P, and hence also the opposite boundary, contains E, i.e., they merge-

Tem fo,
¢ that gy,

anSlate G

PROPOSITION 38. Let the convex balanced compact set K have dimension B and

lie in R¥, k> n(n + 1)/2. Then there is a unique ellipsoid E > K such that $(£)=
s(K).

It suffices to prove Proposition 38 for arbitrary convex polyhedra.

. L. ed

. LEMMA 1. Consider the compact (in its natural topology) space £ of Mla"f. ed
ellipsoids in R™ that contain some compact set M = D(x x,) and aré contal
in a given (sufficiently large !

) ball. The functional s has a unique minimum on

. movms
PROOF. Suppose that s takes a (local) minimum on some ellipsoid £ BY " |

2 sufficient number of points x,, , ..., Xy into E, it is possible to make E the "

(smallest in the sense of the value of the functiona] 5) ellipsoid for K' = LGy
But not more than 7 of the points lie on the boundary of E, so, by the remaf

Xy

R
)

k at th®
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e proof of Proposition 37, s(E) = s(K") = s(K) in I-dimensional space, i.e.,

end of oved, the ellipsoid E is minimal also for K. @

py the uniqueness Pr
LEMMA 2. Suppose that tife.linear Span of the compact set M = [‘()cl sy X))

s dien sion m, and E is the minimal ellipsofd Jor K. There are not more than

o + 1)/2 points Xiis -+ s Xiy such that E is already the minimal ellipsoid for

17 i)

PROOF. BY Lemma 1, E is the minimal ellipsoid of the set of points lying on its
qurface. Suppose that the number of such points is greater than m(m + 1)/2. From
pem we choose m(m ~+’- 1)/2 points for which the functional s takes a largest value on
ihe minimal ellipsoid E' for these points. Suppose that E' is different from E. Since
an m-dimensional balanced ellipsoid can be specified by means of m(m + 1)/2 points
of its surface, in this sense there are “dependent” points among our points, i.e., points
such that each ellipsoid passing through the remaining points passes also through them.
We remark that outside the ellipsoid E ' there is at least one of the points lying on the
surface of E. We discard from the number of our m(m + 1)/2 points a “dependent”
one and add a point x lying outside. The minimal ellipsoid E" constructed for these
new m(m + 1)/2 points is such that s(E") > s(E"), and this contradicts the choice of E'®

The proof of Proposition 38 for an arbitrary convex polyhedron follows now from
Lemma 2 and Proposition 37. @

ProPoSITION 39. Let K C 12, llsup K|l = 1, and let Pr be a projection operator.
Then |Isup Pr (K)I| < 1.

For finite-dimensional coordinate spaces I,f the assertion can be verified directly.
In the case of infinite-dimensional /2 one should use the fact that {J, 12 is dense in 12,
We mention that the analogous assertion for arbitrary selfadjoint operators with norm
not exceeding 1 can be proved in the same way. ®

ProposITION 40. Let H be infinite-dimensional, K C H and s(K) < . For any
€ >0 there is an ellipsoid E such that K C E and s(E) <s(K) + e

_ PROOF. If H = H| @ H,, then s(K) < sy (Pry; (K)) + 557, (Pry, (K)) (the nota-
tf‘m is clear). Let H be decomposed into an infinite orthogonal sum of finite-dimen-
Sional subspaces i = H . GBH; @, in each of which a balanced ellipsoid E, is given,
ad let £ be the sum of the ellipsoids E,. Let the positive numbers A, Ay, ... be such
2::: fh N = 1. Then E is contained in an ellipsoid E such that s(E) = Z'§ (B In
» € point x = {£,] belongs to E if

- k=n,+1

Utin this case the ellipsoid E,
< o
2 )\Eli;b-, < 1, A= )\,,, if n, } k>n, o
k) K k

.

Ontains x, and hence all of £,
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Now we approach the proof of the proposition in the following way. For sim
plicity we take s(K)=1. We choose an arbitrary sequence 1, a,,a,, . 0. Selec.t
 — 1 ,
+ finite-dimensional subspace H, H = H, ® H, such thd['s(Pful K)y>1- 0 they
s(Pr, . (K) <a,. Itis clear that Py (K) can be moved into the ﬁnite.dimensiOna]
H1 . ; p
ellipsoid E,, s(E,) < L, since Pryy, (K) can be regarded as Pryy, (Pryy, (K), where 4,

dimension of H| is n(n + 1)/2 (n is the dimension of f); but

132 5, iz (Prag (K)) 2 s gz (Prag (K)).
Continuing this construction, we arrive at a decomposition of # into an infinjte orthog.
onal sum H = Hy ® H, @ - -, where the projection of K onto H, is zero, and the pro.
jections onto H,, H,, ... can be included in ellipsoids E,, E,, ... such that s(E) < 1,

s(E,) <a,, etc. Since
inf (;g +¥ akli) =1
k=2

(the infimum runs over all sets of A, Z A\;> = 1, and over all sets of a,, a, \ 0), the
proposition is proved. ®

Proor oF THEOREM 5. To prove that each s-set K is the image of some subset
of the unit ball of the Hilbert space under a Hilbert-Schmidt transformation whose
square has trace s(K) it is sufficient to prove that K is contained in some ellipsoid E
for which s(E) = s(K).

We equip the space of ellipsoids in R” with the natural topology. Fix a basis
{e;}. By means of a diagonal process we construct a sequence { E,} of ellipsoids in #
containing K and such that their projections onto each finite-dimensional coordinate
subspace converge to certain ellipsoids, and s(E,) — s(K). It is not hard to show
that the projections onto any finite-dimensional subspace will then converge. The col-
lection of limit ellipsoids of the projections forms a “spectrum”, i.e., is such that if
L, C L, are finite-dimensional spaces in H, then the limit ellipsoid in L is the projec
tion of the limit ellipsoid from L, onto L,. This spectrum is generated by the projec:
tions of some closed convex balanced set E. Since all finite-dimensional projections of
I?' are ellipsoids, E is also an ellipsoid. The inequality s(E) < lim s(E,) and the inclu-
sion K C E are obvious.

REMARK. The condition that H is infinite-dimensional is essential. For examples
for a regular hexagon Z in R? there is no ellipse E containing Z for which s(E) =
Skz(Z)-

We now show that s(K) < « if 3 g2(K) < = for any basis {e, }, i if

Isup Kz o, ) < oo,
for all possible isometries of (#, K) onto (L*(Q, w), K), at least for discrete measures
M. Let s(K) = . There are othogonal unit vectors e, ..., e, such that zy' bk
= 1. Moreover, by the preceding, s(K) = oo again holds for the lpmjection of K ont0
the orthogonal complement & , of these vectors. In H, we make the same const
glﬂz Pry;, (K). Continuing the process, we construct a basis in which, obviously
g(K) = o=. The last assertion can be restated as follows: each subset of I° that

ruction

R ol e, T S S

-
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any of its unitary images, is order bounded is an s-set. Further, we note

or with .
mseth r in the sense of I1? can be replaced everywhere by the order in the

{ the orde . ) _ sense
the 2 ( hich is not isomorphic to the first). Indeed, the supremum of an s-ellipsoi
W
of /

with
formations:

tep functions. o :
| we now prove that the realizations x(w) of the process K

iaxes {/, (N} is X f,,l(f). and its norm is invariant with respect to unit
semid n

ary trans-
The role of the dense set in Proposition 39 is played by a cert

ain set of

- CLYQ, M) are continu-
with respect to X € K (in the relative topology on K) with probability | jf K is an
ous

get. Without Joss of generality we czm‘ assume th:xt' E is con.vex. Let HE be a normed
space made up of the elements of lhi linear span of K and with the nunnﬁl’l |~ gener-
ated by this set. Moreover, let £ O K be an ellipsoid such that s(E) = s(K), and E,
5 £, the Hilbert space with unit sphere E and norm || “ll¢. It follows from the condi-
tion s(E) < ° that the topology on £ defined by the original norm Il - ”lﬂ(Sl.u) is ma-
jorized by the J-topology (see [102]) with respect to the topology of || - llg. We now
consider the positive definite functional w(x) = [, e™*(“) gy on Ey. The functional
¢(x) is obviously continuous in the norm || - |IL2(“'“), hence also in the J-topology with
respect to the norm || - |l ¢; therefore, by the Minlos—Sazonov theorem (in Sazonov’s
form) the weak distribution determined by it can be extended to a completely additive
measure u* in the Hilbert space of continuous linear functionals on Eg. Thus, the func-
tions x(w) forming the space £ can be regarded as linear functionals on some Hilbert
measure space (H*, u*) that have the same finite-dimensional joint distributions. By
the same token, a homomorphism g is induced [140] from the measure space (£2, u)
onto (H*, u*), acting in such a way that for an arbitrary (mod 0) element w €  and
i arbitrary x € E; we have that x(w) = (x, w™®), where w* = g(w) € H*. But the bi-
E linear form (-, w*) is continuous on the set E C Eg in the relative topology for any
fixed w* € H*; therefore, for almost every w € £ the function x(w) = {x, g(w)) is
“ontinuous in x on the set £ and a fortiori on the set K C E. (We remark that we
have actually obtained the Gel'fand—Kostjugenko theorem on the density of the system
of generalized eigenvectors of a selfadjoint operator from the Minlos—Sazonov theorem;
e [118].)
_ We now prove the second part of the assertion of the theorem. Let K C H, s(K)
;l;(’;]:l;’-g, as a;lready shown, there is an orthonormal basis {e,, k = 1, ...}iﬂ H
k=1 8i(K) = =, where g, (K) = sup |(x, e, )yl- Let the numbers 0 = m, <

"I \ ) 9 .
263 (K) > 3 gt (K) 4741
No _ mjrl K=l |
L2;)w;] describe 4 realization of H in the form of a subspace of the Hilbert space

oty b}tfh Constructing a certain orthogonal sequence { fk.(t), k=1, .. il} z;ngl eﬂ'::'[ll .

tions ¢ (tg ¢ vectors e, € H and fi, € L?[0, 1]. With this goal, let each o © fune.

'ffere;:t b o 2/ ml(t) take the three values h,, 0, and —h,, where the s?uppc.)r s0
functions are disjoint and have the whole segment [0, 1] as their union. We

12500 h"'1 so that g, (K)h, = g,(K)hy = -+ = g’"1(K)h""1' It is
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¢ pr(H) the orthogonal projection onto the subspace 7 (11
easy to see that if Pr(] denotes .g PR | pa.c.e I‘(I )
spanned by the vectors €, - and if W denotes the linear isomorphigp, of (k)

)
the vectors f,, ...,
onto the subspace L, of L2[0, 1] spanned by the fy f,,,l, then

my

sup lIfPrtl”)K — (Z gi(K))'f, — const.

k=1

i is defined so
The next sequence of functions TR Smy 1 that, as before, eacp, of

d —h,, where g Kh, 1= =g &
them takes the three values /1y, 0, an K g1 KMy 1 K,
and, moreover, each function f,-+(z‘), 1 <i<mj (which coincides with f(f) where

fi(t) = h, and equals zero for the remaining ¢ € [0, 1]), is orthogonal to each function
i _ . g
fo,m; T 1<k<my, and the same with respect to the functions f;7(¢), 1 < <m,

It is easy to see that if Pr(zm denotes the orthogonal projection o;to the SUBSP&C&
e, ,and if ¥: L§ )_+L2CL2[0,I]

L$H) C H spanned by the vectors €y, 1y -+« @my>
is defined analogously to the preceding, then
m, 1,2
sup YPr{HK — (L g (K)) — const.
r=my+l

Continuing this construction, making sure each time that the newly introduced func-
tions f,, which take three values, are orthogonal to the characteristic functions of all
the sets on which the functions f, defined earlier in the sequence are constant, we ob-
tain an orthogonal sequence and linear isomorphism W carrying {e,} into {f,}; conse-
quently, we get a set WK in L2 [0, 1] isometric (and isometrically situated) with respect
to K CH

We show that sup WK = +o, With this goal, we decompose each element y(f)
€ ¥K into an orthogonal series: y = =7 Yj» where y; € L]-. For any m > 0 we have

sup {Z y,-} >,

J=1 =1

(where y” = ZT" y, is the expansion of any fixed element y € ¥K);,

m N m—1 ol
Ely/> Z/m—J_:ley;"}S:'Pym—-;lsuI? [y}.]}m

(by the choice of the numbers m;); the sign of the modulus of »; can be omitted, be-
cause K is balanced. Thus, sup {7 y;} — . But it is clear that if {4,,} is a &
quence of e,-nets of the set 4 C L2 and ¢ —> Q. then

n ’

lir::qup {sup 4,} > sup 4.

In ?ur case the role of 4 is played by the set WK, and the role of A, is played bY its
Projection onto the subspace L ® & L,. The theorem is complgtely proved. ‘

. In conclusion we mention that s-sets cannot be characterized in terms of the fi-
nite-dimensional diameters d,. To prove this we construct two compact sets M, and
My D M, having the same sequence of finite-dimensional diameters, but of which onlf
M, is an s-set. Let M, be an ellipsoid with semiaxes ‘
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' and lot M, n By, where

‘ ! ‘ n
) e E o P 1 |
,'A‘ £ — 5000 S U .
sl LR e

1 ek 0= k

qt is 0ot hard to check that for both M, and M,
\ I
2 1) .
e n* III" 17} /‘/-' .\_‘h" < (0,
ek

l“» |

The compact set M, contains the parallelepiped

i Q R MEen |E ! }

ninn

We show that Q is not an s-set.

LEMMA. For the parallelepiped P = {x: x = X e, 1k, < Ef,o)} to be an s-set it
is necessary and sufficient that X £ < oo (£ > 0),

Only the necessity needs to be proved. As is clear from the uniqueness in the fi-

| pite-dimensional case, the axes of the minimal ellipsoid for a finite-dimensional parallel-

epiped are parallel to its edges. Let {b } (k =1, ..., n) be the lengths of the axes of

' the minimal ellipsoid for the projection of P onto the subspace spanned by e, ..., e
By Holder’s inequality for x = Zf Eio)ek we have

m2\-1
S0 > (S (PE) =@y,

from which the lemma follows. Thus Q, and a fortiori M, is actually not an s-set. ®
As a simple example we mention now that segments of the Wiener spiral are not
ssets, since they are isometric to the corresponding segments of a Poisson process.

n

§9. Remark on Borel realizations

Let K C L%(§, ) be a bounded convex balanced set. Suppose that the random
Process K has bounded realizations with probability 1. This means that the correspond-
ing weak distribution can be extended to a measure in the strong dual of the space
(LK), |- li)- If (LK), Il - llx) is nonreflexive, then its dual can contain linear forms
over L(K) that are not Borel with respect to the Borel structure induced by the imbed-
ding K C L2, We can consider the strongly closed subspace L(K)™* C (LK), II- lg)*
C(_’“Sisﬁ"g of all the linear forms on L(K) that are bounded and Borel on K. It was
hitherto ot obvious that each weak distribution of the type considered that is extendi-
ble to measure in [ (K)* can be extended to a measure in LK)™; in fact, LK™ is
"Vf-‘akly dense in [ (K)*, and the situation could turn out to be analogous to the case
With the Spaces C and 1. D C, where there exist ‘“‘nice” processes with a measure con-.
®ntrated jn L™, but not in C. However, it can be proved that, in the case described, if
* Weak distribution is extendible to a measure in L(K)*, then u*L(K J¥) =1 (w7 is the
Outer measure), from which it follows that we can regard the realizations of the process
R 3 Borel with probability 1 (compare with Doob’s theorem in [24], p. 61, on the
Xistence of 4 measurable modification).
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0. This chapter deals with the study of a circle of problems connected with
combinations of a number of measurable decompositions on a measure space. The
language of the theory of decompositions is one of several equivalent languages suitable
for the description of the problems relevant here. It would be possible to conduct the
presentation in terms of, for example, rings of functions or operator theory, but we
have chosen the language of “pure” measure theory for the exposition.

The main result (in the opinion of the author) in this chapter is the solution in
§10 of a problem first posed, apparently, by Garrett Birkhoff (see [10], p. 266) that
has attracted the attention of a whole series of mathematicians [42], [88], [83], [58],
[89], [16], [59]. Certain results that bear an auxiliary character, as far as the solu-
tion of this problem goes, also have independent interest. Thus, Proposition 38 (in
the multidimensional version) was used for a proof of the existence of a nonrandom-
ized test in the Behrens-Fisher problem (see [45], [70], [71]). In §§11 and 12 the
methods developed are used for the solution of problems that are not directly related
to the Birkhoff problem (a brief presentation of the results is contained in the Intro-
duction). Finally, in the last section of this chapter its basic results are applied to the

solution of a problem in econometrics: the determination of conditions for the ex-

istence of a one-to-one plan in the Monge-Kantorovic problem on optimal transport of

mass in a finite-dimensional Banach space (2 Minkowski space).

The presentation of the results concerned with the Birkhoff problem is carried
out in detail, so that not even the purely technical parts, sometimes involving quite
laborious estimates, are omitted. In the applications the main attention is directed (©
the theoretical side of the problem, and some standard arguments used earlier (for ¢

ample, the use of Zorn’s lemma) are presented briefly. Nevertheless, all the auxilia"y
propositions are clearly separated everywhere.

§10. The Birkhoff-von Neumann problem

: le,
1. The well-known Birkhoff-yon Neumann problem (see [11], or, for examp

ix Wi
[10], p. 266) asserts that any square doubly stochastic matrix B (i.e., a matiX Wch
nonnegative elements such that the sum of the elements in each row and in @
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al to 1) of order n can be represented in the form

B= 2“ p.f/!)q?

”(‘G”

iumn is equ

ahere the Py are nonnegative nu.mcrical coefficients, and Pg. is thtj’ matrix of the per-
; of an n-element set, i.e., the Pg are square matrices with elements 0 and |
mutaltlon':ﬁrices) such that in each column and in each row exactly one element is

g?}er:ﬁ from 0 (and equal to 1); Gn denotes the group of all such permutations g

. d contains, of course, n! elements,

, Number 111 in the “list” of unsolved problems in the second edition of Birkhoff’s
monograph Lattice Theory is to extend this theorem to the infinite-dimensional case,
wynder suitable hypotheses.” The latter stipulation definitely shows that Birkhoff
pimself had in mind under the infinite-dimensional case not only infinite matrices, but

Euoo the “continuous” case (which is in principle different, as will be seen, from the

' discrete case). Birkhoff’s problem for doubly stochastic infinite matrices was con-

sidered from various points of view by Isbell [42], Rattray and Peck [88], Kendall

[58],and Revész [89]. The last-named proved, in essence, that each doubly stochastic

infinite matrix can be represented as an integral with respect to a certain measure on

| the set of permutation matrices. In our view there is most ground for calling Révész’

L. result the analogue of the finite-dimensional Birkhoff-von Neumann theorem in the

i case of infinite-dimensional matrices.

f An infinite-dimensional analogue of a doubly stochastic matrix is the “kernel”

of a doubly stochastic operator, i.e., a positive linear operator acting from some space

| of equivalence classes of measurable functions on a measure space (X, ¥, p) into
another such space of functions and carrying the function identically equal to 1 into

I
|
|
|
|
|
|
|

the same unit (in this approach the “operator” is a more primary concept than its do-
. Main and image spaces, which can, in principle, be selected in various ways for one and
the same operator; we call attention to the fact that no continuity of the operator is
; #umed—this is replaced by positivity). For definiteness, we can say that such an
OPerator B acts from L=(X, o, u) to L™(Y, B, ).
A doubly stochastic integral operator (with which we shall have to deal in the
7 following) is understood to be an operator B acting on a function f by the formula

Bf) (y)= k@, y) (@) » (d2),

X

::ere k(x, y) is a nonnegative function defined on the product M = X x Y of the
!nteasuIe Spaces (X, ¥, u) and (¥, B, v) that is integrable with respect to the product
: BUTe 4 x b and such that

Sk(:r, y)p (dr) =1, for v-almost allyey,
_‘ﬂnd X

S k(z, y)v(dy) —1, for p-almost all x € X.

Y
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For the spaces (X, ¥, ) and (Y, B, ») it is always assumed thyy Wangd ,
nonatomic probability measures and that the o-algcbr.as U and B of measurableare
sets are countably generated, i.e., are completions (with respect tq the measuressub.
») of the smallest o-algebras containing certain countable collectiong of Subse( ang

able bases [92]). It is well known that in this case the Banach algebrag L=(x v unt.
o < ) , “)

v v s ic rach other in the sense of anp ; .
and L=(Y, 8, v) are isomorphic to eac of an 1S0omorphisy o the

Banach algebra structures and of the partially ordered Banach space Structyreg, Su

an isomorphism does not imply an isomorphism of the measure spaces (X, ¥, W) a[::
(Y, B, »), but it means an isomorphism of the Boolean o-algebras of €quivalence clagse
of measurable subsets of these spaces (see, for example, [38]) (the iSOmOrPhjSm of '
these Boolean o-algebras follows already from the isomorphism of the Banach Space
structures of L=(X, U, w) and L=(Y, B, v). It is always possible, without changing
these g-algebras and hence without changing the spaces L™ (X, ¥, u) and L¥(Y,8, )
(as, in general, the spaces S(X, 2, ) and S(Y, B, v) of all equivalence classes of mea-
surable functions), to enlarge [92] (X, ¥, p) and (Y, B, v) by adding new elements o
X and Y in such a way that the enlarged measure spaces (do not confuse this with the
completion of ¢-algebras mentioned at the beginning of this paragraph!) (X, U, y) and
(Y, B, v) become isomorphic to each other as measure spaces, complete (see [92], and
also Chapter I), and isomorphic to some standard “nice” (i.e., complete with a count-
able basis) measure space, for example, the segment [0, 1] with Lebesgue measure, or
the countable product of two points with one-half masses.

We recall that a complete measure space with a countably generated o-algebra is
called a Lebesgue space. An incomplete measure space is, in the exact sense of the
word, just as exotic an object as a subset of a segment that is not Lebesgue measurable.
In the following we assume that (X, %I, w) and (Y, B, v) are complete; however, this
requirement is not necessary and is introduced only for convenience, since we could
carry out the presentation only in terms of the various structures on S(X, ¥, p) and
S(Y, B, v) that do not concern the measure spaces themselves.

The measure on (X x ¥, % ® B) for which the function k(x, y) appearing in
the definition of the doubly stochastic integral operator B is the density with respec
to the product measure u x v is called the kernel of this operator. If (X, ¥, ) and
(Y,_ B, v) are Lebesgue spaces, then any positive measure m defined on the 0-3188."“
U ® B (whose exact definition is given below) and whose marginal distributions, 1
the measures m, = mny" and my =mny' (where x and my are the Canonit?al pro-
jections X x ¥ — X and X x Y —Y), are equal to u and » (doubly stochasuc)

generates an operator B (said to be doubly stochastic in this case) acting by the
formula

BN =T 1@m, @)= | f@yamly. U
oy XY
Where Cjr = {Ge»): y=»"} is the corresponding element of the decomPOSi_“on i
of (X x Y, % ®B, m) generated by the projection ., and m ;" is the conditiond "
measure on this element, which can also be regarded as a measure (m|y') o0 the 2 )

space (X x Y, A ®B). A detajled study of the collection of measurable sets
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« of such doubly stochastic measures is contai in 8 )
for the class of dined in § 11, and we shall not

Jor this question here. The measure m is also called the kernel of t

wnsh he Operator B,

As is shown below, without the assumption of the completeness of (X,U, u) and
AL cannot be asserted that any doubly stochastic operator is generated by some
tin;bl.\' stochastic measure on X x Y, t.huugh the last term in (1) shows that even withoyt
ihe qssumption of completeness, i.e. wnt}mut the assumption of the existence of con.-
dltit““'l distributions on t‘hc elements of the coorfiinalc decomposition £y, the specifica-
tion of 8 doubly stochastic Il‘ICiISUI‘c on X x Y defines an operator (the “conditional
mathematical expectation of the random variable ™), Nevertheless, the following state-
ment holds.

provoSITION 4.1 Let (X, U, u) and (Y,B, v) be Lebesgue spaces and B
stochastic operator acting from L(X, R, p) to L

kemel m.

a doubly
(Y,B,v). ThenBis generated by some

ProoF. We find the measure m with the help of the system of conditional mea-
sures m,. on the elements of the coordinate decomposition § x = & This system of
conditional measures can be obtained in the following way. Let £(%) g = I,...,be
a refining sequence of coarsenings of the decomposition § x generated by the projection
fty, Where each £F) s a decomposition of the whole space X x Y into a finite number
of sets (for example, into 2% sets that are projected onto X into 2* disjoint subsets of
equal measure). For each k and each element Ck_n, n=1,...,2% we consider the
function £, .(x, ¥) equal to 2* on the set C,n and zero outside it. On each element
C; of the decomposition Ex, ie., on the set {(x, Y) €EX x Y, x = x'}, we now con-
sider the measure m,+ , that is absolutely continuous with respect to the measure
Wr;: (where n’,‘,' is the restriction of the operator 7 to C,) and has density Bfe.n)
() with respect to this measure. Let m,, be the measure on (X x Y, % ® B) having

the family of measures m, i as conditional measures on the elements of &,., which
makes sense, since

| (Bf, ) ) (@dy) =1

for any x, In §11 it is proved that the set M of all doubly stochastic measures is com-
Pact in the topology of uniform convergence on all subsets of the form 4 x B, where
A€ landpe B (Proposition 70). Therefore, since on each subset of the form

A% B, where 4 is measurable with respect to the decomposition ¢ and B € B, the
Values of the measures m, stabilize as k —> o beginning with k =/, it follows tha-t the
®quence of measures m,. converges as k —> o to some limit m, which is the requnfed
kftrnel of the doubly stochastic operator B, because the operator with kernel m coin-
Ades with B op all the functions that are measurable with respect to one of the de-
mpositions E(k), and hence coincides in general with B. @

As is clear from the proof, the system of conditional measures 7, On the ele-
ments €, of £ can be obtained in the following way. For (almost) all x € X the mea-

| i ibed above,
xe "My 15 obtained as the limit of the measures m, y in the sense describe
» I particular, for each B € B and p-almost all x € X
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mx’,c((ﬂfﬂ)_‘B)—'mx((ﬂff)_'B) a8 k— o,

The set of those x € x for which this convergence holds can depend on the choj

) c
B. but it is possible to fix a countable collection of sets B, s = 1, , | (2 bagg ine of
()’, %, »)), such that the measures m,, are determined by the convergence of t

he v
y on this collection, and, at the same time, the set o Alyeg

 thoge
dong

of the measures m, onl |
x € X for which the conditional measures m, are determined does not depen

and has full y-measure.

Thus, we have established a one-to-one correspondence between the class of
doubly stochastic operators and the class of doubly stochastic measures (kernels of
operators).

The simplest doubly stochastic operators, though they are not integral opers
are the operators /., giving an isomorphism of the Banach algebras L™(X, ¥, 1) and ’
L®(Y, B, v), and then, automatically, an isomorphism of the algebras S(X, 4, 1) and
S(Y, B, v). Each such isomorphism is the adjoint of some isomorphism x = Ty of th,
complete measure spaces (X, U, u) and (Y, B, »): (I:1)(¥) = f(Ty). The kemel of
such an isomorphism operator is a measure in X’ x Y that is concentrated on the
graph of the isomorphism 7', i.e., on the set G, = {(x, y): x= Ty} CM, and the
canonical projections 7, and 7 carry this measure into the measures y and »,

If we do not assume the completeness of (X, 2, u) and (Y, B, v), then we can
give an example in which some operator /. does not have a kernel. Indeed, let X =P
and Y = Q be two nonmeasurable subsets of [0, 1] with the class L of Lebesgue mea-
surable sets such that I*P=1*Q = 1 and PN Q = &, where [ is Lebesgue measure (regard-
ing the existence of such subsets see, for example, [38], p. 70). On each such subset the
function I*, considered on the classes | p and LQ of intersections of P and (, respec-
tively, with l-measurable subsets of the segment, is completely additive [38], and the
spaces S([0, 1], L, /) and S(P, Lp, I*), as well as the spaces S([0, 1], L, /) and
S(Q, Ly, I*), are canonically isomorphic (to each function in S([0, 1], L, ) we assig"
its restriction to P and Q, respectively). This defines a canonical isomorphism /7 of
S(P, Lp, I*) and S(Q, Lo, I*) that, however, cannot be given by means of a kernel m
on(PxQ,[p,® Ly); the kernel of the identity mapping from S([0, 1], L]
S([0, 1], L, ) is a measure concentrated on the diagonal of the unit square, which
does not intersect the set P x Q C [0, 1] x [0, 1]. (For other purposes 2 similar
example occurs again below.)

. of
The kernel m . of an isomorphism I, is a natural infinite-dimensional analogU®

1 ] : . . y : with
he permutation matrices P, of a finite set. Such a matrix P, can be identified

the kernel of an isomorphism operator when the measure spaces (X, o, and
(Y, B, v) each consist of n atoms having the same weight (1/n). We denote bY P, 2
discrete measure defined on the product of two identical finite sets that correspor.1 S
to a permutation matrix. In general, if B is a doubly stochastic matrix of dimensw[:e
" x n, then B signifies the kernel of the doubly stochastic operator R" — R wh
matrix is n~ !B,

Similar to the fact that in the finite-dimensional case each doubly stochastic P
matrix can (by the Birkhoff.vop Neumann theorem) be represented as 2 wei m
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qutation matrices, it will be shown that each doubly stochastic integral oper-
ern .
rcprcscnlcd as the barycenter of a measure o on the set J of

isomorphisms
sreover, it will be shown (what is, generally speaking, not possible to get in the
l ;111(

: -dimensional case) that the measure o on the set J of isomorphisms can be chogen
ﬂmtcl o way that the barycenters of any two disjoint measurable subsets of J are
in such ‘mchilsm operators with mutually singular kernels (the precise concepts of
dOUb_lyn:cr collection of measurable subsets of j: etc., are discussed below).
bmybfrhe ;et M of all doubly stochastic operators with various topologies (weak, strong
| operator in various norms,.norn.wd) was studlsad'by Pec.:k [83], Brow.n [16], and Kim
' [59],whcr0 it was determined m' w.hat sense it is possible to approximate the oper-
ators in il or the doubly stochastic integral operators by means of the isomorphisms
or linear combinations of them, and also by means of operators adjoint to measure-
preserving mappings that are not necessarily invertible. We do not need these results
in the following.

2. As we mentioned above and will discuss in detail in §11, the set M of all
doubly stochastic measures on X' x Y is in the natural topology a compact set equipped
with an affine structure and lying in the linear space of all measures of bounded vari-
ation whose positive and negative components have projections under the canonical
projections onto X and Y that are absolutely continuous with respect to the measures
pand v, or are proportional to them. In the finite-dimensional case the extreme points
of the compact convex set M,, C R("_l)2 of all doubly stochastic matrices (the
“Hungarian polyhedron™) are precisely the permutation matrices (that is, in essence,
the Birkhoff-von Neumann theorem, since each point of a convex polyhedron is the
barycenter of a mass distribution on the vertices of the polyhedron).

In the compact set M each measure m that is the kernel of some isomorphism
is an extreme point; but, unfortunately, such measures do not exhaust the set of
®lreme points. The simplest example of an extreme point of M that is not the ker-

[ nelof an isomorphism is the kernel of an operator B acting according to the formula
BNy =f (Ty), where T: X — Y is a measure-preserving noninvertible transforma-
ﬁlon- Indeed, the corresponding kernel m. is concentrated on the graph of the map-
Png T, just as in the case when T is an isomorphism. The conditional measures of the
distributjon My on the elements of the coordinate decomposition £, are -measures,
0d if we haye my = (m, + m,)/2, where m,, m, € M, then m, and m, are abso-
lutely continuous with respect to mp; therefore, since the conditional measures of m,
:Odc:a:tim probability measures by definition, and b(.)t.h m, and my 41 do:ilt))lli .
composizci;we have on e?ch element of the decomposition &, the smglif pos o
ey . n of the conditional -measure: & = (§ + 6)/2; consequently m, 2’
T 18 an extreme point of M.
Sitionss :l" cIivhxch all tlTe conditional measures of e with lrespect t(:hat o arl:
dOUbly sfoc;llastz‘y oo puts of edual masses Thesetemf]'f)nrfi(:::h?rl]ot be represented
ycente. 1¢ measures (kernels, operators) that a ca ok
of measures concentrated on the set J of kernels of isomorp

gtor can be¢

R —

5 S
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Therefore, to reach our goal we cannot make use of the usual and more natura)
are dealing with integral representations) apparatus of the Choq}wt-Krel'n-Mil'ma,1 theo,
rem on representation of the points of a compact convex set (“.llth affine Structure) 5
barycenters of certain Borel measures on the set of extren'le pou.lts‘ And if we COnside,
only the extreme points of the compact set M corresponding t.o 1somorphisms, then, 4.
though we can describe a topology on the space of operators in which these apq only
these points are extreme points of a certain closed coanax set,, the set itself ceages to be
compact in this topology, so here too the Choquet-Krein-Mil man theorem turns gy to
be inapplicable. Our approach presented below, which is not based on Choquet’s theo.
rem, gives us more than we would get if we could apply this theorem. We show that each
doubly stochastic integral operator is the barycenter of a measure that is concentrateq on
a subset having the following property: the barycenters of any two disjoint subsets of jt
are disjunct. This improvement, which is of theoretical importance from the point of
view of measure theory, does not (as was noted) have an analogue in the case of matrices,

(Sin(:e We

finite or infinite.

3. We give some other reformulations of the problem. Let (£2, U, m) be a sample
space, and f(w) and g(w) two statistics having purely continuous distributions such that
the pair (f(w), g(w)) determines a unique sample element w. Does there exist a third
statistic #(w) that is independent of f(w) and of g(w) and such that the pair (f(w),
h(w)) determines a point of the sample space and the pair (g(w), h(w)) also determines
a point of the sample space (formulation in terms of mathematical statistics)?

Let (£2, 2, m) be a measure space, and ¢ and n two measurable decompositions
such that the measures m/£ and m/n are purely continuous. Does there exist a third
measurable decomposition { that is an independent complement of £ and of 5 (formula-
tion in terms of measure theory)?

In these formulations we do not have to assume in advance that the product én of
thedecompositions £ and7 (the coarsest decomposition that is finer than £ and n) is the
decomposition € into points (in the statistical formulation this corresponds to the re-
quirement that an element w of the sample space is determined by the values at it of the
statistics f and g). It is shown later that under slight additional assumptions (which
cannot be entirely avoided) there exists an independent complement of a pair of decom
positions £ and n even without the assumption of the condition gn = €. The omission of
this last condition, which is natural in the approach from the point of view of pure
measure theory, also leads to a formal improvement of the formulation in comparison
with the formulation of the usual version of the Birkhoff-von Neumann theorem. The
case when the decomposition £ A 7 is nontrivial is especially important for applications:

If the decomposition £ A 7 contains a continuous component, the doubly stochas:
tic measure m a fortiori does not correspond to an integral operator; but even in this
case we can prove, under appropriate assumptions, the existence of an independent €™
plement. It is just this case that plays a role in the discussion of the existence of a1
optimal one-to-one plan of transport in the Monge-Kantorovi¢ problem.

We show that these two formulations of the problem (with the condition £~ €
are actually equivalent to the Birkhoff problem with the additional requirement of



§10. THE BIRKHOFF-VON NEUMANN PROBLEM 7

tness Of the barycenters of disjoint subsets, which was mentioned above.
disjun

PRO pOSITION 4.2. Let £ and 1 be measurable decompositions of the Lebesgue
Lol m) such that £n : e,’and { an independent complement both of £ and
e, EE= 6 n¢=¢and if B2 MMt x M/t and 8": M C M/n x M/t are
A nonical imbeddings, then (m/&) »x (m/{) = mp'~" and (m/n) x (mft) = mg"-1
the caalmo st every element c®) of the decomposition $, equipped with its conditiongl |
(T::;er the decomposition ) measure m t) has the property that under the canoni-
| mbedding g M C Mf¢ x M/n this element C®) is carried into the graph E, of
;‘:me isomorphism T of the measure spaces (M, ml/g) and (M/n, m/n), and the measure
m " carried into'the measure n'zT =m_ ¢)B™ " that is the kernel of the correspon-
a'ircl:g doubly stochastic operator acting from the space of functions on (M/¢, m/¥) into
e space of functions on (M/n, m/n). Conversely, if 1 = € and the measurable de-
composition { is such that for almost every element C®) of it the image BC®) is the
gaph in M/t x M/n of some isomorphisms, and the canonical projections of the image
’"C(s’)ﬁ_l of the conditional measure on this element onto the spaces M/t and M/n are
the measures m{ and m/n, then § is an independent complement both of ¢ and of n.

ProoF. Behind this unwieldy formulation there is actually a very simple fact.
Since §n = €, and the canonical mapping §: M — M/ x M/n is an imbedding, we
can carry the decomposition { over to the space M/t x M/n. If the projections of the
conditional measures of some decomposition onto the quotient space with respect to
mother decomposition coincide with the quotient measure with respect to this other
decomposition, then the two decompositions are independent, and conversely (“the
conditional probability coincides with the unconditional”). But if each (mod 0) ele-
ment of some decomposition intersects the elements of another decomposition in not
more than one point (in particular, is the graph of some mapping), then this means
precisely that the two decompositions are mutual complements (their product is €). ®

In the following we identify, for convenience of terminology, the respective
paces (M, m/[t) and (M/n, m/n) with two copies of a Lebesgue space with continuous
measure, denoted by (X, ¥, y) and (Y, B, »), preserving thereby the continuity of no-
ltion with the original formulation of the problem connected with the Birkhoff-
*on Neumann theorem. The image mpB~ ' of the measure m under the imbedding f:
:ﬁcoﬁf * M/ will also be denoted by the letter m. In the measure-thcore:tic. f(:rm:l-
Opetatoy the problem the condition that the doubly stochastic operator B be d:itlil:, :sgrz
md thcofresponds to the condition of quasi-independence of the decouzlrzo s
of the’ in:;t is, th_e l(:ondition of absolute continuity of the measure m (1:1:0 thP; produc:t
W x my 8¢ mB™") with respect to the product u x v, i.e., with re;Pe(Cmd i e, 9
Thus, the " The corresponding density d(mp~")/d(m/t x m/n) is X ea:d Y can be re-
Rarde’d . symb-ols x and y used to denote elements of the spaces

Notation for elements of M/ and M/n.

4. Before proceeding to the proof of the basic theorem, we mention also that

Eve . . e :
|| the eXlStence (under the same assumptions) of a notrivial decOﬂlpOSlthﬂ that is
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independent with respect to two given ones (a'nc.l not necessarily an inge
plement) is a nontrivial fact.(?) Furthe@ore, it is clear .from the start th,
being the case that each doubly stocha?tlc operator ‘adx'mts a representatio
isomorphisms (even not necessarily disjunct); a fortiori not eve.ry pair of
has an independent complement. Obviously, there does not exist an ind
ment of the decomposition e of (M, Z, m) into points; this corresponds to the Case whey
m is concentrated on the graph of some noninvertible, generally speaking, transfommmn
T. In fact,if T is noninvertible, then not only is there no independent complemen; , A
the coordinate decompositions £ and 7, but in general such a measure Mo is an eXtreme

€ Same argument

Pendent
t lt is far from
n by means of

decompositions

€pendent comp,

point of the set M of all doubly stochastic measures (here we can use th
as on p. 75).

We give another example that emphasizes well the peculiarity of the st
infinite-dimensional (continuous) case (this idea is due to A. M. Versik). We
doubly stochastic measure w on the square X x Y whose conditional measyr
all) elements of the coordinate decompositions are two-point measures with equal (= 1)
masses, although this measure cannotbe represented in the form w = % (m:,»1 + mTz),
where T, and T, are isomorphisms of (X, 2, u) and (Y,8, »). Such a measure is the
direct continuous analogue of a (0, 1)-matrix with two ones in each column and each
row, which can be trivially represented (by the Birkhoff-von Neumann theorem) as half
the sum of two permutation matrices. Let M be the circle of length one with Lebesgue
measure m, whose points we denote by the angles p, and let the decompositions tand
be defined in the following way. The elements of £ are all possible pairs (9, m — g), 9 €
(=7/2,7/2), and the elements of n are all possible pairs (¢,

commensurable with 7. We consider the automorphisms T
such a way that T

interchanges the

uation in tpe
construct 3

€s on (almost

o + 7 — ), where a is in-
1 and T, of M acting in

1 interchanges the weighted points of each element of £, and T,
weighted points of each element of n. The automorphism T,T,

carries ¢ into ¢ + a; consequently it is ergodic; on the other hand, if there existed an
independent complement of ¢ and of n,

then its elements would be invariant with re-
spect to T, T

1> Which is incompatible with ergodicity.

In Figure 1 the measure w op the unit square M/t x My is uniformly distribu-
ted along the perimeter of the rectangle drawn with heavy lines. We show that w is
a0 extreme point of the compact set ) of doubly stochastic measures. (This does 1ot
follow from the nonexistence of an independent complement, as shown by the example
.of the measure m = 1 (mTl + mTz), where 7.0 X — ¥ and T,: X— Yact acc(:;d-
g to the formulas T, x = 2x (mod 1) and Tyx = 2x + 1/2 (mod 1); with respect
this measure the coordinate decompositions £ and 7 do not have a common indepe

. -, de
dent complement, since the conditional discrete measures m (¢) and M (q) are ma
C

up of a different number of masses.) Indeed, if y = % (m, + m,), where m, and M



§10. THE BIRKHOFF-VON NEUMANN PROBLEM 79

I stochastic measures, then, clearly, m, and m, are absolutely continuous
"" doud yt to w, with densities dm,[dw = p, and dm, /dw = p,. The conditional
respe’ - ’and m, are pairs of masses equal to the values of the functions
jp\eaSUres for m, Py(x, y) and p,(x, y) at the corresponding
points. We consider the function g, =
sign(p, —1) (g, =0 whenp, —1=0).
The measurability of q, follows from that of
p,- Let A be the set on which ¢ (x, y) >
0, and A_ the set on which q,(x, y)<0.

L y=m/ 7 Since on each vertical and each horizontal seg-
ment the sum of two values of the function
] o p, (the total mass of the conditional measure)

r X-M/§ is equal to 1, the sets A, and A_ are con-
: structed in such a way that the automorphism
FIGURE 1 T, carries A into A_ and 4_ into 4 , and

; the same is true for T,. Therefore, A, and
;A_ are invariant with respect to the ergodic automorphism 7,7, i.e., they are empty.
5' In other words, m; = w, and then also m, = w.

' Verik constructed for any n a pair of measurable decompositions of a Lebesgue
. space such that each conditional measure consists of n equal masses and there does not
| exist a nontrivial measurable decomposition that is independent with respect to each

- of these two. For this purpose Versik considers the Bernoulli action of the free pro-
f-duct of the cyclic group Z,, with itself, and takes the required decompositions to be

- the decompositions corresponding to the two factor subgroups. According to Versik’s
; communication, consideration of a projective limit of such groups enables one to get
i example of a pair of measurable decompositions of a Lebesgue space with non-
ilﬂomic conditional measures that does not admit a nontrivial independent complement.
{.The existence of such a pair of decompositions is fundamental: it shows that our basic
"Al_'eSlllt on the existence of an independent complement under the assumption of quasi-
hdependence of the given decompositions cannot be improved. The existence itself
:°f Such a pair, as observed by Versik, follows from the fact that both the set of all
‘ﬁxtreme points of M and the set of measures in M with nonatomic conditional measures

"

| e dense G, sets in .

- Obviously, each extreme point of the compact set M does not admit a nontrivial
'ﬂ?ﬁfﬁition that is independent with respect to both the coordinate d-ecomposit.ions.
"mplicat:;n of the Stl%dy and clear description of the set of extreme points of M is
i - Ryff, Shiflett, and others have dealt with the study of these extreme

bes.shwe procee‘d, finally, to the proof of the basic assertion of this chapte.r. It
M:Wn that if £n = € and the image of the measure m under the can‘onlcal map-
Mﬁ and MM/ § x M/ of the Lebesgue space (M, Z, m) into the prOdU.Ct of the spaces
. /7?f where the measures m/£ and m/n are purely continuous, is absolutely
Ous with respect to the product measure m/t x m/n, then there exists a measurable
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ition ¢ of the space (M, Z, m) that is an independent complement of the de-

decoxnpf)él ° d n. As explained, we can assume that M = X x Y, where (X, g
compositions £ an n.atomic | ebesgue spaces, £ an d 1 are the coordinate decompo,' 1)
wd (5 B “: nn-Nikod)'/m derivative dm/d(n x v) exists and is equal tq k(x, y
sitions‘;vaﬂg r::l Zkifcl?the plan of the proof. To begin with, we obtain simple con,di-
tions onetlie pair of measurable decompositions ¢ and 7? of W, =, ) .SUfﬁcient for
there to exist, for each subpro%bﬂity measuriml SatISny}g the relation My Sm,a
measure m, such that m, [t = m /& m,fn = ml/n’. and dm,dm takes the values |
and 0. Under this condition the set of extreme points of the c.ompact set K =
K(&, n, my, mp) of measures m, on (M, Z) satisfying the relations m, <m, m 1t~
my, and m, [n = m,,, where m, and m, are fixed measurcfs on .11.!/5 a1'1d M/n, has a
simple description. In particular, these conditions are easily verified in the case of i
terest to us, when there is a density k(x, »)-.

Then we obtain conditions in a form convenient for later use that are necessary

).

and sufficient for the nonemptiness of the compact set K(%, n, m £ mn).(2) The idea
of the following argument is to construct a refining sequence of finite decompositions
&> each of which is independent with respect to £ and to . The main difficulty here
consists in getting convergence of the sequence {, to a complement. Of course, the
limit of a refining sequence of measurable decompositions always exists, and, together
with the decompositions §,, this limit is independent with respect to ¢ and . Further-
more, it is not hard to show by using Zorn’s lemma that the limit decomposition can
be so fine that the conditional measures on its elements are “indivisible”, i.e., do not
admit further independent subdecompositions. (If we do not speak of decompositions
of the measure space (M, Z, m), but of its “coverings”, then we arrive at a “covering”
made up of extreme points of the compact set M—a result that was discussed earlier in
connection with Choquet’s theorem.)

To make the limit decomposition an independent complement, we use the follow-
ing method. We prove an approximation theorem on the possibility of a good approxi
mation of the characteristic functions of subsets of M that are sufficiently “narrow”
with respect to the decompositions £ and n by means of characteristic functions of sub"
sets having exactly constant width (i.e., by means of densities of subprobability measures
whose margin.al distributions with respect to £ and 7 are proportional to the measure-s
L e s o s e st o st o s 65
" };y e apprl(v)lﬂm:)ge . c:?)r:n sul:sets are constructed such that the decomPf)sm::zs by
the approximation theorem bypsert:etr}l]t o & and i, which, can be approxlma' d’

_ at are measurable with respect to the desir®

’

(unpublished) and Dall’Aglio [22]
réspect to a product measure, se
considered by Kantorovi¢ and R
duct of spaces of which one js g
contained in [117] and relating ¢

.

For the case of a measure that is absolutely continuous 3s
¢ Kellerer [56]; one particular case (m a product measure) ¥

+ ro.
oma‘novsle [50]. Stin another important case (measures ?“ a:)o
Polish space) was investigated by Strassen [113]. Our brief P
0 a very

general situation js based on another idea.
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1

oblem in the case of a density .k(x, ») that is bounded from above. Then for an
rbitrary density k(x, y) we.conmder the truncations kn(x, ), we construct finite
decompositions close to an md.epender.lt complement of the decompositions £ and g
ith respect 10 the measure with d.el.ISlty kn(x, »), and we prove that a certain ap-

imation of them b)f dec.ompOSltlonS that are independent of £ and n with respect
1o is close 10 the. d?‘Slred independent complement, whose construction js concluded
by an appropriate limit ?assage. .

In the sequel we discuss possible generalizations of the theorem, of which the
main one deals with the case £ V n # e.

We introduce some definitions and notation. Let £ be a measurable decomposi-
tion of the space (2, Z, m), and m, a measure that is absolutely continuous with re-
spect to m and for which dm, /dm = f(w), w € Q. The width of the measure m, on
an element C of & is defined to be d(m, /£)/d(m/E)| = [ f(w)dm,, the width of the
function f,(w) on the element C is defined to be the width on this element of the
measure m, with density dml/dm = f1(w), and the width of a measurable subset 4 €
il is defined to be the width of its characteristic function x , (w).

If the measure m, is not absolutely continuous with respect to m, but is in some
sense correctly defined (for example, if & = X x Y, £ and 7 are the coordinate de-
compositions, m = u x v, and m, is an arbitrary doubly stochastic measure, i.e. a
measure such that m, /£ = p and m, /n = v), then the expression d(m [£)/d(m/[)l is also
meaningful (for (m/£)-almost all C) and is also called the width of the measure m, on
the element C of &.

Obviously, a decomposition that is independent with respect to & is a decompo-
sition such that all the conditional measures on its elements have constant (unit) width
on the elements C(8), If 2,CQ 0 €2 and m$2, > 0, then mnl denotes the

measure defined by me, lA = (m Ql)_lmA (in accordance with the common notation

for conditional measures). The absence of any indication of the set over which an
integral s taken means that the integration is performed over the whole space. The
@nonical projections X x ¥ — X and X x Y — Y are denoted by my and 7y, re-
fPCCtively. The expressions (@5 f) (x) and (my f)(¥), where f (x, ) is an arbitrary m-
iegrable function on M = X x Y, are used to denote the densities with respect to i
and p, respectively, of the marginal distributions of the measure with density f (x-, »)
"ith respect to m, and similarly for an arbitrary homomorphism 7 of (£, %, m) into
0me other Lebesgue space.

6. As before, let M = X x Y. We use the notation

W(My={f:|f(z, y)|<<1 m-almost everywhere},
ViMy={(f:0 < f(z, y) <1 m-almost everywhere}. N N
Let £ ang 7 be certain coarsenings of the decompositions £ and 7 Consj‘;“;g:e}
O 8ets, 9 and | the respective canonical homomorphisms X = Mt — . r/ e
.~ Mn— M/ = ¥, and 7 % and 7y the respective.cano?ical homAOITl Phcre f
{"/57) =M M/g = Xand M — i[/ﬁ = Y. The expressions 1zf and "Y'f.’ wwith
Ction on M, are interpreted, according to the preceding, as the densities

of tw
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 gnd 7 = vy~ ! of the marginal distribmicms of 4
¢

. neasures g = MY >
respect to the 1 7) with respect to the measure m = m(@ x IL)"

yaving density f(x,

e on M | L recmc . “
St (M ) consists of four masses, and the measure spaces (X

(The measure Space
()7. p) each contain two m

Further, for a measura
pression L{ (M) denote the subsp

whose pth powers are integrable)
with respect to §; the expression Sy (M) has an analogous sense. The restriction of 2

measurable decomposition £ to a subset M C M will also be denoted by the letter ¢,

H) ang
asses.)

ble decomposition & of the space (M, Z, m) let tp, ex:
ace of the space LP(M) (of functions on ( Z,m)
consisting of all such functions that are measurab|,

PROPOSITION 43. On the probability measure space WM, z, Ln) let ¢, . .. ot
be measurable decompositions such that for any subset M € Z, mM > 0, the space
LII(H) Foee 4 Lr,,(ﬂ) is not dense (in the norm) in L(M). Then for any integrpje
functions b, (x,), k =1, ..., n,defined on the respective spaces M[{,, . . ., MYt the
subset B of L™(M, X, m) distinguished by the conditions

1) feEB=0<fx,

2) f has width by (x,), x, € M/{, with respect to the decomposition ¢, k =
IL,...,n,
is convex, compact in the weak topology of the dual space, and has as its extreme
points only functions f taking only the values 0 and 1.

In other words, each extreme point of the set of measures on M majorized by the
measure m and having given marginal distributions has density with respect to m that
takes only the values O and 1.

PROOF. Obviously, B is a convex bounded set in L™(M). We verify its closed-
ness in the topology o (L™, L). IffE€EB f,€EB(n=1,2,... ),and [f, gdm—

Jfgdm for any function g € L, then the satisfaction of the last condition for g € L;,

means the (weak) convergence of the functions M [, to the function "S’kf asn—%
aue k .

But the condition [, € B means that all ("S‘kfn)(xk)’ n=1,2, ..., coincide with the

functions by (x, ), and therefore also M/ coincides with it, and condition 2) is satis

ﬂe‘_‘ for f. Moreover, it is clear that for the limit furiction f also the condition 1)is
satisfied so that f € B. The weak compactness of the subset follows from its weak
closedness and its boundedness [12]; therefore, if the (obviously) convex set B is not
mpty, then it has extreme points. Our aim is to show that under the conditions of

the theorem no function f that
takes (essenti 1 can be an
extreme point of B, ( ally) values between 0 and

S i t
uppose that B is not €mpty and let f be an extreme point of it. We assumeé ths

s different from both 0 and 1. We can assume tht”

g(ﬁ)(k=l,..., ;
Rl n). Since, by hypothesis, the space Lo () +-+" +L,

, " . . o O 1 ent
thilator ¥ in L*(4f) is different from zero. AnY 4™
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3

e s the propery that e 7= 0 for any k= 1, i uc, 7 = 0 1
gy fun ction g € Ly, > and this is equ.nvalfent t?\, saying that the function nrkf”e
L’(ﬂ/fk) is orthogonal éo any functlgn in L(M/%), i.e.’Lis identiially zero. But if
720, then f=%(f + 1) +%( —f), where f = 5|If||;°1.,(x“f on the set M and
®_ o outside M. This relation implies that the element f € B is not extreme. o

RemaRK. Only slight changes are needed to prove a proposition generalizing
proposition 43 to the case of a vector-valued measure. We do not need this case in
, the following, but it proves to be very useful in certain statistical applications (see
; 4] and [70], Chapter X, §1); therefore we explain, if only briefly, those changes
entailed by such a complication in the formulation and in the proof.

We can consider a vector-valued measure m = (my, ..., m) such that the
probability measures my, . . . , mg are all pairwise mutually absolutely continuous,
otherwise considering the “pieces” of the space M on which some of the measures m X
are pairwise mutually absolutely continuous, while the remaining ones vanish. The set
B C L is now distinguished by the following conditions:

1) fEB=0<f<1.

2a) With respect to the measure m; and the decomposition $i»> S has given width
b(x,), where x, EM/t,, i=1,...,sandk=1,...,n

The space L™ can be regarded, in particular, as the dual space of LM, Z, m A
*+* A'mg), where m Ao A my is the infimum of the measures m,, ..., m in
the sense of the Riesz space structure [13] on the set of measures on M (i.e., the

measure having density with respect to a certain measure m, equal to
min{p,, ..., pg}, where p; = dm;/dm,). Foranyk=1,...,nandi=1,...,s
the following inclusions are obvious:

Lo.(M, 3, m)C LM, 3, m)C LM, Z, m/\ ... \m);

therefore

k=1, ...,
i=], ceer 8

The smaliness of the norm of the element g in L(M, Z, m, A +++ A mg) means that it
%n be represented in the form g=g, +°** +8g, where all the norms 1§l (a1, 2,m

. . 1 Ser-
e small. Arguing as in the case of a scalar measure, we arrive at the following as
tion,

PROPOSITION 43a. Let (M, T, m) be a space with vector measure m =

. ...,€, be
m Lee.,mg), where m, . .., m, are probability measures, and let €, sZ -
- me . or any
- Measurgp e decompositions of (M, 3, s~ m, + -+ +my) such that, f

(m

. . 2 air.
M on Which all measures m, , . . . , m, that do not vanish identically are p
i Wise . "1 p
' €uivalent, the subspace
| L'= 3 Ly, 3, m)
=1, ..., P
k k=1, ..., 1
i
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of LM, Z, m,, Aeoe A m’p) is not norm dens.e (the imbedd.ing of the SPaces
L, 3z, m, ) in LM, Z, m,, Aeos A mﬁ,’p) is understood in the senge that ,
tha,;‘ are kient;}ied coincide as measures on M). Then for any integrape functiop,
bii) (x,), where X, eM/t,,i=1, ,s'and k=1,... ,.n-, the subset g of
LM, 5, s~ m, +* + m,)) distinguished by the conditions 1) gngq 23) in
mark after Proposition 43 is convex, compact in the weak topology o1
dual space, and has as extreme points only the functions f € B that do
tial) values different from 0 and 1.

Ie’"em;

he R.
v L) of the
Ot take (eSSen.

For the proof we assume the nonemptiness of the compact set B c = and cop,
sider an arbitrary function f € B. We assume that on some subset My €73 for which
Z_, myM; > 0 we have

0<i (<1 —3<1, €M,

and we show that the function f is not an extreme point of the compact set by proving
the existence of a function g(x) # 0 (mod s~ 'Z,m,) for which f + g € B and f-g

€ B. Assuming without loss of generality that on M, some of the measures m; vanish
while the rest, say mr1 so o s mrp, are equivalent, we find, as above, that we can take

g to be a function that vanishes outside M; and coincides on M with some suf-
ficiently small function in the annihilator of the space

2 L:u (A‘IB’ 2’ m".')' .
k=1, ..., n

1=1,...'p

Proposition 43a can be regarded also as a particular generalization of the well-
known theorem of Ljapunov [72] on the convexity of the range of a vector-valued
measure. Indeed, Proposition 43a shows that the image of the set of characteristic
functions {x, } of subsets 4 of the space M with vector-valued measure m =
(my,...,my) (m=(Z m,)[s) on it, under the mapping

~ L (M, m) - L(M/,, my(%) X L (M5, m,l%y) X .« X L(M[S m, o)
KL Mgy myfs) X oo X L (M, m,fG)

XLML, mityx ... xL (M[%, m/C)
that assigns to a function f € L the tuple {ng’" r')f} of marginal densities (under te
. k \ ct
decompositions ¢ 12+ + + » §,) of the measures having densities equal to f with TeSPZf
to the given measures 1>+« +, Mg, coincides with the image under this mapplﬂgmg .
the closed (in L) convex set of all nonnegative measurable functions not excee
In fact, taking for an arbitrary function f € L=(M, m),0 <f< 1, the functions

Mg ) ; iti ibuti i
bi’ (x,) in Proposition 43a to be the densities of the marginal distributions O_fln that

Measures with densities equa] to f, we get a compact convex set B = Bf =T
contains f and is hence not empty. Any extreme point of this compact set %
Proposition 43a, the characteristic function of a subset of M.

by
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In the following we limit ourselves to the case of a scalar measure and consider
ity of notation, two decompositions £ and n, To apply Proposition 43 (or,
ffices to prove the existence of a function that cannot be approximated b

f the space LE + Ln' y

430) 1t S

glements © 2 -
On the square [0, 1]7 we consider the measure uniformly distributed on the

gaphsy — x and y = x + o When a is irrational, it can be shown that for this mea-
- e the sum 5¢ + 8, is dense in §, but Lg and L, are orthogonal to the functiop
aking the values 1 and — 1 on the respective graphs y = x and y = x + ¢ (mod 0);
hence their sum is also orthogonal to this function, which thus cannot be aprOij’a_
ted in the metric of L by func.tlons of the form f(x) + g(»). It is also possible to
give examples of sets whose widths with respect to both decompositions differ upj-
formly by an arbitrarily small amount from constants that are neither 0 nor 1, and
. whose characteristic functions belong to the sum LE + Ln' The mapping L g X Ln —
L +L, C L is not, generally speaking, a homomorphism.

We prove the existence of a function that cannot be approximated in the case of
interest to us, when there exists a density k(x, y).

PROPOSITION 44. Let £ and m be measurable decompositions of (M, Z, m) such
that £n = €, the measures u = m/§ and v = m/n are purely continuous, and the image
of m under the canonical mapping m, x ny: M —M/f x MIn=X x Y is absolutely
" continuous, with density k(x, y), with respect to the product measure m* = m/ x
- m/n=u x v. Suppose that h(x, y) is a measurable function defined on X x Y and
taking values in [0, 1]. Then there exists a measurable subset A C {(x, y): h(x, y) >
- 0} such that its characteristic function X ,(x, y) satisfies

nxy, —mnxh, myx,=nyh.

ProoF. Without loss of generality, we can assume that A(x, y) > 0 for m-almost
al points (x, ); in the opposite case we consider the subspace {(x, y): h(x, y) > 0}.
It is convenient to present the proof assuming that the spaces (X, %, u) and (Y, B, v)
. e realized as unit intervals with Lebesgue measure, so that M is the square [0, 1] x
- [0,1] with the doubly stochastic kernel k(x, y) = dm/dm* on it. To verify the hy-
: p°t¥leses of Proposition 43 we consider an arbitrary measurable subspace M CM of
Positive m-measure and on which k(x, y) > 0 (u x v)-almost everywhere, and we con-
‘1:10'(' 01}’ it a function that cannot be approximated in L by functions in Ly + L.
€€ > 0 be arbitrarily small positive numbers such that

Mﬂ(M—}-(ef, 0))ﬂ(M—|—(O, s”))ﬂ(M+(a', ¢)) = P, mp>0’

- and
0 _let Q"C P be a subset of positive measure such that the four sets 0, Q- (.0
‘ ©,¢ )and Q - (€', €") are pairwise disjoint. We consider the set

R=QU@Q—, 0)U (Q@— O, eNU Q@ —(, ) C P

' Th _ .
.e fllnctlon Xg is the desired one. Indeed, let 6 be the measurable decomposit
"Pace, regarded as a subspace of (M, Z, m), whose elements are the quadruples of

jon of
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" _ _n
points ((x, y) €Q, (x - E', y)’ (x- Yy~ € ): (x €,) € )) Under the deco

. . Mposig;
casures of the points with respect to the Lebesgue measy Ition

0 the conditional m v
14, and the conditional measures of these points wit, e
ct to

on M are each equal to tional to the val
: - onal to i .
the measure m with density k(x, ¥) are proporti ¢ values of thijs density 5,

each of the points, and therefore, since k(x, y) > 0 on M and a fortiori on R, all g,
different from zero. But on the discrete space consisting of four point masses ¢, ¢
t5, t, the characteristic functions of the singleton sets cannot be representeq i, thel,
form f(t) + g(¢), where f(tl) = f(tz)»f(ta) = f(t4)s g(tl) = g(ta) and g(tz) = g(t )
since the dimension of the set {f(#) +g(f)} is equal to three, while the foyr chara:te:r-
istic functions of the singleton sets form a basis in the space of all functions o t,,
ty,t3, ta}. If it were possible to approximate Xo arbitrarily well by functions of the
form f(x) + g(»), then it would be possible to approximate the characteristic func.
tion of a point (x, ¥) € Q@ C R arbitrarily well on elements of the decomposition 8,
which, as we have seen, is impossible. ®

The proof of the analogous proposition for the case of an arbitrary finite number
of decompositions and an arbitrary vector measure would differ only in the fact that
we would have to construct a decomposition § not into quadruples of points, but into
certain lattices containing a sufficiently large number of points such the characteristic
functions of their points cannot be approximated by corresponding sums of functions,
each depending only on one coordinate.

CoROLLARY. For any number \, 0 < \ < 1, there exists a subset M, CM such
that m XXMA(X) =Nand w yxMh(y) =\ For any measurable decomposition ¢~ of
the Lebesgue space (N, n) into subsets of positive measure {C,\k }, nCAk >0,k=

1, ..., there exists a decomposition ¢ of (M, m) into subsets M,\k of constant width
with respect to each of the decompositions & and n such that the discrete spaces Ml

and NtV are isomorphic; in other words, the width SM;\ = x XM, of M;\k is equal
k k

to the measure nCAk of the corresponding element of ¢ N

We now prove a generalization (important for the sequel) of Proposition 44 to the
case when £ A n # v.

PROPOSITION 44*. Let £ and 1 be measurable decompositions of the space
(M, 2, m) such that £n = €, and the image of m under the canonical mappirg Tx _x
Tyt M—M[Ex M[n=X x Y is absolutely continuous, with density k(% ¥): il
respect to the measure m* for which:

nd 1) the canonical projections m*n! and m*n3! coincide with the measures ¥
and v,

2) mf(¢ A m) coincides with m*/(¢ \ n);

3) on almost every element of & A\ n the conditional measure coincides with th¢
p-rc‘)a'uct of the conditional megsures on the corresponding elements of the decomp?
Sitions £ and ng of X and Y into the preimages of the elements of M/(§ An) und.er I
the canonical mappings M/t — M/t A n) and Mjn — MJ(E A n), and the conditio

measures on the elements of the decompositions &, and ny are purely continuous:
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Let h(x, y) be a measurable function defined on X x Y and taking values in
o 1] Then there exists a measurable subset A C {(x, y): h

(x, y) > 0} such that
characteristic function x 4(x, y) satisfies
its

TXX4— “Xhi '"YXA = T‘Eyh.

prooF. The changes that must be made in the proof of Proposition 44 consist
in the following. First, using fhe results of [92] on the construction of measurable de-
sompositions and the assumption that the conditional measures on the elements of the
jecompositions En and ng are purely continuous, we represent the spaces (X, u, 1)
ad (¥, 8, v) as the respective squares {(x, x'): x, x' € [0, 1]} and {(y, y'): »y
e, 11} equipped with Lebesgue measure, where £, and My are the decompositions
into the segments X = const and y = const. The space (X x Y, I, m*) is then the
four-dimensional unit cube, on the subset D = {(x, x', y, »'): x = »} of which the
three-dimensional Lebesgue measure m* is given. This measure m* plays the role of
px vin the proof of Proposition 44. The role of P is played by the set

pr=inM -0, <, 0, 0)NM (0, 0, 0, NN 40, </, 0, ey,
and the role of Q is played by a subset Q* of positive measure for which the four sets
0, Q—(0,¢, 0,0, Q—(0, 0, 0, "), @Q—(0, ¢, 0, &

are pairwise disjoint. As previously, it is proved that Xgr(, x', ¥, ¥") cannot be ap-
proximated by functions in Ly + L, which concludes the proof.

7. We have shown that any pair of marginal distributions of a subprobability
measure m, < m coincides with the pair of marginal distributions of some measure
rTzl such that dﬁl /dm is the characteristic function x 4 of some measurable subset

ACM. We now determine, in general, the set of pairs of marginal distributions of the
measures subject to the condition m, <m.
Let

C=te b H=i@+e@). F@ELE, v, cHELY, v,
[l < 1),

and let K C K be the subset of K consisting of the functions A(x, y) of unit L-norm
that admit 5 representation

hiz, y)=Fk(f (z)+2 @)
Where f (x) and () are functions that each take only the values 1 and —1.

PROFOSITION 45.  The convex hull cony K of K is dense in K with respect to the
horm of LM, n),

We remark that is not compact in any topology compatible with the linear -
Structure. This follows, for example, from the fact that it does not have extreme points.
Particular, the functions in K are not extreme points of K. N
Proor. we prove that for any function h €K, lIAll, = 1, and any positive
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number € we can find a convex combination Z, p,h, of functions h, €K Such thy

”h—zk:p,,ftk L<E-

We consider the arbitrary function
hiz, y)=F (@) +g@ €K, [h].=1

and we choose step functions fand g, each with a finite number of Values equy) o
nd,n=-N,...,N—1,N, for which

1@ —F @<z 18660 —F®)har<i,

so that
|7 (z, y)— h @, Y) eca, my<le,

where 'ﬁ(x, y) = 7(x) + (). Furthermore, we can assume that ||% I, <1.

We prove the assertion by representing 7 in the form of the required convex
combination of functions in K. The functions f g, and h are considered as defined
exactly on all points of the square, and not only as elements of L(M, m). Let

A= {z: f(z) >0} C X, B={y:g(y) <0} .

We consider the function 21(x, ») defined by

hi(z, ) =—;; 4 (X0 (@) — xcq (®)) + (s W) — %z @)))

(here CD is the complement of the set D). Obviously,

d for (z, y)E'4 xCB,
fa@ y)=1 0 for (z, y) €4 X B and (z, y) 6C4 X CB,
—d for (z, y)€CA X B.
But, by the definition of the sets 4 and B,

f@+i@)>d for (o y) € AXCB,
and

f@+em<—d for (g, y) €CA X B;

therefore

17 @)+ & () — Ay (=, y) lecae, my =17 (@) + & (), — |1 (& e :
Moreover, the maximum of the function 7 (x, ¥) = flx) + g(y)is obviously attalﬂe‘)f
g’n.the set 4 x CB, and the mi"im‘im on the set C4 x B; therefore the maximum
h is decreased after subtraction of ’;1 from it, and the minjmum is increased bY t.he

. , ¢
quantlty. d. (Only one of the sets A x CBor CA x B can be empty, and then € .
the maximum or the minimuyp is not changed.) -
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[f we now take it — h instead of h (obviously, i 1:11 € K and admits a representa
1 as a difference of step functions f(x) ~ % d(x,, (x) - Xca(x)) and g(y) - -

tio .
Vld(XCB(«") — xg(»)), on repeating the above construction through a finite number of
steps W arrive at the function identically equal to zero. Finally,
J@+8w=32 bz v
and
N
121 @+ W l=Z 1k @
=1
from which we get the required representation
N ' §
J@) 480 = Dl (z y)|—= 2L =Y pk
zl " " hk (11 y) ” kzzlpk k (x’ y)!

where Zp, <1 and ka(x, y)E K e
REMARK. Although we have essentially proved the possibility of uniformly ap-
proximating on the square each bounded function A that is representable in the form

hz, y)=1f()+g) (2)

by means of linear combinations of functions h admitting the same representation and

taking only the values — 1, 0, and 1 (when f(x), g(x) = £4), not every function in
the subset K, of the unit ball in L=(M, m) consisting of the functions representable

" in the form (2) can be represented in the form of a convex combination of such three-
valued functions, as shown by the following finite-dimensional (matrix) example
¢ (Figure 2). Here, in determining the L® norm of h(x, ¥), where (x, y) is an element

TR A T

of a 3 x 3 matrix, only its values on
those elements of the matrix on which
these values are written are considered.
If this example ||h |IL,,(M'm) =1, but
R cannot be represented in the form of
a convex combination of “three-valued”
functions: the functions f(x) and g(»)

are determined by A(x, y) to within an

gy
2

’ additive constant; hence it is easy to
-1 0 1 Flz) verify that the L™ norm.s offf(x) and
‘ g () in the representation h(x, y) =
FIGURE 2 f(x) + g(») cannot both be made less

h than or equal to %, and, consequently
€Y cannot be represented as convex combinations of functions whose norms equal .

However, if the type of m is the type of a product measure 4 X V, WE can prove
the following assertion.

ProrosiTION 46. Suppose that the measure m is equivalent to the product
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u x v Each function h(x, y) in the set K., can bf' represen{ed asmthe b
measure concentrated on the set K, of functions in K, having [, norm equy o]
and taking only the values — 1,0,and 1, ?r o.nly the values — l_dnd 1, and car),
uniformly approximated by convex combm?zttons of such functions, Moreo,,e,, if
h(x, y) = 0 on some set ZC X x Y, then it can' be ?smmed that the same hojq .
dl functions in K used to make up the approximating convex combinations

@ycente , fa

PROPOSITION 47. If the measure m is equivalent to the product |y x b, then
: o ® = . — @1, yoo 3
subspace LE’ +L: is closed in L (LE ={f: f=/0),fEL }’Ln = {g g=

ProoF. We prove that the continuous mapping

s: LY X Ly -~ L=, s(f(@), g(y)=1(2)+¢ ()

is a homomorphism. If h(x, y) € Ly + L7 C L™, then

inf (Il f H,,g' +lg H,,;D) =|A|.

J(x)+g9(y)=h(z, y)
Indeed, since
ess sup f () + ess sup ¢ (y) =ess sup (f (z) + ¢ (v)),

and the same is true for ess inf, and since the space N = s~1(0) C L x L, is one-
dimensional (consists of the constants), it follows that

esssup (f (x) + ¢ (y)) —essinf (f (z) + g (y))
= (ess sup f (x) — ess inf f (z)) 4 (ess sup g (y) —essinf g (y))

and for a function h(x, y) € L; + L. it is possible to choose f(x) € Ly and g€

L77 such that

f@)4gW)=n(z y), ”f”Lgo:"gl[]J?z—;-ﬂhﬂLm

Therefore, the subspace L§° + L: of L™ is linearly homeomorphic to the )
Banach space Ly x L7 )IN and hence is itself Banach; in particular, closed in L

REMARK. Proposition 47 remains true also if we replace the condition 7~
M X v by the condition m ~ m*, where m* is a measure whose properties ar¢ descr®
in Proposition 44 (this is not used in the following). ot

Proor or ProrosITION 46, [t follows from Proposition 47 that Ke b c.l
subset of L*; consequently (the convexity is obvious) it is a compact convex set in :
the topology o(L*, L). From this we get the first part of the assertion. TO prové
second part we consider a function h(x, y) € K_.. L

et

h(@ )= (z)4-g (y), |& e =] f],0 +lg |,
3 m

ye appr?ximate the functions f(x) and &(») to within €/2 by functions ?(f) and ‘
£(y) taking only a finite numper of values with step-size . The function #(*: 7
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x) + g(y) then approximates h(x, y) uniformly to within e. We can assume that
poth ?(x) and g(y) take more than one value (otherwise the argument is trivial). We
oW consider the function h(x, ¥) = f(x) + g(»), where

s 1 for z€{z:]
/(x)_{_1 for z@{z:f

(
1 f L7 () = 0),
ﬁ(y):{ or Y€y oﬁy;/\o}

—1 for ye{y:g

Then, arguing as in the proof of Proposition 45, we get that 4 € K__, and for some
d > 0) d > €

|2 (2, y) —dh(z, v)|,0=]R]o —d.

Repeating the argument with the function % — dh and considering that from the start
we can assume that f(x) = f(x) and 2(») = g(»), whence

ZC(x y)ih(z, y >0)=2Z,

and that
(@ y:f@+em<nni=g,

we arrive at the desired conclusion. @

THEOREM 6. Suppose that the subprobability measures u < p and v<vare
given on (X, 91) and (Y, B), respectively. For there to exist on (M, Z) a subprobability
measure i < m whose marginal distributions coincide with 1 and v it is necessary and
sufficient that, for any measurable coarsenings ¢ and 7 of the decompositions & and
consisting each of not more than two elements, there exists a subprobability measure
m on the space M = M/(¢#) (which is made up of four elements) having the measures
WE and v/ as its marginal distributions.

In other words, the solution of the problem of the existence of a measure m
With the given marginal distributions & and ¥ reduces to clearing up the problem of
the existence of a solution of each “coarsened 2 x 2 problem” arising in the decom-
Position of each of the spaces X and Y into two measurable subsets, i.e., the problem
of the existence of a solution of a finite system of linear inequalities. If the Am-mea-
Sures of the elements of £ are a, and a,, the m-measures of the elements of n are b1.
Mdb, (a, +a, = b, + b, = 1), the p-measures of the subsets X, and X; mt.o which
X'is decomposed are 2, and a,, and the v-measures of the subsets Y, a".d ¥, into
Which Y is decomposed are b, and by, and if my (, k= 1, 2; the firﬁstﬁ lr‘ldex relates
10 7 and the second to £) are the m-measures of the elements M, of £n, f-e- the
masses of the elements of (M, 1), where i = m/(E7), then the aforementioned system
of inequalities to be satisfied by the values my, = mMy, is
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[t can be shown that a necessary an_d sufficient conditio.n for the solyg;,
system is the fulfillment of the relations af- .+ b; <1+ My, k
not need the concrete form of these conditions. |

In the following it is convenient for us to work, not with the set of SUbPTObabﬂi
measures majorized by the measure 7 on M, or, what is the same, the set  of measug
functions taking values in [0, 1] (the densities of the subprobability measures majonzedk
by m), but with the set W of measurable functions taking values in [-1, 1] ’i'e-!wilhth
unit ball of L= (M, m). Instead of marginal distributions we now deal with Projections. 3
the functions 7 h and myh, hEW. For the existence of a function h €W with given
projections g(x) and r(p) it is necessary and sufficient that there exists a measure that
bounded by the measure m and for which the densities of the marginal distributiong with
respect to u and v are equal to (g(x) + 1)/2 and (n(y) + 1)/2, respectively, TOreover, each
coarsened 2 x 2 problem is solvable or not solvable simultaneously both for the problem
of finding a function in W with projections g(x) and r(y) and for that of finding a functigy
in ¥ with projections (g(x) + 1)/2 and (r(¥) + 1)/2. Therefore, the following assertion s
an equivalent reformulation of Theorem 6.

- 1 Of thig
= 1 2 but here We gy

THEOREM 6 (second formulation). Let the functions q(x) and r(y) be given. For
there to exist a function h(x, y) € W for which nyh = q and mh = r it is necessary and
sufficient that for any § and 7 consisting each of two elements that is a function h €
W(M) for which n3h = ¢q and nph = yr.

(We recall that $ and  are the canonical homomorphisms X — X = M/£ and
Y — Y = M/f, respectively, extended to integrable functions that are regarded as the

Radon-Nikodym derivatives of certain distributions with respect to the measures u
and ».)

PROOF OF THEOREM 6. We prove the theorem in the second formulation. The
space L*(X, u) x L™(Y, v) is regarded as the dual space of L(X, p) x L(Y, »). Each

functional (u, v) € L™(X, ) x L™(Y, v) acts on an element (f, g) € L(X, ») *
L(Y, v) by the formula

s @), (u, Vo =<1, Wi +<g, Vo= S f(z) u(z) dp 4 Sg(y)v(y)dv.

X Y

Together with the mapping

—

n=rx Xy w L2 (M, m) > Lo (X, ) x L2 (Y, )

we consider the adjoint Mmapping m*:
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wcLeM, m) — L® (X, p) X< L*(y, v) D nW,
i L s v
R < P /—> R /—’ R

WoC LM, m) <= L(X, p) X L(Y, v =Wy

The mapping 7 is co:tinuous from the topology o(L™(M, m), L(M, m) into the
topology o(L™(X, 1) X L .(Y, V), L(X,. M) x L(Y, v)) (the notation is from [18]),
gnce in these weak topologies the mappings 7 and 7, are continuous. The ypjt ball
W of the dual space is obviously compact [12] in the topology o(L™(M, m), L(M, m)),
herefore its image in L7(X, p) x L™(Y, v) is weakly compact, and to verify the in-
dusion (u, v) E TW it suoffices to verify that [(f, g), (u, v));y, | <1 for any element
(f g) of the polar (nW) of the set 7W. But

At 8 (u, o =" (f, g), hyy,

where h is an arbitrary element of 7~ (u, v), and if (4, v) € 7W, then we can assume
that 7~ 1(u, v) @ h € W; therefore the element (f, g) € L(X, u) x L(Y, v) belongs to
(aW)° if and only if its image 7*(/, g) belongs to the polar W° of W, i.e., if and only if
I*(f, L (pt,my S 1 (W is the unit ball of L*(M, m)). In fact

(L (X, p) X L(Y, v))=(="1(0)°.
Since

& (fy @) Wy=1{ f @) rxhdp + [ g ) midv = (f (&) +- g W) b (2, y)dm,

X Y M

we get that (nW)” consists of those pairs (£, g) for which

I/ (x)+g () nL(H, m) <1

To verify that the pair (g(x), r()) belongs to the image 7W of W it suffices to verify
that, for any two integrable functions f(x) and g(y) such that

[17@+ewdm<t,

M
we have

| @ a@dp+ | e@rmar| <t &)

Mt M

' ; nvex
As is well known, the polar of any set coincides with the polar of its closed

hull. By Proposition 45, a dense subset of a*(aw)° = K is formed Dy the CO“:’"") T“
?f the set K of functions fz(x, y) that are representable in the form h(x, ») = f1 (J‘es
&), where IlACx, My (pr,my <1 and the functions f(x) and Z(») take-;wo:;‘;aounl;

Orm density implies den;ity in the weak topology, so it suffices to verll :’ (Ctions f
for pairg (£, g) for which f(x) + g(») € K. But the consideration of al ug o
“d g, each taking two values on two fixed subsets of M/ and M/n, respectively.
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equivalent to the consideration of all functions f and £ in (X, i) ang L

(¥, 5,
fying the condition

Satjs,
”f(-’ﬁ) + £ (7) "1_(1?, m) ‘<\ 1,

and the satisfaction of (3) for such functions f(x) and g( y) is €quivalent the
iti satjs,
faction of the condition

<>

| [ 7@ @)@adt[ewenwa

2 ?

<t

which, according to the above, is exactly equivalent to the positive solutjo
coarsened 2 x 2 problem corresponding to the fixed decompositions £ an
satisfaction of (3) for any f(x) and g(y) for which fx) + g(y) ek means the gqy,.
bility of any coarsened 2 x 2 problem, i.e., it means the existence of a functjop
h(x, ¥) € W for which Tyh =q(x) and 1 h = r(y). e

REMARK. The assertion of the theorem remains true, and the proof cap be
completely retained, when the requirement that m is a probability measure is replaced

by the requirement that it is nonnegative and o-finite, and that the corresponding
marginal distributions y = mn3! and » = mmy!

N of the
d 7. By the

are o-finite (i.e., the requirement thy
any measurable subset of (X, u) and (Y, v) can be represented as the union of not

more than countably many pairwise disjoint sets of finite measure). The term ¢

sub-
probability”

in such a strengthened formulation must be omitted. Below (Proposition
75 in §11.5), Theorem 6 is carried over to the case of a o-

assumption of o-finiteness of its marginal distributions).

8. Let {X,,n=1,... } and {Y,,,m=1,...} be bases [92] for the re-
spective measure spaces (X, %I, 1) and (Y, B, v). When necessary, we assume, without
special mention and without introducing additional notation, that functions on X and
on ¥ can also be regarded as functions on X x ¥ (depending only on one argument:
f(x) = f(x, ¥)). For the proof of the fact that some decomposition that is indepen-

dent of £ and 7 is actually an independent complement, we shall use the following
criterion.

finite measure (without the

PROPOSITION 48.  For the doubly stochastic measure m to be the kemel of ‘;:
isomorphism between the spaces (M/%, m/t) and (M/n, m/m) (i.e., to bea typicel ¢

d
ment of the complement, equipped with its conditional measure) it is necess&y as |
sufficient that for the subsets of the bases X, n=1,...}and (Ypm= 1,

iith
. . . od 0) wi
the functions x [Xx x ym(x, ) (x) and Ty [x X, x y @, M) (») coincide (m

the characteristic functions of some sets X, C X and Y, CY.

. p of
PROOF. The necessity is clear, since if the element considered is the 8P
the isomorphism 7: (X, 1) — (Y, »), then

Ty [Xx,, (x)] (y) = Arx, (y) and =y [XYn (y)] (T) = Xy, (2)-

_ . - jishes a
Conversely, if this condition holds, then the transformation [XX,,] estab

!
| v
Mmeasure-preserving correspondence between the basis {X, } and some system
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et Of (Y, B, v), i.c., generates a measure-preserving measurable mapping v :
)~ X, U, ), and, similarly, the transformation 7, [x, ] generates a mes.

(nB erving mapping B (X, ¥, w) — (Y, B, v). These transformations can be de-

sure-Pre.S the following way. For definiteness, we consider the mappings = xIxy 1.

ribed :: the decomposition of Y into a finite number of sets representable in the

Mk ction YN e++ N Y, where Y, =Y, orY, =Y\Y, . Since

7 ey (the decomposition into points). The decomposition 7

decomposition &, of X. Indeed,

ﬂX[XY:,J:X;m
ahere Xy = x\X,, if Y, = Y\Y,,,and
e [Xein..ar] =X10 ... N X4,

of 8V

form of an interse
{Ym} is a basis, M
corresponds o some

because the condition in Proposition 48 means that the set 73, Y!  is £-measurable and
1,77 Yy = X,y s consequently, the intersection 'Y N naply) s also &
measurable, and all possible such &-subsets are measurable with respect to some coarsening
§, of £ generated by all possible subsets of the form Yl N-++NX,. Letting k now go to
infinity, we arrive at a limit decomposition £ = lim 7 £, so that to each point y € Y
there corresponds one (and only one) element of the decomposition £. This corre-
spondence is given by a graph on X x Y (assign to each point x € X the element y =
f(x) € Y for which the point x belongs to the corresponding element of £). We now
equip the graph T" of this mapping with the measure uny'|.. It is easy to verify that
the space (I', umy ' |.) coincides (mod 0) with that space with doubly stochastic

measure m with respect to which we began constructing the mapping . Indeed,

(T, um3 |5 satisfies the conditions of Proposition 48, and it is possible to begin the
construction with it. But, since the measure ,ufri,l is, by construction, concentrated

on the graph of some mapping : X — Y, it is clear that, by carrying out the same
¢nstruction, we return to the measure pﬂ;l |p- On the other hand, our construction
determines the conditional measures of the original measure with respect to the de-
m_mPOSitiOﬂ M, i.e., it determines this original measure uniquely. Consequently, the
iginal doubly stochastic measure m coincides with pry! |, The spaces X and Y are
“Mpletely equivalent, from which it follows that the homomorphism f of the measure
Paces X and s invertible, i.e., is an automorphism, and the measure m really is

con
Centrated on the graph of an isomorphism. ®
We have another auxiliary result.

subsetls’l:)opoSlTION 49. Let m <y x v and dm/d(p x v) = k(x, y). If among the

B > f the set M of the form A x B, where A € U, BEB, pA‘ +vB > cand pA,

With t;‘: there are sets of arbitrarily small m-measure, then there is a sel A, % By
Same properties for which m(A o X By)=0.

VB PROOF' Let An and Bﬂ; n= 1, .o uy be such that ‘UAH Z €o> VB" - €o- I.IA" +
a.renbt ©and m(4, x B ) — 0. The families of functions {XA,,(x)} and {xg,,(»)}
Ounded, ang hence precompact, in the topologies 0 (L™(X, u), L(X, w) and
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(L7 (Y, v), LCY, ), respectively. We therefore assume that in thege topologie,
P )’_’ a(+) € L7CX, 1) and X”n( ©) b)) ELT(Y, v). From the fact thy
A

for arbitrary measurable subsets A C X and B C Y we have the convergence

Toay ZA> —’/‘a, 7.4y and Sy Ly = /f/, 1),

it follows that 0 < a(x) < | and 0 < b(y) < 1. We prove that for arbitrary Meapurghi,

characteristic functions X, and xg

[ 24y @ s, @) 24 (@) 25 () B2 W) 0 )

M

> [a@b)r, @1, k@ y)de xo),
M

Indeed,
,Hx;.xn,x,,xgk (z, y)dzdy — | { aby ke (2, ) dzdy,

<\ 14, @ d2{ (1, @) — b ) R (20 y) dy

fro |

+|§ 6w dy | (1, () —a @) k(2 y)dal.

b y. |

Let
b (@)= (45, ) — b)) & (. y) dy.

B

For almost every fixed x € X

Sk (z, y)dy <1
B
(double stochasticity of the kernel k), i.e., k(x, y) € L(Y, v), and hence ¥,(x) ~ 0.
Moreover,
|9, (2)|<<2 S k(z, y)dy<<2.

B
From this we get that

<Sl¢’n($)|d:c—>0.

A

l [ %4y @ ¥, (@) dz

In an analogous way we consider also the second term. From the convergence

QA,,XB,,’ XaXgy — <ab, x XD

just proved, we immediately get the convergence
X4, (2) X, (1) > @ (2) b (y)

. o : is
in the topology o(L”(M, m), L(M, m)), since the linear span of the set x4 %!




g
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(M, m), and the sequence Xa,Xa, is bounded in L(M, m). From the fact

gonse in £
y< 1,0 < b(y) <1 and

hat 0 € alx
S a(2) dp=lim S Xa, (@) dp, j by)dv=lim {y, (v)dv,

it follows that
plaia@>0 b >0 >

The condition m(A,, x B,) = 0 means that

a(z)b(y)=1im Xt By = 0 (mod m).

st since a(x)b() = 0, we have k(x, y) = 0 on the set {(x, y): a(x) >0, b(y) > 0},
which proves Proposition 49. @

REMARK 1. From the proof it is clear that A, = {x: a(x) >0} and B, =
(3 b(y)> 0}, where (a(x), b(»)) is a limit point of the set {(x, (x),xz (»))}. In
patticular, if it is known beforehand that the condition u4 + vB >n ¢ impli:s m(4 x B)
>0, then, necessarily,

a(z) =1y, (z) and b(y)=yx, (¥);

this is because

[a@dp+ [b@)dv=lim (@4, +vB) >c, a(x) <1, b(y) <1,
and, consequently,
pay > [a(@ dp, vBy> [ b(y)dv,
wherefore
e > pdy By [a@de+ [B@
from which it follows that
S a (z) dp = pA, S b(y) dv="vBy,

K ax) = x4 (x) and b(y) = X o)
REMARK 2. We mention an especially useful assertion: if X,
%,(¥) = b(), then

(x) — a(x) and

XapxBy (x, y) = a(z)b(y)
9. DEFINITION. We use the notation

M=1I, —sup {pAd }vB:m(A x B)=0, p4 >0, vB > 0}.

PRoPOSITION 50. Let k(x, y) <K <oand I, = 1. Then there exist finite

decomposi tions

X:X1UX2U--.UX,,v Y:Y1UY2U"‘UY"
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()f fh(' S]’a('('s .\' a"‘i )'. “'hvr(' 2 g n g K. M\'l = l') BRI 'uA'" = p y-"‘ su(‘h ‘hat

}3 m(XNy X Yy) =1
|

x Yy regarded as the subspace (X, x Y

and for each subset Xy ks ™M) of the Pace

(M, m), we have

M <1 and § A\ ==y

(fh(' “,”‘q“{, ”()"(,’"p{v subS{’[ ()f‘ 1\’k X }.k tha’ is I?I(’aSllmbh’ b()fh H)i(h respf.’(‘f IOE
and with respect to n coincides with the whole space X x Y.

Proov¥. First of all, we observe that for doubly stochastic measures we alwayg
have I1,, < 1. We construct a sequence of sets A, x B, for which

pd, - vB,—>1, m(4, X B,)=0.

Let Ay D A, and B D B, be sets such that ud; + vB); = 1. Obviously,

m(Ax X Bi)y<m (A X By)+m (A \ A X Y)4m(X X B\ B,
=u (A \ A) v (B \ B)—>0.
Moreover, if m(4, x By) =0, then m(4, x CB,) = mA, from wlu'_ch it follows that
the supremum of the density k(x, y) on the set A, x CB, is not less than

pdk 1
pdg - vGBy VOB L —vB, T pdi + (1 — (udy + vBy))

and, therefore, for sufficiently large & it turns out that

P'A;\a>/ p'AL > _L — &,
for any € > 0, and a similar inequality holds for vB).. Thus, the conditions of Propo-
sition 49 have been verified, so there exist sets 4 C X, uA>K"',andBCY, vB?
K=, such that

pA+vB=1, m(A X B)=0.

From this it follows immediately that

m(GA X CB)=0, ije. m(A X CB) 4 m (CA X B)=1.
. . = l
Considering 4 x CB and CA x B now as subspaces of (M, m) in the case when Il

for any of these subspaces, we repeat the argument, dividing it again into two sub- ’
Spaces, where each time the measures of the projections of each subspaces onto xa
Y are not less than K~'. After not more than [K] — 1 steps we arrive at the rf' r
quired decomposition of M. For each component of this decomposition (which B
element of the decomposition £ A n) we have that 1 < 1, since otherwise we could
continue the decompositions, and this is impossible by the condition ud Z K™
REMARK. In a completely analogous way it can be shown that if m & @
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pitraty measure that is absolutely continuous with respect to the measure u x v, then
;ﬂh , decomposition ¢ Anof (X x Y, m) is not more than countable. Indeed, if, for

sxample, the marginal distribution under the decomposition &, for which ! £ =

then the
position correspond-
'y coincides with points in X belonging to
: “Continuous” set of the decomposition En could not be subordinate to the type of
ihe measure Ty (since it would coincide with the type of u,
ditional measure on the corresponding element C of £

A i.e., the measure on (X, u)/‘én, could have a continuous component,
e of the conditional measures on the elements of the decom

ty . . _

ing to those points y € Y for which 7y ny

where M is the con-

PROPOSITION 51.  Suppose that the decompositions é and 1 of the space
o, 4, m) are such that X= M/g = {x,%,1, Y= Mfq = {)71,?2},113'= X x Y,
i,y =a #{y ) =b(where f = ung', D= vaY) anda + b= ¢ < 1, For any
measure i defined on M and equal to zero on the set %, 7)), %, 72)} CM, the
qum of the distances (with respect to variation) of the canonical projections ﬁﬁ? aind
ig' of this measure from the respective measures i and ¥ is not less than 2(1 —o):

inf Var p— Azt Var( —Af')) =2(1 —¢ 0
(A28 {(2,9), (£, §)) = 0)( ( ) + ( o )) ( ) >

(here m 4 is the canonical projection M —> )?, T % Is the canonical projection M —> )?
ad similarly for n¢ and 7).

PrOOF. Let Ai{(%,,y,)} = p and A {(%,,7,)} =q. The quantity [[(1 — @) — p|
tla-ql+1(1 —b)—gql| + |b — pl is to be estimated. Obviously,

1—e—p|+|b—p|
1—a+b—2p for p<min(1—a, b),
=3{1—a—b=1—c¢ for pE[min(1 —a, b), max (1 —a, b)),
2p—1+4-a—b for p>max(l —a, d)
and analogously for |g — ql + (1 — b) — ql, from which we get the desired estimate,
which is attained for
pE[min (1 —a, b), max (1 —a, b,
¢ € [min (1 —b, a), max(1—b, a)]. ®
COROLLARY. For any number \ > 0 and any measure b
Var (\p — fig)) 4- Var (A — /i) 3> 21 (1 —©)-

10. We proceed to the proof of the approximation theorem.

THEOREM 7. Suppose that the density k(x, y) of a doubly stochastic ”:a;“:w
X X Y, where (X, ) and (Y, V) are measure spaces, is bounded: K(x, ) Nyl '
There exists @ number s, > O such that for each € > 0 there is a number.5.o ¢ and
Which, given ¢ subset A C M whose widths with respect to the decompostions
M40 not exceeq some number s < s, and such that ||TxXx ~ s“L()gu!)\ :aving constant
"‘HYX,\ = s"L(Y,u) < &s for some 5 < 8, there exists a subset A,

Width not exceeding (1 + €)s.
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wqtrip™ that is sulficlontly narrow with rospect 1 |
0th g,

o

In other words, {Fa

compositions has relatively alm
a strip whose

ost constant width with respect to egel of
h
width with respect to these decomposition,

and does nol much exceed the maximum of the widths of the orlginal e
( ! .
M

M
e

e ———

F —

n, ”I‘#n

it is contained in s (’""llum

EITFDEWRTRECHC SIS IR ST ORI

A,y e const | Afz,y)=0
S
1, A
Yy | A y,
v
a A’{ar,y}-wnst A ', /
/
/
a X .
Figure 3 FIGURE 4

The example in Figure 3 of a measure on a square shows that there exist meas
ure spaces and subsets A of them whose maximum
M width with respect to each of the coordinate decompo-

;/_ sitions ¢ and 7 is arbitrarily small and that are not
contained in any set of constant width besides the

Sy
Y

whole space M.
The essentialness of the hypothesis about boun-

, dedness of the density in the approximation theorem
is illustrated by the measure on the square shown in
/ Figure 4, where the squares M,,, regarded as sublpa‘f’
4 of (M, m), are each constructed as the space shown i
X Figure 3, with widths of the subsets A,, that unbound:
FIGURE 5 edly approach zero. Also the assumption of bounded -
ness for the density cannot be replaced by the conde

tion £ A = v (which does not hold for the measure in Figure 4), s sho¥™ by;he
example of the measure in Figure 5, where £ A n = », but the pathologically ba
as beforé:

approximability of certain subsets of arbitrarily small width is preserved

The example in Figure 4 shows also that without additional assumpt®™ -
constant width a-der

fices to con®

T

-,
7/
/

ptions we

not hope, generally speaking, to construct economically strips of
subsets contained in the product of two sets of small measure. It suf
the same subset A. i
: d for

The conclusion of the approximation theorem is trivially not guaranté eP’od' ,
doubly stochastic measures that are not absolutely continuous with respect to i
uct u x p.

PrROOF. As Proposition 50 shows, it suffices to limit 0
£ An=v,ie.,when I, <1;in the contrary case we apply the theor’

hes
case ¥
urselves to ¢ aon of

mtoﬂ
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i [ subspaces of 0 . -
¢ finite number of subspac the form A % B, for which 3,mA, x B = |

u 1] I
< 1. 1f M, <1, then, by Proposition 49, all the nondegenerate

and Mo, sets of the
form A X B for which ud > a, vB > a, and the “semiperimeter” uA +vB is equal
o0 a fixed aumber f have measure that is not less than some number n,(t), where
"a(” >m, >0 tor! Dty = cmfsl < 1. 3 |

We show that the theorem is proved if we prove that for any decompositions £
and #, each containing two subsets, the image under the canonical mapping 1. (M, ,;,)
— 1,”(/‘?. ) of the characteristic function x, of the set A having the properties indi-
ated in the hypotheses of the thcorf:m can be majorized by a function of constant
width §, = (1 + ¢)s in the class V(M, m). Indeed, it suffices for us to show that
among the functions in V(M, m) vanishing on A there is a function of constant width
equal to 1 =8, Then, by Proposition 44, there is also a subset disjoint from A and
having constant width equal to I —s,. Its complement is a strip of constant width 5,
containing A, and is the set whose existence is asserted in the theorem. By Theorem
6, to prove the existence of a function of width 1 — s, that vanishes on A it suffices
to prove the solvability of all 2 x 2 coarsenings of the problem on the existence of
the required function on the space M, equipped with the measure that is the restric-
tion of m to the subset M\A. But if it is possible each time to majorize the image of
the characteristic function x, (x, ¥) (under the coarsening of the problem correspond-
ing to the choice of decompositions £ and #) by a function of constant width s, in
V(M, i), then for the complement CA of the strip A there exists for each of £ and 7
a function of constant width 1 —s,.

We consider a pair of decompositions £ and 4. Let m),, i, k = 1,2, be the mea-
sures of the subsets of A C M falling in the corresponding “cells” (elements) of gﬁ
(we recall that the first index relates to 7 and the second to £). We also use the
notation

mt,. m;r
"k - kg
k:k

”‘—akb,-’ LA akbt'.

The numbers Pix = m:.k/m,.k are the values on M of the 2 x 2 coarsening X A of the
characteristic function of A (i.e., the measures of the elements of £ relative to the
Measure whose Radon-Nikodym derivative with respect to the measure is equal to the
characteristic function of A). If the widths of A with respect to £ and n do not ex-
%ed the number s and are close to constants in the metric of L(X, u) and of L(Y, »),
‘espectively, then the widths of the indicated 2 x 2 coarsenings of the function

Xa(x, ) with respect to the coordinate decompositions, which are equal, as is easily
Checked, to

r ’ ’ ’
(Sl, S,) :(mll - mi, , moy + m-_!'z) on the elements of X:M/E'
My My Mgy A My

(33, S ): (mlll - mél m:! - m"z‘l) on the elements of Y — M/ﬁ,
¢ myy + My’ My Mg

@0 not exceed (coordinatewise) the same number s and differ by an arbitrarily s"-l:lihe
mount (more precisely, not by a greater amount) from the vector ((s, 5), (5, 8)) i
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metric of the four<dimensional space L. . o
“ " in a suitable way the function <

We now attempt to ‘‘complete™ in a ‘ y fon &,

to a function having width exactly equal to s with respect to each of th

With this aim, we increase some of the numbers

dEfined on o
!
. °°°‘dinate

ik» OT, what i the

decompositions. .
P being carefll], howeve{, not to disturb the fOUl’ COnditiOns

!
same, the numbers 7,

’ 1 — 2
mikgmik' L, k—l. &,

and the conditions

¢ ’ m' —J— mf.
__mll+ m”<3, 32—_:_-21 'S\S,
1—"mu—§-m,,\ My; + Mgy
’ ’ [ !
mi ol o miabmly
Sg— ——F——— X, S, 34 - N
37 my, 4+ my, My 7 Mgs

If for some new values of the numbers m;, in the latter conditions the four inequa].
ities pass into exact equalities (three suffice), then our goal is attained. [t thus re.
mains to consider the case when an increase of the numbers hy (or m;k) leads to the
situation in which h;, =k, for some i and k, but the corresponding width of the
increased function X, on one of the elements of the coordinate decompositions con-
taining the cell X, x Y, is still less than s. For definiteness, let hyy =k, Letg,,
i, k=1, 2, be the values of the elements M’.k of a function having constant width
with respect to both decompositions equal to some number § and for which 812 =
ki3 (= hy,). These conditions determine the values 8;x uniquely. We compute these
values, considering only values of § for which the function g, = g(if,-k) majorizes
hie = h(M,,.):

1) h12:g12=k12-

/\

€ 1
2) hy, X 8= a (8 — kpaa,) < ks

9 e a0 ) <

4) hy, < & :ﬁi (@, —b)s 4 Mya) < k-

Since all the numbers &ix Pass into the corresponding k;, for §= 1, all the above
alities are satisfied for this value of 5. We begin to decrease T as long as pOSS'ble’

ite., until one of the inequalities 2)—4) becomes an equality (the quantities gk depend
linearly on ¥). We consider all conceivable cases.

L Firstleta, b, =1 - (@, +b,)=1-¢> 0. Then the quantities & *°
monotonically decreasing with a decrease of 5, and therefore one of the Jeft-hand N
Qualities in 2)—4) turns into an equality as the result of a decrease of

. Ifhyy = (1/a,)(F - k,,a,), then

inequ

. 1 by Tmy, T m;x =%
ie. i . .
€., in this case we have the required function of width $; not greater than S

_ : ¢
; fb. . 1 has =82, then, analogously to the preceding, there is a required fut
tion of width s, not greater than s.

PRTSENDRS < 13
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Ic. Let

i
hyy = Ry = ayb, (@ —by) 8 - m,,).

[t is required to show that the value § for which this equality is attained ex-

coeds s by 8 small amount if the vector ((sy,8,), (83, 54)) is sufficiently close to the
vector (8, $), (5, 8)). Let

4
al
kz_ll"'k_“'|<30'

We consider the functionn =g — h; n(ll:ln) = n(}ﬁ 1) = 0. The projections of n

onto X and Y are equal to the respective vectors (5 - $Sp §—8,) and (5 - S35 — 8,).
By the corollary of Proposition 51, both of these vectors cannot be close to any con-
stant a # O:

4

2|(~5‘—3n )—a|>2a(1—c). (5)
In this inequality we set a = § — §:

gl(s—sk——(s—sl—Z,h—ekl 2(8—s)(1 —c). )

Comparing (4) and (6), we get 2(5 — 5)(1 — ¢) < ¢, i€, §— 5§ < €0/2(1 — ¢), and if
€ <8586 <8y =2(1 — c)e, then

s(1+ peg) <s 49

in correspondence with the assertion of the theorem.

Il. We now consider the case when the difference a, — b, is small (in particular,
negative; see Figure 6). Namely, suppose that

-5, -5, a,+b=c, ie. a,—b=1—¢, (7)
K 1- X
7/ where
g 1
/ d c>1— 74 (8)
kf bz 4
// and ¢ is such that
/
.’ ni () > 0. ©)
/ g 8
/)
L 4 d (For the definition of the function n,(c) see
<
. d let
a, z, p. 101.) An

X, X, 0<%<¢#M (10)

FIGURE 6
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and 1
SO < -Z‘ .
First of all we point out that for s, fixed and 5 < s, the quantities (ll)
. . . 2
cannot be arbitrarily close {0 1. For, since the ¢-width of the cell X, Yl nd b,
are not less than 1 — g (in fact, we assume that x 2 and tp,
2 XY
18

nwidth of X X Y,
iy = k,,,and therefore it has width pet e

entirely contained in A, since y
: .-, . ee .
with respect to each of the coordinate decompositions), it follows that ding 5,

Ka, > 1 — 8 Kb, >1—s,. (
)

We now prove that

1 —s,

h>e—1+12%, e >e— 145

Indeed, the first of the inequalities in (12) implies the condition
a2 —_— 1 -_ al < '1%9—0 ,
from which, by (7), (8), and (11), we get

b>e—14 70> 1

1 1 1
— 8K 1‘{_2[?:@. (13)

Completely analogously it follows from the second inequality in (12) that

-~ 1
a2 2 ﬁ . (14)

e inequalities (13) and (14) imply, by the definition of n (¢), that
a 3
Mz 21 1 (c) >0,
8K

from which, i i :

it ot th; 1:e1;l)a;1cular, 1t. follows that the supremum with respect to x of the &

and this contradictsz(;(O)Yl ”ll‘i]m)t fess than ny 8k (c) (and the same for the nwidth),
with the assumed equalit.y h US,_tl’:e asfumpti()n that (7)—(11) hold is incompatible
strictions case I cannot ochr2 123 In other words, under all the in dicated fe

We summari
ze
the above presentation. Let the number ¢. be such that
0

1
S 7>, S

27 So <1y (c),
and for 8y =-2(1 —cp)e. » A
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We now establish an analogue of the approximatj

on theorem for the case whep
the decomposition £ A n is purely continuous,

THEOREM 7*. Let m be q doubly stochastic measure such
sitions £ and 1 (§n = €) the measure m/(t A n) is pure
m under the canonical mapping

that for the decompo-
ly continuous and the image of

nxXﬂr:M—»M/EXM/nEXXY

is absolutely continuous, with bounded density k(x, y),
m* for which

1) m*ry! = pand m*ny! =y,

2) mf(§ An) = m*/(£ A n).

3) On almost every element of £ N\ n the conditional measure coincides with the
product of the conditional measures on the corresponding elements of the decompo-
sitions £, and n; of (X, ) and (Y, v) into the preimages of the elements of the de-
composition M/(§ A m) under the canonical mappings (X, W) — (M, m)(E A 1) and
(Y, ») = (M, m)I(¢ A ), respectively.

4) The conditional measures on the elements of .{n and Ngare purely continuous.

5) On each element of &£ A\ q the density k(x, y) is bounded (by a constant
depending on the element).

With respect to the measure

Then for each € > 0 there exist numbers 6, >0and S0 > O such that if A C

M is a subset whose widths with respect to § and n do not exceed some number
$<$, and

| mxxa — s s, w 1T = 8o v, <3 for 33, (15)

then there is a subset A, of constant width s' not greater than (1 + €)s for which
m(A,AR) < Ses.

PrOOF. We first point out the difference in the assertions of Theorems 7 and
7*. Theorem 7* does not assert that A, D A, and only guarantees the smallness of
the measure of the symmetric difference m(A;AA). Another, perhaps more essential,
Weakening of the formulation consists in the fact that the assertion begins not with
the quantifiers 359 Ve 18,V A, but with the quantifiers e (59, 89) VA. However,
for the subsequent use of both theorems this weaker form suffices. It can be shown
(see Figure 4) that under the hypotheses of Theorem 7* the conclusion of Theorem
7 does not hold.

SuPpose that we are given an arbitrary e > 0. We choose a number K > 0
Such that on a set M . € M that is measurable with respect to £ A n the density
kx, y) is uniformly bounded by the constant K, and mM, > 1 — €,. Then for each
Clement of ¢ A\ n we consider the corresponding function n(¢) and choose numbe.rs
‘o <land k > 0 such that ny sk (co) =k > 0 forall elements of £ A all;Peaflﬂg
" M, except certain ones whose union M, has measure not exceeding €;. From ;
(15) it follows that for any > 1 the total measure of the (measurable) set M; made
UP of the union of all elements C of & A n for which



106 1L INDEPENDENCE AND COMBINATIONS OF DECOMPOSITIO)
» S

> e ":‘. ) '—“31, ~a
]R(X,\—“\].‘:_(':“‘.‘) i }'(.\ iL (F.ovo) .08‘

(1g)
i not less than 1 — 1/, sinee the number ‘Hrr_r X\ ‘—SHL}‘\-_“) + “"r& -

s the barveenter of the numbers on the left-hand side of (16) (with TeSpect S
* (¢ A m). Thus, on each element of the set M" = M, A (ap\

7 hold with 5, <%.5, <k and §, = 2(] -

%)
to ¢ N
1”2) N 1"3
Co)€ly, ang We o

measure
conditions of Theorem

sssume that

‘ 1
mM' >1—s—8——>1—s

i § < e  Using Theorem 7, we observe that on the set M’ we can complete it
intersection with & set \ satisfying the conditions of Theorem 7* to form 3 Measyr.
able set A\'l whose width does not exceed (1 + €)s. Indeed, since such a completjoq
x possible on each element of £ A n that is in M ', each coarsened 2 x 2 complemep,.
wtion problem is solvable for each element, and hence each coarsened 2 x 2 problep
i wolvable for the whole set M’, which means the existence of the required set A’l of
constant width. Now, to conclude the construction of A, we add an arbitrary set of
the required constant width on M\M’ to the set A} (such a set of constant width
exists, by Proposition 44¥). Finally, we get
m (AN =m (M N UM N M) N(\AL)
< (A QAN DU\ M)NA) UM N\ M)NA))
LI+ s— (1 —=8)s+= (1 +5) s F-es < Oss.

Theorem 7¥ is proved. @

The approximation theorem shows the possibility of getting a good approximation
of narrow strips of width that is close to being constant by means of strips of exactly
constant width that can be assumed to be elements of some decomposition that is it
dependent with respect to ¢ and 5. We now proceed to the construction of strips (st
A C M) that we approximate with sets that are measurable with respect to the de-
ured independent complement.

11. DEFINITION. Let C be a measurable subset of M = X x Y, na med
X x Y. We use the notation

sure on

LCO=1, . C=sup{pd LvB:p4 1 vB>0, n((d X B)NC)=0
IL.C=sup {uA+vB:n (4 x B)NC)=0)
IC=m,,.c, '¢c= I .C.
Thus, we always have I1,C > 1, and for a doubly stochastic measure m a0 !
st C such that mC = 1 we always have I1,, C = 1 (Proposition 51)-

¢
PROPOSIT]ON 52. Let “, — ‘Xl U LY U X md Y — Yl U s & * U Yﬂ' b
m . sn’

compositions of the spaces X and Y such that uX, =vY, =pn k= 1, ;)’ i P(")
let the measurable set D be contained in the union U’l'X kX Yy Let #(

be the normalized restrictions of u and v to the subsets X K and Y and lef

WD — Ty tx)yt) (D N (X X Y-

de
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Then "
nn— 2 p D,
k=1

proor. For some measurable subsets 4 C X and B C Y let
(= X v)((A X B)nD)=0.

Then
(P"" X v(’”) (((AﬂXk) X (BﬂYk))ﬂ((X;, XY)ND)=0,k= I,...,m,

and

3 2 (ANX) 4% (BY,) = pd + 1B,
Conversely, if A, C X; and B, C Y, are such that

(™ X v*) (4 X BY)N((X X Y)ND)) =0,
then

(2 Xv) ((U A% U B,,) nD) =0
k=1 k=1
and
B ]E;Ji Ap+v kgl Bk=k§ Py (094, +v*B,).

The required assertion follows from this. ®
The following generalization of this proposition is just as obvious.

PROPOSITION 52*. Let m be a doubly stochastic measure, and {mc}, {ued,
@d (v} the conditional measures on the elements C of the decomposition £ A\ n and
{he corresponding elements of the decompositions ¢, and n, (determined by the canon-
lcal mappings X — M/(t A m) and Y — MJ(£ A 1)). Then for an arbitrary set D

II'D — S vosog DA (MIE N ).
ProrosiTION 53, For any refining sequence of finite measurable decompositions
f:q:: of the Lebesgue space (M, U, m) and any measurable subset C C M there is a
nce of sets C, satisfying the following conditions:
1) Each C, is measurable with respect to the corresponding decomposition ,,.
2) There exists a numerical sequence o, 7 1 such that for each n and each ele-

m ($,) . Sn)
et Con of €, contained in C,, the measure of the part of C inside C""" is not less
than anmc(fn)_

3) The characteristic functions x. of the sets C, converge in measure as n —
x ¢ e n
0 the characteristic function of C.

PROOF, For each n we define a {,-measurable function q,(2), z € M, by

a, (Z) =m (C N C(n) (Z)) (mC(Cn) (z))—l'
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where C(g")(Z) is the element of {, containing the point z € M. By tp, wellkpe
Lebesgue theorem (see, for example, [90]) on points of density of measyr,

) ble Sety i i
Lall z € C we have q(2) = 1, and for almost all z € C we haye a,(z oy

almos M . o )
(The Lebesgue theorem relates to the case when (M, m) is the unit interval wigp, Lebe,

s a refining sequence of finite decompositions of the unit ing
e

gue measure and §, i
into smaller segments whose maximal lengths go to zero, but it is €asy 1o see thyy our

formally more general situation is isomorphic to this “classical” one.) Therefore for
any number 0 < a < 1 the sequence of sets G = {z: q,(2) > a} satisfies require.

ments 1) and 3) of Proposition 53.
Let p(f g) be a metric on S(M, m) whose convergence is equivalent to con-

vergence in measure. By what was proved above, for any number o, 0 <o < 1, the
sequence of functions X oo CONVETgES in measure to the function x, i.e., p(x o Xo)
C
n

n
— 0 for any such number a. Therefore, we can choose a sequence of numbers a, —
I,n=1,...,such that p(x an’ X¢) — 0 for n — e, For example, let By =
c

1 — 1/(k + 1), and let the nunqbers n, <ny, <+ - be chosen successively so that n
is such that p(xcﬁz, Xe) <%forn>n,,...,n, is such that p(xcfkﬂs Xe) <

n
1/(k + 1) for n > n,, etc. Then we can take a,, to be the nth term of the sequence

ﬁl’ ﬁl‘-"’plnaﬂ p'l""’ﬁi’.' ﬁa' ES""E’E“

n, times (r, — n;)times (ng — n, — n,) times

Moreover, it is easy to see that p(x , , Xc) — 0,ie,x , — Xc in measure. @
C n n
n n

PROPOSITION 54. Let X = X, U X. X, NX, =g, uX, =a Y=Y,Ul,
Y NY,=gvY =bada+b=1+c c>0. Then m(X, x Y,) 2¢

ProOF. Let my, = m(X; x Y;). Then my, +m,, =1—aand my, +my,
=1-b,and so

m12—|—m21+2m22_—..2——(a+b),
1_mu*l‘mzz:'l — G,

My —my=c, ie. my; >c. @
be

PROPOSITION 55.  As before, let the measure m on the space M = X % Y e
m

given by a density k(x, y) with respect to the product measure u x v. For @

able set X, C Xand any € > 0 there is @ measurable set Y! C Y for which pY! = | -
uX, and

0 (M (X, X YY) < 1 e,

. . dic
_ PROOF. We can limit ourselves to the case when the number uX, 12 dy?
rational. In the opposite case we can use the fact that if

[CX b (ONF)<E ad 1 (F, x NI
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thet T (MY X YD) < e,

nd take Xl to be a set with dyadic rational measure and Y an arbitrary subset of y!
;mviﬂg measure equal to I — uX,. From the “double stochasticity” of m, i.e., from
_ 1, R R < the

(he conditions p = MMy and v = mny " it follows that I, <1 and lI;nM =1. In-
feed, if the sets A C Xand B C Y are such that m(4 x B) = 0, then it follows from
proposition 51 that u4 +vB =1 (a fact that is clear and immediate). Let ¢ =
() k. ¥) > 0}. We consider refining sequences £, and n,, of finite coarsenings
of the decompositions and n that converge monotonically to ¢ and 5 and consist each
of 2" subsets of equal measure. We can assume that X, is measurable with respect to
g, for some 7. The characteristic function x.(x, ») of C can be arbitrarily well ap-
proximated in the measure u x v (and hence also in the measure m) by the character-
istic functions X¢ of sets C,, that are measurable with respect to the decompositions
£, My of M.

For sufficiently large n we have II'C, <1 + €/2. Indeed, otherwise we could
find cells A x B™ C M for which u4™ + uB™ > 1 + ¢/2 and

(8 X ) (A" X B")AC) =0,
But for such subsets A¢") and B(") we have, by Proposition 54,
m (A“” X B(an) —nm ((A('“ X B(M)nc) 2 ;_.

By the convergence in measure Xc, ™ Xc the (u x v)-measures, and hence the m-

measures, of the subsets of M on which these functions differ converge to zero with
increasing n, and for sufficiently large n, therefore, the simultaneous satisfaction of the
conditions m(D N C,) = 0 and m(D N C) > ¢€/2 is impossible for any measurable set
D, in particular, for D = 4" x B(").

Further, by Proposition 53, we can assume that on each element of £, V7, con-
ained in C, the measure of the part of C inside this element is not less than 2~ 2"a,,,
where &, — 1. We now consider for each n the function S(Cn defined on the space

M": M/E"VTIM'

Which consists of 227 elements, and taking the values 0 and 1 on those elements of
M, on whose preimages under the canonical projection M — M/(k, V n,) the func-
tion Xe, takes the respective values 0 and 1 (the latter function is measurable with re-
PECt 10 £, v/ m,,, 50 our definition is correct). We regard the space M with the func-
ton 26‘,, as a (0, 1)-matrix of dimension 2" x 2". As is well known from the theory
of (0, I)-matrices (see, for example, [101]), it follows from the inequalities

1
e, <1+ 5 <1+ 3
@ a positive integer, which can be attained if n is sufficiently large; for simplic

asﬂSume that ¢/2 = ¢/2") that for the matrix M,, Xc,) there is a (0, 1)-matrix

o, i?;n) of the same size that contains in each column and in each row not more

it){ we
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e orresponding elements of the matrix y .
than one 1, and such that the corresy . . . MEAR \(‘" are also *qua
IR e aotes a set for which X o ™ X¢ then N'CY = e .
o1, andif ¢ €M dent o Cn n "(,‘. that jg

e (8 . Q) of the matux (M, Y™ ot o .

not more than d rows (and columns) of the matrix (M. X ) 4o not contain gpe
o each element of &, V' 1 that is contained in C° ag an

¢l ('lLl wn \‘ n d 1mn C’l as an l“db

defined as the normalized restriction of m to this ele
: me

1, m)). Besides the measure 7 determineg bm
¥

We now consid

pendent space with measure

: N \
(a subspace of the Lebesgue space (M, X
lso the measure g X ¥ determined by g X » on this element (The

m, we consider a
is no longer “doubly stochastic™ with respect to wand )

restriction of m, of course,

From the preceding, on each such subspace the trace of € has (W X ¥):measure not

greater than a,,, from which it follows that for this subspace

o< 2—a,
(since the maximum of the function u +v under the condition uv =1 -a,, 0<ug
1,0<v<1,isequal to 2 —a,). Therefore, the subset €, = Cy N € of Cis already

such that
e, < @2—ua,) (1 — %—) -+ & (for sufficiently large n),

ie.,
i
e, <2—o,—et+5as 145 (for large n),

and a fortiori H'Cn <1 + € (for large n).
. On th‘e other hand, as mentioned, we can assume without loss of generality that
e set X, is &,-measurable. For some subset Y'! C Y that is measurable with respect
to the decompositi i 1=
position 5, and for whichv¥Y" =1 — uX,, we have

(X, X Y)NC,=0. an

lndef.d, to construct such a set Y! it is sufficient to consider a ¢,V nn)-xneasm‘ﬂble
set G0 D €2 for whi iX (M, Rp) i i
n = Cn ich the matrix (M,,, XEO) is a permutation matrix (i.e., contain®
. . n
exactly one 1 in each row and in each column), and to define Y! to be the union of

those elements C\"™ of .
. N, for which there is an e (&,) ot contair
in X, such that lement C*"" of &, 0

Cln) X Cw) ch

In this ) . o
he comm,ly c:(s)t: ::he tpfod:ct o‘f'oc "" with any element of £, contained in X,
A ontained in C) (and does ; ,
Finally, we get " not intersect it), i.e., (17) holds

1 e, =1 ,
+5 > Cp. ]ImC,,: nm (C“ \(Xl XY!)) :} I]';" (ﬂl \(X‘ X Yl)). [

We give an analogue of Proposition 55 when the decomposition § A1 is arbitrs’
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PROPOSITION 55*. Suppose that the hypotheses of Proposition 44* hold. For

gy measurable set Xy © Xand any € > 0 there is a measurable set Y' C Y for which
Jyt = 1 - uX, and

I, (M (Xy X Y1) <1 H-e.

proofF. By Proposition 55 it suffices to consider the case when ENnis purely
continuous. AS before, it suffices to assume that the number u X 1 is a dyadic rational.
et €= {(x »): k(x, y) > 0}. We consider a decomposition k that is an independent
complement of £ A n with respect to the measure m* (defined in Proposition 44%),
The space (M, m*) is now canonically isomorphic to the space

(M, m ) /\xX (M, m*)q A\ xX (M, m)fEAn.

We consider refining sequences of measurable decompositions

EARDENA% AN A0 A EAD), 7EAT,

each containing 2" subsets of equal measure. Let
En: (E /\ y‘)n V (E /\ n)"' M= (1] /\ X)" \/ (E /\ n)n'

The space (M, m*) can thus be represented as a block cut by planes parallel to
the edges (the decompositions (£ A x),, (n A k), and (¢ A 1),)) into 23" equal parts.
We can assume that X y is measurable with respect to some decomposition &, v 7,,.

The characteristic function . can be approximated arbitrarily well in the measure m*
by characteristic functions Xc, of sets C, that are measurable with respect to £, \ n,,.
For any § > 0 and sufficiently large n we have, as above, the inequality H'Cn <1+
8¢/2. Furthermore, by Proposition 53 we can assume that on each element of £,V M,
contained in C, the measure of the part of C contained in this element is not less than

27", , where a, 7 1. Using Proposition 52, we find that I'C, <1 + 8¢/2 implies
the inequality

1
1Im3(rz), mz'(nm}l- m'E("’r?‘C" < 1 + 2 €1 (18)

where mz(") is the normalized restriction of m* to the element C(™ of £,V n,,on
Fhe collection of elements of ¢, \ m, of total measure not less than 1 — 8. Consider-
!¢ each such element and arguing as in the proof of Proposition 55, we construct for
Such an element a (0, 1)-matrix that is analogous to the matrix (M,,, X c°) and that

. " n
contains in each column and in each row not more than one 1, and for those elements
of £, A N, for which (18) does not hold we let such a (0, 1)-matrix consist only of
%r10s. Using Proposition 52 again, we find that

', < 24(1 —+—%e)(1 <t 4 petd,

O i i in the
Where CO is the union of those elements of &, V 7, V K, to which the ones in

Matrices (ﬁ}n, X o) correspond. Finally, using the fact that o, —> 1 and choosing the
Cn
Momber § sufficiently small, we find, as above, that
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M (C2NC) <1 4.

. - 1 to a 2"-step repetition of the constructj
The construction of Y reduces p .

fri in
the proof of Proposition 55 (according to the number of elements of £, A

M), ang
this concludes the proof. @

12. Let us now consider a measure n that is absolutely continuoyg with
to the product u x v. We determine to what extent measures that are absolyt,
tinuous with respect to this fixed measure n can be doubly stochastic,

We assume n is such that [l,M =1 + 4 a> 0 (if [, M < 1, then among 1,
measures that are absolutely continuous with respect to n there are necessarily meg.
ures that are arbitrarily close to being doubly stochastic; we shall not consider thjg

Tespect
ely con.

case now).
Let

d
M=MUM,, M\O\M,— @, W';?Tn>0 on M, nM,=0,

Let P denote the class of nonnegative n-integrable functions vanishing on M,. We are
interested in how well the pair (1, 1) € L(X, u) x L(Y, v) can be approximated by the
pairs (myh, mh) for h € C

We consider the space E = (zx X =y) L (M, X v)CLX)+L(Y),
which is canonically isomorphic to L(M)/Ker(n x X Ty), by the homomorphism theo-
rem. The norm on E is also defined canonically as the norm on L(M)/Ker(my x 1y)

of a normed space:
1 (), & @) le = int | s ). )
Sf==xh

g=nyh
On the one hand, if f = Tyh and g = Ty h, then

f@de=ewar= [ n(z, yagxy)

X Y Xxy
and

7o = {171 dw = | | nas

dp < [ 2 (@ x ) =]k

lg e <Ay, 17 lecxy 4 g oy < 2| ko

and, on the other hand, if we are given functions f(x) and g(») such that [ xf @

’ = TMyh,, where h X, = f(x) + g(y
Ix f(x)du, and, therefore, ! 1(6,7)

AR 207 ks + | g gmy)-
g=nyph
sualent:
Ths the norms I+l and |1 Gx), g(y)), = 171y + il are e

1y, 20
zlt DL <t ol <21, o)), 4

4
|
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The space dual to LX) x L(Y) is L=(X, W) x L™(Y, v,
cubspace £ C L(X) x L(Y) is the space

L= (X) X L®(Y) / Ker (rg X ny)*

and the space dua to
the

y

where
(rvx X 70)" s L (X) X L2 (¥) > L (M, 3 ),

(mx X 7y)" (1 (2), v(y))=u(z)+v(y).

An equivalent point of view is that the space dual to £ can be interpreted as the whole
space L=(X) x L7(Y), equipped with the seminorm

Pl ) =]2) +v @)],00m,

which can be regarded as a real norm on the quotient space by its kernel, i.e., on
L® (X)X L= (Y) / Ker (nx X my)".

This norm agrees with the norm || - ||; introduced above.

PROPOSITION 56. For any € > 0 a number a > 0 can be found such that, for
any measure n that is absolutely continuous with respect to the measure u x v and for
which 11, M < 1 + a, there is a nonnegative bounded function h(x, y) such that

h(z, y)=0 on the set {(x, Y): T:';(T)=O} , (21)
(rxh) (2) <1, (nvh) () <1 22)
| mzh —1 ”L(X, wy 7 —1 ”L(Y, y <& (23)

PrOOF. We first prove that for 2 < e/2 there exists a nonnegative function
h(x, y) that satisfies (21) and (23). We consider the space

E—=(rx Xry) L (M, pXV)

and introduce on it the norm (£ &llg in (19). We estimate the distance in this norm
from the element (1, 1) € E to the image Kt C E under the mapping 7y x my of the
cne P C L(M, pu x v) of nonnegative functions that vanish outside the set on which
the density dnjd(u x v) is positive. For this purpose it suffices to get a lower estimate
of the values on the element (1, 1) of the functionals

(@(z), v(y) €L (X) x L2 (Y)=(L (X, p) X L(Y, 9

that take nonnegative values on the cone K+ and have norm equal to 1. In fact, by
the well known theorem on separation of a convex open set from an arbitrary convex
%t by means of a hyperplane (see [12], Chapter II, §3, no. 2, Proposition 1), for any
%Pen ball ¥'((1, 1), 7) in E with center at (1, 1) and radius r that is disjoint ffof“ the
¢ONvex cone K* there is a functional w in L=(X) x L™(¥) (on which the semmi)rm
P considered) taking values at elements of this ball that are not in the s.et wK™). 1
ce for any functional w € L=(X) x L=(Y) the set w(K1) coincides w.nth the “fho ;
® or with the ray (0, =], or with the ray (=, 0], we get that there is a function



114 (LT

JJues on K* (“positive with respect to the cone K*“) s

~aqtive W
that takes nonnegatl that is arbitracilv _
p-norm 1, and takes 3 value on the element (1, 1) arbitrarily close i absgly

walue to the distance from (1. 1) to K7 (Forany € > 0 it suffices to congige, 2 fup,

tional of unit norm separating K™ from the ball ¥((1. 1), 7y =€), where Ty I8 the dis-

tance in question.) L

Let KE C LX) x LT(Y)
to K*.and K2 the subset of K2 | : '
We give a lower estimate for the values taken on this set of functionals by the elemen

be the set of functionals that are positive wijy, -

consisting of functionals of p-norm not exceeding |

(1, 1) € E. The set KZ is compact in the weak topology
o(L= (X)X L= (¥), LX) X L(Y)),

since it is closed in norm and bounded. Therefore, the int“imum of the values of 1))
on this set is attained at some functional (uy(x), vy(1)) €K I

The positivity of this functional means that uy(x) + v,(»y) = 0 for almost all
(x, ¥) € (M, n).

By Proposition 46, the function uy(x) + v,(») can be arbitrarily well approxims-
ted in norm by convex combinations of elements in the set K - of functions that can
be represented in the form u(x) + w(») by means of functions u(x) and v( ) taking
only the values — % and % or the values —1 and 1 (one of them) and O (the other).
Moreover, as mentioned, it can be assumed that K_ C KX, i.e., that the functions
u(x) + () appearing in the approximating convex combinations are also nonnegative
for n-almost all points of the set X x Y. From this it follows that
(agr vo), (1, 1)>=inf_ @ o), (1, 1)

(i 1eky
(=) +¢(9)=>0(x)

— inf (Sli(l)d&l+§ﬁ(y)dv)———%inf[p{z:ﬁ(x)_—_—;‘-}
X Y /
-—[J-{.‘Eiﬁ(

from which we get that the distance in the norm Il llg from (1, 1) to K+ is equal 10
a. By (20) it follows from this that in the norm |I(f, g)ll, this distance does not -Cx'
ceed 2a. Since, by assumption, a < €/2, we have proved the existence of 2 functio”
i(x. ¥) such that h(x, ¥) > 0 and the conditions (21) and (23) hold.

To conclude the proof of Proposition 56, we show how to construct, for 3 gived
nonnegative function h(x, y) for which

z):—.—;}%—v{yii‘(Py)=%}—‘{y‘ﬁ(y):_—'-’-}]

=1 — l'I_M-‘—‘—“"

Iﬂxh— 1 EL(I) +unl'h'— 1 lL(y)=b>O|
a function h(x, y) such that ho(x, ¥) 2 0, h(x’, y')y> 0 if ho(x', y') >0, and
I(‘th,), ﬂr’lu)ll < b + 4 \/b_'

(mxho) (2) 1, (mrhy) () L
With this purpose we set A = p% and
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Tk ),
b, (x, y) onthe set {(z, Y): (mxh,) () <1 and (myhy) (y) < <1},
hy= 0 on theset {(z, y):(rxh,) (z) >1 or (mrhy) (y) > 1).
Let
={2:(mxh) @ > 14+, Bl =(y: (rah) (5) > 1+ 3.

since 1Ty — Ul x) <b and ||lmyh - IIIL(Y) < b, we have the inequalities pE)’:{ <
p/\and vEy <b/N. Further,

|1 A 1
"ﬂxhq—i"L(x)_“i—}— 7 (rxh — 1)+1+lu<1+ l||rrxh——1||L(x)_|_1_:__p

f
vty — Heen < = I mvk — U aery + 1—_% )
|rxhy — 1+ 1770 — U < mxhy — 1| 4| =yhy — 1| - pEX 4 vEY

b 2\ 2b b 7
Sttt T <t +2(i )=t 44k
Now, considering the first part of the proof, we find that if for given € > 0 the con-

stant 4 is chosen so that 24 + 4(2a)”* = ¢, then there exists a function h(x, y) such
that

h(z, y) =0, |(nxh, =), =0b< 2a

and also (21) holds. By what has been shown, there then exists a function & (x, y)
2 0 satisfying (21) and the conditions

(mxhy) (2) K1, (rhg) () <1,
|(rxhg mrho)]y <O+ 4VD <20+ 4\2a=c. @

It is not hard to see that the condition n <€ u x v is really used only for the
formulation and for simplification of the presentation. The following more general

assertion has actually been proved.

PROPOSITION 56*. For any € > 0 a number a > 0 can be found such that for
any nonnegative measure n on M = X x Y whose marginal distributions are absolutely
continuous with respect to the measures y and v and for which LM <1 +a, there

8 a nonnegative measure n, such that

n, < n, (24)
<—~>< st
d (nl-n:}l) d (n,‘n:y 1 . (26)
” dp L(x, u)+“ U "’<e

Also, in the proof it is sufficient to replace Ty h and myh everywhere by

d(nym3"Ydy and d(n,my')/dv, respectively.
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PROPOSITION 57. Forany > 0a number a > 0 can be found such thy Jor gy
measure n that is absolutely continuous with respect 1o the measure p x v gng for
\hich 1M < | +a, there is a number §> 0 such that Jor s <5 there exists g gpy,

n

A C M for which
d
A ﬂ{(-’c, y)'——"——:O}: @,

Cd (X V) @7
(my2y) (%) <8 (ply) W) S8 (28)
[mara— sl mvta — s s (29)

ProoF. Let the function h(x, y) whose existence is asserted in Proposition 56
be such that h(x, y) <A <eo. Weset §= 1/4. Foranys < 1/A the function
sh(x, y) satisfies the inequalities 0 < sh(x, y) < 1; therefore, by Proposition 44, there
is a subset

Ac (@ ik >0 C @ 1)y >0

such that 7, x,= mx(sh) and my (x,) = my(sh). Since (21)—(23) hold for A(x, »),
conditions (27)—(29) hold for the set A. @

In a similar way, using Proposition 56* and 44* instead of 56 and 44, we get
the following assertion.

PROPOSITION 57*. For any € > 0 a number a > 0 can be found such that, for
any measure n that is absolutely continuous with respect to the measure m* it
Proposition 44* and for which I, M <1 + a, there is a number 5> 0 such that for
s < § there exists a subset A C M for which the measure n, whose density with re-
spect to m* is the characteristic function X, has the following properties:

dnny! < dn,my!

s dnmygt
dp X % dv X7

dp.

-1
dnmy

— 8

, to
PROROSITION 58. Let A C (M, m) be a set of constant width s, With respec’fm
each of the decompositions § and m, and let X, C X and Y! C Y be subsets such t
(0
F‘X1+VY‘I'=1: m(A_n(Xlel))gesAl

Then

)

|5 Kexixnna @ 90) ) — sxgp (0)|ar, v < 285

0
ProoF. From the double stochasticity of the normalized restriction of m
the subset A it follows that

m(AN (X, X YY) =m(AN(CX, xCYY).
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Therefore
nﬂ,(x(x.xr)n-\)_sxm“ leer)
= " Ty (x(-"i\(?f')ﬁ A Sty + Ty (X, x¥)NA ”L(r)
Sy (Kx, armna) — Stey lecr) +”n}'x(.f,>(7')ﬂ.h”],(y). 33
By qssumption, the second term of this sum does not exceed es. To estimate the first

term we observe that SXep =5 (Xxscyyna) = ®y (Xix,weryna) T 7 (Xiex,xern),
from which, by (30) and (32), we get

| & (Xeaxerynd) — el =1 rXex xernn luny

:“ Xcx,xcryna "L(H, m) < es. (34)

The inequality (31) follows immediately from (33) and (34). ®

13. We now proceed to the proof of the existence of an independent comple-
ment of § and  when there exists a bounded density k(x, y).

We say that a subset A C (M, m) of constant width s A With respect to each of
¢ and 7 satisfies the condition ¥ (e; D ST D (D ST Y,;), where € > 0 and
Xpo o X, CX Y, .0, Y, CY,if foreach i = 1, ...,k there is a subset Y,'\ C
Y for which vY) =1 — uX; and

" Ty (x(x,-x v)na) — Sakerf “L(r, vy < 85y, (35)

ad foreach j = 1, ...,/ there is a subset X/, C X for which Xy =1 — vY; and

|7 (txxrinnn) — Sakex; HL(X, oy &Sy (36)

We say that a measurable decomposition ¢ of (M, m) into subsets of positive
measure and constant width with respect to both the decompositions £ and n satisfies
the condition Y(Ee Xy, ..., X, Y,,...,Y))if each of its elements (and there are

Mot more than a countable number of them) satisfies the condition ¥(e; X, . . ., X,;
Y Y
12000, ,)-

PROPOSITION 59 . Ler k(x, y) =dmjd(p x v) <K <. Then for any € > 0
@d any collections of subsets Xioo s X, CXand Y,,...,Y, CY thereisade-
omposition SE&X,,. .., Xs Yy, ..., Y,) that is not more than countable and that
Wtisfies the condition e Xy, oo, X Yoo, Y

Proor. we carry out the proof by the method of complete induction.

L k=1. We show that there exists a decomposition {(e; X,; Y,) with the re-
Auired properties. Let ¢ | = €/4> 0. By Theorem 7, we choose for the density k(x, »)
4 constant So» and for €, a corresponding § > 0; we can assume that § <€,.

By Proposition 57, for this § (which plays the role of the e in the formulation of

T0position 57) we find a corresponding a > 0. Further, by Proposition 55, we con-
Struct for 4 (which plays the role of the € in the formulation of Proposition 55) and
LX) aset Y1 ¢ Y, vY! =1 — pX,, such that
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0, (M (X, X YY) <1 Fa.

Then, by Proposition 57, we find a subset A that does not intersect X, xy!
en,

and
whose widths with respect to ¢ and 7 do not exceed some number s > | <

5, Whey,
§ < s, and for which

|mxks — lecx, w170t — S g,y <Ps.

By Theorem 7 there is a set A, D A of constant width not excee ding o1 4 )
1

with respect to each of £ and 7. 1
The set A, intersects the set X; x Y ina subset whose measure does ot ey,

ceed the difference of the measures of A, and A:
m (A N (XX YY) <s(1 +e) —(s—0s) =5(5, F-0) L 25 = é—es,
(mAy < s (14 e)s mA/>/s—||nxxA—s“>s—‘as). 37
Then, by Proposition 58,
s X x,xryna, — SXer | <les.

Next, we consider the set A, C (M, m) as a subspace of the measure space (M, m),
i.e., as an independent space with measure that is the normalized restriction m s of

m to the subset A,. With this subspace we can now repeat the above argument, inter
changing the sets X, and Y,. We prove that there is a subset A; C A; C M satisfying
the condition ¥(e; X; Y,). With this aim we show that there is a measurable decom-
position 6 of the space (A, m, l) into not more than countably many subsets A of

constant width with respect to each of ¢ and n (more precisely, with respect to the
traces of ¢ and n on A,) that satisfies the condition

" TxX(xxr)nk — Slxcxi <esg, 68

“L(X, »)
where, for each A €0, X% is a subset of X such that uXL =1 -»Y,.
A

We consider the set il whose elements are pairs (k, 6,,), where  is @ subset of r
Ay, my 1) of constant positive width with respect to both & and 7, and 0, 152 mea
” . e with 1€
able decomposition of A, into subsets of positive measure and constant width Mth,.
spect to £ and n and whose elements A satisfy (38). On the set ! we consider 2 pa
ord i 1 o . (2).measr
rder structure, setting (k,, 9541)) <(k,, 8 if Kk, C Kk,, the set K IS 0,‘2. m ot
able, and 6(1) is the restriction of ef} . isin !

! ) to k,. The partially ordered set
([14], Chapter 111, §2 2 _
s pter ’ § , NO. 4, Definlthn 3), ie., each of its totally ordere
a majorant,

) A

Indeed, the majorant of a totally ordered family {(Kq» GS&))' &=

be taken to be the element (, 6.), where ¥ = |J
K

possible i i in vi
subsets in the various 6?;) (in view of the

g subsets ¥

1
1
i
2t
A
B

0. sists 0
and 0, con

K
acE4 Ta? ures,

positivity of their meas

cetmlnot be more than a countable number of such subsets). By Zorn’s [emma; e

at least one maxi 0 . . . et Ko
ximal element (ko> 05(0)). But in this maximal element the

‘ . spac®
not be different from the whole space A, because, otherwise, consideriné the 'Pet
(A, 1, because, ' b

A 1\« o) and arguing as above, it would be possible to select in ita
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Ak OF constant positive width with respect to each of
KC 1o icts the maximality of (k , 000,
) and this contradic y of (kg, 6, 0)

and on Ko v
riction 0 Ko
we now prove that among the (not more than countab
: = (0 i N :
mposition 0 = 6 Ko there is a subset A for which

£ and n that satisfies
the set A can be added
‘A we consider the coarsest decomposition that con

coincides with ef( ‘:)),

- to Kos
tains A and whose re.

ly many) elements of the

deco
s = st | <o -
(5 is the width of A, and Y,l'{ C Y is a subset depending on A for which py! = _
~ g A
ufr ). With this aim, we prove that for some element A of g we have
)
~ . 1

If for each A € 8 we had the opposite inequality
m (K N(X; x Y1) > —1,— esg,

then for their union A, = Ux, A we would have

I
I
i
g
E
|
. mUAn (X1><Y1))=; mANX XYY >Le Y g=Le,
I Lo 2
' €0 Keb
and this contradicts (37). Consequently, there is a set A C M of constant positive
width with respect to each of ¢ and 1 and for which both (38) and (39) hold. To con-
dlude the proof of the assertion that forms the basis of our induction argument it suf-
fices to use Zorn’s lemma a second time, repeating word for word the previous argu-
ment based on this lemma, with the single change that the decomposition 8, must now
consist of subsets A of constant positive width and satisfying simultaneously both (38)
and (39),

Il Induction step. We assume that Proposition 59 is proved for any e > 0 and
fork=1,...,n,and we prove it for k =n + 1. Let €, = ¢/4n. We first prove

that for each element A of the decomposition {(e; X,,...,X,; Y,,...,Y,), whose
EXistence ig assumed, we have

mANX XY <esp k=1,...,n, @1)
mANXEXY,)<esy k=1,...,n. )

deed, by hypothesis, for each element A = A we have (35) and (36), from which it
f"uows that

mAnx, x Yi)=m@ENECX, XCYh)<esg, k=1,....m
TANEEXY ) =mE N (CXEX CY ) <esp k=1,....%

® o chooge ¢

~ . itive
ome element A, € {(e,; X,,. .. » Xpi Yys. .., ¥,) of posi
measme

~ g ~ — ~ e;
»and for the subspace (Ag, m% ) construct a decomposition {x & = §X o

" Yn+1): just as in part I, such that for each element A € i’xo we have
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< 5-‘)‘K ’

L(Y, ) (43

- — 8 vyl
'lny([{x”“‘.'ﬂmx) KX(J";

< esy.

L(X, 1) (44)

y — Se Syt
" Tx (/.rxﬂ',u.mx) "/'"*'x l

We prove that among the elements of this decomposition there is at Jeagt one

A € ¢x of positive measure that satisfies the condition ¥(e; X, . .. X Y,
0 . . pid

, Y, 4 1) It suffices to show that there isa A € gxo satisfying the condition

e Xy, X Yoo Y,). For this we show that there isa A € g—xo for whigy

z Ik | , —
m(Aﬂ(XkK}i))<—z-€'sA7 If—’l,_._,ﬂ., (45) ,
mANXERY )< g k=1 n, 4

where s% is the width of A (with respect to the measure m). Assume, on the con
trary, that for each A € {X, We can find an inequality opposite to one of the 2n in-

equalities (45) and (46):

mA X Yh)> 7o, @
or
mANXEXY )= o5, @)

Let
Z=U X xXYHU U (XEXY,).

By (41) and (42),

m (g N Z) < 2ne;s5, = i )

D) esx

On the other hand, from (47) and (48) we get for each X [ fxo that

m (A Nz > %ssh. (0 |

Combining all the inequalities (50) and using the fact that

U A=&, =
KC‘ :Ao 0 K;KU SA Sin’

)

P

we find

i)

2 m(KﬂZ}:m(KnﬂZ) ;:%esl, :

Kery,
hich icts (49); by A€o |
which contradicts (49); by the same token we have proved the existence of a AS3h0

of positive measure for which the 2n inequalities (45) and (46) and the inequalities

(43) and (44) hold, and with this, by Proposition 58, we have also the condition

TEXps o Xy s Y Yoi1)

2
it
3
&
-
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To finish the proof of the proposition it now suffices to remark that t

he naturally
collection of subsets of M of constant width with respect to ¢ and

ordered . . n and for
ich there exist decompositions havmg the property (e, X] 1 e ey Xn+ 1’ Y] .
;hl ) is by what was proved, not empty, and it is obviously inductive. A maximal ’
1 +1 4

n ont (which exists, by Zorn’s lemma) cannot fail, by the above, to be the whole
elerﬂe M, equipped with the required decomposition having the property Ve X, .
;pacI: Y-+ » Ynt1) (The necessary argument by means of Zorn’s lemma \:vas
d’;;ed out in more detail in part I: from the existence of some subset of positive
measure having some property we get the existence of a decomposition of the whole
space into subsets of positive measure, each element of which also has this property.) o
If in the proof of Proposition 59 we use Propositions 55*, 57*, and Theorem 7*
instead of Propositions 55,57, and Theorem 7, we get the following improvement of

Proposition 59.

PROPOSITION 59*. Let the measure m be absolutely continuous with respect to
the measure m* in Proposition 44*, and let the density k(x, y) = dm/dm* be bounded
on each element of ¥ A n. Then for any € > 0 and any collection of subsets X, . . .,
Y, CXand Y,,..., Y, CY thereis a decomposition e Xy, ..., X Yi,...,
Y,) that is not more than countable and satisfies the condition e Xy, oo, X
Y,.--, )

Instead of (37) the right-hand side of the inequality must contain the measure
of the symmetric difference of the sets A, and A estimated in Theorem 7*, so we
should set €, = €/10. Part II of the proof of Proposition 59 can be carried over with-
out change. ®

We now introduce the following notation for the truncation of a function. We set

k(z, y), when k(z, y) <N,

ky(z, y)= 0, when k(z, y) >N,

Dk, y) = k(x, y) — kp(x, y).

_ ProvosiTion 60. For an y doubly stochastic density k(x, y) and any € > 0 there
Y ameasurable subser M y CM such that mM | > | — €,and on the subspace My, My )

the density of the measure m m, With respect to the product measure My | (€ x
. 1 o
", Inis bounded (myy [ and m m In are the canonical projections of my, ()le) h
(M"li)/E and (M|, m,, )n; it is not required that M| is a set of constant width).
I

Proog We choose a number N so that

S ky(z, y)dm >1— ;.—
M

We consider the functions

(@)= [ ks (2, 9 dv =l (z, gp:b0a. 1<) (@ V)
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and
5 (W)= Skx (@ ) A3 = T0X (2, ke, vy (@ ).

Let X' C X be a subset such that for some number ¢’ > 0 we have a(x) > for
x€E X', and pX'> 1 —¢/4. We choose a subset Y' C Y and a positive NUmbey o

» such
that

S ky(z, y)dp >c" for yEY/,

‘\'I
vY > 1 —i and "NV <c'.
We see that we can take M to be the set

My =X'"XY') N {(z, y):k(z, y) L N).
Indeed,

o] @

mMy > 1 — o —(1 —(1 — )1 = ) >1—e.

Further,

Sk‘v (z, yydp>¢" for yEY',

XI

Skx (@ ydv={ky(z, y)dv— | kv@ dv>c —c'N>0 for 26X,

¥ F\Y
Consequently, for the density k,(x, ¥) of the measure m

M, with respect to the product
li/E X liln on M1/E X M1/77 CX' xy' we have

ky (2, y)= i 7} N

‘ kyiz, yydo | ky(z, y)dy < ¢’ (¢" —¢"N) <o o
X 7

PROPOSITION 60.* For any doubly stochastic measure m that is absolutely cor

tinuous with respect to the measure m* (defined in Proposition 44*) and any € > 0

there is @ measurable subset M 1 €M such that mym 1 > 1 — ¢, and on the subset

M. . m 1 j '

M, Ml) the density of m M| With respect to m}{,l is bounded on each element f

the decomposition EAnof M, m¥, ).
1

The proof is easily obtained from

the proof of Proposition 60, replacing
IxtkpGx, y)du and [0k P ’

~(x, y)dy by the expressions

T
i, 9): k(@ NEN(C (e, g, zexsy AN Ty k(G N (O, ) v EXY

“t’here C(x, y) is the element of £ A n containing the point (x, y); instead of the (;.oﬂ'
:la“t N wl:l use the function N(C), which is measurable with respect to £ A1 i
SO possible to obtain the ypiform bounded e
ne i )
14. By means of P e e of the density del/de-l ce 0
foposition 59 it is already possible to prove the existel

an independent complement of the coordinate decompositions § and 7 under °
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" we are concerned not about the complementation property,
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mption of a bounded density k(x, y). However, oyr immediate
258! .
4ith this assumption:
(f we take a subset M, such that on the subspace (M

goal is to dispenge

1* My ) the density wigp,
espect to the product measure m Ml/E X m Ml/n is bounded (see Proposition 60) and

construct & decomposition that is an independent complement of the coordinate de
compositions ¢ and n with respect to m My then this decomposition wil] not be inde-

- dent with respect to ¢ and 1 and the original measure (without the specified re.

finements it will not even be a decomposition of the whole space (M, m)). However

- but only about the inde-
endence then, as we know, such independent and sufficiently fine decompositions

exist even without the assumption of a bounded density. Therefore, we can hope to
construct the required independent complement in the case of an arbitrary density by
approximating it with decompositions of the whole space M into subsets of positive
measure that are made up of two parts: a more massive part that approximates an
clement of some decomposition that is an independent complement of the pair £, 7
with respect to the measure m M (e) and a less massive part whose contribution goes
to 0 in the course of the approximation and that is independent of § and 7 with re-
spect to a “truncated” part of the measure and that makes the relevant subset indepen-

dent with respect to the coordinate decompositions. We proceed to the rigorous reali-
zation of this plan.

PROPOSITION 61. Suppose that the doubly stochastic measure m is absolutely
continuous with respect to the measure u x v. Then for any € > 0 and any collection
of subsets X |, . . ., X, CX, Y,,...,Y, CY there is a decomposition {(e; X,

s Xy Yoo o0, Y,) that is not more than countable and that satisfies the condition
e X,,. .. y Xy Yiu oo, Y))

PROOF. We set €, = €/4 and construct, using Proposition 60, a subset M; C
M=X x ¥ such that mM, > 1 — e, and the measure m M, on the space (M, li)
is such that jts density k,(x, ) with respect to the product of its projections mM,/ 3
ud li/n onto X and Y is bounded by some constant K, < °. Then, using Propo-
Sition 59, we construct a decomposition ¢ of (M, m,, ) that is independent with re-
et to £ and g and satisfies the condition ¥(e; X,, ..., X3 Yyro -+ Y,) in this
"Pace. Let M, = M\M,. We consider the space (M,, mM2), or (M, mMz)' The
easure mM2 on M = X x Y is absolutely continuous with respect t0 the product
# %% and consequently also with respect to the product of its projections ’""T’%/E nd
mMz/TI; therefore, by the corollary of Proposition 44, there exists 2 decomposition §
o (0, mMZ) into subsets of constant width with respect to ¢ an(in such that the

iscrete Measure space M,, my, )f? is isomorphic to (M, my, )§- ~ )

Now let A ¢ M. be an elefnent of T and AC MZ the element of ¢ that c;l”ede_
SPonds tg §¢ under thils isomorphism. Let A = KU A, and let ¢ be the meas:ll:t /%
Composition of (M, m) into all possible subsets of this form. From the fact
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M . " . g ile A h ,

has width s ' = s with respect to £ and n and ’"lMl» Wh'lcl A has constay width (1,
‘ T i 1ism) with r

equal to the same number § > 0 (by the isomorp ) espect to My, ang A

from the relation A N AcC M, N M, = @it follows the set A = AUR has ¢q

N NStant
width equal to s with respect to any convex combination of li and mMz; in par.
ticular, with respect to m.

For some k, 1 <k < n, we consider the set X, and an arbitrary element &t
A=A UA. Since { satisfies the condition (e, ; X}), it follows from (41) that
My, (11 N (‘\—k X )‘l_-\)) < Slsgll’

and hence, by the choice of the set,
mAN (X X YE) < (1 —e) e ¥ Ceysh, 51)
Furthermore, for the same reason,
m (7\ N (X X )i)) < mA < elnmﬂ = sls{z, (52)
and, combining (51) and (52), we get
m (AN (X X Y§)) <281 (53)

Instead of Y% it is now better to write YK. By Proposition 58, the set A of constant
width s satisfies, by (53), the condition Y(4e,; X;) = V(e; X,). Repeating the same
argument with each of the remaining subsets X 1pr--sXy,and Y, ..., Y, we con-
clude the proof of the assertion.

We mention that the assumption of absolute continuity of m with respect to
K x v was used only so that we could use Proposition 60. As is shown by Proposition
60%, the absolutely continuity of m with respect to u x v can be replaced by the abso-

lute continuity of m with respect to m*. Therefore, the following generalization of
Proposition 61 holds.

PROPOSITION 61*. Suppose that the doubly stochastic measure m is absolutely
continuous with respect to the measure m* (defined in Proposition 44*). Then for _
any € > 0 and any collection of subsets Xioon, X, CX, Yi,.o0y Y, C Y there ©
a decomposition {(e; X, . . ., X3 Yiyoo, 1),

We can prove the central theorem of this chapter.

THEOREM 8. Let (M, m) be 4 Lebesgue space with nonatomic measure, d
and n measurable decompositions of (M, m) such that £V n = e and the image o
under the canonical imbedding M — M/t
to the product of the canonically defined
M/n. Then there exists a measurable decor
of & and of N

. ith respe
x M/n is absolutely continuous with ': 4
measures y = m/t and v = m/n " M/ et
nposition ¢ that is an independent comp

s
PROOF. Let {X,, k = Lio..}and {Y, k=1,. .. } be bases of the gpace

X, w) = (M/¢, m/t) and (Y, ») = (M/n, mfn). We construct a sequence of der
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=1,...,in the following way. Let € VObea sequence of

ibers. Let ¢, = t(e; X, Y,)bea decomposition satisfying the condition
Hive nu .

P(,;mv v) (Proposition 61). We now consider each element A of §1 as an inde.
eI:Xl l;ubspﬂce (A, my) of (M, m) and construct a decomposition g;‘ of this sup.
ndcn he condition wez; Xll ng Yl’ Y2)

jsfying t
" ;a:elzsc);llection of all elements of {* for all A € ¢

o, m), which we denote by ¢,. We continue t
o of (M, n 61 each time, decreasing € and adding

forms a measurable decompo-
his construction ad infinitym

| bl
gitio

. Propositio a new pair of sets from the
ysing s { X,) and {Y,} each time. We get a refining sequence of decompositiong
jven

ol G <t <ot each of which is not more than countable and is jp.
with respect to each of the coordinate decompositionsé and n. For each
AT the decomposition §, satisfies the condition Y(e; ). ST Xy Yi,..., Y,).
We now prove that the decomposition § = \/ ¢, is the required one,
since each {, is independent with respect to ¢ and 1, the same is true for their
jmit {. 1t remains to verify that £V = e and n V { = €. For this, we show that
for a typical element A of { the complementation criterion in Proposition 48 is satis-
fed. Let A =T Ay, where A, = A, (A) € $x>and let m, = my, be the condition-

a measure on A,.. We consider an arbitrary element X,, of the chosen basis. By the
definition of §, , for kK = n we have

kl
dependent

n“ﬁ((x,,xym,\k — SAkaYK,; "L( v v) < xS pp (54)
where Y4 C ¥ is some subset for which uX,, + vY,’(k = 1. We verify that the
following convergence holds in the norm of L:

1
P'an \p (ﬂyx(.XnX Y)nAk) (y) T “Ym(x,,x Y)nA) (y)' (55)

k> o

where m X,x¥)n 18 the measure on the subspace (X, x Y) N A of (A, m,). In-

deed, we consider the subset X,, x Y C M as an independent subspace with the

fMeasure m x,xY>and consider its quotient space (X, x Y, m any)/(n V §). Let

‘:lle elements of this quotient space be assigned the coordinates (, A), where y denotes
f

* OMesponding element X,, x  of the decomposition 7, and A s the correspond-

belement of ¢, Let (162 A) be the density of the image of m X, XY under this

home : . ¢
MOrphism with respect to the product of the measures m}nxy and my xy

:)hf"’;u‘::t'canogical'ly determined~0n (X, x Y)/nand (X, x Y)/¢. We deﬁ:: i: S:;]:l;:ce
funCtionlc;cns-hk(y' A), setting (¥, A) for fixed y equal to the mean :;inu e
Ao tf)', A) over the set of values for A contained in the correspon " cge ferert
aVe;ageso. S 1t is well known that for an integrable function the Seql']efinite .
ing (ie., conditional mathematical expectations with respect to an in ths
s of 0-algebras) converges to the function itself in the mean {1
example, [24], Chapter VII, §4, Theorem 4.1).

Torm of L) (see, for
k(y, A= (“Ym(x,.xr)nh) ),
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Lo

and

"x (¥ A)= (“:-X._\-,,\nmk) (¥),

-"‘\. Hs,\k

where A C A\, from which (55) tollows.
In a completely analogous way it is shown that for eachn =1, . . We haye

convergence in the norm of L(X, M-

- ; T
(“XX\X\\'n\ﬂ,\k)(r) .‘\~->\_\~> (h‘\

l.\'\)‘u\ﬁ.&) (:1:), (56)

v ‘. k‘s,\ X

where M xxy yna is the measure on (X x Y,) M A, regarded as a subspace of (A, m,),
From (54) and (55) it follows that in the metric of L(Y, ») and for each
n=1,.

Xary, W) 5> BN (B x,xnny) )

and from (56) and the analogue of (54) it follows that in the metric of L(X, v) and for
eachn=1,...

Xoxy, (@) — vY, (“xm(.\’xf..)n,a) ().

But a sequence of characteristic functions of subsets of constant measure cannot
converge in the norm of L to anything other than the characteristic function of some
subset of the same measure; consequently, for eachn =1, ... the functions

v} "n.\.m,(_\.”")m(x) and “Xn“ym(x,,xrma (¥)

are all characteristic functions of some subsets. This means that for the conditional
measure m, the criterion formulated in Proposition 48 holds; consequently m, is the
kernel of some isomorphism of the spaces (X, p) and (Y, »), and the decomposition §
really is an independent complement of the decompositions ¢ and 7 (see Proposition
42). o

If instead of Proposition 61, which is the basis of the proof of Theorem 8, We

use the more general Proposition 61*, we arrive at the following modification of Theo"
rem 8, which is useful for subsequent applications.

THEOREM 8*. Let (M, m) be a Lebesgue space with nonatomic measure, and &

and m measurable decompositions of this space satisfying the following conditions:

) Evn=ce.

2) If &, and m, denote the measurable decompositions of the spaces X = M/E
and Y = M/n induced by the canonical mapping M/ — M/(¢ A ) and M/n =
M/(& A\ n), then the conditional measure on each element of the decomposition § AT
is absolutely continuous with respect to the product of the conditional measures on

those elements of &, and 0y that are carried under these canonical mappings into e
element of £ A q (ie, m < m*),

gys o i
3) The conditional measures on the elements of &, and n, are purely contimi?™"
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Then there exists a decomposition ¢ that is an independent complement of ¢
and M
We emphasize that when the decomposition £ A m contains a continuous compo-
e the measure m/(¢ A n) is not purely atomic), then the measure m is a for.
nt (1.6 ) .
ne ot absolutely continuous with respect to the product of the measures M= mg
tior
and V = m/n. . . PP
15. Theorem 8* permits the description of many situations in which a space
th a doubly stochastic measure provided with certain other structures has an inde.
w‘ : . .,
pendent complement of a pair of given decompositions. For example, when the meas.
ure m is given on an affine subspace of some finite-dimensional Space and is absolutely
continuous with respect to Lebesgue measure on this subspace, we have the following
assertion.

PROPOSITION 62. Let E, = R"1 and E, = R"2, and let I C E, x E, be an affine
subspace of dimension n on which a measure m is defined and absolutely continuous
with respect to Lebesgue measure on L. Then the space (E, x E,, m) admits a com-
plement { that is independent with respect to the coordinate decompositions, if

dim (EIX{O})ﬂL>O and dim ({0} XE)NL>0.
PrROOF. It suffices to limit ourselves to the case when nElL =E, and 7’52L =

E,, otherwise taking the space nElL X nE2L instead of F 1 X E,. For convenience,

we can also assume that L is a linear subspace, otherwise translating L parallel to it-
self to the origin. Let

L= (E,X oHncL, L,=({0} x E)NL.

s Lebesgue measure on L, and £ and 7 are the coordinate decompositions, then
EA N is the decomposition of L into cosets with respect to the subspace L, + L,
and the decompositions £, and n, are the decompositions of E| and E,, identified
With £, x {0} and {0} x E,, into cosets with respect to L, and L,, respectively.
Since dim(Ll +L,) = dim L, +dim L,, the conditional measure on the elements
oFEAm, ie., the Lebesgue measure on each of the affine subspaces of L parallel to
L+ Ly, is the product of the conditional measures on the elements of ¢, and ;.

“.’tl.th that, we are in the setting of Theorem 8%, and this concludes the proof of Propo-
Sition 62, ¢

With 3 vj
Evne

If m* §

ew to formal completeness we say something about the cases when
€ and when the number of factors in the product space is greater than two.

. ProrosiTiON 63, Suppose that the decompositions & and n of the space (M, m)
€ such

@bsolyy that th.e Measure m(my x my)~ ! defined on X x Y (X = M/E; Y = M/n) is

ely continuous with respect to m/t x m/n, and the measures m/§ and m/n are

ZZ:JJ “Ontinuous. For there to exist a decomposition § that is an independent com-
It of £ ana N it is sufficient that £ \/ n admits an independent complement.

Proor, Let ¢, be an independent complement of the coordinate decompositions
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of the space (M/E x M/n, m(mx % Ty)™ 1),. which exists, by.f 'Theorem 8. If ¢ s ay
independent complement of £ V n, and §3- is the decomposition of (M, ) that jg g,
preimage of {, under the canonical mapping M — M/£ x M/n, then the decompo.
sition ¢ = ¢, V §; isan independent complement of £ a.nd. n. Indeed, ¢V £ =
HVEVE=EVES V=6 VEVD = z%n(‘i, similarly, £ Vg < The inge.
pendence of ¢ and £ follows from the fact that ¢ is independent with respect to ¢
and the conditional measure on each element C of {5, identified with the Product o
an element of ¢, and an element of {,, is the product of the conditiona] measures g
these elements (the independence of {, and £ V 7). Therefore, under the Canonicy|
projection M — M/¥ the conditional measure on each element of ¢, V $3 i projects i
into the same measure as the conditional measure of the whole element of $3. The
desired conclusion follows from the independence of {3 and £ The independence of
¢ and 7 is proved in a similar way. ®

We remark that the existence of an independent complement of the decompo-
sition £ V 7 is not a necessary condition for the existence of an independent comple.
ment of £ and n. We give a “discrete” example that clarifies this assertion; an example
with purely continuous m/§ and m/n can also be obtained from it without difficulty.

ExAMPLE. The measure space (M, m) consists of 27 points Qrr b k1=
1, 2,3, m({a;,}) = Pix1» Where

P111 == Pys» = Pg33s Pray = Dygp = D213> P13y = Pg1o = Pao3»
P211 == P332 = D337 Dag) = Pygp = D313y D231 = Pri2 = D3ag (57)

P311 = P120 == Dag3» P21 == Pogp = D113y Pssy = Dyyo =— Pioge

Moreover, Z Pi1 = Zy 1Diga = 1/3, Pi11 =Pyy12 = DPy,3, and the numbers py3p»

P122,3nd p,, 5 are not all equal to one another. It js easy to see that if £ and 7 ar¢
the decompositions generated by the mappings @y > i and g, > K, then the de-
composition of the whole space into the nine subsets consisting each of the three poins
2, whose indices coincide with those of the probabilities p,, , in each of the nine
groups of equalities (57) is an independent complement of Sglkand 7, but the decomp0*
sition £ V 4, which is generated by the mapping q,, , 1 J trivially does not admit an
independent complement, because of the conditiotrfs’p ,—_- p =Pi13 and
P12y = Pyaal + 1)y, “Piasl tpy,, TPyy3l> Ol,lv:fhjch ;r:lzly that the cof
al measures on two elements of £V 7 are not isomorphic.

Fina‘lly, we mention the case when an independent complement of a number of
ieCOmPOSItions E1s -5 £, is to be found. Assuming the condition &, V" Y E"d
— €, We can suppose that we are dealing with a “multiply stochastic” measure deﬁnee
on a subset of the unit cube in R”, Ip contrast to the case y = 2. the analogu® °
?_"khoff"’o“ Neumann theorem does not hold even for n = 3, for ;ubic matrices °
ZITC;IS:;:U?XX( 2 x 2, A.S la counterexample we consider the “triply stochastic” 5

@ij%) COMSisting of zeros and ones, for which a,,, = ;90 = 19!

ditiof”

X
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_tand @00 = %010 = %001 =4y, = 0. Itis immediately clear that such a

“"'t:ix i itself an extreme point of the set of all “triply stochastic”
ma

: i - 2 % 2 x 2 matrices,
However, We consider the “triply stochastic™ 4 x 4 x 4 matrix (bjx) for which
1
b

. 1
=g A

T4~
— 0 otherwise, i.e., the matrix obtained from (a

and by o ' ij) by refinement of each of
s elements into eight equal parts distributed in the cells of the 2 x 2 X 2 matrix
1 ’

Jhich niow takes the place of the original element (a;)- Tt can be shown that such

o matrix can be represented in the form of a convex combination of triply stochastic
4x4x40, 1)-matrices. From this, in particular, it follows that if ont

he unit cube
M={0<x )z < 1} C R? we consider

the triply stochastic measure m that is abso-
jutely continuous with respect to Lebesgue measure with density

| .
2, when z <<, y<,'7, z<—;-, or

1 1
x>, y>, Z<—;—, or

Y, 2= [ 1
p(.’l: Y ) DI y<?: z>'n‘l_!'! or

1

1 1
I<?, y>?’ Z>7,

| O at the remaining points

(the measure “‘similar” to the above r:mtrix (ai,-k), in that the matrix (@;;%) can be re-
garded as a measure on the space M/(¢, V 22 % §3), where 51 , ,§2 and §3 are certain de-
compositions into two subsets each), then there exists a decomposition of (M, m) that
is an independent complement to each of the three coordinate decompositions.

The consideration of other examples of cubic triply stochastic matrices for which
the Birkhoff-von Neumann theorem is false does not lead in a similar way to the con-
struction of a doubly stochastic density on the cube that does not admit an indepen-
dent complement to the three coordinate decompositions. It would be interesting to
clear up the situation, if only in the matrix case: is it possible to prove that for any
multiply stochastic “matrix” we can construct a “refinement” (in the sense described
®ove) for which the analogue of the Birkhoff-von Neumann theorem holds?

§11. Probability measures on subsets of direct products

0. In this section we isolate a quite broad class § of subsets of the product of
t% Lebesgue spaces for which there is a simple criterion for the existence on the par-
toular subset of 5 doubly stochastic probability measure, i.e., a probability measure
having given marginal distributions. Our approach enables us to get, in particular, a
Citerion for the case when among such doubly stochastic measures there are nfeas.ures
that are absolutely continuous with respect to the products of their marginal distribu-
tions (“doubly stochastic densities”). The criterion for the existence of doubly stochas-
tic densitjes is used in an essential way in the subsequent applications. The methods

i ; ivati f this
an.d auxiliary propositions of the preceding section are used for the derivation 0
CMiterion,
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1. Let (2, Z) be a set with a distinguished o-algebra of subsets, anq P Q-
and g: Q — Y measurable mappings of (2, Z) into the probability spaces

(X, 2, py) and (¥, B, Hy)-

PrOBLEM A. When is there 2 probability measure y on (£, ) whosge

1 pm]e(:ti()m

; - -1
under the mappings p and g, i.e., the measures up and pg ™", coincide with g,

measures fy and py? _

perFiniTion 1. Let (X, ) and (Y, ) be two séts with distinguisheq 0-algeby
of subsets. Then 2 ® B denotes the smallest g-algebra of subsets of X x ¥ wijtp re.
spect to which the canonical projections y: XxY—Xandny. XxY—y are
measurable.

DEFINITION 2. Let (X, %[, p) be a measure space. Then U/u denotes the Boole.
an algebra of classes of p-equivalent sets.

DEFINITION 3. "%t denotes the o-ring of all subsets N C X x Y that can be rep.
resented in the form N =iVX U Ny, where py(myNy) = py(myNy) = 0.

DEFINITION 4. 3 ® B denotes the smallest o-algebra of subsets of the product
X x Y containing the o-ring N and with respect to which the canonical projections
Ty and 7y are measurable.

We consider the mapping p x ¢: © — X x Y, (p x q)(w) = (p(w), q(w)),
andlet 0 =(p xq)RC X x Y.

If there is a measure u on £ with the required properties, then the measure
u(p x )™, which is concentrated on the subset 9 C X x Y, equipped with the trace
of the o-algebra ¥ ® B, has similar properties with respect to the canonical projections
Ty: XxY—Xandnmy: X xY—Y.

Conversely, if there exists a measure H on Q for which u, = Tfﬂ;{l and My =
;Tn;’, then the measure E(p x q) is defined on the o-subalgebra (p x )~ '(U® B)
of the g-algebra Z, and the problem reduces to the extension of this measure from
such a g-subalgebra to the whole of Z. It is not a great restriction to require before-
hand the measurability of the set Q C X x Y. To within the solution of this separate
extension problem, the original Problem A reduces, then, to the case when Qisa
measurable subset of the direct product X x Y. However, the concept of measurabiity
requires some comments here.

For any measure space (X, %, u) the class of measures defined on ¥ and abso-
lutely continuous with respect to u is completely determined by the Boolean algeb™®
U /u, or, what is the same (see Chapter I, §1), by the ring S of classes of nwasumb]e's
functions on (X, o, u) that are y-almost everywhere finite. Therefore, in all Mg‘"_“ﬂ;“:
when we speak of the existence of some measure on X, the p-equivalent sets are ld:
fied; in fact, the problem is solved in terms of the Boolean algebra ¥ /u. In the ca:
of the product of two spaces it would be desirable to use only the Boolean algeb™
U/uy and B /iy, and not the spaces (X, 91, Hy) and (Y, 8, uy) themselves: w

We recall that an isomorphism of the Boolean algebras of equivalence classe in
sets does not imply, generally speaking, an isomorphism of the measure Space® eV: e
the case of countably generated g-algebras, if there is no additional requiﬂ?mentt : )i
measure spaces be complete, However, in the case of the product of two SPaces o
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(Y B) we see that the class of measures defined on subsets
an o.aigeb'a %l ® B)is not determined by the pair of corresp
theS Wiy o0 d B/uy of equivalence classes of subsets of X and
bra face of it this circumstance affirms the sometimes stateq opi
i‘;e correct to consider on the space (X x ¥, U ® ) only measures that are apgo.
utely continuous with respect to'the prod'.fct Hx X Hy. But in reality the Boolean
dgebras o/uy and Bluy dete_mune 4 maximal Boolean algebra § that can be realizeqd
1 the quotient algebra of U® B by the ideal R of subsets of ¥ x Y, where
o, y) and (Y, B, uy) are complete measure spaces_. Each countably additjve
qonnegative function on §) extends to a measure on % @ P whose projections onto
yand Y are absolutely continuous with respect to My and uy, and conversely.,

The Boolean o-algebra 9, for which it is convenient to introduce the notation

QL= Ql/!"x ® cz3/!"}!,
is now defined as the algebra (U ® B)/(n N (A ® B)), or, what is the same,

Q=ARB/N.

It is clear that, since the complete measure spaces X, U, u x) and (Y, B, Hy)
are uniquely (to within an isomorphism of measure spaces) determined by their Boolean
algebras Afuy and B/u,, the notation § = Uluy ® B/uy is correct. If the com-
pleteness of (X, U, u,) and (Y, B, My) is not assumed, then, repeating the construc-
tion just described, we arrive at the Boolean algebra of R -equivalence classes of U ®
$-measurable subsets, and the inclusions X C X and Y C Y, which imbed the spaces
(X, ¥, uy) and (Y, B, Ky) canonically in the complete measure spaces (X, 91, uz)
an (¥, 8, M$), generate an epimorphism j: 18— ﬂ_@ B (to each subset CC
XxY,ceq ® B, we assign its trace C N (X x Y)E€ U4® B, which commutes
with the corresponding relations of equivalence modulo ). Therefore, each such
Boolean o-algebra of classes of N -equivalent U ® $p -measurable subsets of X x Y is
the image of a Boolean algebra 9. It is proved below that the epimorphism j does
Mot necessarily carry a quasi-measure on 9 fu x @ B /uy into a quasi-measure (a quasi-
easure on a Boolean algebra is defined to be a nonnegative (not necessarily strictly
Pasitive) countably additive normalized function on it [28]).

Finally, we show that the Boolean o-algebra (% ® B)/ R constructed ft(: i“;h
Complete jally poorer than the
BOOlian ::la;;sra(l)(;) SLL I;I ,;) and (Y, B, py) can really be i::erntt‘:l(l) )Sful; s f and

My ® B /uy. For this, we consi
Y of 4 Lebesgue space (3, 3. m) such that XU Y =M, XN Y =@, and m*X =

of the product (on
onding Boolean alge.
Y, respectively, Qp
nion that it is jn Some

n.z*y = 1 (and, consequently, m, X = m,Y = 0), where m* is the outer measure. Ob-
“0;‘31)’, the measure spaces (X, %, u ) and (Y, B, uy) (where ¥ and Bare the
O-algebr

€z,

4 of subsets of X and Y, respectively, of the form CN X and CN Y, C
Muxcnx ) =mC and uy(C N Y) = mC) are such that the Boolean o-algezl:)rg 3
“x and 8 Ju, are isomorphic to the Boolean o-algebra Z/m. On o > M, o
e constryct 5 measure y such that pC = 1 for some C € £ ® X and, more;vfer, Hm
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regarded as being canonically imbedded in M x M) The set ' witly the " uiry
taken to be, for example, the diagonal 2 of M x M 404 th Proy,

¢ Illl!ilﬁllre u
=y ——3

erties can be | Y
can be taken to be the image of under the mapping /2 M —> Dy
Ll A - ‘ ' .

It follows at once from the construction of X and Y that the diagonal D
intersect the set X x Y €M x M; hence it is meaningless to consider the meg

does oy

Sure on
Boolean algebra (W ® B )/ 0. the

Thus, in the following (and this turns out to be very essential) we consj
Lebesgue spaces (X, W, fy) and (Y, B, my). In this connection the CONStructigpg
be carried out in terms of the Boolean algebras Wy and B /u y- The pProbler, lhucnn
consists of determining conditions for the existence, on a given element of the 3001:;1
salgebra W/uy ® Bfuy, of 4 quasi-measure whose restrictions to the O-Subalgebyyg th:g
are canonically isomorphic to ¥ and B coincide with py and .

der on|

The Boolean g-algebra = W/uy © Bluy dL‘SC"il?t‘d above is far from having
all the useful properties enjoyed by the Boolean g-algebra X/m of m-equivalence classeg
of subsets of (m, X, M) with countably generated o-algebra .

PROPOSITION 64.  For measure spaces (X, U, py) and (Y, B, uy) with meg.
sures containing continuous components the Boolean o-algebra ) = U /u . ® %/“Y

not a Boolean algebra of countable type and is not complete.

Is

Proo¥F. A Boolean algebra is said to be of countable type (see [143]) if any
subset of pairwise disjoint elements of it is not more than countable. It suffices to
consider measure spaces (X, U, u,) and (Y, B, uy) with countably generated o-alge-
bras 9l and Band purely continuous measures u x and uy. The Boolean algebras of
equivalence classes of measurable subsets of all such spaces are isomorphic; therefore,
it suffices to consider any concrete realization. Let (X, U, uy) = (Y, B, uy) be the
group R/Z of rotations of the circle of unit length with Haar measure. Our uncount:
able subset 11 of pairwise disjoint nonzero elements of the Boolean algebra € can now
be defined as 1 = 1, = {(}a, « € A}, where U, = {(x, y): x, y ER/Z, x—y =ah
and 4 € R/Z is an arbitrary uncountable set, while U denotes the element of £ gener
ated by the subsets U C X x Y. The measurability of the U and their pairwise dis-
jointness are obvious, and it is proved that 9 is of uncountable type. ,

Now, to prove the incompleteness of 9, i.e., to show that not every subset of i
has a supremum, it suffices to consider the same type of subset U ,, where A is 2

(Lebesgue) nonmeasurable subset of R/Z. Indeed, suppose that B = sup U4 exists:
Let

B={B:{(z, y)ix —y=pB) A B=£0).
Obviously, B D 4.

. auw‘
Each element U ; of the Boolean algebra O is invariant with respect 10 the :

morphisms of ) generated by the transformations of the set X x Y of the form™ i
(%, ) = (x +7, 7 + 7); consequently, by uniqueness, the supremum B of W serﬂ
such elements must also be invariant with respect to all such transformations: ,F 1o
this it follows that if 8 € B, then not only is it true that {(x, y): x -V~ & ald
#0, but also {(x, y): x -y =g} < B. If there were a B, € B\A, then it w0

{
1

2
4
i
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hapPe" that
BACH, y)ix—y=p) < B,

put, 8 before,
BACH@ ¥z —y=F) >U, for aga,

and this would contradict the equation B = sup,e 4 (U, }.
Thus, B = A, i.e.

B=A{® y):a—y=aqa, a€A).

Now we show that the set {(x, y): x —y = a, « € 4} is not in the o-algebra
yl ® B when A is a subset of the circle that is not Lebes§ue measurable. Indeed, the
product measure py X iy is defined on all subsets in A ® B and is obviously in-
variant with respect to all the transformations (x, y) — (x + %Y =7, E€ER/Z, of
X x Y. The mapping £ X x Y +— R/Z, K(x, y) = x + y, carries the measure Hy X
gy into an invariant measure on R/%, and the collection of measurable subsets of R/Z
coincides with the collection of U ® B -measurable subsets of X x Y of the form
Uasea Uy Since [81] on R/Z there does not exist an invariant measure defined on
the g-algebra of all subsets, for some 4 C R/Z (which is obviously not Lebesgue mea-
surable) the set {(x, y): x =y =a,a €A} isnotin U@ B. e

In the following, admitting abuse of language, we frequently do not distinguish
among a subset M C X x Y, the class of subsets that are 2 -quivalent to this subset,
and the corresponding element of the Boolean o-algebra U/, ® B Iy
2. We proceed now to the basic problem.
PROBLEM B. The Lebesgue spaces (X, 1, Hy) and (Y, B, uy) are given, and an
B-measurable subset K of the product X x Y is selected. We consider the ques-

tion of the existence of a probability measure u on ® B having the following
Properties:

1®

1) pK=1; 2 prl=1p, 3) pryl=p,.

The solution of Problem B given below reduces to the determination of a cla_sS §
f subsets of U & B (or a class of elements of the Boolean algebra 2 = l/uy ®
Bluy) for which a simple criterion is stated and proved for the positive solution of the
Problem; it also turns out not to be complicated to test whether or not a set K is in .
Inits Properties the class {§ turns out to be similar to the class of compact sub-
fa Product of compact sets, but it is defined in terms of pure measure theory.
Ore introducing it, we state some definitions.
Let £ and M be two refining sequences of measurable decompositions of the
Ctive Nonatomic spaces (X, ¥, u X) and (Y, B, uy), each of which converges to
¢ decomposition into points (£, 7 €, and m, 7 €y), and such that & and m, are
Fich Gecompositions of the spaces into 2% subsets of equal measure. BAci
Be I?EFINITION 5. Pis the class of subsets of X x Y of the form 4 x 5, =
5 P is the class of subsets of X x Y of the form 4 x B, where A C X is

Sets o

l’eSpe
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£, -measurable and BC Y is nk-measurable;c?t? is the smallest algebra of sots o4
P; aP, is the smallest algebra o.f sets cor'ntammg P | i
Thus, C € P if and only if C admits a representz.ltm.n C= U?Ak b
A, €U B, EB,N < oo, and the sets A, x B are pairwise disjoint.
DEFINITION 6. Let C € aP. Then
()= max (p;4+pB)

AEQ(, BEQB
(AXB)NC=2

ntain]' ng

k> where

(here it is not excluded that pyA = 0 or uyB =0, so that TI(C) > 1; this Maximyp,
is attained, by the condition C € aP).
DEFINITION 7. Let C, D € aP. Then p(C, D) = 2 — II(CAD).

PROPOSITION 65. p(C, D) is a metric on oP.

ProoF. It suffices to verify the triangle inequality. We set p(U) = p(U, g),
so that

p(C, D)=p(CAD, @)=0p(CAD).
Further, p(C, E) < p(C, D) + p(D, E) is equivalent to
¢ (CAE) < o (CAD) - p (DAE).

Since, as is easily checked, CAE C (CAD) U (DAE), and since the function p(U) is
monotonically nondecreasing with respect to inclusion, i.e., W O V implies p(W) 2
p(V), it suffices to verify that p(V U W) < (V) + p(W) for ¥V, W € aP. Indeed, if

ArXBy)NV=g, (AwXBw)NW=£g,
where A, Ay, € ¥ and B, B}, € B, then

(4yN4y) X (B,NB)N(V U W)= g,

and

P‘x (AVnAW) > p‘xAV + F'wa— 11
br(ByNBy) > py By, byBy—1,

from which we obtain

TVUW) > b (4N 4y) + 1, (B, NB,) > 11 (V) 4 T (W) —2

or
2—IVUW) < 2—T1(V)) & (2 — IL(W)),

Le, o(V U W) <p(V) + p(W). e

) 0
It is useful to observe that the quantity p(V') is analogous to the term rank

s
(0, 1)-matrix [101].

We remark that if in the definition of the functional I we take the m&™
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ly over the subsets A € ¥ and B € B of positive measure, then p ceases to be 2
zwtric as is clear from the example of the sets C, D, £ (see Figure 7, where X = Y

= [0, 1]
%
.

N\

%

\Q
N \\Q\l\\

pn(\)'ﬂ

FIGURE 7

pC, E)=2, ¢, (C, D)=y, (D, E)=

to|

where

u(F, G)=2—max {(pA+p,B:p A>0, p,B>0, (AXB)N(FAG) = g},
p(C, E)>p(C, D)+p (D, E).

PROPOSITION 66. (aP, p) is a separate metric space.

ProoF. Clearly, we can take the set { J,aP, C aP as a countable dense subset
inaP. ® 3

Of course, the metric p can also be defined on the whole o-algebra U ® %;in
the definition of the functional IT it would be natural to require only the condition
(4 x ByN C € N instead of the disjointness of A x B and C. However, the metric
thus defined on the Boolean algebra U/u, ® B iy turns itinto a nonseparable metric
Space. An example of a continuum subset, any two elements of which are at a distance
of not less than % from each other, is given by the subset of this Boolean algebra con-
sidered on P- 174 for the proof of the noncountability of its type. Nevertheless, the
Metric is very natural: the less the number p(C), the more the set C “resembles” a

%®tin the ideal . Obviously, if N € %, then p(NV) = 0. We prove the converse asser-
tion,

PROPOSITION 67. Let ¥V C X x Y and SUP(4 xB)n VE R (uyA + uyB) = 2.
Then v e g,

PROOF. et {4,} and {B,} be sequences of subsets of il and B respectively
Whose existence follows from the hypothesis) such that

(A, xB)NVEN,

i‘l(l - PxAn)< <o, i (1 — Pan)<00.

n=] ﬂ='
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It is casy to see that
v C (lim CA4, X y)U(X x 1im CB,)

to within a subset in 7. But

p.xii_]—n CAﬂ: P'y I—I_IHCB,]: O,
since

EPXCA”< co, EPYCBH< O,

=1 n=1

from which we get the required conclusion. @

PROPOSITION 68. Each family S C P has a supremum in the sense of the
structure of the Boolean algebra Ufuy @ R /uy (i.e., mod N).

Proor. Let {P,,n=1,... } be a countable subset that is dense in S in the
sense of the metric p. We consider the set @ = 7T P, and prove that Q = sup §.
Let P € S; we show that P C Q (mod %). Let P, — P, ie., p(P, P,,k) — 0. Then

o (P\UP., @)>0 and PN\UP»w—~ D,
k=1 k=1 k m

i.e., by Proposition 61, we get that P\ J;—, P"k en.

Conversely, it is obvious that no subset of X' x Y not containing the set P
mod % can be an upper bound for {P,}, and a fortiori for all S. ®

We now introduce the class of subsets of X x Y that is basic for us.

DEFINITION 8. & denotes the class of subsets of X x Y whose complements ar®
suprema mod % (in the sense of the Boolean algebra 9 /iy ® B/uy) of families of
subsets in P.

The class § is quite broad. In one particular case when the spaces (X, &, iy)
and (Y, B, uy) are complete separable metric spaces with Borel measures Hx and by
the class 3§ contains all the closed subsets of the topological product X X Y. since
basis of open subsets in X x Y can be taken to be the class of products of open sub-
sets of X and Y, the closed subsets are the complements of countable unions of opef
subsets in this basis. Informally, we can think of the family P as analogous to a ba?
of open-closed subsets of a compact space, the suprema of subsets of Pas analogoys to

t
the open sets, and the class & as analogous to the class of closed subsets of comp?® ‘
space.

p—

- t ‘
In spite of the uncountable type of the Boolean algebra % /pny © By teS. ‘:
for whether or not a given set F belongs to §§ bears an essentially countable ¢

PROPOSITION 69. F € § if and only if for some Py, k=1,-- >
F=XXY)\UP, (modR), where P, € P, P,NFE RN

The proof follows at once from Proposition 68.

S T A N e
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3. We now consider the space of probability measures u on (X x Y, u& )
n,: compatible with the structure of the Boolean algebra Ulpy ® Bluy.
perinttioN 9. IF (X, U, wy) and (Y, B, uy) are Lebesgue spaces, then

-« Y) denotes the space of probability measures pon (X x ¥, U® ®) for which
M(X_l = Uy and pmy’ = My, equipped with the topology 7 determined by specifying

that @

Hﬂxfo Jlowing fundamental system of neighborhoods for an element HE MX x Y):
€
" V(P" Al’ = 1471Y Bl' Y Bm E)

(o € M [p (A X By) — (A X B | <e, k=1, .., p),
shere A, €U B €8, k=1,...,n, and e>0.

In other words, the topology 7 is defined as the trace of the weak topology of the
space dual to the tensor product L”(X) ® L™(Y) under the natural imbedding in it of
he set M. The space M(F) for an arbitrary set F € § is defined similarly; our main

goal is 10 determine conditions under which M(F) is not empty.

PropoSITION 70.  The space (M(X x Y), 1) is a compact metrizabie space.

The proof makes essential use of the completeness (“Lebesgueness”, since it is
assumed that the measure spaces are of countable type) of (X, %, Myx) and (Y, B, py).

However, the assertion that (Mr) is metrizable is, of course, true even without the as-
sumption of completeness.

We first prove that the topology 7 can be given also by the neighborhoods of the
form V(u; 4,, . .. yAui By, ..., B,; €), where the sets 4, ..., A, are £, -measur-
able and B,...,B, are 1,.-measurable for some k = k(¥). Indeed, let P= A x B,
where 4 € Y and B € B, and let u € M and € > 0. We construct a neighborhood
W 4;B; €) of u, where 4 is £, -measurable, B is n, -measurable, and € > 0, that is
contained in the neighborhood ¥(u; A; B; €) of u. For this, we choose k and corre-
sponding £, -measurable and n,-measurable sets 4 € Y and B € B such that

pe (AAD) <, by (BAB) < <.
It is not hard to see that for any measure u’' € M
¥ (AXB)AAXB) <5 4~==.
Therefore, if 4 < V(u; 4; B; €/2), i.e., if
[ (AXB)—p(AXB)| <5,
e, since we always have (V) ~ u(W)| < u(V AW), we obtain

|/ (A X B)—p (4 X B)]
=W AXB) —p (A% B) - p (A B)—p(Ax B +1(AXB)

THAXB) | (AX B) A (AX B) + S+ b (AXBAAXB)
<ztzti=e
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which proves the desired inclusion, and, together with it, the Countability
open sets, i.e., the metrizability. o

We now suppose that we are given an infinite subset of M anq Prove
extract from it a sequence that converges to some element in M, Indeeq,
proved that convergence in M is convergence of the values of the measureg
able number of sets. Since the values of the measures on each set qq not
using a diagonal process we can get a sequence of measures u_, n = I, ... , Whoge
values converge to a limit on each set in our countable system. It Temains tq shoy
(here the completeness property is essential) that these limits are the valyeg of a
measure on (X x Y, ¥ ® B).

For each k we choose a &, - (respectively, n,-) measurable set 4 x (B,) such that
the system {4, } ({B,}) forms a basis [92]. To each element of X (of Y) we assign
a sequence of zeros and ones: its “coordinates” in this basis. Without loss of gener.
ality we can assume that a one-to-one correspondence is established in this way be-
tween the elements of X (of Y) and those of the compact set formed by the count-
able power of the doubleton D = {0, 1}, where the measure Ky (1y) corresponds
here to the countable product of the measure with masses %, and the o-algebra of
Lebesgue measurable (with respect to the aforementioned product measure on the
compact set DNO) subsets of the compact set. More briefly, fixing the bases compact-
ifies (to within a subset of measure 0) the spaces X and Y. But this means that
X x Y can be regarded as a compact set, and since the limit values of a sequence of
measures u, clearly form an additive function on the set U« aP,, this additive func
tion uniquely determines a measure on % ® B (and on 2 ® B ) that extendsit.
With this, the compactness of the space of measures M(X x Y) is proved. ®

f a baam of
that WC
twag juq

unt.
CXxceed l,by

PROPOSITION 71.  Forany F & §

ME)= N MEXXYND).
P:Pep (58)
PNFeR
ProoF. Equation (58) means that a measure vanishing on each of the uncount

able number of sets P outside F vanishes in general outside F. We first mention thal
for any P € P the set of measures M((X x Y)\P) with the topology induced from
M(X x Y) is a compact metric space (possibly empty). Indeed, M((X x ¥ )\P) wfnere
P=A x B, is a closed subset of M, since, by the definition of the topology in W,
Mp(P) = 0 and Hp = u, then u(P) = 0. Now suppose that F = (X x Y)\UTPl
(mod %), P, € P (Proposition 69). Each measure y € M(X x Y) vanishing " e i
Pisk =1, ..., has the property that ME=1,ie. p € M(F). By the same “’ke:'
a. measure is in the right-hand side in (58), then it is automatically in the Jeft-han
side. The reverse inclusion is trivial. e
We can now prove the following theorem.

THEOREM 9, Let X, u,
and F € . For there to pe 4
' =y and pnyt =y

F C X e Yv
Ux)and (Y, B, My) be Lebesgue spaces, oh o i
measure y on the space (F, % ® B |g) for WV
it is necessary and sufficient that

o
s
2
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9

sup by A +p,B) =1, (59)
ACU, BEDY

(AXBYNFEN

proo¥F. The necessity is obvious, by (58). Because of the compactness of the
ts MY % Y)\P), and hence of M(F') (for I € ¥), it suffices to prove that finite inter-
gections of the sets of the form M((X x Y)\P),PE P, PN FE N, are not empty.

Here, however, we are in a situation where we can use Theorem 6. Let P,
g=1,...,n, be subsets of X x Y having the form P, = A, x B, ,and let F C f' =
(X x YO\UT Py. We show that there is a measure Zn;l = My and Hn;l = fy. In-
deed, (59) means that TI(F ') = 1; therefore each “coarsened 2 x 2 problem” is solva-
able if we take the marginal measures uy and py to be measures that are proportional
to Uy and py with a sufficiently small proportionality coefficient \.

The “coarsened problem’ singled out by fixing some two measurable sets 4 C X
and B C Y is actually determined if the measures are given for the intersections of A4
and B with each of the (not more than) 2" subsets of X and the 2" subsets of Y into
which these spaces are decomposed by all possible intersections of the sets 4,, B,
(k=1,...,n)and their complements. Thus, the aforementioned proportionality
coefficient A is a nonzero continuous function defined on some compact subset of
R?"*1. By Theorem 6, it follows from this that there exists a subprobability measure
on F' that is absolutely continuous with respect to the product measure py x py and
for which the marginal distributions are the respective measures A ; 1y and A ; My;
therefore the required probability measure exists and has density not exceeding Amin
The nonemptiness of the finite intersections of the compact sets M((X x Y)\P), and
with it the nonemptiness of the compact set M(F), under the assumption of the con-
dition (59) is proved. ®

We note the essentiality of the condition F € ¢§ for the criterion given by Theo-
rem 9 to be correct. As the simplest counterexample we take X = Y = [0, 1], uy
and yy each Lebesgue measure, and F the set {(x, »): x > ¥}. Obviously, (59) holds,
but on this set it is impossible to define a measure whose marginal distributions are the
Lebesgue measures.

Theorem 9 can be regarded as an analogue of Theorem 6.
MxA+uyB<l1for(4 x B)NFER, (4 x CB)NF& N, (
(CA x CB)YN F & N can be considered to be a criterion for the solvability of a |
“oarsened 2 x 2 problem”, understood as a problem on the existence of a nonnegative
? * 2 matrix with given sums of elements in the rows and columns an
s required that the element corresponding to the “cell” A x Bis e-qflﬂl t.o 0. .

We note in particular that it is not necessary to verify the condition lr;tTh:\:)erian
9_f°r all possible pairs of measurable sets (4, B) for which (4 x B) F N A . B
limt Ourselves to a family (which can be chosen to be countable) .0 f pi.lll's ly’sedy;ub.
TET, for which (X x Y)\UU ery x B €T In pastioular, if £ 2 ° es
*t of the direct product of cgmplete metric spaces X and ¥ with Borel measures iy

Indeed, the condition
CA x ByN FE RN and

d one restriction:
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and y, then we can limit ourselves to the open sutl)JS:ts A SRR C Y.3) as
already mentioned, each closed subset.F C X x Y belongs to the clfiss %, but -
conversely: the class %% is invariant w1th- respect to the transformations (x, Y) b
(Tx, Uy), where T and U are automorphisms of the measure spaces (X, %, Hy) ang
(Y, B, uy), which cannot be said of the class of closed subsets of X x y.

Theorem 9 does not carry over to the case of subsets of products of three of
more measure spaces. An example given by Strassen [113], which shows thay the cri.
terion in the Strassen-Kellerer form (for closed subsets of complete metric Spaces) doeg
not carry over to the case of a product with more than two factors, serves also as g
example of a subset of a product of finite spaces (2, 2, and 3 points) with given mar.
ginal measures and having the property that any “coarsened 2 x 2 x 2 problem” j
solvable, while there is no measure on this subset with the given marginal distributiops.

4. We give another formulation of the theorem above, one whose assertion admits

a useful extension.
DEFINITION 10. Let F € §§. Then we define the set mi F = mi, , F by

mi, F—=FX\sup{AXB:pd-+vB=1, (ANA) X YN\ B)NFeN),

and call it the minimization of the set F (with respect to u and v). Its existence is
guaranteed by Proposition 68.

As mentioned, if m is a (y, v)-doubly stochastic measure, and the sets 4 and B
are such that u4 + vB =1 and m(4 x B) = 0, then also m(CA x CB) = 0. There-
fore, if m is a (u, v)-doubly stochastic measure on the set F C X x Y, then, taking
Proposition 69 into account, m(mi, ,F) = 1. Thus, the nonemptiness of the minimi-
zation of a set F € 3 is a necessary condition for the existence on this set of a doubly
stochastic measure.

We show that the nonemptiness of the minimization ofaset FE & isalsoa suf-
ficient condition for the existence on this set of a doubly stochastic measure.

Suppose that there is no doubly stochastic measure on the set F € 5. Then, by
Theorem 9, there are sets 4 € 9 and B B such that

p.A+vB>1, (AXB)ﬂFECR.
We show that we then have mi F =g,

Indeed, let 4’ € [ and B' € B be arbitrary
subsets for which ud’,vB' <ud + vB

— 1. We prove that

(4’ X B')\mi F e N. (60)

For,if A" x B' c c4 x CB, then the assertion is

o obvious, since, by the definition of
minimization, (CA4

xCB)YNmi FE€ N. Now let 4" x B' C A4 x CB. Then
b ((ANA") 4-vB) =pAa +vB—par>1

(3)In this form (with a d

ifferent form of notatio
the condition (59)), i.e., for the o

for
apparently inspired by Kellerer [55]'0[
ct of complete metric spaces, the the
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d e A’ B' € C(A\A") x CB, we get, as before, that the sets A’ » p' and
an. [ e disjoint. Now if the set A" x B' is in “general position” with respect to
lm { i

4 x B, then the verification of (60) reduces to its verification for four of its subsets
X )

paving the properties just considered. ®
1A

THEOREM 9 (second formulation). For there to be a (u, v)-doubly stochastic
measure on the subset FC X x Y, FEE it is necessary and sufficient that

mi, , F # @

u
The operation mi, , is idempotent. In fact, let {A4,,B),n=1,... } be a
sequence of pairs of subsets A, € %, B, € B such that

[J'An_l_an:)‘l’ (A,.XB,,)ﬂFEgZ,
sup {4, X B,, n=1, ...}:sup{AxB:AxBnFem} (61)

(see Proposition 69). We consider the measurable decompositions § F and 7, of the
spaces (X, &, p) and (Y, B, v) generated by the systems of sets {4 o} and {B,}. Since
ud, = vCB,, the relation 4, © CB,, establishes an isomorphism between the measure
spaces (X, p)/£g and (Y, v)/ng, and the set mi F lies on the “diagonal”: on the union
of the products of those elements of £, and 7. that correspond by virtue of the iso-
morphism. If instead of 4 and v we now consider a pair u', ' of conditional measures
on corresponding elements of £, and Mg, then for these measures it is already true that

the set mi,» «(mi, , F) coincides (mod % (y, v)) with the set mi,» F, since, for each
nontrivial pair of sets A4', B’ for which

p'A' v B =1, (4' X B)Nmi,,  F € N, v),
it is possible to find a pair of sets A4, B such that
pA+4+vB=1, (AXB)Nmi,, ,FE N, v),

and this contradicts (61). Since we do not use the idempotence of the operation mi
in the following, we limit ourselves to this explanation.

It can be shown that it is impossible to remove a nonempty (mod %) subset of
the form (4 x B) N F from the set mi  F without diminishing the collection of
doubly stochastic measures on F. o

5. We consider an extension of this result that is important for the sequel. Sup-
Pose that we want to establish not simply the existence of some doubly stochastic i
*UIe on a particular subset F of X x Y, but the existence on F of a doubly Stochastlc'
m.ezfsure that is absolutely continuous with respect to the product measure t x v, Itis
trivial thay the class of all such doubly stochastic probability densities on a subset

F _ ) .
ti =X X ¥ is not compact in the topology 7 (if it is not empty), so a direct apph.ca
xlo: *F'the previous arguments does not lead to the goal. The subset ¢ = {(x, »):

YJof the unit square /2, considered as the product of two segments I on wthch t
Z:Sgue measure plays the role of the measures p and v, provides an example 0 :_‘ §6
i ositions o
2 ® class & whose conditional measures under the c'0.0rdlnate decomp o ol (12
* KX v) are almost af positive, for which the conditions of Theorem €.

in
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there exist doubly stochastic measures on it), bu.t for .which there doeg not exjgy ,
doubly stochastic measure determined b‘y a den?'lty with respect. to the meagyg,
(u x v)y: the probability measure having density 2)(Q(x, y) with respect 1, oy,

Let F be an arbitrary % ® B -measurable set of positive (u x v)-measyre, We
now do not assume that F' € % . Since we are interested only in measyres that are
absolutely continuous with respect to g x v, the set F should be considereq not to
within subsets of the class N, but to within subsets of zero (u x v)-measure,

In the above example of a subset Q of the unit square on which there i no
doubly stochastic measure that is absolutely continuous with respect to two-dime.
sional Lebesgue measure, the unique doubly stochastic measure on this set is the o,
concentrated on the diagonal {(x, ¥): x = y} of the square. In other words, the
“greater” part of Q turns out to be useless in the problem of constructing a doubly
stochastic density: for any doubly stochastic measure m on Q we have

m (QN\A(z, y):2=y})=0.

Of course, in such a model situation the phrase “for any doubly stochastic measure”
means a unique such measure; but, nevertheless, this example emphasizes the expediency
of passing from the consideration of the whole set F to the consideration of its mini-
mization mi”,pF.

If we are interested only in doubly stochastic densities on a set F € §, then we
can show that on such a set there exists a doubly stochastic density if and only if the
conditional measures of the set mi#’vF on the elements of the coordinate decomposi-
tions are almost all positive. However, we can establish a criterion for the existence of
a doubly stochastic density on a subset F€ U® B without assuming that it belongs
to the class §§. For an arbitrary set F it can happen that the set

F=(XXY)\sup(4XB:(pXv)(4xB)NF=0

of the class § is larger than F by a subset of positive (u x v)-measure; thereforé, the
collection of doubly stochastic measures on F and on its “closure” F can be different.
As an example we can take (X, u) = (¥, ») = ([0, 1], I) and F = {(x, »): X +y€rh
where  is Lebesgue measure and T is a subset of the real line whose complement h.a s
positive measure and whose intersection with any segment has positive measure (it s
known [22] that if 14 > 0 and IB >0, then 4 + B contains a segment and intersect
F'in a set of positive measure). Therefore, it is not always possible to choos® in the

class of sets that are (u x v)-equivalent to a given one a set in the class & -

Nevertheless, we consider another form of “minimization” of a subset F, on®

that is determined to within a subset of (1 x v)-measure zero.

. o s
DEFINITION 11. The Strong minimization of a set F € (U ® B(p X ok
defined to be the set

miy, F=F\(sup (4% B : (p X v) (X N\ 4) x (Y~ B)NnF=0h

where the sup is taken in the sense of the latt

: ice order on (% ® Bk * )
Unlike mi,,

»» the operation mi}f , is not idempotent, as shown by the fo

uowiﬂs
o
L
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ure 8). In the example mi*F # & (mod(y x v)),

see Fig
°xample( hown that (mi*)? = (mi*)2,

while mi*(mi*F)
be s
=g Itean Obviously, the satisfaction of the conditions
of Theorem 9 for the set mi*F is necessary for the
existence on it of a doubly stochastic measure, The
necessity of the positivity of almost all conditiona]
measures of the set mi*F on the elements of the
coordinate decompositions is just as obvious. We
prove that the satisfaction of these two conditions,

the second of which is equivalent to the condition

iy, (mif,, F) 2 @ (mod ( X v)),

FIGURE 8 is also sufficient for the existence on F of a doubly
stochastic density. In particular, to solve the prob-
lem of the existence of a doubly stochastic measure that is absolutely continuous with
respect to some measure m that, in turn, is absolutely continuous with respect to the
measure p X v, it suffices to solve the problem of the existence of some (not neces-

sarily doubly stochastic) probability measure m that is absolutely continuous with re-
spect to the measure m, satisfies the condition

Ae, BB, pA+vB=1, my (AX B)=0=m, (X\ 4) X (Y \ B)) =0

and is such that its marginal distributions are equivalent to the measures y and v. (In-
deed, the subset on which its Radon-Nikodym derivative with respect to u x v is posi-
tive is in this case contained in the set mi*F.)

We precede the proof of this theorem by some auxiliary results.

PROPOSITION 72. Let (my) (G, k=1,2) bea?2 x 2 matrix such that m; >0,
let b, and . i, k = 1, 2, be nonnegative numbers such that a, ta,=1,b, +b,
=Landlet 0 <5< 1. There exist numbers mf"‘c') for which

0Smp <myyy 1, k=1, 2, (62)
mip + mf) =sa,,
mis) + mip) = say,
m{® - m{8 = sb,, (63)
mip - mg) = sby,
if ang only if

my, -+ mq, > sa,, o
My~ Mgy > S04,
My ~+ My, 2> sby,

My = My 2> 5by

(65)
M5 O a,— 1), 4, k=1, 2.

In other words, for the solvability of the stated “2 x 2 problem” we have, besides

the ¢ . iy
" tivally necessary conditions (64), the necessary and sufficient conditions (65), of
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which perhaps two are not completely trivial.

proor. For definiteness we assume that azr +bhy=1and a, + by>1, 5 that
a, +b, <1 and a, + b, < 1. It suffices tol limit ourselves to the case § — 1, re.
olacing the matrix (1;,) by (s~ 'my,) for arbitrary s > 0 We': show that the inequg].
ities (64) and (65) (for s = 1) distinguish ‘in ‘the four-dlmens‘n‘onal space of 3 Matrices
(rm;,) the set of all those matrices that majon.z? at least one d'oubly stochastic” p,
trix, i.e., a matrix (mg.,: )) for which the equalities (63) hold. First we describe the
set of all such doubly stochastic matrices. The conditions of double stochasticity (63)
impose on the four elements m;, three linearly independent constraints so that the
subset of all doubly stochastic matrices is a one-dimensional and, clearly, conyey sub-
set of the four-dimensional linear space of all matrices, i.e., a segment. The endpoints
of this segment are the points (matrices)

0 b, ) L b, 0)
B=\4, aytt,—1) ™ S=\0y 5,1 4

(the presence of zero elements means that these matrices are extreme points of the seg-

a-

ment of doubly stochastic matrices). We are interested in the unbounded convex poly-
hedron consisting of all matrices majorizing some point of the segment RS. This poly-
hedron can be regarded as the convex hull of two cones: the core of matrices major-
izing the matrix R and the cone of matrices majorizing S; or as the set of all points.in
such a cone when its vertex is translated along the segment RS. FEach face of such a
polyhedron belongs to at least one of the following two types: I) the faces belonging
to the cones with vertices at R and S; 1) the faces that are swept out by the two-di-
mensional faces of the cone when it is moved along RS. The faces of type I are given
by those inequalities determining the faces of the cones with vertices at R and at S

that are satisfied for all the points of both these cones. These are the following four
inequalities:

myy 2= 0,
my, 20,
Mgy 2> @y 4 by — 1 (=0),
Moy 2 Gy by — 1 (> 0)

(66)

(since a; + b, — 1 = a, —(1-b,) <a;,and q, + b, — 1 <a,). Regarding the faces
of type II, to obtain the corresponding inequalities we find all the faces of the infinite
“prism” formed by the union of those points in the space of all matrices that majoriz®
some matrix lying on RS. The linear inequalities distinguishing the faces of this prist
are clearly the inequalities distinguishing the faces of type II.

The direction vector of RS is proportional to the matrix

=)

The linear functionals determining the faces of this prism must vanish on - A
basis in the three-dimensiona] space of such functionals is formed by any three of the
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o four functionals vanishing on A:
ng
folloW

[ ((meg,) = myy = my,,
fo () == My, |- iy,
g ((Hl“ )) m, l My,
g ((my)) — gy |-y,

his connection, if the inequalities (64) hold (for s = 1), then we can make
".1 o lities (64) pass into equalities by decreasing the numbers m,,, and the
ol he mequi; the my, (not necessarily nonnegative) form a matrix lying on RS By
e valuetsoien we hl:ve proved that the inequalities (64) describe all the faces of type
- :1:: to verify the existence of a matrix lying on RS and majorized by the matrix
:,I,;ik) it s:ufﬁces to verify the inequalities (66), i.c., (65) and (64).
REMARK. It is clearly possible to assume that some of the quantities my, take

the value + .

PROPOSITION 73. For some measure m on X x Y that is absolutely continuous
with respect to the measure u x v and has bounded derivative dm/d(u x v) < K < o
suppose that, for any A € Y and B € B,

m(AX B) >pA+4vB —1. (67)

Then for any measurable functions a(x) and b(y) satisfying 0 < a(x) < 1 and 0 < b( y)
<1 the following relation holds:

Sa(x)b(y)dm}Sa(x)d;x+51)(y)dv—1. (68)

XXY
PrOOF. It is well known that the set of functions of the form X4(x), A€ U,
is dense in the set of all measurable functions a(x) satisfying the condition 0 < a(x)
<1, and, similarly, the set {xg(¥), B € B} is dense in the set {b(y): 0 <b(y) <1},
in the topologies o(L7(X, p), L(X, w)) and o(L=(Y, v), L(Y, v)), respectively. As
Mentioned in the proof of Proposition 49, the convergence x, (x) — a(x) and
XBn(}’) = b(y) implies the convergence "

Xan (%) xo, (y) = a (2) b (y)
in ”
the topology o(L™(X x Y, m), L(X x Y, m)); therefore,

"X B) = 148, @ ¥) dm— { a(2)b(y) dm. (69)

. XxY XxY
Smcea also,

rd, = S La, (z) dp — S a (r)dp, vB,— S b (y) dv,
£ X
€ regu: .
e;u‘ued relation follows from (67) and (69). @
PMARK. We have actually proved that (68) holds if the restriction of the

Meagy

compl:e mty, (4, x B,) satisfies the conditions of Proposition 72, because onf o
m .

on g Of this set the function a(x)b( ) is equal to zero, and the character ot m

8 ¢
Omplement does not play any role.
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We now prove an assertion that we shall use to get a strengthening of Ty,
m 6

that is necessary for our purposes.
PROPOSITION 74. Let (my) (. k= 1, ..., n) be a square matrix whog, .
ive numbers o +* and let (1) and (v;) be sets of nonnegatiye

ments are nonnegat - .
1. For there to exist a matrix (m‘_k) for which

numbers such that T = Zy; =

7 n
E My = Yi> 2 Mg = ti 0 <my <My,
k=1

i=1

it is necessary and sufficient that for the matrix (my,), regarded as a nonnegative me;.
sure on the set X x Y of indices, each coarsened 2 x 2 problem for the marginal dis-

tributions p = (Y, k=1, .- n),v=w,i=1,... , n) is solvable, i.e., that the
condition
i (AX B) >pA+vB—1 (70)

holds for any subsets A and B of the index sets X and Y.

PROOF. If any coarsened 2 x 2 problem is solvable for the matrix (r?z,-k), then,
since there are only a finite number of such problems, we can replace those elements
ﬁ.k that equal + o° by sufficiently large positive numbers, thereby reducing the proof
of Proposition 74 to the proof of the analogous assertion for a matrix (my,) that can
be regarded as a finite nonnegative measure on the set of indices X x Y. Normalization
reduces the proof to an application of Theorem 9. @

We state and prove an interesting generalization of Theorem 6.

PROPOSITION 75. Let m be an arbitrary nonnegative o-finite measure defined o
the o-algebra % ® B of the space X x Y, and yu and v probability measures " the
R (X, &) and (Y, B). For there to exist a probability measure m that is absohutely
contlfwous with respect to m and has density dm/d;}"z not exceeding 1 and whoseé
marginal distributions are u and v, it is sufficient (and, clearly, necessary) that a

coarsened 2 x 2 problem is solvable, i.e., that for any subsets A € ¥ and B € Bk
condition (70) holds.

to m noor. The set.of lo.c.al ly finite measures having bounded densities with fesped
can be naturally identified with the space L=(X x Y, m), whose unit ball }s
::tgecci?pad (in the dual space topology). If any coarsened 2 X 2 problem 1sow
o reﬁn,in en, by Proposition 74, any coarsened # x n problem is solvable. We n
g sequences of finite decompositions of the spaces X and Y such that £

< L ]
2 I E and m < M < vee —y n. For each pau. of decompOSitiOHS (sn! U

there is a i d |
probability measure m ~ xce¢

whose ity wi s not €

n density with respect to m does 1%

and whos { i s
have an? Tarimal dlStf’lb.lltlonS K, and v, are such that for any element X o ! e
weak ~ 4% and, similarly, for any Y' €1 we have v, Y' =Y. Becaus®
compactness of the unit ball of 7,=(x n n the seque!
m ( X [espect ;
¢

]

m hat
n_COnverges to a limit m _ Y, m) we can assume t -
o~ easure m, which is also absolutely continuous Wi

to m with densi
fisity not txceeding 1. By the definition of weak convergence: of
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ek and any 71 > k we have

(XX YY) = m (XCY), e (XY ) =, X =X,

L Y) = uX', and similarly for v, from which it follows that u and » are the

oomX :
- ":1('11 Jistributions of this measure 7. °
n\arﬂl\;c oroceed 10 the proof of the assertion on the existence of doubly stochastic

ugowim 10, Let (X, U, u) and ()i B, v) be two separable probability meq-
qure spuces, and let F-C X x Ybean (U ® B)(u x v)-measurable subset. For there
(o0 exist on F a probability measure m that is absolutely continuous with respect to
uxv and for which the doubly stochastic condition u = m7r)‘(1 y V= rmr,‘,1 holds, it
is necessary and sufficient that almost all conditional measures of the subset

mi;ﬂF:F\Sllp {AXBAEQI/P'v BE(B/V, P-A+VB:'I,
(X ¥) (FAIXNA) X (YN B)=0)

on elements of the coordinate decompositions are positive.

We remarked above that this condition is equivalent to the condition

=

mi, (mif 7) # @ (mod (u X v)). (71)

Proor. The necessity was discussed above and is completely clear. For a proof
of the sufficiency we use Proposition 74 and construct on F a nonnegative o-finite
measure m that is absolutely continuous with respect to u x v and such that, for any
me.asurable decompositions g and 7 of (X, 1) and (Y, ») into two subsets each, there
e:usts. a2 x 2 matrix (m,-k) (hk=1,2) majorized by the 2 x 2 matrix (ﬁik) of
ice, coincide \:iltt:lttl}(:ns for the m-atrlx (m,.k), regarded as a measure on a four-point
(¥.) on the eleme t ¢ :()Arrespo‘?dmg marginal measures of the spaces (X, "f) and |
MEIUTE 7 that i a; sl° £ and g In othctr words, we construct a nonnegative o-finite
R FY o $0 :t:ly cor}tlnuous with respect to u x », is such t.hat |
Margina distribuﬁo;]:n or w-hlch each coarsened 2 x 2 problem assoc1a.tt.:d with Fhe

M and v is solvable. Moreover, as shown by Proposition 72, it
uct a measure m on F that is absolutely continuous with respect to
hat foranyd e gand B e B

lfices to congty
Kx oy and such t

M (A X B) >pA+vB—1. (72)

d the marginal distributions of the measure (K % Vit F

¢ Mutually 41
a ;
Solutely continuous with respect to p and v, i.e.,

1 deft g -1
WX > 8 (z) = L WX mier™

d
ang ¢

\V

] >0 up-almost everywhere,
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. S = (Y) 2‘. d””XVZiT"Fn Al >0 v-almost Everywhere
(XY mirr
The measure m of interest to us is obtained as a sum of measur?; m = o
f?:z + ;13, where dﬁl/d(p x~v) depends only on x on the set mi*F, dm, [d(u x u; .
pends only on y on mi*F, dmyfd(u x v) = conﬁ, ar:fl all thrie of these measyreg Vanigh
outside mi*F. Moreover, each of the measures m , m, arlEi my, and consequenty
their sum, is o-finite. The inequality (72) is satisfied for m, if pd <%, for ;712 i up
< %, and for my if u4 > % and pB > 4.
We prove the existence of a measure m,; with the required properties, i.e., sy
that m,(4 x B) > ud +vB — 1 for pd < %. For brevity we write

t—1t(4, B)=pA-+vB—1,

Let X = X, U X, U=~ be adecomposition of X into pairwise disjoint subsets such
that

essinf{u(z):z€X,}) =u, >0,

The density drzl/d(u X P)miep ON each of the sets mi*F N (X, x Y)is equal to a
constant p, , and these constants are determined successively.

Let I, > 1, >+ ++ > 1 be a decreasing numerical sequence. We first determine
the constant p,. This constant is chosen so that for u4 < % we have

mV (AX B) > 1, (bA+vB —1),
where 171(11) is the measure defined by

dim{V :{ Py for those (2, y) € mi* F for which z € X|,
@XY)mixr |40 for those (z, y) €mi* F for which z ¢ X,.

We show that the required number p 1 exists. Let

n (¢, «) = inf {(va)miwp(AxB):pA—|—vB—1_—_-t,-%->p.A>a>0}. (73)

We can assume that for each a > 0
inf (L3 n (¢, a)>0) <0, (4

Indeed, on the space (X x Y, (u x v)_.. ) consider the decomposition § A n. If
£ A\ n = v (the trivial decomposition), then there do not exist subsets A € ¥ and BE€
B such that

X mrer (A X B)=0 and (1 X v)me p (X _A) X (Y\B)) =0

simultaneously; but, as remarked, if mi*F # @, then these conditions imply that pd ¥

vB = 1. Therefore, the condition EAn=vfor (u x Ve F 18 equivalent to the
condition

if pA~-vB =1, then (b X V)mi+r (4 X B) >0.

For each a > 0 we have here the condition (74), since, otherwise, we get from Propositwl\'fé;‘_:
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o that if inf {t: n(t, @y) > 0} = 0 for some ay > 0, then
4
(B X Vmivr (A X B)) =0
certain 4o € U and By € B for which % = HAdg > ag and pd, + vBy = 1; and
IIIIS contradicts the condition £ Am = v. Butif £ A +# p, thep, by the remark afte,

proposiion 50, the absolute continuity of (u x p) mi*F With respect to y x , implies
ot the deco mposition A 7 is not mort? than countable, and it is possible as the get
Li*F to consider separately the intersection of mi*F with each element of £ A .

In Figure 9 the measures y and are Lebesgue
measures on the sides of the Square, the set

has the thick contour, the set mi*F is shaded,
and 7,

3

as always, are the decompositions of the
square into vertical and horizontal segments, and
the decomposition ¢ A 7 of (X <Y, (uxv)
consists (mod 0) of the sets X, x Y, X, x
Y,,...,and puX, = vY ,uX, = vY,, etc.
On each of the subspaces X, xY, X, x
Y,,etc,of (X x Y, (u x Y)mi+r) the condition
3 (74) holds for each a > 0. It is clear that the
FIGURE 9 minimization of F N (X, x Y,) coincides with
the set (mi*F) N (X, x Y,); therefore, it suffices
to prove the theorem under the assumption that EAn=von (X x Y, (u x V)mi*F)
ie., under the assumption that (74) holds. As a consequence of (74), we have for
A2pd > o> 0and for p4d + vB > 1 the condition

i*r)

-<

1
I
I
I
I
|

X X

1 2 £

(B XYmisr(AX B)>n(pAd+vB—1, @)>=n (0, @) >0. (75)
On the other hand, if u4 <« and u4 +vB—1>0,thenvB>1-a If
M) (4 X B) < =,
then dutomatically

(ANX N\ X)) X B)Nmi*F = &,
from which it follows that

B AN\ X,) 4B <1

*d, consequently

BANX) =pd — p (AN(X\ X)) > pdfvB—1.
We get for yu4 < & that
(1 X Ymisr (A X B) > (1 X Y)mivr (AN Xy) X B)

> (vB 4-u, — 1) p (AN Xy) [ X V)mixe]™?
> (uy — a) [ X Vmierl ™ (04 +>B —1).

(76)
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[t follows from (75) and (76) that if 0 <a<u; andifp, > 11(“, _

p, > 1,/n(0, @), then

@) ang

i, (A X B)> L (pA+vB—1)

fort = pd +vB-1>0.

We now define the measure m (k) inductively. Let m(") be such that

dm(k)
d(x X v)mi" F

=D

on the set (mi*F) N (X; x Y)fori=1,...,k and

dm{¥) —+m
d (1 X V) pi*F

on the remaining part of mi*F, and suppose that
() (A X B) >l (pA+vB—1)

forany A € ¥ and B € B. We prove that there exists a constant p, ., for which the
measure r?z(lk+ 1) that differs from E(l") only in the fact that on the set X, ., x ¥
we have

dﬁiVH-l)

d (:J. >< V)mi"j‘ = pk-l']. <+m’

satisfies for any A € ¥ and B € B the inequality

R (4 X B) > Ly, (sA+vB —1).

Suppose, on the contrary, that for any p, 4+ there are sets 4 € ¥ and B €38 such
that the opposite inequality holds. Then let p(") — + oo, let mk+1.m) be a measur
differing from m{*) only in the fact that on X 1 % Y we have

dm(k+l n)
T X ey — PR

and let 4, € ¥ and B, € B be such that pAd, <% and

A (A, X By (A, - vB, — 1) (n=1, ...). ™

We use the notation

S
Il
u‘C =

’
n

(A" N X) A;:An N Xk+1’

A: _ U (An n X{)'
f=k-+42
We first assume that for some o > 0 and an

il
y n we have u4, > a. The sets {XA,,(

and {xBn( )} are weakly compact. Let

a(x):]i{mxA’li(x) and b(y)_—_li_m Xz (Y);
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onvergence, 48 usual, being understood in the sense of the topology o(L™, L). As
:.h;:‘:,! from Remark 2 after Proposition 49, this implies the convergence
0
Xay iy, @ W) = a, (D) 2y, () a(2)b(y)
n an appropriate weak topology —in
O(Lm(x X y' ([‘- X v)ml’F)v L (X A Y' (:,‘ X v)ml'ﬁ‘))
for example; therefore, for each m
,Tl(l"'.'”'m) (Au¢ \/< I}M() - S a(.'l:) ,) (y) dffl,(l""ltm),
XxY
but for n, > m it follows from (77) that
ITL‘I"‘”‘ m) (A,,‘ X B,,‘) = lkn (11./‘,,‘ -—{— VB,,‘ —_— 1)
and, moreover,
pd— | a@ dp, B, — {2 av,
X Y
from which we get
S a(2) b (y) difks1 m < Sa(z)dp.—{—g b(y)dv—1, m=1, 2, ...
XXy X Y
whence
S a(z)b(y)dmwglm(samdwSb(y)dv—i). (78)
XxY X Y
But, by Proposition 72 and the remark after it, for the same functions
a(@)=limy, (x), b(y)=limy, ()
we have
[ a(x)b(y)dﬁﬁ“)lk(Sa(a:)dp—I—Sb(y)dv—i). (79)
Xxr X Y

Comparison of (78) and (79) shows the impossibility of our assumption that (77) holds
Mud, >a> 0, Suppose, on the other hand, that (77) holds and A, — 0. For

brevity we write
U-A:l = a;, p./l: — a:, lLA: — a:, vB" — 1)".

:V; an limit ourselves to a consideration only of the nontrivial case wher)l t=ud, +
< n- 1>0, 50 that b, — 1. Also, it suffices to assume that m{** "4, x B,)

e (43 x B,) N mi*F = . The following relations are obvious:
,7(* ' N "

Ll +, n) (A” )( Bn) :,ﬁ(lkﬂ, n) (A;’n X B") _I_ ﬁl{k“' n) (A” X B")

=Mk (A, U A7) X B,) + m{k+m (4, U 4;) X B,)
/>’ lk (ar’x + a; + bn - 1) + p&:'F)l (u’f'l'l _}— b" - 1) @,
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For sufficiently large 17 We have

l
(n) ~ k p
pin) > e >0

and consequently

ﬁz{kﬂ- n) (A” X B,,) = li; (a; + 0;:—1— a’:: +bn - 1) > llr+l (IJ'A,,'J('— vB, _ 1)

contrary to (77). This contradiction proves the existence of a number Py with
required properties. ] e
We now show that the measure %1 constructed, which has density equal to

number p, with respect to the measure (1 X V)pyisp ON the set (mi*F) N ( X, « Y;
(k=1,...),is indeed the required one, i.e., a o-finite measure for which (72) holds
for any A € 9 and B € B, provided that ud < %. In fact, the o-finiteness of 7 is
clear from the construction (we remark that the o-finiteness of the projection of tlhjs
measure onto Y is not guaranteed). Let A € U,B € B, and yd < %. Then

iy (A X By = lim ifi; (4] X B)=lim m{" (4, x B) > lim I, (n4, ++B —1)

It suffices to limit ourselves to the nontrivial case when uA4 + vB —1 2 0. Under this
assumption we get, finally,

my (A X B) zpd+4+vB—1. (80)

In a completely analogous way we construct a locally finite measure 1712 such that for
any A € Yand B E€ B, vB <%, we have

iy (A X B) > pA B —1. L

But i
seltlt“l'f u;A > 1% and_le > %, then (u x Vmi* @ x B) = n(0, %) > 0; therefore, if we
my = (n(0, %)™ (1 X ¥) ;e p, it turns out that for ud, »B > %

My (A X B)>1>pd+4vB—1. ®

Fma]l)l;, (80)—(82) prove (72), from which, by Proposition 74, the theorem follows: ’
true notE h::lsz:r. thﬁ aszel(')tfl 01;1 *alogots to that of the above theorem i apparentl :
one should just repla eyfh ) ¢ product measure u x , but also for an arbitrary tYP'
modulo p x » b E[)h i e' (?ondltlon of nonemptiness of the minimization of the set
However, in the);"ollz\:;:ldltlon of nonemptiness with respect to the corresponding typ
emphasize that fhe oot g v:'edfneed the theorem only in the given formulation- “.Ie
Roncompactness uf ;t)h cq:a ifficulty that had to be overcome in the proof 13Y in
REMARK 2. B e:: of doubly stochastic measures subordinate to a giver typé:
sion of the theor.em YLeteoSame method it is
(X, 1) and (Y, ») such that )t{hand 7y be measurable decompositions of the %
£ be contained in the uni © Spaces X/0 5 and Y/0 , are isomorphic, and let the 5¢
co1i66pond wnder:this is'oon of jche direct products of the elements of 6 x and 0y '
sure m having th morphism. For there to exist on F a doubly stochastic med
& the property that under the decomposition of (X x Y, m) int0 the

) : o
possible to get the following sligh® exté
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ts of corresponding elements of 0 and 0y (i.e., under the decomposition

19, A 1y 0y) its conditional measures on the elements of this decomposition are
ry VX ,

tely continuou - .
elements of 0 x and 0, it is necessary and sufficient that the conditions

0 hold on each typical element.

X l s with respect to the products of the conditional measures on (he
ghsol
Corrt’«Spondmg

of Theorem 1
§12. Marginal sufficiency of statistics

We consider a problem connected with the concept of sufficiency, which is im-
fant to mathematical statistics. S.upp(')S(? thait we are given a family of probability
reasures (Pa g € ®} on a space with distinguished o-algebra (X, 2). We assume that
all the measures in this family are absolutely continuous with respect to some probabil-

ity measure P. Let y = f(x) be a measurable function (a statistic) defined on the

space (X, 10)- The statistic f is said to be sufficient for the family £, if for any subset
A€ the conditional probability P,(A4 |f(x)) does not depend on the value of the
parameter 0. When (X, ¥, P) is a Lebesgue space and it is possible to speak of the
conditional measures on the elements of the measurable decomposition . generated by
the statistic y = f(x), the sufficiency of the statistic means that these conditional mea-
sures on almost all elements of the decomposition £, do not depend on 0. The words
“almost all” are understood in the sense of the canonical measure on the set of ele-
ments of £, i.e., the measure on the quotient space X, U, P)/Ef. As is clear from the
definition, the property of sufficiency is, in essence, a property of the measurable de-
composition generated by the statistic; therefore one frequently speaks of sufficient de-
compositions, and not of sufficient statistics, or, formally more general, of sufficient
o-algebras.

Suppose that, besides the statistic y = f(x) on (X, ), we are given the statistics
=L, ...y, = f,(x). A generalization of the concept of sufficiency is the
following property of the statistic f: the conditional distributions of each of the
Matistics f,, . .. , f, for a fixed value of f(x) do not depend on the parameter 0 € ©.
It is clear that if y = f(x) is a sufficient statistic for the family {P,,0 € @}, then the
@nditional distribution of any other statistic g(x) a fortiori does not depend on 0 € 0.
i‘lg‘;‘)’mﬂ %u'md, if the decomposition generated by a statistic g(x) is coarser ‘thun
wﬂditio;:nfpomtml:] gt.aner‘ated by f(x), then from the fact that the co}nditinnul (h')r the
N Ex)) dlstnb}lt1on of g does not depend on the parameter it does not hf)llow
the aggy, ati“’t‘c f(x) is sufficient. The sufficiency of f(x) also does not [‘ullowi rom
f,. P })n( that the conditional distributions of each of a number ofts;tﬂ:i!tlltl :S)md.
et of the’d: x) do r.u.)t depend on the parameter, even if it is assumed mﬂ p)lmm
ponts, .“OmPOSItlons &, VeeoV &, is the decomposition ¢ of (X, ¥,

* 1€ simplest example is the following: ‘

X =A{z,, ) oy 2}
1, (z,) = Fi(@y) = [, (1)) =], () = 0;
Fo(z) = fi(z) = [, (x) = [, (2) = 1;
f@) =1 (@) =] (x,) = f (@) =0;

Prla)y =Py (2) =0, Py(a)=P,(z)— +—0, o0,

| —
—_—
e
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When X = R”, and f, (%), - - - , [, (x) are .the coordinate functiong e, s @
X = (e  x,) € R"), a statistic f is said 't(.) be marginally sufficient if:he S
ditional distributions of fy, - - , /,, for the condition f(x) do not depend o, be Con.
In statistics, of course, the most frequently encountered case is that in Which tpe dg
tribution P, (for cach value of 0) is 2 prf)(.ma of n measures (an independent samp:
A number of years ago the Indian statistician V. S. Huzurbazar stated the co“jectu,e)'
that in the case of a repeated sample the marginal sufficiency of a statistjc implieg it
sufficiency. In a 1968 preprint J. K. Ghosh [36] announced a proof of thig CONfecty
however, the present author and his colleagues (specialists in mathematica] Statistjcs) :
have encountered difficulties in reproducing the complete proof from Ghosh’s outline,
Below, the proof of a somewhat more general assertion is presented.

When all the probability measures of the family {P,,0 € ©} are absolutely gop.
tinuous with respect to some fixed probability measure, the sufficiency of a statistic
for any pair of distributions (P, )y Poz) in the family {P,, 6 € ©} implies, as is we]]
known (see, for example, [7]), its sufficiency with respect to the whole family. There.
fore, we limit ourselves to the case when the set @ consists of two elements.

THEOREM 11. Let P and Q be two mutually absolutely continuous Borel proba-
bility measures in R™ that correspond to an independent sample. . Let the statistic y =
f@x,, ..., x,) be marginally sufficient, i.e., for almost all (with respect to the dis-
tribution of ) values of y the conditions (Cy, Py)/ifk = (Cy, Qy)/gk k=1,...,n
hold, where the &, are the coordinate decompositions, and Py and Qy are the condi-
tional probability measures on the element ¢, C R" of the decomposition &;. Then f
is a sufficient statistic for the pair of distributions P and Q.

In the case n = 2, and only in this case, the independence of the sample can be
replaced by the requirement that dQ/dP = q,(x)q,(x,).

For arbitrary n the assumption of independence of the sample can be replaced by
the assumption that for almost every (with respect to the distribution of f) number ¥
there exist functions py(x,), . . ., p(x,) and numbers b, and B, such that

; , d .
0<b:'/<p’;(x1)<3y<°°’ k=1, ..., n, and dgy ZP?(IJ)' vie 2l pg(:c,)
y

We first prove two auxiliary statements.

PROPOSITION 76.  Let P and Q be two mutually absolutely continuous P"’b”b'w
measures on the space (S, U ) and § a measurable decomposition for which theré
exist systems {P.} and {Q,} of conditional probability measures (C is an element °.
§) If dQ/dP = q(w), then on almost every element C € £ the measures Pq and O¢
are mutually absolutely continuous, and dQc/ch = k(C)g(w) (w € C; k(C ) is the
value on the element C of the density d(P[£)/d(Q/t)).

) . n
Proo¥. For the proof it suffices to verify that the system of measures Oc®
the elements of £ having densities with respect to the measures P, equal to

4Q¢ _ da(PJr) dQ
dP, T d(Q/f) dP




e

§12. MARGINAL SUFFICIENCY OF STATISTICS

155
ally i the system of conditional measures for the measure Q under the decompositi
on

E' Wwe obtain

, d(PJt) dQ .

Sd(()/E) S Z05) ap Pe= gd(P/c) S %ch

ek ANC ©t ANC

— [aep) | awdPe={qw)aP=[d0 =0 (a).e
ot ANcC A a

PROPOSITION 71. Let Uand V be finite nonnegative Borel measures in R?

. Such
hat for some 1 20 the following conditions hold. ¢

1) Ulz=(zy, ..., x")ER":Zxkgl}:();
2) Vig=(zy, ..., z,)ER": Xz, > 1} =0;
3) R U)5,=R", V)i, k=1, ..., n;

4) S |z |dU << o, k=1, ..., n.

Then U=V = 0.
When n = 2 the conclusion remains true even without the last condition, when
n > 2 the assumption of the existence of the first absolute moments cannot be omitted.

ProoF. We assume that U # 0 and V # 0. By the equality of the marginal
distributions, the first absolute moments exist also for the measure V. For the same
reason the point b = (m,, . .. , m,), where m, = [U|7' [, x,dU k=1,...,n,
is the barycenter both of U and of ¥. From 1) and 2) it follows that the barycenters
of Uand V are located on essentially different sides of the hyperplane defined by the
¢quation Zx, = L This contradiction proves the first part of the assertion.

When n = 2, for any nonnegative Borel measures U and V’ satisfying 1) and 2)
We can select a function f(x) such that the transformation F of R? carrying (x, ¥)
into (f(x), ! — f(I — »)), and consequently carrying each of the half-spaces defined by
the inequalities x + y >/ and x + y <l into itself, transforms U and V into measures
UF~! and yF-1 having first moments. Since the coordinate decompositions are in-
Wariant with respect to the transformation F, the equality of the marginal distributions
' preserved for the transformed measures, i.e., all the conditions 1)—4) hold; therefore
the measures UF~! and VF~!, and with them U and ¥, must be zero.

Ve Finally, we show that for n > 2 the conditions 1)—3) do not guar antee that U=
n 0. In R? we construct two finite positive measures U and V concentrated on
different sides of the hyperplane defined by the equation x; + X3 X =
the same marginal distributions. We take U to be a purely atomic measure
Tass %) concentrated on the hyperplane x, +x, + X3 = 1:
three point masses of magnitude 1/8 at the points with coor
@ =1, (21,1, 1);

three point masses of magnitude 1/16 at the points with coor

13,y (G, -1,-1);...;

0 and having
(of total

dinates (1, 1, = 1)»

dinates (—1, -1,3),
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three point masses of magnitude 2~ (k*2) at the points with coordinateg (2%~
| ook=1 1 _ok=1y @ =2kt 2Kk—1,1-2%k"T), (1 —2k-1 | _ 2k-1

¥

= 1),
fork=2,3,.... B
As the measure V we take the image Uy~ of U under the Mapping ¢: R3 —, p3

WX, Xy, X3) = (—Xp, —Xp —x5). It is not hard to. see that the margina] diStﬁbUtions(;f
U and V coincide and are constructed in the following way: masses 4 at the pointg -1
and +1, and masses 2~ (¥*2) at the points 1 — 2% and 2¥ -1,k =2, 3,....

Proor oF THEOREM 11. We first consider the simpler case when the one-dimep.
sional distributions y, and v, , k=1, ... ,n, whose products are the Iespective meagypeg
Pand Q are such that dv, /dy, <B and du, /dv, <B. Let the mapping p: R” —s R"
carry (x,,...,x,)into (Inq,(x,),...,In qn(xn)lz where g, =dv, /du, . The mapping
y carries P and Q into the measures P = Pp~! ang 0 inp‘ 1 while P. and Q. pass into
measures FC =Poyp~ ! and éc =0y~ 1 and dQ /dP. = k(C)exp Z% x,, where KO =
d(P/£)/d(Q/%) (Proposition 71). Indeed, ¢~ (X, - - . ,Xx,) consists of those points
(x},...,x)) for which In ¢ «5) = x, ; consequently for them we have that

dQu/dPe =k (C)q, (z)) . . .q, (z,) =k (C) 2" % *k) = (C) £2 7,

and under the mapping v, which is constant on the “level lines” of the density dQ/dP,
the density of the images of the measures at some point is equal to the density of their
preimages at any preimage of this point.

We note that the two-sided boundedness of the one-dimensional densities assumed
here implies the two-sided boundedness of the logarithms of these densities, i.e., of the
coordinates of the images (all to within subsets of measure zero). In other words, the
measures P and a, and with them FC and ac, are concentrated in a bounded subset of
R”; hence they have first moments.

Now let ac —FC =U— V,where Uand V are disjunct nonnegative measures. Ob-

viously, U and V satisfy the conditions of Proposition 72. Indeed, 1) and 2) follow from
the fact that

dQ, . ‘
a8, =k (C)exp Dy

~

consequently, the signed measure Q¢ — P, is nonnegative on the set where

k (C)exp Dz, >1,

ie., for Zx, >=In k(C), and it is nonpositive for Zx, <-In k(C).

Thus, under the conditions 1) and 2) we should set 7 = —In k(C).

The condition 3) means the marginal sufficiency, which s being assumed; and the
condition 4) follows, as shown, from the assumption of boundedness of the one-dimen-
sional densities. Consequently (/= y = 0,i.e. Fc = ac: and the decomposition £ is it

deed sufficient for the pair of measures P and Q.

In the case n = 2 Proposition 77 is true without the requirement of the existence
of first moments; therefore for 5 = 2 marginal sufficiency implies sufficiency, provided
only that on each element C,, of ¢ the density dQCy/dPCy can be “factored”, i-€-
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y ” e,
ted in the form p{’(xl)p2 (x,). For arbitrary n our argument would not change
: o-sided boundedness . i v
if we required only thc. tw. of the functions pyx,), ..
pearing in the factorization.

a

' We now return to the general case and prove that U and V nevertheless have first
Now, for the first time, we must make essential use of the fycf

,pY
p,(x,)

absolute moments.
ihat the distributions P and Q correspond to a repeated sample (up to this point we

pave only used the weaker assumption of factorization of the conditional densities).
First, let the statistic f be such that P(Cyo) > 0 for some y,. Obviously,

Q¢ P (C)
ar, =gy D) - @)

Further, let s = £ x, and R = P(C)/Q(C). We get

p
—?—G- = Rexps,
b,
whence
av _ 4(Qs—Pp) \
— = — =R —1 _
i, ap, exps (for s > —InR)
and

B¢ (dz) =(Rexps—1)1U (dz).
We now consider the decomposition of (R”, U) into the hyperplanes
H={z=(z,, ..., z,): Xz, =ns},

and let {U} be the family of conditional distributions (probability measures) on the
hyperplanes {H_} and «(ds) the corresponding quotient measure on the set of such
hyperplanes, i.e., on the set [—In R, ) of values of the variable s, so that

@

N U, dz) o (ds)
J— S qu(ds) and PG= S m-

—InR —Inf

Obviously dP./dP < 1/P(C), and therefore
1 1

~ s 1 D S
S exp 2,dPe < | exp P 5oy = | 405 =F@
Rﬂ R" R’l

(here we use the assumption of an independent sample), i.¢.,

T a(ds) U, (dx) | 0
Sexp:c,‘ S Rexps—1 <P(C)<
R”? —InR

= . aging all n!
Let us now consider the symmetrized measure U obtained from U by averaging

i . n.
Mages of U under all possible permutations of coordinates of R™:

i 1 2 Ug™,

n!
gEGy
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where G, is the group of permutations of the n coordinates. Obviously, the erage,
U of the conditional measures U coincide with the conditional measyreg for 71 Fo,

ﬁ._]USt as for U, we have

@

a(ds) O, (dx) a (ds) exp 2.0}
Se):]).l‘1 S m*_&n Rexps—1 RSH P ,(dx)<00_ (83)

R —In R

We new show that U has first absolute moments, and its barycenter js the poing
b.=(s,.-..,s). Indeed, from (83), in particular, it follows that
s

S exp .1:117, (dz) < o0

Rn
for almost all s (with respect to the measure a(ds)), and consequently
«© [a9]

| 2.0,(de)<eo  and | (@ —9)0, (@0 <o

x,=0 X, =

(these are integrals.over subsets of R” of the forms {x: 0 < <x, <o} and {x: 5s<

<'=}). But U can be represented as the limit of its restnctlons to the balls of
deUS r — e and center at the point . Each such restriction U(' )is a symmetric (in-
variant with respect to the group G,) measure; therefore

[@—9 00 @n) = | |2,—s| 00 (@),

Passing to the limit with respect to  in this equation, we obtain
@ 8
| @ — 90, @2)= S |z, —s| 0, (dz),
8 —m
and this equality describes the barycenter of a.
We now show that the measure U itself has a left-sided absolute moment. In-
deed,

0< gﬂ | z,| 0 (dz) = § |z, | T a(ds) 0, (dz)

T =—0n Z|=—0wm —Iink

= GSD a (ds) 50 |2, 0, (dz) < ? o (ds) S |z, —s| 0, (d2)
—Iin R z=—m —InR z=—c

= ti) a (ds) rf (2 —5) T, (dx) < ?Ra(ds) ?exp(x,-—-s) 0, (@)
—In R x, =4 —In X, =

< [ aw | exp(e,—5) 0, (d2) <R ? Toper | expnl, @0 <7
—InR R"? —InR RN

(by (83)).

2 ‘:'-‘," e
i S s KR
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If the marginal distributions of P, and Q. coincide, then the marginal distriby.

ions of U and ¥ coincide; therefore the existence of the left-sided firstNmoments of U
(which follows from the existence of the left-sided first X, -moment of E) and of the
right-sided moments of V implies the existence of all first absolute moments and, con-
atly, the applicability of Proposition 77, j.e., Pc = Q. in this case.

But if P(C,) = O for almost all y, then, as before, we get from Proposition 7¢
that for almost every y

sequeé

[ee]
S a, (ds) U_,,',',I —p

Ryexps—1 — v ="Pe¢
—InRy

-1
¥

where R y is the-value of the density of the distribution i of the statistic

J with respect
to P relative to its distribution with respect to Q, at the point y. Since

| B,u(ay) =P
and

gexpxk13(d:c)=1 k=1, ..., n),
Rn

for p-almost all values of y we have

S exp z, P, (dz) < o

Rn
since
1= Sexpa:,c S P, (dz)p (dy) = S w (dy) Sexpszy (dz),
Rn —0 — R

frem which, in quite the same way as before, we derive the existence of left-sided
moments for U,,; consequently, by Proposition 77, we have proved that P, = Q, i,
the required sufficiency of the statistic . ®

The above example of two distributions in R3 that are concentrated on different
Sides of the hyperplane given by the equation s = 0 and that have the same marginal
distributions allows us to show that the condition

dQU n
d_PC' — kI=I-1 9 (TL)

does not guarantee the sufficiency of a marginally sufficient statistic f. For, if U and ¥
¢ the measures in R3 with identical marginal distributions in the example on p. 155,
then we consider in R? the probability measures P and Q defined by

4 1 __ 4
P:GU+bV, Q=an—|—b1?V, where az—:;ﬂe—ﬁ, b—-—'j e+1°

I is Casy to.see that
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i{% — XD T, * XD T, * eXD 2,
d
i incide, i.e., the trivi i
and the marginal distributions of P and Q coinci vially insyfg

] _ cient St“tixtic
hat is identically equal to a constant is marginally sufficient.
that 1s 1

§13. Conditions for the existence of a one-to-one optima) plan

in the problem of transport of mass in Minkowski spaces

1. We now consider a well-known problem (see [138] and [78]) Cofmected with
the so-called Monge problem on optimal transport: the problem of the e‘xmtence of
one-to-one optimal plan of transport. In 1781 Gaspard Monge [89] studied the prob.
lem of the most rational transport of earth from an embankment into an .excavaticm_
The optimization problem arising in this way was formulate.d by' Mor'lge '}umself as
follows: ““Given two equivalent volumes, decompose them into infinitesimally smal]
particles that correspond in such a way that the sum of the products of the pafhs
traversed in carrying each pact to its correspondent by the volume of the part s 3
minimum” (quoted from [4], p. 1).* Monge obtained and stated, partly without proof,
a number of important assertions about the character of an optimal plan of transport,
In particular, he conjectured that for an optimal transport plan the directions of the
displacements of the masses must form a vector field that is the gradient of some func-
tion U(x) (more precisely, Monge suggested that the paths of the transported parti?]es
form the family of normals to some family of surfaces). Monge’s conjecture was rigor-
ously proved in 1884 by Appell (regarding this, see [14]); Dupin studied the same
problem even before Appell.

In 1942 Kantorovi¢ considered the problem on the most advantageous transpor.t
of masses given on an arbitrary compact metric space. Let (X, r) be a compact metrc
space, and u and v two Borel probability measures on it. Kantorovic proved [47],
[48] that there is a most advantageous plan for the transport of the measure u into the
measure v. This means that on the product X x X there exists a Borel probability

measure m having u and v as marginal distributions (each such doubly stochastic med-
sure is, by definition, a “plan of transport”

such that in the class of all doubly stochastij
transport, i.e., the magnitude of the integral

. and
of the measure y into the measure ») ;
»
C measures m minimizes the “work” 0

W (m)— S S r(x, y)dm. (89

XxX

o stic
Kantorovi¢ also proved that a necessary and sufficient condition for a doubly stocha

. . . . # ed
measure m on X x X to minimize (84) is the existence of g function U(x) (2 80 el
potential) satisfying the conditions
—_—— 0):

*Editor’s note. 1n Monge’s own words the problem reads 19

as follows (see [80], pp. 699
erminés chacune par une ou P
int o4 doit &tre transportée ch
lecules multipliées chacune P¥

Etant donnés dans espace, deux volumes égaux entr'eux, & t
surfaces courbes donnés; trouver dans le second volume le po

molecule du premier, POUr que la somme des produits des mo
parcouru soit un minimum!

usiew’

aque
espc®

o s SIS
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) U@—U<r(r, y) VaVy€X, ie, U(z)¢ Lip,1, (85)
9 U(x) —U(y)=r(x, y) for m-almost all (z, y)¢ X « X, (86)

The *Kantorovi¢-RubinStein metric” arising in connection with this problem (see
(5] and [52]) found numerous important applications. A very simple proof of Kantor
ovid's theorem on the potential, based on the duality theorem of linear Programming,
can be found in the survey article [138].

The statement of Kantorovic’s problem clearly differs from the statement of
Monge’s in that KantoroviC’s class of transport plans in which an extremum is sought
is substantially broader than the class of plans of transport that Monge had in view and
that correspond to one-to-one transport (“infinitesimally small particles that corre-
spond”). Therefore, the problem of the existence of an optimal one-to-one plan in the
Kantorovi¢ sense, which is particularly nontrivial when the metric does not determine
geodesics uniquely (for example, when X is a subset of a Banach space whose unit ball
is not strictly convex), can be regarded as a bridge connecting the formulations of
Monge and Kantorovic.(4)

It is not hard to give an example showing that even when the measures u and »
are purely continuous and X C R? with the Euclidean norm there may not exist an
optimal plan of transport for which the corresponding doubly stochastic measure m
is the kernel of an isomorphism of the measure spaces (X, ) and (Y, ») (to distinguish
between the first and second copies of X we denote the space X, equipped with the
measure v, by the letter Y, and a typical element of it by the letter y). In other words,
there may not exist an optimal one-to-one plan of transport, as is shown by the follow-
ing example. Let X = Y be the unit square in the plane R2, u the one-dimensional
Lebesgue measure on the segment X, = 1/2, and » the measure concentrated on the
segments x, = 0 and x, =1and proportional (with factor 1 /2) to the Lebesgue
measures on these segments. It is not hard to see that the optimal plan of transport
here is unique and consists of the doubly stochastic measure concentrated in XxY=
{(xl,xz;yl,yz)} on the segments {(1/2,¢; 0, #), ¢ € [0,1]} and {(1/2, 1,1, 1),
FE0,1]}). 1tis possible to modify this example somewhat and even obtain absolute
continuity of » with respect to Lebesgue measure.

2. Using our earlier results on conditions for the existence of an indegendent f
®mplement of a pair of given decompositions and the conditions for the existence O
2 doubly stochastic density, we can prove the existence of an optimal one-to-one .
Plan when the compact set X is a subset of a finite-dimensional normed (not nec;eisar
ly Euclidean) linear or affine space (a Minkowski space), and the meastel Si]Ht anof
ae absolutely continuous with respect to Lebesgue measure (on the posslft 1:eycom pact
;Veia;eréiln(i :,he last c.:onditicTn, .see be?ov.v).. of wflrse,tth:s:znmc:e(:zl t;oi;;f  and » have

» I+ 1I) is not significant: it is sufficient to )nly that the inte-
mpact support (for convergence of the integral in (84)) or even' C o the validity
&als f|\xl\dy and Sllylldv converge (conditions that aré also sufficien

of Kantorovie’ -
Tovi ential). i
———MOrovit’s theorem on the pot ) The problem of the ex

jrcumstance.
cire fik (see [138])

4 - is
()M. L. RvaZev called the author’s attention to thi eas posed by Ve

istence of one-to-one optimal plans in the Kantorovic sense
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Henceforth let X and Y denote two cop{es of a finite-dimensiona| Normeq 4
and ¢ and v Borel probability measures that will serve as standards for the doube
stochasticity of a measure defined on the product X x ¥. A Borel decompoﬁ'tion of
a linear or affine space (i.e., a decomposition into the “level sets” of 4 Borel my
into a finite-dimensional space) is said to be locally affine if each element of this ge.
composition is a connected open subset of its affine span. If u is a Bore] measure g
X defined by a density with respect to Lebesgue measure, and 6 is a locally affipe de.
composition, then the conditional measures on the elements of 6 are also absolutely
continuous with respect to the Lebesgue measure on the affine subspaces Spanned by
the corresponding elements of 0.

PROPOSITION 78. Let X be a locally affine decomposition of the Lebesgue space
(Q, m), where Q is a subset of a finite-dimensional affine space, and m is a measure
proportional to the restriction of Lebesgue measure to Q. Then the conditional meg-
sures on the elements of \ are absolutely continuous with respect to Lebesgue measyre.

PROOF. We can limit ourselves to the case when the elements of ) are pairwise

disjoint segments. Let @ C R"*!, and let m*) denote k-dimensional Lebesgue mea-
sure.

Without loss of generality we can assume that the elements of the “ruled” de-

composition A are segments whose endpoints lie on two

parallel hyperplanes L, and
Ll C R" +1

, 50 that the set Q is located between them., The elements of A determine
@ correspondence betwen the points of the set M, = Ly N Q and those of M; =L; N
Q. Let this mapping My — M, be denoted by T, let L, be the hyperplane (1 — h)L,
+hL,, and let h denote on each element of ) the relative distance of a point from L,.

Let m(")MO > 0. We remark that if the mapping T is differentiable at almost

every point of M), then the tangent mapping 7"(x) at almost every point x € My isa
linear operator R — R"

without large negative eigenvalues of odd multiplicity, while
the conditional measures on each element of A turn out to be absolutely continuous
with respect to Lebesgue measure, and their densities p_ (k) are polynomials in h of

degree not greater than n: the density P, (h) is proportional to the quantity

det (AT" (2)+(1 — &) 1),
whence the condition on the negative eigenvalues.

The uniform boundedness of the de
of the conditional measures suggests pro
of the conditional measures of an arbitr
smooth approximation of the decompo

grees of the polynomials giving the demiﬁ_es

ving the polynomial character of the densitics

ary ruled decomposition by selecting suitabl

sition A. For our purposes, however, it sufficés

to prove a weaker assertion about the absolute continuity of the conditional measures:
Let m(")M0 >0,and let 7: M

o — L, bean arbitrary mapping that genel’a“s
a ruled decomposition .

It is assumed that the set-theoretic union Q of the segm s
{0 =mx+hTe), he[0,1], xem

o} is measurable. We show that m("“)Q 72
and that the function m(")(1, n g) . [m"*+* D] =1 is bounded as a function of #
[0, 1] by a constant depending only on n. By the arbitrariness of M, the analogoys
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. i true also for the restriction of T to an arbitrary element of each decompo-
asSCru?n 1 ¢ sequence of measurable decompositions of M, that converges to the
sition 1n ::1':,n ¢ into points; hence the densities of the conditional measures on the ele-
decomf:; \ are bounded by the same constant.
mcntsw\e consider some sequence T, of differentiable mappings generating ruled de-
compositions Ak of the corresponding Lebesgue sPaces (((%k, m, ) and .convergjng point-
wise to T By what was proved above, the fl.lr-lctlon m'")(L, n N Q) is a polynomial of
degree not greater than n; therefore the densities of the measures m, with respect to
Lebesgue measure in R”*! are uniformly bounded. Let {k.f. } be a subsequence such
that the measures 7, converge weakly to a limit measure m. Frgm the uniform
houndedness of the densities of the measures My, it follows that m is absolutely con-

tinuous, and its density is bounded by the same constant (, generally speaking, s not
proportional to the restriction of Lebesgue measure to Q). From the condition 7Q
= 1it follows that m"*DQ > 0. For each k; the function

m(m (L}.nok.)' [mrnﬂvoki ]-1 ,

as a function of 4, is bounded by a constant depending only on n (and equal to the
supremum on [0, 1] of all the values of all the polynomials P of degree n for which
Ax) 20 forx € [0, 1] and JoP(x)dx = 1), from which we get the boundedness of
the values of the function m'™ (L, Q) - [m'™"'Q]* by the same constant. ®

3. We first present briefly the basic idea of the proof of the existence of a one-
fo-one optimal plan. By the cited theorem of Kantorovi¢, there exists an optimal plan
m, i.., a doubly stochastic measure minimizing the quantity W in (84), and to it there
corresponds a potential U(x): a function on X satisfying a Lipshitz condition with
€xponent 1 and constant 1. Each doubly stochastic measure for which U(x) is a poten-
tal s also an optimal plan of transport (the sufficiency in Kantorovic’s theorem).

Therefore, it suffices to construct the kernel of an isomorphism of the spaces (X, u)
ad (Y, v) on the closed set

V=Vy={(z, y): U (2) — Uy) =|z—yl}

On V" there exists at least one doubly stochastic measure: the measure m. If
::10: tghere ?xists a doubly stochastic density, then corresponding to it there is, by The-
each ty’ ?n llndependem c‘fmplement of the coordinate decompositi'ofls £ and 7, and
(by Prop Ca _elemem of this decomposition, equipped with its conditional measure, can
Such anp:::tmn 42) serve as the kernel of the isomorphism of interest to us. However,
it alwayg exri:im-l doubly stochastic density exists, generally speaking, ver).f rarely (thc:ugh
Such an exqre ®In the one-dimensional case!): in fact, for almost all (with res;:iec:] 0 -
fore, if 4 el measure) points (x, ¥) € X x Y the condition (86) holds, and there
b %y i fzand B C Y are subsets such that puA > 0 and pB > 0, and the measure

. Osl:ana s'olutely continuous with respect to the extremal measure m., t.heln for
Possible jf PoInts x € 4 and v-almost all points y € B (86) holds; but this is im-
i #and v are given by densities with respect to Lebesgue measure, and the

Unjt ¢ .
i PFlere D i =1 } is strictly convex or at least does not contain (n — 1)-
menslonal “f, es”
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If the potential function U(x) is fixed, then for each typical poin .
consider the set of those points y € X for which |lx — y|l = yx) - UGy
strictly convex norm it is easily shown that all such points either coincide iy,
lie on some ray going out from X, and that they form a set into Which jt i Po )f"r t
transport mass from x for the given potential function U. If it ig possible (, C:snblem
mass along several directions from the point x, then each such admissib]e Iy 3

‘ _ directiop ;,
regarded as a generator of its segment or ray. Since two segments cap have g )
om.

a BOrel de-

3

We ;-
)- F()[a qn 3

mon point only an endpoint of one of them (they cannot cross), we get
composition @ of the whole space X into open segments and points,

We regard 0 as a measurable decomposition of the spaces (X, y) and (¥, py
optimal plan m for transport of the measure u into » is constructed in sych 4 way thy
displacements of mass take place only within the confines of the elements of g, On
the union of the elements consisting of a single point each plan of transport m js 5.
ready one-to-one in a trivial way. For each of the segments / making up 6, as can be
verified on the set ¥ N (I x I), which is half of the square separated by the diagonal,
it is possible to define, by Theorem 10, a measure that is doubly stochastic with re-
spect to the conditional measures u; and v, and absolutely continuous with respect to
the product u; x v;; and then, by Theorem 8%, there exists an independent comple-
ment of the coordinate decompositions with respect to the measure “glued together”
from the doubly stochastic (with respect to u, and v,) measures just constructed. A
typical element of this independent complement, together with the union of the “set
theoretic squares” of singleton subsets in # generates the graph of the isomorphism of
interest to us, which lies in ¥ and, therefore, corresponds to an optimal plan of
transport.

The situation is somewhat more complicated when the norm ||+ || on X is gener-‘
ated by a unit ball that is not strictly convex, though the basic idea of the argument¥
the same. Here we must construct, with respect to the set ¥, certain subdecompos’
tions 6y and 0 of § that are determined by the minimization mi ¥ of V with re-
spect to the pair (u, ») and on each of the products of corresponding elements of
which (as above) there exists a density that is doubly stochastic with respect t0 i
pair of conditional measures; this allows us again to use Theorem 8* and prove the
existence of a kernel of an isomorphism.

In the product R” x R” consider a closed convex body Q and a Borel pro.b: a
bility measure m for which mQ = 1; on this set O there does not necessarily exis
measure that is the kernel of an isomorphism of the marginal distributions of -m.onceﬂ
tratedF:;: :}T:I:eplr:eift? Al; thedtjaggle ABC in l.?igur.e 19, and- the mj;‘g;;;sr:spect
to the correspori]inn i a,n o tht?n e mlfumlzatlon g AB dAC'

g marginal distributions consists only of the segments

ey o o on
frf)m which it follows that it is impossible to give the kernel of an isomorPh‘s“m
triangle. On the other hand, it is easy to see that for any nonatomic measure -
the triangle 4 BC (

. argh
Figure 11) there exists a kernel of an isomorphism of the ™

dlStnb;tions of this measure that is concentrated on the same triangle.

this

xx 17

e describe a quite broad class of convex subsets in the product spac®
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R having an analogous property. Although the assertion itself
R" ;“ wing, its proof brings the reader closer to the more tedious
the to 0 9'
sponding step in Theorem 12.

is not used ip
proof of the corre.

8

SONNNNNY
S -]

AALLLLRRRN

VIZ7777 7777

FIGURE 10 FIGURE 11
PROPOSITIONT79. Let Q C X x Y = R"

x R" be a convex compact subset
having the property that if A C X and BCY

are Borel subsets such that
AC=xQ, BC v, (A X B)NQ0= g,

then also

(conv 4 X conv B)NQ =y.

Let m be a Borel probability measure on Q whose marginal distributions are absolutely
cont

inuous with respect to the Lebesgue measures on X and Y. Then there exists a

Probability megsyre m on Q with the same marginal distributions as m and such that

its conditiong] Mmeasures on the elements of the decomposition & A n (where ¢ and n

@e the coordingte decompositions generated by the canonical projections onto X

"d Y) gre absolutely continuous with respect to the products of the conditional mea-

Sures on those elements of the decompositions &, and n, that are carried, under the
eppines O/t — Q/(k An) and O/ — Q/(& A ), into the element of & A

Canonjcgq)
N under consideration (¢, and Ny are the measurable decompositions of X and Y in-
duceq by these mappings).

& Proor. we consider the process of constructing the minimization of Q. It was
Own (p

del TOPosition 69) that the minimization mi Q of Q is obtained by set-theoretic
€letion f,

om @ of a countable family of sets

(X\4,)) x (Y\B), n=1, ...,
Such lhat

(4,XxB) N Q= ®7)
angd

pA,+vB,=1. )
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Obviously, since the sets A, and B, are determined to within - and v-equivalene,
N . * . I3 . - ’
uction of the minimization mi Q it is possible to replace them

respectively, in the constr
p lar, to assume that A, C m,Qand B, C 7y Q. By 50

i 1 ticu
by equivalent ones; in par '
sumption, (88) implies the condition (conv 4, x conv B,) N Q =g@. There is an "

fine hyperplane separating the disjoint convex set 0 and conv 4, x conv B, ,je., ,
linear functional ¥, on the space X x Y such that

F (Q) N F,(conv A, X conv B))= (.

Let FX(x) = F,((x, 0)) and FY(y) = F,((0, ). Then F,((x, ) = F\(x) + F)(y).
For definiteness let (the meaning of the notation is obvious)

F,(Q>c,>F,(4,XB,)

and

o = sup FX (z), a,=sup F)(y),
z€4, Yy€EBy
’ U . ! 4 ! ]
so that o, + o) <c,. Then for any pair of numbers §, and f§, such that §, =,
Br > o), and B, + B, = ¢, we have the condition

F,(Q)Zc,>F, (4 X By,

where AT = {x: x € X, FX(x) <} and B} = {y: y €Y, FY(y)<8,}. From
the fact that

4y X B))NQ=0,

it follows, by Proposition 49, that ud ¥ + vB} < 1, and from this, the obvious inclu-
sions Ay D A4, and By D B,,, and (88) it follows that uA* = uA_ and vB; =By
i.e., the half-space A: is pequivalent to A, and the half-space B: is p-equivalent t0
B,,. Therefore, the subset (X\A,) x (Y\B,) “subtracted” from Q can be replaced bY
the product of half-spaces (X\4,) x (Y\B}). Next, the subtraction of (X \4;) x
(Y\B; ) can be replaced by the intersection with the union of the two convex sets
(X\A}) x B} and 4 x (Y\B]). The sets A7 and B form bases of certain de-
compositions 8 x and 8y of the spaces X and Y, and these decompositions are locally
affine, because 4, and B;' are half-spaces, hence convex, together with their complé-
ments, and any intersection of sets in the basis or sets complementary to basis sets is
convex; consequently, the elements of the decompositions are convex sets. BY means
of the construction of the minimization mj Q we have established a canonical one-t0”
one correspondence between the elements of the decompositions @, and 6y that i
duces a.n isomorphism of the spaces X/§ , and Y/0,. A product of corresponding ele-
ments is a convex set on which the conditional measure (of the measure with respect
to the decomposition 10 x A my10,) is doubly stochastic with respect to the con
ditional measures on the corresponding elements of 0 x and 0, and is concenm’"wd «
the intersection of Q with the element under consideration, i.:., also with a conve*
We prove that the dimension of the intersection of Q with this element is €
to the dimension of the element. The assumption that the dimension of the part °
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element of the decomposition is less than the dimension of the element itself
in som:;Cts the fact that 0y and 0 are decompositions having the property that if
adl

contr @ and uA +vB =1, then 4 is measurable with respect to 0, and

ng=
. xmilsurable with respect to 0y (moreover, 6, and 0y are the coarsest decompo-
Bis

. having this property). Indeed, for any doubly stochastic measure on an affine
gitions ha f the product of two linear spaces it is clear that there are nontrivial sets 4
gubs;a::’wmch uAd +vB=1and A x B does not intersect this subspace. Therefore,
Znuf assumption leads to the existence of sets with i.rnpossible properties and is thereby
rjected. I we now consider some two corresponding elements of 6 and 6, which
we regard as two affine subspaces, equipped with the corresponding conditional mea-
qures, then the trace of Q on the direct product of these spaces is a convex set of
maximal dimension whose minimization with respect to the relevant conditional mea-
qures coincides with the set itself. Hence, on the trace of Q there is a doubly stochas-
tic measure that is absolutely continuous with respect to the product of the marginal
distributions, and, consequently, there is a doubly stochastic measure on Q such that
forit 7 0y = n;IBY (this condition is necessarily satisfied for any doubly stochas-
tic measure), and on each element of the decomposition 11;19 x A\ n;lﬂ y (= n}‘ﬂ X
=ny'0y) its conditional measure is absolutely continuous with respect to the pro-
duct of the conditional measures on the corresponding elements of x and 0 (Theo-
rem 10 and Remark 2 after it).

The decomposition ¢ A 71, considered for the measure m, is not coarser than
Tx'0x Any'6y. Since, for each measure on a product space that is absolutely con-
tinuous with respect to the product of its marginal distributions, the conditional mea-
Sures on the elements of the infimum of the two coordinate decompositions have the
same property, Proposition 79 is proved. ®

4. We now proceed to the proof of the basic result of this section, on the ex-
istence of an optimal one-to-one plan of transport.

THEOREM 12.  Suppose that on a bounded subset of a finite-dimensional
Banach space (R™, | ) two Borel probability measures y and v are given, each abso-
lm_’y continuous with respect to Lebesgue measure on this space. Then there is an
*Plimal one-to-one plan of transport of the measure j into the measure v.

exist In other words, on the product X x Y of two copies of the Banach space.there

ek kemne] Mg of an isomorphism of the spaces (X, ) and (Y, v) that supplies a
M, i the class of al doubly stochastic measures, for the integral

Wim= | lz—yldn.
xy
doublpROOF' By the theorem of Kantorovi¢ cited above, there exists at l.ea.st one
Y Stochastic measure m on X x Y that gives the integral in (89) a minimum.
eover, there is g function U(x) (called-a potential) on the space such that

(89)

1)U @)—U @)l <lz—yl YaVPEX, ©0)

2) v (#) —U (y) =)z —y| for m-almost all (z, yweEX XY. o1
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To prove the theorem it suffices to show that there exists a measyre m

- o that is
the kernel of an isomorphism of (X, 1) and (Y, v) and is concentrated on yy,

€ set

VeVy={(x, y): U @) — Uy =]z —y|).

We consider the function U(x). Let X, be the class of subsets 4 ¢ y,
property that 4 is a maximal (with respect to inclusion) set on which the funct
is linear (more precisely, affine), with gradient in the given norm equal to 1.

Ving the
ion [

For eaq
set A in the class ¥, we consider the maximal (with respect to inclusion) connecteq

subsets of A that are open in A. These latter sets determine a locally affine decompy,
sition into the subsets of the class X .

Another (equivalent) description of the sets in the class X consists of the fo[lqy.
ing. Let x € X be an arbitrary point, and let x5 be a largest (with respect to inclusion)
affine subset, necessarily convex, of the sphere S, or one such subset, such that for
some point y € X we have U(x) — U(y) = |Ix — y|l and

r—Yy

—— 7 G z. 92
= € )

We consider the set of all those y for which (92) holds for a fixed set x5. Then
we consider the set of those points x, for which ey =Mx; =yl € x5 for some of
the indicated y’s. Next, we consider the set of those y, for which

I, — Y S
BT

for some of the x,’s. Repeating this procedure, taking the union of all the points ap-
pearing at some stage, and then passing to the closure, we obtain a set A in the class X-

Finally, we give one more description of the class X , which is, in essence, Ouf

working definition. In R” x R we consider the graph of U(x). By the Lipschitz
property (90), for each point (x, U (x)) €ER” x R the cone

Ki={(, 2)ER" X R:2> U (2) |2’ —z])

intersects the graph of U only on the surface of this cone, and the same is true fof
the cone

K:={@", 2)€R"X R : 2 U (1) —| 2/ — ).

For an arbitrary point x, if K} and K intersect the graph only at x, we put the

singleton set {x} in the class X . But if the intersection of the cone K, = ki K
with the graph of U contains more than one point, we consider the affine span of 1
set of all such points and the intersection of this affine subspace with the graph- we
select the maximal connected relatively open subsets of this intersection and Put !
sets in X that lie “under” these subsets of the graph in the class X. is
As follows from the Lipschitz condition satisfied by U, each set in the ol f "
such that its boundary consists of two parts: the points x € X for which only the ¢ 4
K has nontrivial intersection with the graph over this set, and the points X € xfor
which only the cone K x intersects the graph of U(x) in more than just the verteX-

AT
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hese parts of the boundary also satisfy a certain Lipschitz condition; there-
poth of eb sgue measure (of corresponding dimension) of the boundary is a fortiori
fore the Lebe ind we can speak of a measurable decomposition.
equal t0 Z;(f:}; turn our attention to the fact that (91) cannot be satisfied if the points
Wedo not belong to some single subset of the family X, . This means that there
xand Y 1t of mass only within the confines of each subset of the decomposition X,
Ftrag:}:Othe measures u/ X and v/ X coincide. However, even within the confines of
;e’ :u:set in ¥ we do not have for arbitrary points x and y, generally speaking, the

condition

|U@)—U@l=lz—y]

ie., the admissibility of transport of an element of mass from one point into the other.
Nevertheless, our construction allows us now to consider separately the problem of

the existence of a one-to-one optimal plan of transport for the pair of conditional mea-
sures on each element of the decomposition X ; and on each such set in the family X
the restriction of U is simply affine, by the construction of X. When we are consider-
ing a conditional measure, everything that happens outside the particular element of X
is insignificant for us, so we can assume that U(x) is equal to a linear functional L(x),
since this holds almost everywhere. This now helps us to prove the existence of an
optimal doubly stochastic measure m on X x Y such that on elements of the de-
composition ¢ A 1 (where £ and 7, as usual, are the coordinate decompositions) the
conditional measures are absolutely continuous with respect to the products of the
corresponding conditional measures on the elements of the decompositions !gn and n,,
and these conditional measures are either purely continuous or are §-measures; Theo-
rem 8* then leads us at once to the goal.

Thus, in the space X x ¥ =R™ x R™, 0 <m <n, we consider the set

Q={, y):Lxz—y)=|=—y|})

Where L(x) is a linear functional, By assumption, on Q we are given a measure m
Whose marginal distributions u and v are absolutely continuous with respect to the
Lebesgue measures on X and Y. We now prove that on Q there exists another measure
2; With the same marginal distributions and with the following property: thf?fe exist
urable decompositions 0x = 6y of the space X (and, simultaneously, of its second
“0PY, the space Y) such that the conditional measures corresponding to the measures
;:"d Y on elements of ¢ x and 0y are purely continuous or are §-measures; moreover,
OOmX and Ty i.l_l'e, as usual, the canonical projections in (X x Y, m,), then the di-‘
u;lgomxonjlr "0x and m3'0y coincide, and on each element of the decodI:‘poz l:)n“
is abS(J:luteTY By.(= "xle.x = my'0y) the conditional measure'clorl:;PmO:asurges o 1
the corye ! ontinuous with respect to the pmdUCt_ Of. the condition truct the
i ponding elements of 6, and 0.,,. With this aim, we begin to constr
et Mization m; Qof 0. Let {4,,B).,n=1,... } be a sequence of pairs of sub-
M,y B, C Y such that
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(4, X B)N Q= and mi Q = Q\_ ’gl ((X\An) X (Y\B))

Unfortunately, the present situation is not exactly the same ag under
n ’

tion 79, because it is impossible to pass to convex hulls apg fron :E“ditions .

Proposi ) e e
S pa:es. however, with certain complications an argument analogoys 1, oy Ml

’ ’ . ] ) N .
the proof of Proposition 79 works in this case. e

We introduce the notation
cr=(weX:L@=leh C=EEX:L=—|q

The sets C* and C~ are convex closed cones 1n X. If, as assumed, only thoge g, n
stochastic measures concentrated on Q are admissible, then only those t[a"sportsa,ly
admissible for which an element of mass is moved from a point x € ¥ Wwithout gome
outside the set x + C*. If (4 x B) N V' = @, then transport from 4 into s
hibited. The set of all points to which mass can be moved from A4 is the set 4 +ct
and the set of those points from which it is possible to transport mass into B is th, ,

set B + C—. The condition (A x B) N ¥V = @ is thus equivalent to the condition

A+CHN(B+C)= (modp and mody) ®)

(here we regard both A and B as subsets of the same space X), or, what is the same,
to the condition

(A+C) X (B+C)NC=T. 0

We can assume that A = 4 + C* and B = B + C~. Indeed, if u4 +vB=1,the,
by Proposition 54 and (94), u(4 + C*) = uA and v(B + C~) = vB, ie, the &
Aand A + C*, and also B and B + C~, are tespectively u- and v-equivalent. Furthet
it is clear that u4 = v4 and uB = vB. It is thus possible to assume that each pair of
sets (4., B,)) appearing in the minimization has the property that A, = At ¢tul
B, =B, +C~,and, moreover, A, U B, = X (mod u and mod »).
Regarding the sets {4} as a basis of a decomposition 8 and the sets {.Bﬂ} .
 basis of a decomposition 6y, we find that 8 5 = 0y when X and Y are identife)
and that each element of 0 , is obtained as the intersection of a countable sequet®
sets of a special form. We now proceed to the study of these sets. g
We call 4 ac+-Lipschitz setif A = A + C*: the set B is C—_I_jpschitz |f+

- . i . C .
B+C and Fis C-Lipschitz if F = A N B, where A and B are, feSPecuvely'
and C~-Lipschitz. ‘

. We

: tZ
dive a:S ;hown, We can assume that each element of GX =0y is C-I.JPscl:o"ed !
th ?t °f example. Asis easy to see, each of the sets in the class X mer b o

. ¢
0of is a C-Lipschitz set, where C is the cone gene: a SUP g
sphere S (some set that is the intersection of SW elon .

| .
ap rplane): The sets that are elements of 0 ,, however, do 10! e
88 of C-Lipschitz sets,

.‘face” AS of the unjt
the ¢]
By construction,

ONU (XN 4,) x (Y\ B,)=mi C;
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N

fore, for both conditional marginal measures on each element of 8\ (= @) the
eretores a3 P n : :

! ) glready coincides with its minimization.  The requirement that there exist on
Dl .

aach element of 8y (¢ ‘
of subsets of X that can be elements of 8 = 8.

8 y) two measures for which = mi Q restricts even more the

Jass : . . .
‘ We list onoe more the properties that must be satisfied by a set 4 C X that is an

glement of 8y + _
L x, Xy €dithen (v, + YN0y +C7)NC A
). For each point x € A the set 4 is contained in the closure of the union of

the sets A x» Where
.-l;.l—_:(-r "i" (‘*‘ n _-{' _-1_'.;, ::\:lr.l +_ Co) n R
Laa=@atO)NA 4 =M aa+0INA ...

From properties 1 and 2 it follows that € is a locally affine decomposition (and the
affine span of each element of this decompostion is parallel to some face of the con-
wx cone C). From the absolute continuity of u and » with respect to Lebesgue mea-
aure it follows that the corresponding conditional measures on the elements of the
locally affine decomposition 8 ,. are also absolutely continuous with respect to the
Lebesgue measures on their affine spans: in particular, they are either purely continu-
ous or are §-measures. From the maximality (which has already been used) of the de-
composition it follows that the dimension of the intersection of Q with the correspond-
mg element of 73'0, A 73'8 is maximal (otherwise the decomposition 8 , could be
refined; cf. the proof of Proposition 79). Thus, with respect to each pair of corre-
fponding conditional measures on corresponding elements of the decomposition 8 . of
(X, 4) and 8y of (Y, ») the set Q is not minimizable and has maximal dimension. By
Theorem 10 and the accompanying Remark 2, it follows from this that there exists on
Q—al doubly stochastic measure m, whose conditional measures on the clements of
Oy Ao y are absolutely continuous with respect to the product of the corre-
*onding conditional measures. And, by exactly the same arguments, there exists also
:blﬁ‘:fle' on ﬂ?e set V v whose conditional distributions on the elen‘lents of E’\ n are
¥ continuous with respect to the product of the corresponding conditional
zza:ﬁi;nc:he F?nesponding elements of the decompositi(‘\ns ¢, and ngl moreover,
nditional measures are also either purely continuous or are (both)
“Measures,
the Uri‘fo:eo;! (:;:Odemmpose the space X (= )) into two sutfsets. the ﬁrs‘t‘of \\‘hj‘ch .is
tions of i mea: elements of the decomposzt-mn E" on which the mm{mm‘\al \‘hsmbu-
Wion of o " l:te H (and ») are purely continuous, mfd the second o: fvhnch lS\tht‘
Subsey and usmggm:)-::l elements of _‘t’n (and "i“ then, using Thmrem. 8* for t!\e first
Sreq measure th’l .argumenls for the second one, \\'c'- get the c..\lstcnce of the de-
o that is the kernel of an isomorphism of the marginal measures u and

dis o0
Wim) in (89§enl:ated on the set ¥, thereby giving a minimum for the expression for

REMARK_

te o .. It is actually possible to weaken somewhat the requirement of abso-
commuily 0

f the marginal distributions  and ». Indeed, our hypothesis of absolute
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continuity for the measures p and v with respect to Lebesgue measure y
ensure the nonatomicity of the conditional measures on the elements 0:3 used Only 4
affine decomposition that have nonzero dimension. This property js alsothe lo
measures u such that at any point x € X the p-measure of the ball of rad.e
center at x is an infinitesimally small quantity of higher order than ¢~ 1 18 € wipy
dim X. The above example of a situation in which there is no OHE-toﬂn; ::::e n=

the opﬁmal ones, and analogous examples for any dimension n > 2, sho h
» STIOW that thes

conditions are not improvable.
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