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1. Introduction

In an earlier paper [7] * it was shown that the progressive form of the quotient-difference ﬂlgorith-m
[6, section 5] 1s a special case of a more general method—ocalled LR-transformation—which permits
the determination of latent roots and vectors of matrices. Whereas [7] was only a preliminary report
on the subject, the present paper gives full details and proofs, as well as an extended form of the LR-
transformation. The method can be described as follows:

Starting with the given matrix A=A4,, we compute the triangular decompositioa * A,=L,R,. where

* *
rl W fru * * * W
* 1 T'ag *® * E3 *
G | * K *
L= ’ R\= ' ) e
1
® ok Ok . O . * *
® Ok * . "
* * ok %k
L* *® * * 1/ L VanJ

_—
1 (a) In this report the expressions “latent root” and “latent veetor” have heen used throughout in place of eigenvalue and elgenvector; (b) the unit matrix

! i ; = = i=J, is de by dlag Ay My« =« » An)e
E; and (c¢) the matrix (Aide), where 8:j=0 If i#], Sij=111 J, Is denoted by , i
s d(;nSOet:t(ilort?;2 a’nd par(ts of seetion 2 have been worked out in cooperation with F, L., Bauer of the Technlische Iochschule, Miinchen, Germany (Department

of Mathematics). o
3 Eidgenossische Technische Hochschule, Ziirich.
¢ Figures in brackets indicate the literature references at the end of this paper,
5 Methods to obtain such a decomposition are well known, for instance the mechanized Gaussian algorithm as described by Zurmiihl [10, section 1.3]. The
]

ordinary Gauss-Banachiewicz procedure, however, prescribes 1's as diagonal elemnents of R and is therefore transposed to the elimination scheme used here.
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and then multiply Z, and R, in the reversed order: A,=R,L,. This gives a new matrix A, having the
same latent roots as 1y, beeause obviously do=PR AR 10 Ay is treated in the same way as A, a
sequence of matrices A, 4,4, . . . is obtained. Under certain conditions £, converges for k— = to
an upper trinngular matrix which has the latoat roots of A as diagonal elements.

The QD algorithm corresponds to the case where A is a Jacobi matrix:

r('] 1 w
bl (12 1
0
[)2 3 1
1112(702
1
(0
- bn—l p J

Then the decomposition of Jiin Ly and R, obviously corresponds to the formulas (8) in [6, section 7]

(with upper index k=v+1), whereas the formulas (7) (with k=v) describe the operation Ry Li=dJ;.,.
The method seems very time-consuming on first sight. Ilowever, triangular decomposition is a

very simple process and allows casy checks.  Moreover, problems in numerical analysis often lead to
the determination of latent roots of striped matrices;

A:((Lu> with ('U:() for li'_]|>7n, (2)

which, for m=1, include the Jacobi matrices. Clearly, property (2) is maintained by the LR-trans-
formation; i.e., if A is of that form, all matrices A; will have the same property with the same value
of m. This results in a great saving in computing time. For instance, the number of multiplications
and divisions together needed for triangularization of an n-row matrix is reduced from (n¥—n)/3 to
[n(m+1)(Brn—2m—1)]/3, so that the LR-transformation is especially well suited for such matrices.
Note that property (2) is destroyed by the method of Jacobian rotations (see Jacobi [3] or Gregory [2]).

Numerical experiments have shown that the LR method does not fail for such matrices as A and
B below:

(1 1 1 1 L 1) N=1/A=332.84 . . .
1 2 3 4 5 6
A 1 3 6 10 15 21 | M=1/A= 15.553 . . .
1 4 10 20 35 56
1 5 15 35 70 126 | N=1/A,= 2.0435 .
L 1 6 21 56 126 252

( 7 —14 21 —14 7 0) MN=N=332.84 ...
—14 57  —82 73 —24 11
B 21 —82 152 —117 71 11
—14 73 —117 137 —19 66 M=M= 15617 . .
7 —24 71 —19 96 121

L 0 11 11 66 121 253) =M= 2.5320 . .

A has reciprocal pairs of latent roots, which is a general property of matrices with

1+5—2
llu=( 3

il (,g=1,2, ... m)

because there exists a matrix € with A=CC"; A-'=07C. From the properties of A we infer that
B=A4+4-A7" has three pairs of equal latent roots. The characteristic polynomial of B is

“(A—35122-6081A—13167)".
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2.1 roperties of the LR-Transformation

Let A=A, be a squar i . o .
T ”l ( ; T.‘U“““ matrix of order n and L, R, its decomposition in a lower and upper triangular
natrix, with the e _ i ‘
1 , 10 additional condition that the dingonal elements of L, be 1’s.* It may be noted that

I_h‘ n(lntn\ml clements /i and 7y of the matrices L, and &2, are computed by the following recursion
ormulas: :

i—1
ro=a,=3lyry for i=12, ... "
j=1 N y
Ay — M s for j=1,2,... 0. 3)
1 . .
lijm————— for i=j+1,...n
7]
Then we multiply Z; and R, together in the reversed order:’
R\ Li==2> Ay (4)

By repeating the procedure (3), (4), we obtain an iterative process which yiclds an infinity of matrices

/1k:
(‘? l ‘ k1=

| (5)

' 1—> decomposition

A >Ak g A=—=L;,R; ’

- RkLk_>Ak+1

We have already stated that Ay converges for k—w, and under certain conditions Ay converges to an

upper triangular matriz A, whose diagonal clements are the latent roots of A. This will be proved
section 3. Here we discuss oaly some propertics of the matrices A,L;R;. Since

A,=R,L,=L7'LiR\L,=L{'A\L,,

A;=R,L,=L;*A,L,=(L,L,)*A,LL,,
and so on, we see that
(a) All the A, have the same latent roots; more exactly, they are all similar.
(b) The products
Av=LL, ... Ly and P=RiRi, ... BR, (6

are transformation matrices which transform 4, into A
Ak{.l:Ak_lAlAk:Pkfl]_P;l. (7)
A; and P, are still left and right triangular matrices, with A; having ones as diagoral elements. We
now form the product
AkPk:L1L2 e Lk_1LkRkRk_1 e Il)glzl (Sﬂ.)

With the general rule L2, =R, 1Lz, (8a) is converted into

AP=LLy, . . . LyaLyoi By Lpoy Bia Ry oo 0 IR, (8b)

and by further applications of that rale into (L,R,)*=A*. But since A; was a left and P, a right triangular

matrix, we have

S —
¢ Like formula (1). In the sequel, we shall always use this type of decomposition.
7 For the meaning of the symbol =>, see [91.
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Puvonres 1. The matrices Ay and Dy as defined in (6) can be obtained by triangular decomposilion

of A*:
AF=A, -7, (9)

3. Convergence of A4, for k-«

As a first step we prove

Tuaroresm 2. If the matrices Ay as defined in (6) converge for k— oo, then lim Ay exists and is an
upper (right) triangular matriz A, s

Proor. If A_= lim A; exists, then lim L,=lim A;};A,=F (unit matrix) and

P
R, =lim Ry=lim A;'AA,_=AZ'AA,
exists also; therefore,
A_=lim A,=lim L,R.=R,,
exists too and is triangular,

We now investigate the conditions under which A, converges for k— .
If A has a decomposition A=LR, then there exist explicit formulas for L and 2. Let a4y be the
elements of A and [;; those of L. Then

ay, a2 R y
Ay (22 ce . g
D . . .
l,==2 D, =/ - . . . (10)
YD, S . . )
Qyj—1,1 @j5-1,2 Ay—1,5
apn (12%) ¥ e (123)

If we want the decomposition of A* we have to replace the e, in (10) by the elements af}’ of A%;
then (10) gives us the elements of A,. Provided the elementary divisors of A are all linear, i. e., when
A can be transformed into diagonal form: 0o = : A

A=U diag (y, - . . , \) U™,

then we have

n
ag):zl)m,v,,)\f, s (11)
3=

where u, are the elements of U, and v, those of U7,
With (11), the matrix of D,; in (10) can be written as the product of two rectangular matrices,

(U, Uys pes Mg ) NN YA
Dok VjohE
Un Uz « oo Uop 12A2 . . . Ugphs
and ) (12)
Uj—1,1 U-r,2 oo U1
s \FK :
\ Ui U e oo Uiy J kl'lukn e rl'nktd

e —————

& See footnote 6.

50



and therefore Dy —after a well-known theorem—is the sum of the products of corresponding j-rowed
minors of the two matrices (12), the sum being extended over all possible combinations of j of the n
nambers 1,2, . . ., n.

This makes

(1)
l Eua]ag. . a,valaz. .
1=
Zu'alnz PR a,valaz ..

k
"J(x"l}\“z c )‘a;)k, (13)
a;("ﬁ)‘az e oo Ny

where Iy, are now the clements of A, and u? ., is the j-rowed minor formed by the rows 1, 2,
. ay of U; moreover, Uaa, . ..q is the minor formed by the rows
oo oyofU. Vapa,...a 18 the corresponding minor of the matrix

.. ,Jj—1,1 and columns aa; .
1,2, ...,7—1,7and columns ey .
V.

TFrom this we see at once:
TreorcM 3. If the latent roots \; of A and the matrices U and V defined in (11) fulfill the conditions

@ N>l >al> >IN, )
Uy - - Uy, P’ ... Uig
. N . s 14)
(b) |- . . . |#0 for j7=1,2,...,m,
U1« -« Uy Vs1 -« . Uy J
then lim Ay=A,, cxists and is the lower triangle of the triangular decomposition of the matriz U, and
k—o '
}‘l % %k %k ¥k ¥
N, ¥ K K K
. N »
lim A,=A4,= " e a (15)
O . ¥
Ay

Proor. Under conditions (14) the dominant terms in the denominator and numerator of (13) are

Uy -0 Uy P11 .- 1, Uy e Uy Py - . . Uiy

(Rl)\g ... )\j)k and ’ ) . - ()\17\2 e )‘j)k)

U o« o« o Uyl |Onn - 7 Vg, Uiy e Uy iy ... Py

respectively, so that we have the following expressions for the elements of the matrix A:

Ut Uy - - - Uy Uy WU « .« Uy
Ugy Ugg v o Uy Uoy Uga o v Uy
lim /=" ’ . =" " |
k—o ! * - : . . . (16)
Uy 1,1 e e Uy, . . .
Uiy . . . Uy u;[ Ujp o v o u_”

51

i

TR b e T ITE

T w— e Ty




(‘0111}):]1'i:~'(m with (10) shows that A, is the lower triangle of the triangular decomposition UL U of the
matnix 7. Therefore, we have

Ao =ATTAN =AU ding (N, ... N U, = Up ding (O« . ., N Ug!
)\1 )\l * ok * E
)\2 () )\2 % % * ok
ko ok ok
=Upy : . (Ji'= Lok ok
O . .
A” xrl

beeause Uy is an upper (right) triangular matrix, which, applied as a transformation matrix upon diag
(A, . . ., Ay, does not change the diagonal elements.

Although the conditions of theorem 3 are “practically always” fulfilled, there are very simple examples
where lim A, and lim A, do not exist, for instance with

1 —1 1
A=} 4 6 -—-11
L 1+ 1)
where \;=35, =2, \3=1.
On the other hand, we have
TuroreM 4. If the matriz A is hermitian and positive definite, then A,=lim A;, and A, =lim A,
exrists and A, is an upper triangular matriz. Eree ke
Note that the diagonal clements of A_ are the latent roots of A, but not necessarily ordered in
absolute value.® Note further that theorem 4 does not cease to hold when A has multiple latent roots.
Proor. Under the conditions stated in theorem 4 there exists a unitary matrix U so that

M 0

Therefore the matrix V= U"'7 defined in (11) is U¢, the conjugate of U. In view of this, (13) reduces to

(48] 27 k
ULy, ey . .. a(Mahay - - - Na)

= ’ a7)
2 k
Z|u"1"‘2 s "il ()\"1)\"'2 e )\"i)
where the sums have to be extended again over all possible combinations of j of the n values 1,2, . . ., n.
There is certainly one such combination ey, . . . a; with the properties
(a) Uaa, + - - a0 (because U is nonsingular),

(h) Aoy + 0 - )\¢JZ7\gl)\g2 Cee N if UB By + o o ﬁj¢0.

Therefore the denominator in (17) will behave for large k like e(Ag e, .+ . . Ae,)* with ¢520. But the
numerator cannot grow more rapidly (or decrease more slowly) since in the numerator any combination
Yz - s WIth Ay Ay o N > NaAa, - o - Mg, B8 eliminated bu(:nu..swu, uccor(li.ng to properties (a) and (b),
u . %=0. Therefore I {§ will converge for k— « and the existence of lim A, follows from theorem 2.

u7172 . ko

— e
% This was overlooked by the author in the theorem stated in [7). On the other hand, the restrictior.s imposed upon the latent vectors of A in that theorem

are snperfluous,
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4. Numerical Examples

4.1. Wilson’s Matrix (Turned Upside Down)

10 9
9 10
A= 7 8
5 6
1. 0 0 0
1|09 1 0 0|,
1771 0.7 0.894737 1. ol
0.5 0.789474 0.602941 1
25.5 19.210529
A 3.65 4.605264
27| 3.584210  4.905818
0.007353  0.011610

Further calculation yields '°

(29.658814 31.131274
Asmt 0.430404  3.249976
‘ 0.292581  2.474795

0.000003  0.000033

(30.209437 38.893433
1| 0.050732 3.593282
“H7| 0.011711  0.919637

L 0 0

30.278627 41.462444
A 0.006315  3.786811
| 0.000388  0.237012

Lo 0

30.287413 42.089697
A 0.000802  3.841210
=] 0.000010 0.053914

_ 0 0

with the corresponding transformation matrix

1. 0

A| 1050337 1.

*=| 1.014577  3.177090
0.729909  2.170012

7

8

10

7

R1=

5

6
7
5
10 9.. 7. 5.
1.9 1.7 1.5
3.578947 2.157895
0.014706

10.014705 5.
2.604412 1.5

4.880030  2.157895 |
0.008867 0.014706,
10.019865 5. N
1.171746  0.784315
2.081053 0.522803
0.000010 0.010158)
10.019855 5. ) i
1.026337  0.711755
1.187133 —0.077898
0 0.010149
10.019855 5.
1.009514 0.703360
0.924414 —0.260174
0 0.010149J
10.019855 5. N
1.007420 0.702315
0.861228 —0.304200
0 0.010149_
0 0

0 0

i, ol
0.603971 1

This example clearly shows the tendency of A, for k—e. See, however, section 6.

4.2. Matrix With Double Latent Ro'ots

4

6
/11-: i
1

e =

10 The numbers given here are, of course, afflicted with roundoff errors.

4

1
6
4

W W =

93




Here we eot

In this example,

1.

0.8 1
0.2 0
0.2 0.

4'12:

.‘13 -

4‘14—

5=

1\4 =

115
2.5
(—1.25

13.130434
1.575299
1.672237

L 0.053457

(" 14.314568
0.634108
0.661869
.—0.004488

(" 14.758727
0.235751
0.238248

. 0.000308
1.

0.975866
0.975866

. 0.951806

the limits would be

5

[== R e B e w1 |
S O Ut

Qv O Ut

|
-1
=

by |

9]

4.615388
5.638798
0.678113
0.499369

4.797245
5.376677
0.393172
—0.104187

4.943837
5.109737
0.110906
0.019496

0

1.
—0.010594

0.986213

)
k]

—15.

A

6.

5.
12

by |

4.918032
0.680680
5.722570
0.532115

5.016867
0.393917
5.411164
—0.108957

4.996771
0.110907
5.112085
0.019705

0

0

1.
0.996771

—

A

(GRS

-1 &
|

1

3.188405
3.38461:¢
—0.491803_)

1

3.068432
3.202761
—1.102410_J

1

3.024134
3.066174
—0.980550_

A
3

o O
-0 O

3.333333

~

~

5

~

~

4.3. Matrix With ““Disorder of Latent Roots®’

A2=

1
1

11111 1.
11111

8.6
1. 52

1.111111
0. 588235

Further calculation yields:

54

A3=

=R e R

. 604650
. 200108
. 683994
. 163772

0. 470588

o o+

OO —

. 222222
. 844444
. 617284
. 326797

. 3562041
. 101232
. 346020
. 082852

— o O =

O RO~

1 1
1 1
4 2
2 4
5 4.
o 18
1o o
0 0
. 470588

. 614379
. 384083

. 760563 1
. 040944 0
. 899751 1
. 694307 2

1.
. 204118 0
1
2

.2
Jrrrrs |
. 041177

: N
. 023256
. 647059
. 394367

)

777778
. 041177

0= o -



and =0 on.  The completion of the transformation of .15 into triangular form is shown as an example
for a faster converging method in section 6.

Note that in this example, the second diagonal element of -1; seems not to converge to the second
Jargest latent root. The reason for this is that the condition (14b) of theorem 3 is violated. Indeed the
matrix U, the columns of which are the latent vectors of 21, is in this case

A=10, A=3, A=2, 2\=],

2 1 0 1
- 2 1 0 —1
U= 1 —2 1 0
1 —2 —1 0
<o that
llln s _
Uy U2
It can be shown that here
10 4.5 2 1 1. 0 0 0
L_| 01 00 L |1 1 o0
e 0 0 5 1.5 Y “="10.5 0.25 1 0
0 0 0 2. 0.5 0.2 1 1

In all these examples, we have convergence of A, for k— =, and the diagonal elements of 4 _ are
the latent roots of 2. However, it would not be a good practice to carry the LR-transformation so far
that all subdiagonal elements of .1, are negligibly small, because the convergence of the LR-trans-
formation is only linear. Mlore exactly, the subdiagonal element of A, in the 77 position (i>>j) con-
verges to zero like (AyX,))Y, provided (14) holds. Thus the convergence i1s poor if some of the latent
roots are very close to each other, but even in the well-converging case 4.1, Ag 1s still far from having
negligibly small subdiagonal elements. For all these reasons a procedure with faster convergence will
be developed in section 6 (see also sections 10 and 12).

5. The Case of a Real Matrix With Complex Latent Roots

Let A be a real nonsymmetric matrix with latent roots Az, . . . \,, where \,,_;=2Xn, but other-

wise |\>|Ay| for i<j. Furthermore we require that (14b) be valid, i. e., that none of the “critical
determinants”’

Uy .« - - WUy ' ... Ty

y =y o

and |, G=1,2,...n)

Up . . . Uy s . . . Uy

vanish. With these assumptions, (13) still holds and 1im liy exists for j =m—1, because then both numer-

. ) ® o i T )
ator and denominator of I{} have exactly one dominating term, namely u{y  ;rn (W

: ng t . . A)¥and
Uys. 4Tiz...g(MAe . . . A%, respectively. Therefore (16) is still valid for j=<m—1. '
.For _7="m—1,. however, we have two dominating terms, namely {9 . 22 o O\ . . . ) )E
and its conjugate in the numerator and two corresponding terms in the denominator ) m
Let g=arg A,_,, ¥=arg t:2 . m—. Then, for large k, 2
(1) ik ) S -
J® NRO{ ujy. .. moae' etV _ U 3
U Re{ g efEe T 1T quu Tetie ) (
ceem—1 BT RN, TN TP (18)
which does not converge for k— .
55



T shown i ()t the n O eolimm veetor of A by ngitatiendly for buegee o D o
binntion of two vector the components ol w el e AR Y TY1 N1 | R 1 11 T

]
m m v v v Wil "y o ' Wi, m y "y
My oy oo Mgy Iy 1y ' o My o o

: niel . . '
([ g1 W g0 ) 1, Mmool Nm KN ”m Yo oo ”w Jom 4 ”m 4w
1y Wy TR | A 1y 1y oo My m

But the difterence of two such column veetors Tor differont vilies of bt pienllel (o one single vecetor,
the components of whicl nroe

”l'-'...m | "I'J,..m om (
. {
£y "l’r'“,m 'A'”IJ'.,.W fym' I”’)
(n (n
”I‘.l..."l | ”I‘.I...m Yom
(The termeon the vight sido of (10) vosults from n well-known theoren of Sylvester Gwe Kownlewsk)

(4], section 41),  But as

',(“)

144, em lym, ‘““l /‘“
T "m

”I'J.,,m 1om Joow v

(so0 16), wo have

Tuvorum b, Under the conditions stated at the heginning of weetion b, all column veetors of A, von.
verge for ks except the (m—0th column, which changes from e to o) 1 anmymplotically by o wwultiple of
the mth column vector of Ay,

From theorem 5, and the velation Ay Ay Ly which follows from (6), we infer that nsymplotienlly

for large A:
(l |
|

Iq (2”)

. IJ

where & (in the mth row and the (m—1)th colummn) is the only off-dingonnl element of Ly that does not
converge Lo zero for ko,

But as AF'=Li'AZY, all row veetors of A;Y converge for f o exeepl the mth-row veetor
which changes from & to k|1 asymptotieally by o multiple of the (n-—1)th row. Therefore A,
AP AN converges Tor k—> @ except the mth-row veetor and the (m-—1)th column veetor,  But as £,
the lower triangle of the trinngular decomposition of Ay, hos for lurge b the form (20), we conelude thnt
cither (0) all elements of Ay below the dingonal converge to zero for k > oxcept the element in the
same position as the = in Ly (sco 20), or (b) some of Che dingonnl elements of A, tend to infinity,

Now, for some &, the denominator in (18) may bo very small, nnd therefore A, ns well ns Ay may
indeed have some very lnrge elements,  T'here is nn infinity of such values of &, but for all other Iy
the clements of Ay and Az, remain in the snme rmnge of size.  Thoerelore () cunnot be true and we
have:

Turorem 6. Let A be a real matrie with latent rools NNy . . N, and let—as in section 8- the columns
of the matrices U and 'V be the corresponding latent vectors of A and A",

Iurthermore, let the latent roots of A be ordered in absolute value: |N| 2z [N for ke, and denote with,
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Y rea W :
N, awy real latent root, awith \,_, x, any pair of conjugate complex roots. If further

IN] 5% [\ Sor rzy’
N =N | Sor gs2q

/ N #Z N for anyr, g
an

Uy eoo Uyl (Vg e e Uy

#0 for j=12,...mn,

Ht)l . .. u}'] 1/‘11 “ .. Uj)-

then
(a) the .s"ubri'[.ug/onal elements of Ay converge to zero for k— o | except the elements ag,,-y,
(b) the vth diagonal element of A, converges to \,,

(¢) except for the elements in the qth row andjor in the (qg—1)th column all elements of A, above the di-
agonal converge for k— o

(d) the two-row minors

Agy, g=1 Ag-1,q

M,=

g, q—1 Ay, q

of Ay do not converge for k— o | but the latent roots of M, converge to N,_y and Ny,

(¢) except fm the (q—l)th column, all columns of the transformation matrixz Ay converge for k— o and
the Limits are given by (16).

Numerical example. For

4 =5 0 3
A 0 4 =3 —51
5 —3 4 0
T
we obtain
r6.25 —2.1875 3.64078 3. 3
p| —T5 —3.125  —9.06796 —5.
2 8. 28125 5. 52344 6. 81675 0.3125
L 4.54369 5.67961  7.35225  6.05825)
 15.88000 —11.31304  4.39889 3. 3
A —0. 34400 2.00261 —5.05282 —1.4
3| —10.63235  14.38518 —6.33355 —5.71304
L 2.58150 —4.48056  0.89734 3. 55094
F 13.66750 —3.03182  2.86547 3. 3
3.04469 —8.71587 —4.27515 —1.33501
A=) 5 98388 24.15839  9.46120 —0. 28312
L 0.25800 —1.58285 —0.81122 1. 58707
11.73129 —10.57540  2.80131 3. 3
0. 43008 5.49061 —4.87064 —2.00332
A= 1.35383  -8.00050 —3.03460 —4. 57567
L 0.03422 0.34395 —0.03877  1.81271)
1. 0 0 0
—0. 99889 1. 0 0}
A= 0.91043  —0.92066 1. 0
L 0.91227 —1.85846  0.93377 1J

(S]4
-J



Already, A; gives some indications about the latent roots, which in this case are 12, 1451, and 2,
However, we are still far from a matrix with small subdingonal elements. Therefore we shall develop
in section 6 also g method to speed up the convergence in such cases where A has conjugate complex
latent roots, j

It should be noted that the behavior of Ay is nearly the same if A has, instead of two conjugate
complex latent roots, two real ones of cqual or nearly equal absolute value.

11
6. Improvement of Convergence

As already pointed out in section 4, it would take too long a time to (:omplct? the trz_msfommtion
to triangular form with the LR transformation alone. The LR-transformation is certainly a useful
tool for the first steps, until the diagonal elements of A, are ordered in absolute value and the sub-
diagonal elements show a definite tendency to converge to zero. But for the later stages we advocate
a slightly different procedure, which can be described as follows:

6.1. The Case of Real Latent Roots

Let A be a matrix for which (14) holds, and let A,, be the matrix obtained from A=A, by m—1
single LR-steps and A,,_, the corresponding transformation matrix with the property A,=A;1,4,A,._,.
Then we carry out a transformation,

A my1=— L;L lAmLm

(21)
Am:Am—le:
where L,, is a matrix of the following kind:
(1 h ( I » a
To 1 O — Ty 1 O
z 1 —r 1
L= s (22)
- 0O 0
\Z» 1) \—, L)

By proper choice of the z's we could succeed in making all subdiagonal elements of the first column
of A,.;; exactly zero. However, this would require the determination of a latent vector of A,. Without
an undue amount of work we cannot make these elements exactly zero, but only very small. Let us
express these elements explicitly in terms of A4, and the #’s.

If we denote the elements of A,, transitorily by a,;, and those of 4, by b,,, then it follows from
(21) that

. n n ’ :
b,l:(Lﬂ—ana:,—i—za,,r,—:c,;a,,m, (1=2,3,...,n). (23)
- 2 p

By neglecting the quadratic terms in z and the subdiagonal elements of the other columns of An
(these are the elements a,;, with 1<j<(i<n), we get the following linear equations for the z’s:

n .
Z(GJ,_BI,QH)I}‘}'((”:O (]:2, 3, e ey H)) (24)
r=j4
1; For another method with improved (quadratic) convergence see section 12; and for a further method for striped matrices see section 1
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or explicitly,

T2 £y Xy “ aa Iy 1 = 0
Up—dn (B3 oy (lay an
33—y A3y
App—ay am

If we solve for the 2’s and execute the transformation Lytd,Ln=An,
of the first column of A, will not be exactly zero but will be consider

In the next step we try to climinate the subdiagonal elements of the second column;

plished by transformation with a transformation matrix

1 ' 1 =
0 1 1} 0 1 O
0 y 1 0 —ys 1
Lopi=|0 1, 1 s Lah=|0 —w 1 ’
O o
\0 V. 1) 0 —. 1)
where the ¥’s are determined by the equations
y3 Y4 yn 1 == 0
Agz— A2 A3y 3n 32
Ayy— A2 Ayn Ay2
N
\\-
. Apn— Qo2 A 2

In this way

1 W 1 9
z; 1 (§) 0 1 0
z; 1 ys 1
S N R ZERE
(0 . o
\Tn 1) \0 Ya 1)

(1

'\

the subdiagonal elements

ably smaller than mn A,.
this is accom-

(26)

we work through all columns, i. e., we apply in sequence the following transformations;

) (28)
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Where the a’s, 9's, . . .| 2’s are determined by linear equations of the type (25), (27). In the sequel,
the application of the 7—1 transformations (28) will be called a “sweep.”

After the completion of the first sweep, o new matrix A, ,_; has been computed, and we compute
also the corresponding transformation matrix 2

4\,4'.,1_’_):,\,,1_1.1"”]:",_{_] s o L,.,:.,,_g. (29)

Then a second sweep is started, and so on, until all subdiagonal elements are negligibly small. This
will happen very soon, because the procedure has quadratic convergence; i. e., if once all subdiagonal
elements are small (of order €) then one further sweep will make them of order c-¢, where ¢ depends
onlv upon the matrix A.

Numerical example. We pick up the matrix A, of section 4.3, which has already been trans-
formed into 1

9. 604650 4.352941 1.760563 1.
A 0.200108 1.101232 0.040944 0.023256
71 0.683994  0.346020 4.899751 1.647059
0.163772 0.082852 0.694307 2.394367
with
1. 0 0 0
| 0-976744 1. 0 0
2771 0.348837  0.176470 1. of
0. 348837 0.176470 0.760563 1
From (25) we obtain the following equations for the ’s:
T2 I3 Ty 1

—8. 503418 0. 040944 0. 023256 0.200108"
—4.704899 ©  1.647059 0. 683994
7.210283 - 0.163772

Solution: 0. 024333 0. 153331 0.022714

Therefore the first transformation matrix is

1. 0 0 0
I 0.024333 1 0 O
*710.153331 0 1 o

0.022714 0 0 1

and

10. 003233 4, 352941 1. 760563 1.
—0. 009698 0.995312 —0.001896 —0.001077
—0. 052698 —0. 321421 4. 629802 1.493728 |
0.099419 —0.016021 0. 654318 2.371653

Ay=L;7"A, L=

Here the subdiagonal elements of the first column are considerably smaller than in d;, only the element
ay did not improve so much. The latter is due to the fact that in setting up the equations for the z’s,
the comparatively large clement a,;=0.694307 of A; has been neglected. One might ask, therefore,
whether it would not be an advantage to neglect only the quadratic terms in z and solve the full linear
system in the »’s, This, however, would increase computational labor enormously for large n.

12 This is used for the determination of the latent-vectors (see also section 7), as well as for checking purposes (see section S).
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Now .1 is transformed again in order to eliminate the subdiagonal elements of th

The transformation matrix L, is given by the equations (27).

1 0

0 1,
L= 0 0.083652
0 0.011640
10.003233 4.511856
fee EVA T —0.009698 0.995141
=l s —0.051887 0.000013
0.099532 0.054737

The next step, which is a transformation by the matrix

L5:

results in
10.003233
—0.009698
—0.051887
0.114566

"10:

and

(b
1.001077
0.506462
_0.492463

A=

This completes the first sweep.

1 0
0 1
0 0 1.
0 0 0.289750

0
0

4.511856 2.050313
0.095141  —0.002208

0 0

= e
- O O

1.760563
—0.001896
4.269961
0.654340

- OO O

0.000013 5.062795
0.054733 —0.125414

0 0
1iE 0
0.260122 1
0.251733 1

.050313

1

1

—0.001077

1.403818 |

2.371666

—0.001077

1.493818
1.938832

-0 O O

ng

1

0
0
0

5.001949 1.500025

1o = O =

.500001

— o O <O

1; 0 0 0 1 0 0 0
[._| —0.001077 1 0 of g, _|O 1. 0o o]
5| —0.006207 0 1 ~|o —0.010601 1 0
—0.014206 0 0 1) 0 0.010125 0 1
we have
A 9.990853 4.500246  2.001266 1.
g | —0.000002 1. 0 0
“19=) _0.000022 0
L 0.000770 0.001638 —0.003608 1.998198
1. 0 0 0
e 1 i) 0 0
2871 0.499975  0.249521 1. 0
(0.499807 0250724  1.001266 1
and after the third sweep:
A 9.099997  4.499999  2.000001
o —0.000002 1. 0
A=) 10000002  0.000001  5.000003
0.000001  —0.000002 —0.000002
s 0 0
" 1: 0
An=| 0490990  0.250001 1.
0.499999  0.249997  1.000001

0
1
0
0

¢ second column

After the second one, which consists of the three transformations

0 0
0 0
1. 0
—0.049047 1

b4
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I't should be noted that the amount of work for one sweep is about the same as for one single LR-trans.
formation sweep.

0.2. The Case of Conjugate Complex Latent Roots

Let A be a matrix that fulfills the conditions of theorem 6 and let the Iatent roots be ordered in
absolute value.  We shall use here the same notations; A, shall denote a real root, \,_;, A\, a complex
pair.  Then, if the matrix A has been transformed by m—1 LR-transformation steps into a matrix
Ay, we try to make the subdiagonal elements of A, columnwise to zero by transforming it in a similar
manner as in section 6.1.

Let 7 be a column whose diagonal element @, corresponds to a real latent root. Then we choose a
transformation matrix

(11 )
a 0
1
L= Ty 4 1 ’ (30)
o L
~ Z, O ) IJ

where the z's are determined by the same kind of equations as (25) or (27), except that there are sub-
diagonal elements a,,,_, which can not be neglected because they are not small, '

If after some steps of the kind mentioned above we come to a pair of columns g—1,¢ corresponding
to a conjugate complex pair of latent roots, then the two columns have to be treated simultaneously by
a transformation matrix of the following kind:

5 *
!
0 1

Zop1 Yo 1

0O 1

- Tn Yn 1)

If @y are the clements before, b,y after, the transformation L—'AL with the matrix (31), then we have
for the elements of the two columns ¢—1 and q (fori=q-+1, ¢+2, . . ., a).

n
b o1=04 o1+ D000 — 0y, i si—a,, 1Y +quadratic terms in x,y.
a+1
" . .
bo=ai 42>y, —a,;, @i—a,+quadratic terms in Y.

a+1

This gives us the following equations for the z,y if we want to climinate approximately the subdiagonal
elements of the columns q—1,¢:

n
2 3045 y— g1, 1T — g, 11 =0
a+1 .
for i=q+1,...,n. (32)

n
2301, g 1,01yl =0
g+1
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. . . . 4 l(‘( l(‘(‘, ' 1SS ’ ’ / re g o
C(“l] ls_‘u‘(\ ['Unll)]l‘x pulr ()f ltll{‘llt l‘()()[fw‘ ) ’ " h J : ’ ’L } (l x - rl. | h “l
“\n oxam ](‘ may i ST i 4
]' A l“llh t]ﬂl(‘- ﬂl(l ]Ult“]‘(‘ Of C([ (32). ]J(,!tv )\1, e ey )\6 I)(\ th(‘ Ill'l!]li roots « { ‘ix ow

matrix and let A ¢ o =i =
N> N 2> N> |}\]| md N be real roots, M, and A\ two pairs of complex roots. Furthermore,
ASE® Ne| |/ > N5l

Then we have the following equations:
1. For the elements of the matrix (30) with r=1:

Ty T3 Ty Ts Tg 1 = 0
App— @y Qg3 2y g5 Uz gy
32 Agz— Ay A4 U35 A3g a3
Agg— A1y g5 QAyp 4y
55—y Asg 51
Ugs dgg— a1 g

2. TFor the elements of the matrix (31) with ¢—1,4=2,3:

Ty Y4 x5 Ys Tg Ys 1 =0
Ayy— a2 —0y Q45 0 s 0 Gz
—Qo3 Qg3 0 Q5 0 Qg Ay
As5— Ay — 3 @ss 0 Us
— a3 Q55— A3z 0 Ase @53
Qg 0 Agg— A2z — 32 g2
0 Qg5 — g3 Qgg— A3z g3

Numerical example. We pick up the matrix A of the example in section 5 which has already been
transformed into

1.70129 —10. 57540 2. 80131 3.

0. 43008 5.49061 —4.87064 —2.00332
1. 35383 8.00050 —3.03460 —4.57567 |
0. 03422 0.34395 —0.03877 1. 81271

with
1. 0 0 0
L —0. 99889 1. 0 0
4471 0.91043  —0. 92066 1. ol
0.91227 —1.85846 0. 93372 1

Here columns 1 and 4 seem to correspond to real latent roots, q—1=2 and ¢g=3 to a conjugate complex
pair. To eliminate the subdiagonal elements of the first column we apply a transformation of type (30)

If the z’s are determined by eq (27), we obtain

1. 0o 0 0

o _|—000205 100
=| o0.0851 0 1 0
0.003¢5 0 0 1
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and

1201406 —10. 57540 2.80131 3.
Ay LA L — 0. 00057 5. 46893 —4.86490 —1.99717
S —0. 02537 S8.04710 —3.28535 —4. 84420 |
—0. 00515 0.38044 —0. 04843 1. 80236

Now we come to the treatment of the second and third columns by a transformation of type (31).
In this case eqs (32) degenerate to two equations for z, and ¥4, from which we obtain

1 0 0 0
I,— 0 1. 0 0
0 0 1. 0
L0 —0. 06040 0. 06727 1
(" 12. 01406 —10. 75660 3. 00312 3.
A 0. 00057 5. 58956  —4.99925 —1.99717
—0. 02537 9.23969 —3.61122 —4. 84420
L—0.00341  —0.01237 0. 01379 2. 00760
1. 0 0 0
A | —1. 00094 1. 0 0
b 1. 00183  —0. 92066 1. ol
L 1.00311 —1.91886 1. 00099 1

This completes one sweep; the next sweep gives the following result.

 12.00005 —10.76197 3. 00000 3.
4—| 000002 5.60325 —4.99999 —1.99999
7 —0. 00005 0.23803 —3.60331 —4.84132
L—0. 00003 0 0. 00002 2. 00002
( 1. 0 0 0
| -1 1. 0 0
A= 1. —0. 92066 1. ol
L 1.00001 —1.92065 0. 99995 1

From A, we may read the latent roots, which are 12 and 2, together with the latent roots of the minor

5.60325 —4. 99999
9.23803 —3.60331/)

which are 0.99997+4.99998;.

6.3. Special Remarks

As in the example of section 4.2, it may happen that two diagonal elements of A,, are nearly equal.
This may lead to large elements in some of the transformation matrices in (28) so that the quadratic
terms in (23) are no longer negligible. In such cases it may be worthwhile to use a transformation
matrix with only one nonzero off-diagonal element, but this one chosen so that one subdiagonal element
vanishes exactly.’

13 This is essentlally Jacobi's idea; see Jacobi [3 and Greenstadt [15].
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l.ot us consider the four clements gty
the matrix ,

sty of the matrix A,. Then the transformation with

r1 2

. 1)

where i’]’ ];‘ i‘hcflth column and jth row (i<j), is the only nonzero off-diagonal element, transforms
Ay so that the four elements at the crosspoints of the rows and columns i and j become

(33)

To eliminate the lower left of these four elements, we have to choose = as one solution of the equation

—a 2+ (ay—a)r+ay,=0 (34)

and to execute the transformation L,;'A4,.L,. Then we continue as usual.
This trick may be useful also in other cases where trouble occurs. Take, for instance, the matrix

2 1 3 4
1 —3 1 5

A=\ 4 1 6 —2
4 5 —2 —1

which is used by Bodewig [11] for criticism '* against the power method [12]. Iere the convergence
of the LR-transformation is poor because two latent roots are very close in absolute value and opposite
in sign. Indeed, we have after seven single LR steps:

482840 —7.50426 —0.93851 4.
—5.20416 —4.83364 —3.17454  1.80945
As=| _0.11019 —0.53746  5.57692 —3.78443
L 0.00034  0.00022 —0.00277 —1.57168
1. 0 0 0
ool 079764 1L 0 of
™| 0.90851 —1.02218 1. 0
—0.17360 —1.35943 —0.98463 1

with no indication of convergence in the first two rows of A, This suggests the application of the
methods given in section 6.2; in this way we could get two roots directly and the two other roots as latent
f=2

dewig is wholly unjustified because the two latent roots in question (\i=—8.028 . . . and M=+7.932 . . . ) behave and may be

1 The critleism of E. Bolex bair, | Sce also Wilkinson [L7).

treated like a conjugate comnp
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Jimi he worst of the subdiagonal
roots of a two-row minor. In this case, however, we may ']."“filiz.l;.(!():)tnin the equation
elements, a,=5.20416, by the trick mentioned above: withi=1, j=2 we

5.20416—9.66204x+7.5042622 =0,
thus vielding

(L 0 0 U
—0.40881 1 0 0
" 0 ! 0
1

L 0 0 0

(( 7.89622 —7.50426 —0.93851 4.
—0.00006 —7.90146 —3. 55821 3. 44469 |

L5 AsLy= 0.10953 —0. 53746 5.57692 —3.78443

L 0.00025  0.00022 —0.00277 —1.57168

Two sweeps will turn this into

[ 7.93298 —7.51608 —0.94011 4

A —0.00002 —8.02866 —3.56995 3. 48877
® 1 —0.00001 0. 00002
0

o~

5. 66886 —4. 02376
L 0.00001 0.00001 —1.57319
1. 0 0 0
A | 0.37781 1. 0 0|
| 1.38664 —1. 00975 1. 0
L 0.34881 —1.37171 —0.98503 1

7. Determination of Latent VYectors

If A, and A_ have been deter
Because A, =AZ'AA,, w
latent vectors of A. But as

mined, then the computation of the latent v
e need only to compute the later
A, is triangular, the determin

ectors of A is trivial:
1t vectors yy of A_. Then v=A,y are the

ation of its latent vectors is trivial.
Numerical example. TFor Bodewig’s matrix
2 1 3 4
1 —3 1 5
3 1 6 —2
4 5 —2 —1
we have approximately
7.93298 —7.51608 —o. 94011 4,
A — 0 —8.02866 —3. 56995 3. 48877 1
=~ lo 0 5.66886 —4, 02376 | °
0 0 0 —1. 57319

and therefore the latent vector of A, belonging to A=

. 5.66886 (as an c.\:ample)\ Is determined by the
equations:
" Y2 Ya Y4
2.26412 —7.51608 —0.9401] 4. =(
0 —13. 69752 —3. 56995 3. 48877=0
0 0 0 —4. 02376 =0
0 0 0 —7.24205=0

Solution: —0. 44998 —0. 26063 1 0
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This gives
y=(—0.44898, —0.26063, 1, 0)7,
r=Axy=(—0.44898, —0.43064, 0.63921, —0.78448)7.
As a cheek we compute A(A,y)/5.66886 and obtain

(—0.448983, —0.430642, 0.639218, —0.784472)7.

The case of complex conjugate latent roots provides some more difficulties insofar as one has to compute
in the complex domain and the matrix A is not strictly triangular.

8. Corrective Measures Against Roundoff Errors, Estimates

It is clear that the transformation to triangular form, if carried out numerically, can only be ap-
proximate. Therefore, the accuracy of A, should always be checked. In the sequel, the approximate
triangular form and the corresponding transformation matrix, as computed by the methods given in
sections 1 to 6, shall be denoted by Az and Az.

The easiest check is based upon the relation A_=AZ'4A_; therefore we compute
Az'AAS (35)

in one step and (if needed) with higher accuracy. The result of this transformation will be somewhat
different from Az and especially the subdiagonal elements may not be as small as expected. However,
the result of (35) is more accurate as far as similarity to the original matrix A is concerned, because
less computation is involved. Therefore Az is disposed of and the result of (85) is used instead to cal-

culate a better approximation to A, ; this can be done by some further sweeps of the kind mentioned
in section 6.

Numerical example. For Bodewig’s matrix we found in section 6:

1. 0 0 0
| 0smIsL L 0 0|
=~|1.38664 —1.00975 1. 0

0.34881 —1.37171 —0.98503 1

If we compute A2 AAzwith eight digits after the decimal point, we obtain the following matrix in place
of the Az computed in section 6:

7.9329 7000 —7.5160 9000 —0.9401 2000 4.

0.0001 0460 —8. 0286 4604 —3.5699 6326 3. 4887 6000
—0. 0000 3790 0. 0001 0570 5.6688 9760 —4.0237 8459 |
—0. 0000 3312 0. 0000 2741 0.0000 3316 —1.5732 2156

9

One sweep gives the following improved A, and A, :

(7.9320 0475 —7.5160 8890 —0.9401 0388 4.
0.0000 0007 —8.0285 7837 —3.5600 4154 3. 4887 2740
-| 0.0000 0001 —0.0000 0003  5.6688 6438 —4. 0237 3544
( 0.0000 0004  0.0000 0002  0.0000 0002 —1.5731 9076
F L 0 0 0
0.3778 1815 1. 0 01
1.3866 2121 —1.0097 5198 1 o
[ 0.3488 0574 —1.3717 0824 —0.9850 2597 1 J
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(‘nnlimling m {his way, we may atiain any desired accuracy. The same treatment 1s possible for
matrices with conjugate complex latent roots without leaving the domain of real lllI.Illh(‘I'S.

[stimates. Instead of improving the result of (35) as indicated by the numerical ('.\'{l{ll[)l(l above,
one may prefer to establish bounds for the latent roots of A. Such bounds may be obtained by La-
placian development of det (ay—N84y), where aqy are the elements of Az, If s is the sum of the absolute
values of all subdiagonal elements, and if for the N's in question all column vectors of Az —X\< are smaller
(in length) than a constant M, then clearly

| det (Az—\E) —ﬁl (@g—N)| < sM™ 2, (36)

This formula, however, will in general lead to a very poor estimate for the N's, but it can be im-
proved as follows:

If we denote the length of the kth column vector of (Az—N\L) by M(N), and the sum of the absolute
values of the subdiagonal elements of the %th column by s, then the right side of (36) may be replaced
by the better value

n—1
MMM - M0N-Z %

9. Connections With “Deflation”

It is well known that if & dominant latent root A of A and the corresponding latent vectors », of
A and g, of A7 have been found, the latent root A, can be climinated from A by a procedure called
“deflation” (see Bodewig [1], especially first part, p. 169 onwards):

(@™
A\ L => A, 38
ety o (#8)
The resulting A, has the latent roots 0\, . . . ;A and the same latent vectors as 4. A slightly

different procedure allows the transformation of A into a matrix with only n—1 rows and columns and
the latent roots M)A, . . . A,

Both methods, however, have the disadvantage that by repeated application (in order to compute
all latent roots) the truncation errors '* may build up in a dangerous way. TFor this reason it may be
worth mentioning that the methods of section 6 suggest a procedure only slightly different from
deflation but not so much suffering from roundoff errors. This method, which is due to G. Blanch,'
may be defined as follows:

Let z=(1,2,23, . . . ,2,)7 be an approximation to a latent vector of A, which may have been found

by iteration. Then the transformation
.A2=Li— lflL]_,

where
g 3
z, 1 O
z; 0 1
L= (39)

z, 0 IJ

will practically eliminate the subdiagonal elements of the first column; i. e., we obtain

15 By this we mean errors caused by using in (38) vectors z; and y, which are not exactly latent vectors.
16 Unpublished, cited by Feller and Forsythe [13].
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% _k* * *
€ * * *
€ * * *
112= . . ; y (40)
€ * * *
< S—

Tore ¥ s Q@ " - . .

where * denotes normal, e small elements.  After that we determine the dominant latent vector y of the
n—1—row submatrix which is framed in (40) and normalize it again so that y=01,93Ys - - - )"
Then the whole matrix A, is transformed, with

-1 N
0 1
0 w1 O
o ,
... 0
L0 . O 1)

yielding A;=1L;'4;L,, and so on.

By continuing in this way we obtain after n—1 steps a matrix 4,, which would be triangular, if
the latent vectors z,y used in the transformation matrices Ly, Ls, . . . , Ln—y had been exact. As this
practically is never the case, A, will not be exactly triangular, but can be corrected by the methods of
section 6 and (if needed) of section 8.

Trouble will occur, however, as soon as A has complex conjugate roots or rootpairs of otherwise
equal or nearly equal absolute value. In the course of the columnwise reduction to triangular form,
such a rootpair will become dominant at a certain stage and then the power method will not converge.
In analogy to the methods of section 6, the following procedure is suggested in such a case:

An extension of the method of G. Blanch. Let A be a matrix with p dominant latent roots of equal or
nearly equal absolute value, and let @x@x-1,Tk-2 « « + Tk-pt1 be p succeeding iteration vectors (in the
sense of Von Mises-Geiringer). If we write their components as columns of an 7z X p-matrix, and if the
Gauss-Banachiewicz climination procedure (see footnote 6) is applied to this nXp-matrix, an “incom-
plete lower triangle” 7/ and an upper triangle R" are obtained: ¥’

C 1 9 (% % % - -+ %)
z2 1 O 0 % % -« %
T3 ’y3 1 0 0 * P *
L= . . 3 = :
o i : :
L Ly Yn = + » * W, J L o 0 0 ... 0 >

PR

17 For large k, such a triangular decomposition will fail as soon as the p largest latent roots differ too much in absolute value.
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[‘h(‘Il we extend the matrix ) to o square matrix ])y n(l(]ing n—mp unit C()Illnlll-v(\(}tOI'S; this Zives a
transformation matriy

(1 )
ry 1
Ty oYy 1 §)
4= ’ (41)
. L
1
0
1
LTy Yn o oeee . w, 0 0 1)
which has for large & the property
[ * % * * * A
* * % * * p
Li'AL= | , N & N * ) (42)
€ € € * *
boss
€ € € * « ) )
A\ J \ J
Y Y
p - n—p

where again a star denotes a normal, e a small element. After that, the submatrix in the right lower
corner of (42) may be treated in the same way. A numerical example may illustrate the effect of the
transformation (42). Let A be Bodewig’s matrix

2 1 3 4
|1 =3 1 5
A= 3 1 6 -2
4 5 —2 —1
Beginning with #,=(0|0]1|1), we obtain by iteration:
() [ Vg o 5 = [rd Vg (2
0 7 20 ... 1581057 4 608 988 99 985 809
0 6 —22 16565272 —06683 198 105 805 544
1 4 57 1104706 14 787 937 69 327 778
1 -3 53 —880 629 13 271 805 —57 827 717

There is no indication of convergence, therefore (42) is applied. Triangular decomposition of the 3X4
matrix with columns vy, gives

99 985 809 4 608 988 1 581 057
—1.058 205 610 | —11 560 454.98 — 17 811.387
—0. 693 376 177 1.002 743 797 |— 9 421.516

0. 578 359 245 1.378 618 389 0. 980 184 831]




Here u:[(:l ml;llm“‘“"ﬂ‘l.\' small clement —9421 indicates that there are only two dominant Jatent
U e e z — s -
rools. ierefore we take p=2, and obtain the transformation matrix

1. 0 0 0
1. 058206 1. 0 0

L=
0.693376 —1.002744 1 0
—0. 578350 —1.378618 O 1
and
2.824898 —7. 522704 3. 4.
I AL= —7.362361 —2.035264 —2.174618 0.767176
0. 033901 0. 013576 1. 730287 —4.004223 |
—0.033441 —0.013325| —3. 262891 2.371079

Completion of the transformation into triangular form may be done with the methods of section 6 and
(if needed) section 8.

10. Determination of Latent Roots of "Stripcd” Matrices

As every single LR-transformation step requires the triangular decomposition of an nX7 matrix,
the computation labor for the determination of latent roots by the LR-transformation seems excessive,
and the reader may have the impression that the numerical examples of this report could have been
solved more casily by other methods (which is certainly true for four-row matrices).

However, there are classes of matrices for which the LR-transformation is far superior to any other
method. These are the striped matrices that occur frequently in numerical applications.
Definition: A matrix A= (ay) 1s called a striped matrix, if there exists a number m so that

ay=0 for |i—j|>m. (43)

A typical example is the difference equation for the vibrating beam; the corresponding matrix is

of the form (43) with m=2. For a clamped homogeneous beam we have roughly

r 6 —4 1 9
—4 6 —4 1
1 —4 6 —4 1 0
1 —4 6
A= . (44)
—4 1
0O . 1 —4 6 —4
L 1 —4 6

For matrices of the type (43), the triangular matrices L and R have the same property, namely,

1,#0 only for i—m<j<i (45)
ry#0 only for 1<j<i+m,

and therefore (43) will hold also for A,=RL and for all succeeding Ay, 1. ¢,

TagoreMm 7. Property (43) s maintained by the LR-transformation..

This is of primary importance, because the computational labor for the triangular decomposition
is much smaller for matrices of type (43) than for full matrices, provided m is not too large.

If the matrix A is symmetric and positive definite (which is very often the case in applications of
that type), and if we Jook only for latent roots and not for the vectors, a further saving is possible by

1
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: ; " . ' v trie Gauss-Banachicwiey,
s symmetrie decomposition of Choleski in place of the nonsymmetric G
decomposition (1):

Ilk:> [;I;[/Z‘

(46)
T:?Ek:> A‘1k+1

As this procedure preserves the symmetry, the storage capacity n(-('(lvd-is again 1'(‘(]ll('l'f] at the ('.\’[)('st::
of computing » square roots.  As an example: For n=100, m=2, one smg]v LR step will take about 21
min. on the clectronie computer nry e [14], and 297 storage positions will be m-(-dv(hl f(zr the mnnlwrg.s,
On the other hand, the Jacobi method (2,3] will destroy property (43) and therefore 5,050 storage posi-
tions would be needed for the elements of the matrices A,. _ .

The convergence of method (46) can he proved by the same type of argument as used in seetion 3.
There is, however, a simpler proof based on _

Turowem 8. Let D, be the pth, principal minor of the matriz Ay, which has been obtained Jrom a
positive definite symmetric matriz A, by procedure (46). Then

Dy <Dy <Dy <00 <MN L L, (47)
Jorany p=12, . . . p.

Proor. By virtue of the decomposition formula A,
square root of the corresponding minor of _1,,
LiLy is the sum of the squares of cort
minor /Dy ,, q. ¢. d.

==L, L{, the pth principal minor of 7, is the
On the other hand, the pth principal minor of Apy=
ain subdeterminants of L, one of them being its pth principal

—_—

From (47) we infer that lim Dy, , must exist for all
k=
diagonal matrix. Therefore
TaEOREM 9. If @ symmetric and positive definite matriz A=
with symmetrie decomposition (46),

p, which is possible only if I, converges to a

Ay is treated by the LR-transformation.
all Ay are symmetric and lim A, is a diegonal matriz.

k— @

As a numerieal example we show the treatment of the matrix (44) with n—15 by this method. After

five LR steps we obtain

((12.71272 —2. 23201 0. 17605

~
—2.23291  10.23820. .—3. 00522
0.17605 —3.00522

= T L066537 —0.349106 o, 004933 0
—0.349106  0.288728 —0.021173 0. 000093
0.004933 —0.021173  0.047707 —0. 000642

L 0 0.000093 —0.000642 0. 006024
N (~15.70) (~14.85) (0. 445216) (0. 169168) (0. 045124) (0. 006014)

(Here the diagonal elements are underlined.) Comparing with the “exact”
latent roots (below the columns of Ag), we see at once that the lower di
to the corresponding latent roots than the other ones, i. ¢., for matric
roots “appear” first. This phenomenon is of enormous prac
originate frequently from eigenvalue problems for differ
latent roots are interesting.
Therefore, we may apply the
using the convergence-improv

values of the four smallest
agonal elements converge faster
es of this type the smallest latent
tical importance, because such matrices
ential equations where in general only the smallest

LR-transformation for striped matrices in many cases without
ing methods of section 6 which would destroy property (43). There is,
however, a very simple method to speed up the convergence without destroying property (43). It is
based on the observation that the element @un of the matrix A, converges for ks to N, roughly as

(Ma/An-1)® converges to zero. This means that if we apply the LR-transformation to the matrix A—zF
where 0<z<,, a,, will converge faster than before, but now to the value A—z.

In order to obtain optimal convergence, z must be chosen as near to A\, as possible.
hand, \,—z should not be negative, because then the Cholesky procedure (46).3v

2

On the other
ould lead to imaginary
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pumbers, which is undesiral)]
sirable. Y me . 3 .
method of S, Gersheorin [16] w (I)“‘ Y tlmr_l is 10 estimate a lower bound for the latent roots with the
matrix (44) have sl‘m\\'n that "‘]|“ i — this Tower bound as z.  But numerienl experiments with the
lower bound.  Tudeed, for llu‘ ll "(\(,““”'“ many LR steps until Gershgorin’s formula gives a positive
: ) tmatrnx (4« y cor . i o
snd GFanAAR ol b 5 eillimins II.\‘ (.1 1) the lower lm'uml resulting from Gershgorin’s formula is —4,
method. 0 —2.5. But we can find 2 much better lower bound by the following

™o v el . .

])()\l], :;l:lxlllrmt(:;"\l‘fﬁ;:}}’:‘”:‘](t‘(t'(l)ll(lllll);)lm‘t|1m} ol"A—)\l',' we obtain immediately one Y:fhl(' of the fl.nu-ti«m

e aem, sy o ol | . (11~ umlg of A. If we carry out .I‘h(- decomposition for two different
i ity obtain two values D(N) and D(g) of this function from which we can construct a

secant and its intersection # with the h-axis. As long as u,\ are smaller than A, (for imstance, N=0,

?‘ ;“' this sccant does not intersect the curve {\,D(\) }a third time, and therefore # is a lower bound
ol Ap-:

D — D) |
=D —D0] e

m 3 amM7n , a1 3 S
[‘u .~unnn.}1:m , we obtain the following procedure:
Compute ' for k=0,1,2

y=y . . ey

Ik—ﬂD(-Tk—l)_:rk_1D(2’2k_2)__
7 TR (49)

Ap—ux I8 decomposed=> L, L}

Product of the squares of (50
the diagonal elements of Li==>D(x\) =

J'kIng_ 1‘{]‘k:>11k+ 1.

As well as the LR-transformation defined by formulas (46) this new procedure gives a sequence of
symmetric matrices that are similar to each other. But it has the advantage that the last diagonal ele-
ment converges much faster to A, and that very soon the outdiagonal clements of the last row and
column become negligible.  When this point is reached, the last diagonal clement is (practically) a
latent root. So we leave out the last row and column and proceed in the same way with the remaining
n—1-row matrix. In this way we get the latent roots, beginning with the smallest, one after the other
with inereased speed.

11. A Continuous Analog to the LR-Transformation

In the foregoing section we have seen that the LR-transformation can be influenced by a shift of
origin in the plane of the latent roots. In this section we choose a shift of origin far to the left, 1.e., we
choose z— — M, where M is a large positive number. This gives the following procedure:

A+ ME decomposed =2>LilYy,
(51)
]{kL/;—l‘/[]€ =>.L‘1k+1,

where the decomposition should be of Gauss-Banachiewicz type (see footnote 6).

This, of course, slows down the convergence, because the difference between Ay, and £, tends to
zero for M— . Indeed, if we decompose Ap+MIC for large M with method (1), then

X P . ——
L= lL+l17l+ﬁ7[—2+lnghcx terms

(52)
Al r (\) 1
Ry=ME+1X -}-I‘—/[—{—hlghm' terms
[
1% For the first two steps (k=0, k=1), Tk cannot be determined by (49). Instead the values 2g=—¢ and 21=0 may be used,
()




. . : Jeme X equal to zero
where X and ¥ are left and right triangular matrices with all dmgnn_n] (](Tnlt n[l)s 0(5_: \I'Y all dios
and X+-Y=dA, P and Q are defined as left and right triangular matrices with P @=—A1, ag
onal elements of P being zero.  Therefore

-‘1;\' ]»l—-“k:]‘)kLk_'Lkl',k

X X, r Ay @
:(ME-;—)'+:%+ . .)(E+%+ﬁ%+ ) Etgptgpt - JAIERY A L)

= %(Y X—XT) +%[2 (QX+-PY—XQ—YP)+higher terms.

Going to the limit M—w, (k/M)—st and denoting A, by A(f), we obtain the following differential
equation for A(t):

U_YX—XY, with X+T—AQ), (53)

where X and Y are left and right triangular matrices, the

If this differential equation is integrate
of similar matrices is obtained for which
holds:

THEOREM 10.  If the latent roots Neof A fulfill the conditions

diagonal clements of X being zero.
d with the initial condition A(0)=A, a continuous sequence
—as a consequence of theorem 3—the following theorem

Re(M)>Re()> . . . >Re(r,), (54)

and if (14b) holds for the matrices U and V defined in (11),

then lim A(t) exists and is an upper triangular .
t-iﬂ)
matriz,

It may be noted that the corresponding matrices A(¢) and P(¢), which transform A4(0) into A(?),

AB)=A"1) A0 A(®) =P () A(0)P(2), (55)

are solutions of the following matrix-differential equations:

dA § i
Z=AOXW),  A0)=E

(56)
‘%’: YHRW), PO)=E.

From this it follows that

d%‘t)i’mxct)p+AY(t)p=AA(t)P=A(0)AP,
or
THEOREM 11.  The matrices A(?) and P(t) defined in (55) can be obtained by triangular decomposition
Of elA (0):

eAO=> A ()P (1), (57)

For hermitian matrices (they need not be positive definite
can be weakened considerably: If A(0)=A is hermitian, then lim A(t) will always erist.

For symmetric matrices it is possible to use a symmetric additive decomposition A () =X4-XT
in place of the additive decomposition A(f)=X1-¥ used in (53). If this is done, dA/dt is symmetric
too, and therefore A(t) will be symmetric for all t and—as a consequence of theorem Q—Iim.A(t) will
exist and be diagonal.
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12. A Graeffe-Like Modification of the LR-Transformation

From formula (9), Dr. 1. 1. Bauer and the present author have been led to the idea that the
Jecomposition of A% probably might be computed from the decomposition of A%, Indeed if A*=A;Py,
then A=A, P AP, Thus, if PeAy is decomposed again into a left and right triangular matrix (see
footnote 6), Pray= APk, then obviously

x‘lzk:A\kl\;l);Pk or Agk:AkA;“ ng=l’;¢Pk. (58)

Phis formula enables us to skip the computation of Ay,Ax, Py for k72" The procedure (58) suffers,
however, from the very large and very small numbers involved in the computations. Indeed, as APx
is the decomposition of ¥ for k=2", the diagonal elements of P, arc approximately the 27th powers of
the latent roots.

In order to avoid the large numbers, we define matrices 2, and Dy, where 2 is a right triangular
matrix with diagonal clements 1 and Dy is diagonal, so that P,=D;Z;. This leads to D,Z:Ax in place
of PyA, and if we decompose

EkAk=> A’,':D:Eﬁ,
we have

But as A, is a left triangular matrix with diagonal elements 1, we find that Ap=DA¥Di' and
p,=D,D*=%, which gives immediately

Aos=ApAl=ADAEDE! )
Po =P Pr= D D¥ZE D2 (=DaZai),
and therefore (see footnote 20) L (59)
Su=Di'ZED:Z;
Dy.=D3-Dy.

o

We have still the large numbers in the diagonal matrices Dy, but we can eliminate even these by
introducing the matrix

r1 B T
110
oo)=n|. . . D!
! 1 e (60)

as o substitute for the diagonal matrix 1. Then
D-'2D= {(H")X})
DAD-'= (H(D)A},

where {X-Y'} denotes the “clementwise product’” of two matrices,
The combination of (59) and (60) leads to the final formulas,

1 Bee also footnote 1 and reference [8], In the meantime, F. L. Bauer has developed some important general s "
interesting one belng the "l!i-ltorﬂﬂou[" (sco 18], especially sec. 4). generalizations of the LR-transformations, the most
2 In the sequel, £ and A shall always denote right and left triangular matrices with diagonal elements 1, and D shall be diagonal
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Bogin with the trinngular decomposition of <1 (see footnote 20):

.'l .\/"‘\ll)l‘\':l

(61)
H(D\)=>H,.
Then compute for k== 12,48, . . ., 2"
() A0 3
(h)  decompose O0,=>AFDESE
() HDH—>11%
W) A AT = Ay } (62)
(© {HIZ¥e=—2y
() {IFH 1) =11, J
Stop, when X=Xy and Ay = Ay, and compute
AFtda=> A=A, (63)

In this way, the large numbers are catirely eliminated and no 27th root has to be computed to obtain
tho latent roots. This is a deeided advantage over Graeffe’s method, especially if there are conjugate
complex roots,

It should be noted that this method to accelerate the convergence does not preserve property (43),
therefore it should not be applied to striped matrices with large n and small m.

Numerical example.  We take the matrix

20 —7 —7 2
—7 12 2 —5

A= _7 5 12 _57
2 —5 —5 6

which is critical insofar as it has a very close pair of latent roots, 10 and 10.023 . . . . We obtain

( 20. —7 —7. 2.
loe A—| 035 —0.45 —4.3
GCCA=1 0,35 9. 528796 —4. 502618
(—0.1 0.472527 1. 736265
1. 0 0 0
—0.35
A 0.:;: 1. 0 0 _s7
—0.35 —0C. 047120 1. 0
L 0.1 —0. 450262 —0.472527 1
20 0 0 0
| © 9. 55 0 0
o 0 9. 528796 0
0 0 0 1. 736265
1. 0 0 0
=l 04775 1. 0 o]
1 0.476440 0. 997780 1. 0/
L 0.086813 0. 181808 0.182212 1




First step:

" 1.255 —0. 378534
e —0. 378534 1. 204956
—0. 397253 0. 165641
ks —0. 450262
(~ 1.255 ~ —0.378534
fo mps n.;n[gzl{ 1. 090782
0. 316536
L—0. 079681 0. 385137
o1, 0
| —0. 301621 1.
71 —0. 316536 0. 042008
L 0.079681 —0.385137
= s 0
: —0. 144024 1
I AF) = 2
(Haeady —0. 150810  0.041915
L 0.006917  —0. 070021
1. 0
pe—| 0.869149 1.
1 0.872008 1.004428
L 0.531273  0.611256
i 0
\ | —0.494024 1.
DT —0.494024  —0.005205
L 0.243027 —0.540080 —
1. 0
g 0.198171 )
IL={ (198166  0.999973
L 0.004003 0.020204
This completesithe first step. Further calculation yiclds:
1. 0
—0.573784 L
M=l 573784 0.020448
L 0.330262 —0.567486
1. 0
—0.585417 I
As=| _0.585417 0.039171
L 0.343089  —0.572047
and so on. Finally,
ro1. 0
—0.585590 1.
Aun=| _ 585500 0.099808
L 0.343280 —1.102594
r08.884820 —16.203844
0.000002 10.023777
Aae=| 0.000005
L 0.000001 0.000011

This result shows that the

— 0. 307253
0. 165641
1. 223282

— 0. 472527

=0

2

—0. 39725!
0. 045821

—0.042008 ] 1.095612

0.386292 | 0. 666747

0
0
1%
—(. 386292

0
0
1.
—0. 070387

0

0

1S
(.6085061

1.
—0.551349

0

0

1.
—0.551349
—8.102698

0.011886

10.000002
—0.000030

07

0
0

1J

07

0

1)

07

1J

0.1

0. 45

0. 47252
L J
0.1

0. 420100

0. 423226

= * T
“ '—Zl

0

1)

Il

3

1)
07

0
0

1)

07
0
0

1)

92

—3.828820

—0.000735 |

method has a remarkable numerical stability.

1.091397

0 :
o =28

(i



13. Appendix. Numerical Experiments With Striped Matrices”

In order to obtain information about the speed and stability of the LR-transformation, the latent
roots of some striped matrices with large n were computed with the electronic computer ERMETH [14] of
the Swiss Federal Institute of Technology.

As a first example, matrix (44) with n=>50 was treated. The latent roots were computed with the
routine described by formulas (49), (50) of section 10 and with fixed decimal point.*

Results obtained Results obtained Latent roots of
with 12 digits with 10 digits the continuous
after decimal after decimal problem (65)
point point
N50=0.000068 487899 0.000068 4877 0.000068 4615
Ap=0.000519 731902 0.000519 7317 0.000520 2047
Ms=0.001992 423727 0.001992 4234 0.001999 1329 (64)
A7;=0.005424 127619 0.005424 1268 0.005463 0603

These numbers indicate the magnitude of the errors that must be expected in problems of that
kind. Furthermore, one can compare them with the exact roots of the continuous problem from which
matrix (44) was derived:

=Ny,  ¥(—0,6)=y'(—0,5)=y(51,5)=y’(561,5)=0. (65)

We see that the truncation errors are far greater than the round-off errors, so that an optimal
result already can be obtained in fewer LR-steps (here about 10 steps for the first 4 latent roots).
A second experiment was carried out with the 11-row matrix

(5 2 1 1 A ' )
2 6 3 1.- (0
1 3 6 .
A= |1 . .1
. -6 31
0 1 3 6 2
L 11 2 5 L(Gﬁ)
or (6 for i=k

3 for |i—k|=1
a,k=w 1 for [i—k|=2

1 for |i—k|=3

L0 for [|i—k|>3

with the exceptions an=a;,n=>=,
Q2= 0Ug1= 10,1 =Q11,10=2. J

:: %ﬁgegﬁ'ﬂ’ﬁ?‘r’h has built-in floating decimal arithmetic (with 11 digits in the mantissa and 3 for the exponent). but can compute as well with fixed

decimal point and 14 decimal digits.
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. i . :
T'he latent roots of this matrix can be giv

ones with these obtained with the ]JR.-tI‘llthh explicitly, The following table (67) compares the exact

a total of 64 LR-steps): formation (using formulas (49,50) of section 10 and with
“Exact’” N's Computed N's
1=14.941 819 328 14.941 819 341
A=12.196 152 423 12.196 152 446
A;= 8.828 427 1247 8.828 427 1356
N= 6. 6.000 000 0074
A= 4.406 649 9007 4.406 649 9040
he= 4.129 248 4842 4.129 248 4880 (67)
M= 4. 4.000 000 0036
= 4 4.000 000 0030

N= 3.171 572 8753 3.171 572 8780
Mo= 1.803 847 5773 1.803 847 5784
M= 0.522 282 2875 0.522 282 2876

This table scems to indicate that the LR-transformation is sufficiently safe even when there are double
roots and close root pairs.

For comparison the same matrix has been treated with Jacobi’s method [2,3], and it turned out
that in the case where n=11, m=3, the two methods not only give the same accuracy but also take the
same time for the determination of all latent roots.

However, the situation will be quite different for larger =, expecially if only a few latent roots at
the lower end of the spectrum are required, because for a striped matrix with general m and n the com-
putation of each latent root (beginning with the smallest) takes about 3m?n seconds whereas the Jacobi
method always requires the determination of all latent roots, which takes approximately 3n® seconds
on the ERMETH.

As an illustration let us take a problem of organic chemistry where the five lowest latent roots of a
number of symmetric striped matrices with n=20, m=3 had to be computed. With the L.R-transfor-
mation the computing time was 30 minutes for each of these matrices against 7% hours (extrapolated)
with the Jacobi method.

It may be worthwhile to mention that we have also tried to compute the latent roots of matrix (66)
from the characteristic polynomial. But although the ezact characteristic polynomial had been used and
the computation had been carried out with 11 significant figures, it was not possible to obtain more than
3 correct digits of the root N=4.129 . . . .

The last experiment was carried out with the matrix

(14 14 6 1 A
1420156 1 O
6 15. '
A= 1 . - | g with n=89. (68)
15 6
0 . 15 20 14
L 16 14 14 |

(



This matrix is simply the third power of

(2 1 )
1 2 1 O
F)
Je 1 2 1

\ ]. 2 J

so that exact values of the latent roots of A can be given:

Ax=64 cos® (2(77:,‘1—;) (K=1,...,n. (69)

The computation of these roots begins by adding (or subtracting) some numbers to (or from) the original

diagonal values of A, However, as these are greater than 10, and the computation is done with 11 deci-
mal floating arithmetic, the last decimal digit carried was the

of the magnitude 107 have to be expected.
computed with the LR-tr

ninth after the decimal point, so that errors
The following table gives the latent roots of matrix (68) as
ansformation as well as their differences against the exact values (69)

Number of LR-

Computed Values Errors steps required
A=0.000 000 001 | 869 125 1244 0.061-107° 5
As=0.000 000 115 | 646 127 11 0.009-10°° 9
Asz=0.000 001 315 | 576 084 6 0.409.10-° 13
Ass=0.000 007 374 | 157 551 6 0.430-107° 17
As;=0.000 028 052 | 024 342 0.529.107° 21
Nss=0.000 083 481 | 228 485 0.281-107° 26
As3=0.000 209 675 | 213 26 0.141.10°° 30

In view of the very bad condition of this matrix, the results not only are excellent, but they are better
than the most optimistic guesses. But still more astonishing is the fact that these results could be ob-
tained from intermediate results with large errors. For instance, after one LR-step the last diagonal
element ag, ¢ is 0.000064287 in place of the exact value 0.000061738 . . . . Sinco the latent root Ay is
computed from as s simply by subtracting some numbers, it is hard to explain how the large error of
2500-107* is canceled out, yet the same phenomenon occurs regularly with matrices of that type.
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