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1. Introduction

In recent vears many computational procedures have been developed in order to handle problems
of linear algebra, in particular for solving linear equations and computing cigenvalues.  The principal
need for this research in a relatively elementary ficld of mathematies has arisen in the use of high-speed
computational equipment, where numerical stability and the self-correcting features of a numerical
method ave very important.  As a result, some of the classical techniques have had to be improved and
refined.  Much progress was made, especially in the domain of iteration processes.  There are various
reasons for preferring iterations in high-speed computing.  First of all, each step of an iteration routine
aives a new and better estimate of the solution.  Furthermore, iteration is easy to code. IFinally, in
linear algebra an iteration uses the given matrix over and over again and does not modify the matrix
during the computation. This is most important if the matrix contains many zeros, as often happens
in solving boundary-value problems in mathematical physics by the method of finite differences.

The author feels that there is a common theoretical background in many apparertly distinct modern
iteration techniques. This is the theory of orthogonal polynomials. Let us take it as a basis for better
understanding and relating known methods, and perhaps for discovering new ones. It is fairly obvious
that polynomials play an important part in the theory of linear problems. From the point of view of
abstract algebraic structure, the computation with a given matrix A and its powers is isomorphic to
the computation in the ring of polynomials in a variable \.  Orthogonality of polynomials is important
because orthogonal polynomials are distinguished by extremum properties. This fact is familiar to
computers in the special case of Chebyshev polynomials. Last but not least, polynomials (and rational
functions) are the only functions that an electronic computer is able to handle. Hence in working
with polynomials we introduce into pure mathematics the practical properties of our computational

equipment.
2. Review of the Elementary Properties of Orthogonal Polynomials

The contents of this section are elassic and should be taken as a review preparatory to further
investigations. An excellent textbook on the theory of orthogonal polynomials has been written by

Szegd [1]3
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1 is paper was presented in April 1955 in the form of four lectures that were prepared under contract between the National Buros Stand:
Am”m; Filiversity WVith the sponsorship of the Office of Naval Research. onal Bureau of Standards and

3 Eidgendssische Technische Hochschule, Ziirich.
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Let a <A <b be a given finite interval on the axis of the real variable .. A 1'0:_11 flmctio.n, p(N), defingq
in this interval will be called a density function if it is cither a continuous function positive in the opey

interval

p()\)>0y (l<)\<b, (1)
or if it is of the form
pm=;zi';, =),  a<n<b, &

where the k, are given real numbers not equal to 0. In this formula & stands for the Dirac é-function,
8(X) is an improper function vanishing in cach point A0, but having at A=0 so high and steep a peak
that

+e
f.: s(\dN=1. 3)

Therefore, the density function (2) has peaks at the points A;, Ay, . . ., An, but vanishes everywhere
else in the interval (e, b). If f(A) is any function defined in (a, b), we have from (3),

| s —ng=ron. 30)
Hence, using the density (2),
| s3p00= 30 @

Therefore, the purpose of introducing the §-function is only to write finite sums as integrals. Of course
this can be done also by the concept of Stieltjes integrals. The density (2) will be called of Dirac’s type.
Corresponding to a given density function p()), there is a sequence of polynomials

Py(N)=1, P,(A), P.(\), . . ., P.(N), . . .. (5)

such that P, has the degree n (A" having a nonvanishing coefficient) and
b
f PO)PNsNAN=0, if isk. ©)

This is to say, two polynomials of the sequence are orthogonal with respect to density p. In order to
prove this statement, let us construct the sequence by recursion in the following way. Assume that the
sequence is already established up to P,. Then AP, has the degree (n+1). In order to make it or-
thogonal to the two preceding polynomials P,,P,_,, we add a linear combination of P,,P,_,, thus putting

Pn+l()\)=7\Pu()\)'—an+1Pu()\)'—5nPn—1()\)- (M
The orthogonality of P,.;,P, and P,.,P,_; yields

RN _ JAPL )P (Np (A

n41— y n— i (8)
J Py an P02 an

4

the limits of the integrals being always a, b. The polynomial (7) is automatically orthogonal to P;(\)
for i<<(n—1). This is established by induction, admitting that the three-term recursion formula (7)
is true for indices lower than n. From definition (7):

f P Pipdh= J' AP, P,pdh.



From the hypothesis of induction,

)‘I)tzl)ﬁ-l + at+:P|+ 311)4—1-
Hence

fP,‘HP,pd}\:anPH_lpd)\—}—a,+1fPuP,p{l)\+ﬁ; P,,P{_lpdh.

But each of the integrals on the right-hand side vanishes, ]
The fact that there is a recursion formula (7) linking together three consecutive polynomials is

most important for this theory of solving linear problems.
In the case of a continuous density, the denominators in (8) are always nonzero, and thus our

construction never breaks down. In the case of a Dirac density, however, this is not true. The
orthogonality (6) becomes then, by (4),

m
gk:‘;l),()\f)f)k()\;)=0,
which is to say that the vectors
PO EPN), + -y EnPiON)], 1=012, ¢ ©
build an orthogonal set in the m-dimensional vector space. Because there are at most m linear inde-
pendent vectors in this space, for some 7 <m, the vector (9) must have the length 0:
SUP ()= [Py(N)(N)dA=0. (10)

Thus
P;(\)=0, j=12,... m. (11)

But a polynomial of degree 7 can only have m roots if i>m, hence i=m. Therefore, the following

statements are correct:
fP,(x)%o\)dx#o, for i<m, Pu(A)=0. (12)

This proves
TaeorEM 1. In the case of a density of Dirac’s type with m peaks, the sequence of orthogonal poly-

nomials finishes exactly with the polynomial of degree m. This last polynomial has its roots at the abscissas

of the peaks.
ExampLE. Chebyshev polynomials. Let us take as interval (—1,1) and as a continuous density

p<x)=ﬁ- 13)

Introducing ¢ by cos ¢=»\, we observe that
P,(\)=cos n¢ (14)

is a polynomial in A because cos n¢ is a linear combination of the powers of cos ¢. These polynomials
are orthogonal with respect to the given density; indeed,

+1 T 1
f P,Pkpd)\=f cos 7¢ cos lcq&——sm———qS d¢=0.
-1 0 vV1—cos?$

From cos(n+1)¢=2 cos ¢ cos ng—cos(n—1)¢ we obtain the recursion formula,
Pa+l=2)‘Pn’_Pn—l-

Expansions. Any function f(\) defined in (a,b) may be formally expanded into a series of orthogonal

polynomials:
f(x)g§ctpl()\)- (15)
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Multiplying this by 7,(\) and integrating, we obtain as a result for the Fourier coeflicient ¢,

1002006 )dN
Cp=" N, (16)
Here N, is an abbreviation for the norm,
Ne= f Po(\)2p(\)dA. (17)

Take as a special case f(A\)=\". (In the case of a Dirac density, n should be less than or equal to
the number of peaks.) It is obvious by induction that A" is a linear combination of P,,P,, . . ., P,
This is to say that the expansion (15) is not formal but exact and finite. Furthermore, for &>n we
have ¢,=0, or

f)\"l’;;()\)p()\)([)\:(), for k>n. (18)

By simple superposition these results earry over from N to any polynomial IT,(X) of degree n.  There is
a finite expansion

LN = 3¢ (N, (19)
=0
and
flI,,()\)I’k()\)p(?\)(D\Z(), for [>n. (20)

Expansion of the é-function, kernel polynomials. Tiet N, be a point in the open interval (e, b). We
want to construct a polynomial that has a very high and steep peak at A, but takes on small values else-
where. This can be done by expansion of the s-function,

S(A—N) = %C't‘p(()‘),

truncating the series after a finite number of terms. IFrom (16) and (3a),

_Pi(No)p(ho)
TN,
Thus

P O\ )P \N.

6(A—No)=p(No )Z N, (2D
The constant factor p(\,) is not essential for our purposes. The partial sum,
nPe(No) PN
n )\0,7\) Zu Ic( 0} L( ) (22)

is called the nth kernel polynomial with respect to the density p, and some formal properties of those
polynomials are listel, dropping the assumption that X\, is inside the interval. Take any polynomial
II, of maximal degree n and its expansion (19):

IL 0= P03 f I, () P (o)

=fH,.(n)p( )ZP’O\)P (u )Iu

i=0 t

LN = [0 w)p()du. (23)



m . .
I'he ']:()1_\'nmuml IT, 15 reproduced by integration with the kernel K. Thus
Punowss 20 The function K,(\w) is a reproducing kernel in the field of polynomials of maximal

degree n., Take, in particalar, IT,(N) =K ,(A,N\). Then

Ko\ = [ KO K u O )p () . (24)

This important identity gives for A=x, the result

[Kauw) o (w)du=E,00N), (25)

which is an evaluation of the norm of the kernel polynomial. Now take IT,(A)=(A—N\)II,(A), with
t<<n. IFrom (23),
JE 0 () (e =MD ()i = (A=) L),

and for A=)\,

J B (o) 1) (=Moo () =0

Thus I<,(N,) ) is orthogonal to any polynomial of degree 1< n with respect to the density (A—DXo)-p(N).

Or
Trurorem 3. The kernel polynomials I,(x,\) build for a fixed Ny an orthogonal set with respect to the

density (\—XNg)-p(\). Tt is important, however, to observe that (A—2Xy)-p(A) is only a density function
in the strict sense of definitions (1) and (2) if X, is a point oufside the interval (a, b), because otherwise

the new density changes its sign in an interior point of the interval.
The original idea of constructing a polynomial with a dominant peak is reflected in the following

exact statement.
Tarorem 4.  Among all polynomials of marimal degree n and having a given value a at the given point
No the polynomial ¢, (ho,\) yields the least norm. Of course ¢ is determined by ¢K (Ao, ho)=a.

TFrom (19) it follows for any IT, by Cauchy’s inequality that

2 3 Py 2 { 2} {Z Py(no)’
- AT, A ) .
I.I,‘(RO) % (’\ 1\’161) 1 ,—Nl } S Z"Nici - Nt

Proor.

The first factor on the right

If 1, is in the family under consideration, the left side is equal to a2
Hence ac<N. From (25),

side is the norm NV of II, by (19), and the second factor is K, (X, \) =a/c.
[EaOowp(u)du=Ka(ho M) =a/e.

Thus
f {eKn(No,u) }ip(w)dp=ac <N.

Theorem 4 establishes a kind of filtering property of the lernel polynomials. If the M-axis is a fre-

quency axis and f(A) a frequency function, the integral

JE 00, MO (N)AN

filters out the frequency Xy, suppressing all the other frequencies better and better with increasing
This property is the key to the utility of the kernel polynomials in numerical analysis,

2
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3. On Solving Linecar qumli()lls

Given a nonsingular real matrix, 4, we want to solve the linear system,

Ax=k, (26)

where z is the vector of the unknowns, and k is the given vector of constants.  We propose to solve (26)
by iteration. Using geometrical terms, we start with a first trial point . Without any loss of gen-
0£‘:1]itv. x, may be assumed to be the origin 2y=0. Then we move out of 20 1n some chosen direction to
the next approximation point z;, adding a correction, Az,. This construection is repeated up to a fing]
approximation point z, that is hoped to be necar the desired solution z. The accuracy of z, may be
checked by putting this point into (26) and computing the residual,

r=k—Ax,. (27)

Such an iteration procedure is characterized by the choice of the directions of the segments of the
path and by the choice of the lengths of the segments.  In the following investigation we limit ourselves
to the iterations where the direction of motion of z, is indicated by the residual 7.. Thus we record the
rules,

Tip =21+ Az, A35i=(ql>"n xo=0. (28)
1

The scalars g, are still arbitrary, they are called relaxation factors, and they determine the length of the
segments of the path.* In order to secure the convergence of the iteration some tactic is needed.
Normally, it is recommended that ¢; be chosen in such a way that an appropriate error measure is
minimized going from z; to «;,;. This tactical rule concerns only a single step. However, like a good
chess player, one should not be guided by the greatest advantage to be gained in a single move, but
should consider the wisest over-all strategy for winning the game and choose the set of moves that best
promotes that strategy. Therefore, the following strategy problem must be solved. Among all paths
having a given number of segments #, it is necessary to find the path yielding an endpoint z, with least
error measure. Therefore we must determine the relaxation factors go, qi, . . ., g,—1 simultaneously.
Before this can be done, some information is needed on how residuals build up.

Residual polynomials. From (28) it follows that
1 A
rur=k— At =k— Az —Adz=r— Ar,=<1~—-q—) 2o 29)
i 1 )

(Here 1 stands for the unit matrix.) Furthermore, ro=k— Ax,=Fk, and by repeated application of the

law (29),
- 1—*‘—1) (1—é o (1— 4 )k. (30)
Q(} QI Qn-l

Introducing the polynomial in a real variable

R,.(k)=(1—%) (1—% L (l—qf_.)’ (31)

ra=R,(A)k. (32)

we may write

The residual polynomial R,(\) has the important property to take the value 1 at the origin,

R,(0)=1, (33)

4 If A is a symmetric and definite matrix, the iteration (28) is called method of steepest descent or gradient method. This is so named for the following reason:
Consider the quadratic function F(z)=(z, Az)—2(k,z), where the comma stands for thescalar product. Then grad F=2(Ar—k)=—2r. The direction ofr isorthog-
onal to the level surfaces of F; in this direction F diminishes as fast as possible. The solution point z is characterized by grad F=0 and is thus the point where
F is minimal.

6
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I"urthermor s rolasn ( . g :
o *Imore, the relaxation factors are the roots of the residual polynomial. Inversely, any polynomial
Uy hav . g v - e . 5 . . ek
: \n_ | \;ll{:) 1ts roots real and satisfying (33) determines uniquely an iteration process yielding as last
"SI ac A o - . .

ud (*2). In order to prove this, it is suflicient to take the roots of the chosen polynomial as
relaxation factors,

m

1 HEOREM 5. There is a one-lo-one correspondence between iteration processes and polynomials with
real roots salisfying (33).

Let us assume from now on that the matrix A has real eigenvalues Ay, N, . . ., A\, and can be
transformed by a veal coordinate transformation into the diagonal form,

N 3

» O

0 .
~ )‘mJ
(Tlle latter assumption could be easily removed by dealing with Jordan’s canonical form instead of
diagonal matrices.) Later on we will make some remarks about handling more general matrices.

Under these assumptions the graph of the residual polynomial R,(\) gives much information about the
behavior of the iteration.

R,(N\)

R,(\) Ry(N\2) RN )

. )
o A A Amb
Indeed,
(RB.(\) h
R0 O
R.(4)=
O
. R (Mn)J

Therefore, eq (32) splits into the following relations for the components of the vectors in the new

coordinate system:
Tntan(A()kl, 'L.=1,2, e m, (34)

This is to say: The ordinate R.(\;) of our graph is the percentage by which the ith component of the residual

1s reduced after the nth step of the iteration.
It seems therefore reasonable to introduce as an error measure,

L ROV, 5)

where (@, ) is an interval containing the eigenvalues and p(\) an arbitrary density function in this
From theorem 5 it follows that this strategy problem is equivalent to the construction of a

(4

interval.
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polynomial I,(\), of given degree n, satisfving /7,(0)=1 and minimizing (35). I'he answer is given
by theorem 4. We have to choose

K,(0,N)

li,n (x)=]\'" (0' 0)

(36)
The roots of this polynomial are indeed real.”  Ilence we may record

TuroreM 6. The iteration of best strategy with respeet to the error measure (35) is given by the following
rule.  Let a <N<b be an interval containing the eigenvalues of the given matriz.  Choose any density function
in (a,b). Take as relaration factors the roots of the nth kernel polynomial with respect to this density.

Computational technique. 1t is not impossible to use theorem 6 as it stands for numerical computa-
tions. However, the density p(A) must be so simple a function that the zeros of the kernel polynomials
are available.  D. Young [2] has worked out such a routine in the case of a Chebyshev density.  But
even then one may runinto trouble, beeause the arrangement of the roots remains undetermined.  There-
fore, there arve n! different paths satisfying theorem 6 and ending in the same point of best strategy.  Some
of them might be highly unstable.

Therefore, we modify slightly the basic iteration process in the case where the cigenvalues of the
given matrix A are not only real but positive, and therefore the lower bound @ can be assumed to be
greater than or equal to zero. Consider not only the single polynomial £2,(A), but the whole set of
polynomials

e T LA (UL :
I"O‘)—K;(O,())’ i=0,1,...,n (37)

From theorem 3 it follows that these polynomials are orthogonal with respect to the density function
(N, which is now in (a,b) a density in the strict sense of definitions (1) and (2), and therefore three
consccutive polynomials are linked by a recursion formula of type (7). We prefer to write this formula
in the form of a finite expansion of A7;(N):

MR (N =—qi i (N) 2 (N) — D B (V). (38)

(There is no reason to confound the coeflicients ¢; with the relaxation factors denoted previously by the
same letter.) From (37) it follows that R;(0)=1; thus t,=p;+q; and

AR (N =—0:Rs(N) + (0t BN —p iR (M), (39)
Now we construct a new set of vectors, 1-0=l'c, r1,T2, « «+, 7', defined by
re=R,(A)k. (40)
We have the recursion formula,
Ary=—gqirim+ @4 q)ri—pira.
Introducing Ar,=r,,—r; this may be written

A"tqu(l)tm'r—l—/l?'t)- (41)
1

Finally, we want to construct the iteration path yielding the vectors r; as residual vectors. Let a; be
the approximation points, Ax,=x,,—. The objective is

"f:k—'fll'{. (42)

5 For a proof see Szego, Uber orthogonale Polynome, die zut einer gegebenen Kurve der komplexen Ebene gehdren, Math, Z. 9, 241-244 (1021).

TS



S aetine 1¢ i
ubtrac ting this from Fop=k—Ar ., we got Ary—=—AAx,.  llence, from (41)

A.r,:"tL(r,-]—'p,A.r,_,).
UK

This is the rule for the construction of the new path. It must be emphasized that cach point of this
path, and not ouly the last one, is a point of best strategy.  Indeed, from (40) it follows by (37) that
the residual polynomial of the ith peint is the kernel polynomial. - Therefore the path is perfectly stable.
Thvoren 7. A computational routine of best strateqy is the Jollowing.  Let 0<a<"b be an interral
containing the cigenvalues, Choose any density function p(N) in (a,b). Construct the set of orthogonal

polynomials R () with respeet to the density \p(N) satisfying B ,(0)=1. Their recurrence Jormula is

My=—qR i+ (Pt Ri—p . (43)

Carry out the iteration process:

1
2o=0, Ty =x,4+ Az, where A:c,f-q—(r,—}—p,Ax,_l). (44)
i

and ry is the residual ri=lk—Ax,.

Observe that the roots of polynomials are no longer needed,  The new routine is only slightly more
complicated than the original routine (28). The additional term pAz,_; takes into account the history
of the process and takes care of the numerical stability, At each step the aceuracy is checked beeause
the residual is computed.

Choice of the density function. This choice must still be made. Theoretically any information
about the cigenvalues of the given matrix can be helpfal to determine p(). Assume, for instance,
that some ecigenvalues claster around a point Ay, Then put a heavy weight on this region, choosing a
density funetion having a maximum at A,. By this technique, residuals in the region of A, will be quickly
liquidated. However, if p(A) is too complicated a function, the computation of the q,, p, might be diffi-
cult.  Discussion of a few typical cases follows.

L. It is casy to find an upper bound & for the eigenvalues by Gerschgorin’s cirele theorem [3]. It
might be much more difficult to find a fairly good lower bound «>0. But let us assume that such a
bound is known. As suggested by Shortley and Flanders, we may take for the residual polynomials
£2;(A) the Chebyshev polynomials adopted to the interval (a, b). This is a good choice because the
Chebyshey polynomials have not only the property of yielding the least norm but also the property of
yielding the least maximal value inside (a, b). In order to find the recurrence relation we put

—2M(a+b)

cos p= h—a

)

¢ running from 0 to = as X goes from a@ to b. The residual polynomials are given by

cos N

> — 45
Il"()\)_cosh new (45)
where o is determined by
b+a .
cosh w=r_—_ (46)

It is not too hard to establish the recurrence relation. The final result is tha following rule for iteration:

cosh (1l;+ Dw { bia cosh nwr,+cosh (n—1)w-Ax,_, } . 7

For n=0, this formula must be replaced by Azy=2r/(b-}-a). TFrom (45) it follows that after the nth
step the residuals are reduced by a factor of 1/cosh new. - .

2. Suppose now that no lower bound of ic cigenvalues is avml.nblo. Then we have to put a=0,
and to choose a density function p(A) in the interval (0, b). Technique (47) does not work any more

Ax,=

9

e e e e




beeause o—0 and the residuals are not reduced at all.  Without loss of generality we assume for the

following discussion b=1. 1In [4] the choice,
p(N)=re"Y(1—N)F,  «>0, B=—1, (48)

has been investigated. The corresponding residual polynomials are orthogonal with respect to the
density Ae(1—\)# as follows from theorem 7. They are therefore the general hypergeometric or Jacobi
polynomials. The final rule for iteration is given by the values of the relaxation cocflicients,

—l 1_{_(a—6'|‘1)(“"‘5‘]‘])'_((’t*ﬂ)(’t_\fjlr‘@
=g 2n+a+B+1 o+ at B2

(19)

1 (a—B+1)(atB+1) | (a—B)(a- B)},
7’"—4{]— 2n-+a-tp41 + In-+ta-tB

These relaxation cocflicients are rational numbers, which is an advantage for automatic computation.
(In (47) they are given by a transcendental function.) One should be carcful in applying this hyper-
geometric relaxation, because for some values of « and g it has the character of overrelaxation, as dis-
cussed in [4].  Indeed, for high values of 8, formula (48) shows that there is almost no weight on the
higher parts of the spectrum. Therefore, in the beginning of the relaxation the higher residuals are
not attacked. This may be advantageous and may speed up convergence, but has to be investigated.
The special case a=-3%, B=—13 was discussed carlier by Lanezos and can be recommended as always
safa. It yields the simple procedure,

1

=513 {4@n+1)r,+@2n—1)Az,,}. (50)

Az,
In order to check hypergeometric relaxation, Dirichlet’s boundary-value problem was solved at Ziirich
in a domain containing 81 grid points. With a=g=4%, the maximal error of the function was reduced
after 14 steps to 0.3 percent of its original value.

3. Let us now discuss densities of Dirac’s type. In order to do this, we must assume that the
matriz A of the given linear system (26) is symmetric and positive definite. Denote by m the number of
unknowns, or—geometrically speaking—the dimension of the space that the operator A is working in.
Let A, N, . . ., A be again the eigenvalues of A, and ky, ks, . . ., k, the components of the given vector
k,in the reference system of the principal axis of A. This coordinate system is now a Cartesian system.
Take as density function

p()\)=121k§6(7\—)\f), (51)
having its peaks at the eigenvalues. In order to apply theorem 7 and to establish the recurrence relation
ARy =—qiBR i+ et ad R —p Ry, (52)

we use the fact that the R, build an orthogonal set with respect to Ap(\). Multiplying (52) successively
by R, Ry, R, and integrating, we find that

— f AR Ryl [Nmzpdn — J MR BRipdh
=g, =T P
where
C= | MR3pd. (53)
It is a little more convenient to write
q«=éf7\233pdh—m p«=%qm. (54)

10



Nowalways using fovmula ()
O | N N = D3N 0 (),
. (§)}

Paking into necount the dinponal form of the mnteix in the velerenco nyntom ol principnl nxis, Logel her
with (V) wo lwnve

\ . X
o 20N,
hl
where # a5 the Jth component of the vesidunl veetor 7o This s s nothing but the senlie produet ol
the veotors #oand e Therelore,
Y l A
gy ),

By steatghtforward computation of the same type, wo obinin

.\""l‘;'pf,,\ (."I';. ."I").
Using ¢41), the final routine is now

|
ry ’\.. Poae M | .‘\I'“ L\"‘ "I‘(I)‘{\I" 1" ‘1"!',),
|
whero
‘ Ut (h6

Q0 “,"(.‘ll", “hll)' P (Pil ”)t Py (}y‘ ‘l Ty )

and
C== (rq, Ary),
This yvields the successive residuals,  Alterwards, compute
|
Xy, L=t Ay, Ay '"q"("": Fp o). (H6)
i

This iteration has some vremarkable properties.  1fiest of all, the error mensure (35) turns out Lo be
* P -\ 0y
| 200N SO (7).
. D

Because of the best strategy, the iteration (55) yields therefore the least-square residunl after n steps,
Furthermore, it follows from theorem 1 that 22, (N) == 05 thus, vy = RNy~ 0 and 7, 0. T'his is o
say that the routine gives the exact solution point after m steps, m heing the number of unknowns of
the given linear systom,

Turonvem 8. The iteration (68), (56) yiclds afler a given number of steps na smaller length of the
residual vector than any iteration of type (28).  Morcover, il reaches the solution point after o finite number
of steps.  This number is the dimension of the vector space mapped onto itself by matriz A,

This iteration is a modification of tho method of conjugate gradients described in the monograph [5),

Let us close this section with some recommendations on how to solve o given linenr system having
cigenvalues that are real and positive. I the system is well conditioned, w fuirly good lower bound,
a>0, of the eigenvalues will be known and the mothod of ease 1 is most suceessful,  But we huve to
deal also with ill-conditioned systems.  Such systems occur, for instance, in solving n boundnry-value
problem using diflerence methods in a fine grid.  Then the following combinntion of 1 and 3 seems to
be the best.  Compute an upper bound b of the eigenvalues,  Chose n number a0 that is not neces-
sarily a lower bound of the ecigenvalues but lenves only a small number u of eigenvalues on the left side,
Start with routine (47).  This will liquidate tho components of the residunl vector corresponding to the
eigenvalues to the right of a. The remaining rm.iidnul in thorefore v vector in the spuce /t# spunned
by the ecigenvectors of A corresponding to the cigenvalues to the loft of «. Operntor A leaves this
space invariant. Now switch to the routine (656), (66)., During this routine all the residunls remain
in B. Therefore it follows from theorem 8 that after u steps the residual is practienlly 0.
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As an example, Laplace’s equation, Au=1, was solved in a square “'itih "’-”%i‘“htl-"% ]()‘?ll)ni?:‘l;‘: an'u_es,
using a net of 10310 points.  With a=2, b=S8, eleven sto!m of tlw_(,r,lwb_vshm 10'11.1.11(_{ 1: o ‘( Cﬂr}l}‘md
(mt.\ This reduced the maximal error of the desired function u }(‘) f“ l’(‘l'("'_“t of 1.“1“_“““1{ \’n 1" , -len
two steps of (55), (56) reduced this further to 0.014 percent. This amazing result 1s ol course due to

special sy stries of the problem. . )
e h'll)‘(]:..1‘1(11::(‘111';1]::(1{ [Ll'i):n(;.filmti(lm is very successful if there are ()111;\' a few ('lg(‘l}\'ﬂllms‘nr'm' the origin
A=0. This happens in particular in solving integral equations. In most cases the eigenvalues then

cluster around a point A#0. _ - o
More general matrices. If the eigenvalues of the given matrix A are still real but located on both

sides of the point A=0, the basic method of theorem 7 breaks down because 7\p(7\) 1s no longer a p(?Sltlve
density function in the interval (a,b) of the cigenvalues. However, the technique of theorem 6 is still

available. hebvshey’s density § )
Exanmrne.  Let the eigenvalues be in the interval (—1,41) and take Chebyshev’s density function,

1 -
p(N) NiE=x 57)

With A=cos ¢, the orthogonal polynomials are ,(\) =cos n¢. 1t is not too hard to establish the kernel
polynomial. Up to a constant factor,

M: n odd
cos ¢ )
I{n (O; R) = (58)
et ) (n-{—l)qb, n even
cos ¢ ’

Observe that two consecutive polynomials coincide! From theorem 6 it follows that the relaxation
factors ¢, in the old routine (28) are determined by the roots of cos(2v+1)6, where v is a given integer.
They may be constructed in the following way. Construct a regular polygon of 2(2v-+1) edges in the
unit-circle, one corner lying above the origin A=0. Then the relaxation factors are the abscissas of the
corners except the origin itself. In order to avoid numerical instability, the relaxation factors should be
arranged in decreasing distance from the origin A=0 during the iteration (28).

There is an almost trivial trick to replace any given linear
syinmetric and pOSitZch definite matrix. Introduce a new unknown 7 by letting 2= A*y, where A* is
the tx_-ansposed }natrlx of A. Then (AA*yy=k, and AA* is symmetric and definite. df course in a
practical numerical problem the matrix AA* is not computed. Buat in order to apply it on a vector u
first c_ompute v=A%¢ and then Av. It is obvious that the transformation almost doubles the COIH:
putational labor.  Applications to problems of the calculus of observations are described iﬁ (6]

system Ar=F by a system with a

12



4. On Computing Eigcnvulucs

In this section we assume that the given matrix A has real eigenvalues. Without loss of generality
we may restrict ourselves to matrices with positive eigenvalues.  Indeed, if a is a lower bound of the

speetrum of A, we may replace A by A-}afZ, where £ is the unit matrix.

Iteration by kernel polynomials. Again let 0<a<Cb be an interval containing the eigenvalues of
A, and p(\) a chosen density function in this interval. Furthermore, let & be an arbitrary vector.
We want to investigate the iterated vectors,

_ K A)

=l =0,1,2, ... 59
Tn -Kn()\o;)\o) ) n=0, 1, 2, ) (59)

where IV, (A,N) is the kernel polynomial of degree » with respect to the density p(A) and the parameter N,
Remember that it has a peak at the abscissa A,. It must be emphasized that now the vectors r, are not
necessarily the residuals of a system of linear equations.

There are two computational routines available to find the iterates r5:

1. If N=0, it follows from (36) that J,(0,A)/I,(0,0) is the residual polynomial R,()\) investi-
gated in section 3. Thercfore, we have to establish the recurrence relation (39),

}\Rn(}‘) = _ann+1 ()‘) —l' (Pn"l’ Qu)R(A) '_ann—-l (k); (60)
and we may use (41):

*

Arrl:q (PnArn-l_—/lrn); Tn+1=Tn+Arn- (61)

n
In the case of a density of Dirac’s type the coeflicients are giveu by (55).
2. Tf N0, the original definition (22) of kernel polynomials is applicable. Hence
__ 1 3P, s : 9

e Rpemar N, v Be=PdAR .
The P;(\) are the orthogonal polynomials with respect to the deunsity p(A), and N, stands for the norm
of P,(A). It remains to compute the sequence of vectors k.. For this purpose we use the recursion
formula (7):

Py =N (N — a1 Pi(N) — B8P (V). (63)
Thus

k¢+1=Ak1_‘at+lki—‘61k(—l, ko':k- (64)

Observe that the k, are independent of A and therefore yield by (62) the vectors 7, for any value of .
There are different applications of this vector iteration by kernel polynomials.
1. In the reference system of principal axes of A, eq. (59) splits into the following equations for
the components of the veectors:

_I{n(hﬂu)‘j) . -
rm_Kn()\o,)\o)'kj' (65)

)

Tnj

L | x

=TT N4

o A Xo b
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Suppose now that X\ is an cigenvalue of A.  From the filtering property of kernel polynomials it followg
that the component of r, with respect to the eigenvector corresponding to Ao is large nml_ that the com-
ponents with respect to the other eigenvectors are very small.  Therefore formula (62) yields the eigen-
vector corresponding to N if n— e, ) .

2. In a paper in [11], Lanczos suggests the use of this property for the practical computation of
eigenvalues by seanning the interval (a,b), moving X, from a to b. He plots one -component of 7, (with
respeet to the original coordinate system) as a function of A, in » equidistant points. For large n, the
abscissas of the maxima of this graph are approximations to the eigenvalues. Lanczos takes the
Chebyshev polynomials for the ,(A). Because those polynomials are given by cosine functions, formula
(62) then has the character of a Fourier transformation.

3. Purification of a vector k. The filtering by kernel polynomials may facilitate the computation
of the dominant eigenvalue \,, by the well-known power method. (By dominant eigenvalue is understood
the eigenvalue next to b.)

—/nm

A X
P N -

Amb

a /7

Tterating with the kernel polynomial K, (b,4), one gets a vector r, having a large component with
respect to the eigenvector corresponding to \,, the other components, 7,;, being small again (for large n
and not too high a j). Therefore, the vectors r,, Ar,, A%, A%,, . . . will tend more rapidly to the
dominant eigenvector than they do without preceding purification. From the computational point of
view it is agrecable to replace matrix A by A—bE. Then the iteration by the kernel polynomial &, (b,\)
is replaced by the iteration by X,(0,\), and therefore the simpler routine (61) can be used.

If A is symmetric, it is possible to proceed from the computation of the dominant eigenvector ¢,
to the computation of e,_, by the following well-known and stable routine. Orthogonalize r, with
respect to ey, carry out A, orthogonalize again with respect to e,,, and so on.

Spectral transformations. A very powerful tool to compute eigenvalues is provided by the following
fact. Let N\; (j=1,2, . . ., m) be the eigenvalues of 4, and f(\) a rational function of the variable A.
Then f(A) has the eigenvalues f(A;). This is to say, the eigenvalues of f(A4) are the ordinates of the
graph of f(\) corresponding to the abscissas A;. In many problems of applied mathematics, we are not
mnterested in all the eigenvalues, but only in the eigenvalues contained in a region of the A-axis around
a given point X\,. For instance, in solving the problem of critical angular velocity of a rotating shaft,
Ao 1s the actual working velocity. Or, in a problem of vibrating membranes and plates where it is
necessary to find only some low frequencies, A,=0.

In order to attack such a restricted problem, we introduce the matrices

_I{n()\mA)
B=R Gae) 66
with the eigenvalues
K.\ N)) _
A’:m?\z,?\:)’ =12, ... m (67)

The graph of the polynomial I,(A\,\) with its peak at A, shows immediately that by this spectral trans-
formation, the eigenvalue A, next to A is transformed into the dominant eigenvalue A;of B,. (To perform

14



this, 7 need not he very large,)

. _ Therefore A, may be computed by the power method, constructing
with an arbitrary veetor I the

sequence

k, Bk, Bk, Bk, . . .. (68)
The computational procedure is as follows. Trom (66),
K\ 4)
Br=T (o) F =7

in the notation of formula (59). Hence every multiplication by B in (68) is equivalent to n steps of
the iteration (61) or (64). Tt is obvious that the same technique is perfectly useful in order to separate
close cigenvalues or to refine a rough estimate X of an eigenvalue A,.

For the latter purpose Wielandt suggested his fractional iteration. Tle takes FN)=1/(A—X). The
graph of this function is a hyperbola with vertical asymptote at N, and therefore the eigenvalue A,
next to Ao is transformed by the spectral transformation into a highly dominant value. The analog to
B, here is B=(A—N\E)"!, and in order to compute z=Bk we have to solve the linear system
(A—=Nf)z=Fk. The method suffers a little from the fact that this system is highly ill-conditioned if the
estimate A\ is already close to the wanted eigenvalue, \,.

The characteristic polynomial. Let us assume that the given m-row matrix A is symmetric, and

let ko be an arbitrary vector with components ko, in the orthogonal coordinate system of the principal
axis of 4. Again we choose the density of Dirac’s type,

p(x)=j§mlk3,a(x—x,),

where the \; are the cigenvalues of A. Tf &, is not a very particular vector, we may assume that kg, >0
forj=1,2, . . ., m. From theorem 1 it follows at once that the last polynomial, P,,(\), of the orthog-
onal set corresponding to this density has its roots at the eigenvalues and is therefore the characteristic

polynomial. In order to compute it we construct sequence (62) of vectors ki=P(A)k,. From the
orthogonality of the polynomials it follows, for ¢,

0= [ PP, (NN

— f p,(x)P,(x)%kg,a(x—x,)dx

=J_§,kg, f PP, (N)SO—A,)dN (69)
=§k§,Pi(7\,)P,(x,)

=Zkuku=(lc1, kz);

=0

where £y is the jth component of k.. Therefore, the vectors &y build an orthogonal set. (This may be
used in order to correct rounding-ofl errors.) From this fact and the recursion formula (64) there
immediately follows Lanczos’ rule,

ko=Alk— ik e—Biki-y,
where
_(Akhki) _(Akhkf—l)

al“_W, ﬂt—w’ (Bo=0), (70)
Pf+l()\) :)‘PIO\)_ af+1pi(7\) ""BIP(-I (7\),

and P, () is the characteristic polynomial.
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After computation of the eigenvalues as roots of P, (X), we may construct the eigenvectors e, by
(62), observing that

2

N [ PN (A= (k)= i

which follows from (69). Thus
=3P, .
T T i @)

IFor nonsymmetric matrices, the process of orthogonalization of the vectors &y has to be replaced
by a process of biorthogonalization as developed in Lanczos' original paper [7]. This covers even the
case of complex eigenvalues.  As it stands, Lanczos™ algorithm can only be suecessfal for low-order
matrices with nicely separated eigenvalues.  For larger matrices the rounding-ofl errors destroy quickly
the orthogonality of the vectors.  As in solving linear equations, it is necessary to find for such matrices
a suitable combination of the methods available, Let us be explicit in the following example.  Assume
that the problem is to compute the lower frequencies of a vibrating plate.  We use the difference tech-
nique, constructing a net in the region of the plate.  1f we are careful, the resulting matrix 41 is symmetric
and definite. It is easy to find an upper bound b for the eigenvalues, but the desired low eigenvalues
cluster near the origin A=0, and should be separated before an attempt is made to compute them.

u
<A1
Ap
L IN A~ N
TN/ A 4
)\1 )\/J.CI b

In order to perform this, we choose a bound ¢>>0, which leaves approximately the desired number p of
low eigenvalues A\, Ny, . . ., A\ to the left of it. Then we make a spectral transformation (66) with
>\0=0:

_K,0.4)

B=TK 0,0 (72)

taking as polynomial Z,(0,A), a high Chebyshev polynomial adapted to the interval (a,b). The
vector r,=B,k is then given by the recursion

1 4 . 7 -
Arn=m{ cosh(n—l)w-Arn_,—m cosh nw-Ar ,,}, (ro=k), (73)
with
b+a

cosh w= ’
b—a

as follows from eq (41), (43), and (47). For n=0, this formula must be replaced by Arg=—2Ary/(b+a).
This spectral transformation has three highly desirable effects. Ifirst of all, the clustered eigenvalues
ApAz,. . M are transformed into separate values Ay,. . .,A,.  Furthermore, A, is the dominant
cigenvalue of the transformed matrix B,, and Aj,A,,. . .,A, are arranged in decreasing order.

Lastly, the undesired eigenvalues inside (a,b) are transformed into a cluster of small eigenvalues
of B, around the origin A=0, and with satisfactory accuracy we may assume that they coincide with
the origin.

Now we switch to Lanczos’ routine, replacing A by B, in formulas (70). The corresponding density
function of Dirac’s type has only (u4-1) peaks, namely, the points Ay, Ag, . . ., A, and the origin.
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It follows again from theorem 1 that the polynomial P,,(A) of Lanczos has the desired roots Ay, Az, « - -
Au. Of course this is only approximately true. In practice it is necessary to go on computing Pz,
Puys, . . .. until the x dominant roots of those polynomials do not change any more,

Instead of (72), Wielandt’s transformation with A=0 could be used, replacing A by B=A"".
This is to say, the partial differential equation of the vibrating plate is replaced by the integral equation
having Green’s function as a kernel, In Zirich the eritical angular velocities of rotating shafts were
computed by such a combination of spectral transformation and Lanezos’ method, and this combination
was found to be perfectly safe for about the five lowest eigenvalues.

5. The Quotient-Difference Algorithm

In the general line of our investigations, the quotient-difference algorithm may be introduced as
a method for constructing orthogonal polynomials P,(\) and their kernel polynomials with respect to a
given density function p(A) in an interval 0<a<b. In [5] the following procedure was developed for
this purpose. Let us replace in the basic recursion formula (7),

PtV =AP o (N) — an 1 Pa(N) =Bl a1 (N), (tg=Po=0), (74)
the two sequences a,, 8, of numbers by two other sequences ¢y, €., defined by
Anten1=an,  @uer=Bn (qo=¢,=0). (75)
The qn,e, are determined uniquely by the «,,8,. Thus
P =\Py— (qnirt ) Pa—quenln-, (76)
which may be written,

Pn+1+Qn+1Pn=P —e Pn+qnpn—1.
A oo A

Introducing the functions
Py =Lrat ety n“*;\q"“P 2, 77)
this is
Po(\)=P.(\)—eaPr-1(N). (78)

From this it follows by induction that the P,(\) are again polynomials, and (74) splits into eq (77) and
(78),

PN =Ny (A) = @up1Pa(N) ' (79)
P;(}‘):Pn()\)—enpr’z-lo‘)y (80)
for computing the two sequences P,, P, simultancously by recursion, starting from Po=1, Py=1. We

prove now that the P;(2) also build an orthogonal set, but with respect to the density A\p(N). Indeed,
from (79),

[PiPinoin= [ PoiPipdN i [Pripir.

Both integrals on the right side vanish for k<i because the polynomial P, is orthogonal to any polynomial
of lower degree, as follows from (20).

When this result is compared with theorem 3, it follows at once that the polynomials P,(\) are
nothing else than the kernel polynomials K,(0,N) up to a constant factor. From the orthogonality of
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the 71(\) it follows that those polynomials satisfy again a three-term recurrence formula of type (76);
Pr = \Po— (-t en) Pa—anenlnon. (81)
In order to compute the new coeflicients gy,e,, we use (79) and (80):
Pr:;1:Pn+1—¢"n+lpf::()\I)::—anpn)*fnmpi

Using (80) again,
’ r ’
I)n+1:;\Prl_QI1+l(P;L+CrzP;—1)_cn-}—an

:}‘P;_(q"-}-l+en+1)P;t_'QB+lenP::—l'

Comparing this with (81), we {ind the important rules
Q;+1+f;:(1u+1+0n+1, Q:: f;:q:i-i-lcn' (82)

A first application is the construction of the recurrence relations of the kernel polynomials K,(0, \)
from the recurrence relation of the basic polynomials P,(\). This can be used in order to establish
formula (39), which is the principal tool in this theory of solving linear equations.

Formulas (82) are a little hard to remember. In order to facilitate their use let us work out the
following table. The numbers g,e, and ¢},e, are recorded in two descending diagonals (see the dia-

gram below). Then the formulas (82) may be called the “rhombus rules” because they can be expressed
in the following form:

1. Rhombus centered in a g-column. The sum of the two lower clements equals the sum of the
two upper elements.

2. Rhombus centered in an e-column. The product of the two lower elements equals the product
of the two upper elements.

It is obvious that this scheme can be extended in the vertical direction down the page, thus yielding
a two-dimensional arrangement of numbers,

q,
(41
I/
1 (53
\e{/ e
1
/31 1z VENG
" ’ )
€1 62\ )(’3
[&)] 144 \ ’
q G2 Q3
e ey e
P
es® es’
s
e®

with the third diagonal containing, for instance, the coeflicients of the recurrence formula of polynomials
P;/(\) which are orthogonal with respect to the density A»(A) and may be called “second kernel poly-
nomials.” In general the (£-+1)th diagonal corresponds to a set of polynomials P® (\), orthogonal
with respect to the density Np(N) (higher kernel polynomials).

By the rhombus rules this scheme is determined uniquely if the first diagonal is known (observe
¢® =0) and may be computed automatically using those rules.

There is, however, a second possibility to compute the table, namely, from its first column. From
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(75) and (8) it follows that
[APipdn  [NodN

fI=q="r = -
[Pipan fpfh\
In the lower diagonals, density p must be replaced by Np(X).  Therefore,

NN

f)\"pd)\ -

Ua

Let us introduce the moments of the given density function, p(X):

g — l-)\kp()\)l[?\.

Then we have

(ky "
n="gm

(83)

(84)

Let us resume.  The quotient-difference table of a given density funetion, p, is a two-dimensional
arrangement of numbers. In the first column stand the quotients of two consecutive moments of p.  The
first diagonal contains the coefficients of the recurrence formula of the orthogonal polynomials with respect to p.
Any other diagonal contains the recurrence cocflicients of a higher kernel polynomial.  The table may be

computed either from the first column or from the first diagonal using the rhombus rules.

Examrere.  Take the density p(A\)=1 in the interval (0,1) (Legendre polynomials). The moments

are

, * 1
§W=| Nd\=7—-
jo d 1

Computed from its first column, the table stands as follows:

0 € 12 2 UE
1
2
1
6
2 1
3 3
1 1
12 5
3 9 3
4 20 10
1 2
20 15
4 8
5 15
30
5
6
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From the first diagonal and (75),

y Ny=—=—) (\’:‘:I),

From (74) we get the polynomials of the orthogonal set,

1 D 1 Byag ity
Pe=1,  Bi=d—gp  P=N-dp PB=R—p Mip—gy
Density of Dirac's type.  Again we investigate the special case,
m
p(7\)=1235'35(?\—?\;), (85)
=]

where the A, are given abscissas of the N-axis and k&; given constants not equal to zero.  From theorem 1
we learn that Pm(x) has its zeros at the peaks A, Ny, . . ., N\, But the same statement is true for any
higher polynomial P;? (), because for a fixed & the polynomials P# (X) build the orthogonal set with
respect to the density Np(X), which has its peaks at the same points A, Ay, . . ., Au.  Furthermore,
all these polynomials have the coeflicient 1 in the highest power of . Therefore the polynomials
P, P, ... PP, ... areidentical. Let us now use formula (80). In the general case it is

])‘(k+1) ()\)=I’,"" ()\)_C‘k)[)(k-ﬂ) ()\)

For t=m we have PP =P®; thus, the formula gives the result ¢ =0 for any k.

THeorEM 8. In the case of a denszty of Dirac’s type having m peaks, the column of the numbers ¢, in
the quotient-difference table vanishes identically. Hence in this case the table is bounded from the right
by a vertical line.

The importance of the quotient-difference algorithm is due to the following theorem of Rutishauser.

TaeoreM 9. In the case of a density of Dirac’s type having m peaks, the numbers in the column q,
converge to the abscissa of the ith peak. This is the ith root of the “last” polynomial P, (\) of the orthogonal
set. (The peaks are supposed to be arranged in descending order.)

For the column ¢, this follows at once from (84). Indeed,

m
f NFHpdN SR AH
P = —1=1

T m
f Modh 3N

HE)E) @G
o) )+ () (*'")

Because of the arrangement N>\ . . . >\,, the numbers ¢ have the limit A, for p—o. In
the appendix we give a short proof for tho secon(l column, ¢y, leaving the general case to the reader as
an exercise.

Application to the eigenvalue problem. Let A be a symmetric positive definite matrix and £, an
arbitrary vector. Denote the eigenvalues of A by A\, N, . . ., A\n and the components of k, in the
system of principal axis by ko;. In section 3 we took as a hasis for developing Lanczos’ rule the density,

or

Ul)_)\l

p<x>=j:§_Lj1.-a,a<x—x,>. (87)



Adopting this density we find for the moments (83),
s® = J Np (NN =S Nsk = (Ao, o). (88)
. ()

.'I'Im.\‘ the moments are the well-known Schwarzian eonstants of matrix A with respect to the vector k.
I'rom those constants one might start the quotient-difference table by working from left to right, always
using the rhombus rules.  From theorem 9, it follows immediately that the desired eigenvalues of A
are the limits of the g-columns.  However, it turns out that thisnumerical procedure is in most cases utterly
unstable, and therefore only a few dominant eigenvalues are obtained. In order to avoid this difficulty,
let us compute the table not from its first column but from its first diagonal. The diagonal has to be
constructed from formulas (75).

B, (89)

Gn=0ay—€n_1, Cn—
qn

the numbers a,,8, being given by Lanczos’ rule (70). Then one works from this first diagonal down,
always remembering that the column e, vanishes as stated in theorem (8). This procedure yields the
cigenvalues as limits of the g-columns without computation of the characteristic polynomial.

The quotient-difference algorithm may therefore be regarded as a two-dimensional link of the one-
dimensional sequences of Schwarzian and Lanezos constants.

The quotient-difference algorithm was developed by Rutishauser in [8]. His paper [9] is devoted
to mathematical applications outside the field of eigenvalue problems. In [10] he discusses the con-
struction of the eigenveetors. e finds them as limits of vector sequences con tained in a two-dimensional
arrangement of vectors, that is to say, in a three-dimensional table of numbers.

In closing, the author wishes to point out that the solution of a difficult eigenvalue problem may
well be divided into three independent parts:

1. Preparation of the given matrix by spectral transformation, as pointed out in section 4.

2. Computation of fairly good estimates of eigenvalues and eigenvectors. This can be done by
Lanczos’ rule together with the quotient-difference algorithm, which avoids the computation of

polynomials.
3. Refinement of ecach eigenvector individually. This can be done by the methods of section 4,

including the good old power method.

6. Appendix. Rutishauser’s Theorem
PP

In order to prove theorem 9 for the second column g, we attach to the given density (85) the
rational function

o=y L (90)
MM T AN A—Am

having its poles at the peaks of the density function. The moments of the density are
- f Nep (M) A= ST,
)

and are therefore the coefficients of the power series expansion of f(A) at the point A=
SO ) @
f()\)-——)\—"l-v'*‘—)\?"l' bR (91)
With z=1/x, we are therefore reduced to the problem of computing the poles of a rational function f(z)

from its power series

1@)=23s"z" (92)
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There is a well-known algorithm available to perform this (Bernoulli, Kénig, Aitken). It can be found

in Householder’s book [3, p. 104-106 and 116].  We have to build the determinants,

g® g®k=1)
HP = 9.
gkHD o (93)
Then =
T2
. k
M= lim H‘:’l’ k= w. (94)
k
Together with our elementary result,
M=lim ¢{¥, k=, (95)

this yields N, and \;.  From (93) and (84) it follows by straightforward computing that

L] (2) E+1) ___ oK)
IIL-+1___ ® g k=1 qi a1,
T (Q2) (%) (k-1)
H G —O
By the first rhombus rule,

I, 2 G(“
k+1__q(k) (k=1 1

@ ' =1’
HY eff?

and by the second rhombus rule,

e —q'(zk—l).
e(lk—1)— q(IF’
" thus
(2)
I "+1=q‘1"““q“‘”
2 2 .
HY

Taking into account (94) and (95), we obtain
)\1)\2=X1' lim q(zk-]).

Thus N,=lim ¢, which is Rutishauser’s statement concerning the second column. The proof for the
other columns must be based on the higher determinants ¥, as introduced in [3, p. 116]. The task of
establishing their connection with the numbers of the quotient-difference table can be facilitated by
using the theory of continued fractions as pointed out in [8].
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