CHAPTER 11

Probability Density Functionals and
Reproducing Kernel Hilbert Spaces*

Emanuel Parzen, Stanford University

ABSTRACT

The extraction, detection, and prediction of signals in the presence of noise
are among the central problems of statistical communication theory. Over
the past few years I have sought to develop an approach to those problems that
would simultaneously apply to stationary or nonstationary, discrete parameter
or continuous parameter, and univariate or multivariate time series and would
distinguish between their statistical and analytical aspects. In particular,
they would clarify the role played by various widely employed analytical
techniques (such as the Wiener-Hopf equation and eigenfunction expansions).

In the development of this approach, two basic concepts are used: the notion
of the probability density functional of a time series and the notion of a repro-
ducing kernel Hilbert space. The purpose of this chapter is to sketch the
relation between these concepts.

1. THE PROBABILITY DENSITY FUNCTIONAL
OF A NORMAL TIME SERIES

Let [S(f),t € T] and [N(?),t € T] be time series, called, respectively, the
signal process and the noise process. Let © be the space of all real-valued
functions on T. Let Py and Psyy be probability measures defined on the
measurable subsets B of & by

Py[B] = prob {[N(®), t € T] € B} )
Pg4n[B] = prob {[S(t) + N@),t € Tl € B}. (2)

We are trying to determine, if it exists, a function p on & with the property that

PyynIB] = /dePN' ®)

* Prepared under contract Nonr 3440(00) for the Office of Naval Research.  Reproduc-
tion in whole or in part is permitted for any purpose of the United States Government.
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The funetion p may be called the probabilily densily f/(,nv(:/:jm//(l,l. of l’.S+N With
respeet to Py m (;1'(l(r|' to emphasize that its argument 1s a f\ln.f:‘tl(m [X(t),
t Q 7). It 1\ also denoted plX (1), L € 7] and called the probability density
functional of the signal-plus-noise process

X(@t) =S +N@,tEe T, 4)
with respect to the noise process [N(),t € T]. The function p is often writtep
symbolically as a derivative,

dPsyn
el = )
Py (5)

and called the Radon-Nikodym derivative of Psyn with respect to Py [see
Halmos (1950), p. 329].

A necessary and sufficient condition that the probability density (5) exist is
that Psyn be absolutely continuous with respect to Py in the sense that, for
every measurable subset A of ,

Px[A] = 0 implies Pgyn[4] = 0. 6)

In order that Pgsy x be not absolutely continuous with respect to Py, it is neces-
sary and sufficient that there exist a set A such that

Py[A] = 0 and Ps,n[A] > 0. (7)

The probability measures Py and Pg n are said to be orthogonal if there exists
a set A such that

PN[A] = 0 and Ps+N[A] = 1. (8)

We can regard (8) as an extreme case of being not absolutely continuous.
The notion of orthogonality derives its importance from detection theory
(the theory of testing hypotheses). The simple hypotheses

Ho: X(1) = N(°)
Hy: X() = 8() + N()
are sald to be perfectly detectable if there exists a set A such that

Py[A] = prob {[X(?),t € T] € A|Ho} =0

Pgyn[4] = prob {[X(®),t € T| € A|H,} = 1. .

Clearly, the hypotheses Ho and H, are perfectly detectable if and only if Py
and Py are orthogonal.

Given the probability measures Py and Pg. n, the following questions arise:

1. I)ctermine whether Py and Pgyx are orthogonal.
2. Determine whether Py, y is absolutely ¢

: ontinuous wi ct to P
3. Determine the vith respect t

Radon-Nikodym derivative (5) if it exists.

To answer these questions, the natural way to proceed is to approximate the



PROBABILITY FUNCTIONALS AND HILBERT SPACES 157

infinite dimensional case by finite dimensional cases. For any finite subset
v o
"=y~ ,te)of T (10)

let Py.2vand Psyy g0 denote the probability distributions of (X (), t € T']
under Py and Pgyy, respectively.  Assume that Py, s absolutely con-
tinuous with respect to Py v, with Radon-Nikodym derivative denoted

(tI)S—{-lV ‘7”
pr = APy (11)

The divergence between Pgs;y and Py on the basis of having observed [X(¢),
t € T"] is defined by

Jr = Esyn(log pr) — Ey(log pr). (12)

Using the theory of martingales, it may be shown that

0 Jp < Jpe if TV CT. (13)
Consequently, the limit
Jp = lim Jp (14)
T

exists and is finite or infinite. Further, it may be shown [see Hajek (1958)]
that (a) if Jr < o, then Pgy x is absolutely continuous with respect to Py and

dPS+N 3
= ——— = lim prp; (15)
dPN T'—-T pr

(b) if J; = =, and both the time series [N(¢), t € T] and [S(f) + N (t),t € T]
are normal, then Pg,n and Py are orthogonal. . .

We next apply these criteria under the following assum;?tlons.

The noise process [N(t),¢ € T] is a normal process with zero means and

covariance kernel
K(s,t) = E[N(s) NI, (16)

which is positive definite in the sense that for every finite subset T = {{,,
*++ ,t,) of T the covariance matrix

K(t, t) - - Kb, ta)
Kpo = [K(ti )] = : (17)
K 1) - -+ Kl ta)
is nonsingular, with inverse matrix denoted
K7l = (K7t ty). (18)

(It should be noted that the assumption of positive definiteness is mfule only
for mathematical convenience in the present exposition; it can be omitted.)
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In regard to the signal process, two cases are of most interest:

1. Suresignal case. [S(0),t € T]isa nonrandom function.

2. Stochastic .\‘7-!17)17] case. [A\(/) [ — Tl is a normal time series, ir"]op(‘n(l(*nt
of the noise process, with zero means and positive definite covariance kerng
R(s, t) = E[S(s) S(1)]. (19)

To employ the criterion (15), we first need to compute the divergence
Jr, defined by (12). In this section we consider the sure signal case; the
stochastic signal case is considered in Section 3.

In the sure signal case

log prr = (X, S)k,7 — 3(S, )k, 1 (20)
where we define for any functions f and g on 7'
(F,9xr = Y J&E s 0 00). (21)
steT!
Consequently
JT’ = ES+N[(X) ‘S)K,T’] - EN[(X) S)K.T’] = (87 ‘S)K.T’ (22)
and
Jr < « if and only if lim (S, S)g,7» < =. (23)
T'—T

In words, in the sure signal case, Pgyy is absolutely continuous with respect to
Py if and only if (S, S) k.7 approaches a limit as 7" tends to 7. Fortunately
it is possible to characterize those functions S(-) that have this property.
To do so, we introduce the notion of a reproducing kernel Hilbert space.

2. REPRODUCING KERNEL HILBERT SPACES

Let K(s, t) be the covariance kernel of a time series [X (), ¢t € T]. For each
tin T, let K (-, t) be the function on 7 whose value at s in T is equal to K (s, ?).
It may be shown [see Aronszajn (1950)] that there exists a unique Hilbert
space, denoted H(K; T'), with the following properties:

1. The members of H(K; T) are real-valued functions on 7 [if K(s, t) were
complex-valued, they would be complex-valued functions].
2. For every tin T

K(,t) EH(K; T). @D
3. Forevery tin T and fin H(K; T)
1 = (f, KC, D))k, (In

where the inner product between two functions f and g in H(K; T) is writted

(f, 9 k..

Example 1. Suppose 7' = (1,2, . . . , n) for some positive integer 2 and
that the covariance kernel K is given by a symmetric positive definite matrix
[K ;) with inverse [K%]. The corresponding reproducing kernel space H(K;
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consists of all n-dimensional veetors f = (fy, © - -, f,) with inner product

n

G @xr= ) fK'. (24)

st=1

To prove (24) we need only to verify that the reproducing property holds for
w=1 ++",n

n

(f; K-u)l\'.T = 2 st(athu = zfs 6(8) u) = fu

st=1 8=1
The inner product may also be written as a ratio of determinants:

I{ll T Kln fl Kll L Kl

Eexr=—|. |+ o @5

Bog
! Knn fn Knl T Knn
g1 T gn 0

To prove (25), we again need only to verify the reproducing property. When
the covariance matrix K is singular, we may define the corresponding reproduc-
ing kernel inner product in terms of the pseudo-inverse of the matrix K.

Example2. LetT = [t:a < ¢t < blandlet [N(f),a < ¢ < b] be the Wiener
process; that is, it has independent increments and covariance function

K(s, t) = ¢®min (s, t) (26)

for some parameter ¢2. Consider the Hilbert spaces H(K; T) consisting of all
functions f on a < ¢ < b of the form

10 = f@) + [*r@ du (27)

for some square integrable measurable function f/ on a < ¢ £ b [which can be
called the L,-derivative of f], with inner product defined by

b
Goer =5 [Lr@o@ + [ 1w ) @8)
If we define
I =1 if a<u<st
29)
=0 if t<u<b,

we may rewrite (27):

b
@) = f@) + [ 1) L) du.
Now the covariance kernel K (s, t) may be represented as

K(s, 1) = o%a + o /a" 1,(u) I,(u) du.
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Therefore, for each ¢ in 7', K (-, 1) belongs to H(K:T) with L derivative

)

L K(s, 1) = a*1,(s).
ds
Turther, 1
1|1 ’
GG 0w = 5 [L@eta [ et 1o
a a

= J(a) + / J'(w) du = f(D).

Thus we see that the reproducing kernel Hilbert space corresponding to the
covariance kernel (26) consists of all L.-differentiable functions on T with
inner product given by (28).

The relevance of the theory of reproducing kernel Hilbert spaces to the
theory of probability density functionals derives from the following fact: it
may be shown (using martingale theory) that

lim (S, S)k,r» < » ifandonlyif S& H(K;T). (30)
T'->T

Further, if S € H(K; T), then
lim (S, S)x,r = (S, S)&,r- (31)

T'-T
It follows in the sure signal case that Pg x is absolutely continuous with
respect to Py if and only if the signal function [S(t), ¢t € T] belongs to the
reproducing kernel Hilbert space H(K; T) corresponding to the covariance
kernel K of the noise process [X(t),t € T]. If S € H(K; T), then the prob-
ability density functional is given by

dPsyn
dPy

plX(t),t € T = = exp [(X, S)k,r — 3(S, 8)k,7] (32)

where by (X, S)k,7 we mean the limit (in the sense both of convergence with
probability one and convergence in quadratic mean)

(X, 8)k,r = lim (X, 8)k 7. (33)
T'-T

It should be emphasized that although we use inner product nota.tiOI_1 to
write (X, S)k,r this is not a true inner product between two elements 11 8

l_{ilbert space, since the sample function [X(f),t € T] does not belong to
H(K); that is,

; . e ate 34
'11'!"1'1' (X, X)k r i8 infinite with probability one. (3
In prac’tice, it will be clear how to define (X, 8)x ¢ by suitably modifying t‘h,:
expression for the inner product hetween two funetions in H(K). Thus X
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the covariance kernel given by (26), instead of the expression

b
(X, Ok, r = 0—]2 [é X(a) S(a) + / S’ (u) X' (u) du]

suggested by (28), we may show that

1

1
X, gz = —2[
g

b
;X(a) S(a) + f S (u) dX(u)]-

There is a variety of ways in which one can determine whether a function S
belongs to a reproducing kernel Hilbert space H(K: T) and compute the norm
(S, 8)k,r and the random variable (X, S)x 7. These are discussed elsewhere
[see Parzen (1961)].

However, certain general principles deserve to be stated at this point.

Roughly speaking, a function g(-) belongs to a reproducing kernel Hilbert
space H(K; T) only if it is at least as “smooth’” as the functions K(:, t), since
every function g in H(K; T) is either a linear combination

9() = ) aK(, 1)
i=1
or a limit of such linear combinations. For example, if T is an interval and
K is continuous on T ® T, then every function in H(K; T) is continuous;
if K is twice differentiable on T ® T, then every function in H(K, T) is
differentiable.

We are led to the following heuristic conclusion: In order that a signal not be
perfectly detectable in the presence of a moise, it is necessary and sufficient that
the signal be as smooth as the noise. In the case of a sure signal the signal is as
smooth as the noise if and only if S € H(K; T), where K is the covariance
kernel of the noise. In the case of stochastic signals the signal is as smooth
as the noise if S € H(K; T) for almost all sample functions of the signal
process: a rigorous formulation of this assertion is given in Section 3.

A basic tool in the analytical evaluation of a reproducing kernel inner
product is provided by the following theorem.

Integral representation theorem

Let K be a covariance kernel. If (a) a measurable space (Q, B, u) exists
and (b) in the Hilbert space of all B-measurable real-valued functions on Q
satisfying

Do = [ f < (35)
there exists a family [f(¢), t € T) of functions satisfying
K(s, t) = (J(8), /(1) = RIOMOXUT (36)

then the reproducing kernel Hilbert space H(K;T) consists of all functions
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g on T, which may be represented as
gt) = fQ g*f(t) dp, (37)

for some unique function g* in the Hilbert subspace Lift),t € T of L3(Q, B, )
spanned by the family of functions [f(?), ¢ € T]. The norm of g is given by

(9, r.1 = (9% 9% (38)

If [f(t), t € T] spans Ly(Q, B, u), then X () may be represented as a stochastic
integral with respect to an orthogonal random set function [Z(B), B € B|
with covariance kernel u:

X() = [, dz (39)
E(Z(By) Z(By)] = u(B1By). (40)

Further
X, 9k, = fQ g* dZ. (41)

As an immediate consequence of the integral representation theorem one
obtains the following example.

Example 3. Stationary noise process. Let T = [t: — o <t < «] and let
[X(f), — o <t < =] be a stationary time series with spectral density func-
tion f(w) so that

K(s,t) = f T 60 f(w) do. (42)
Then H(K; T) consists of all functions g on T of the form
g(t) = f O g (w)e™ f(w) do (43)
for which the norm
lollte.r = [, lo*@)? @) do (84)

is finite. The corresponding random variable (X, g)x r can be expressed in
terms of the spectral representation of X(:). If

X() = [, ¢ az(), (49
then

X, 9)k,r = / _: 9* (@) dZ(w). (46)

Assume that the spectral density function f(w) is uniformly bounded. The®

g(t), being the Fourier transform of the square integrable function g*(w) f@)
18 square integrable. Let

1 ® "
= — —tlw h)
G(w) o /-.. e~ g(1) dt. (

Then
9* (@) f(w) = G(w). (48)
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Assume now that f(w) never vanishes. We may then write

@oxr = [ |5 s ae= [ el (49)
® G(w)

Xy { = 7 a w 50

X, k.1 T )dZ( ). (50)

To sum up, in the case of a stationary process whose spectral density function
is uniformly bounded and never vanishes, the reproducing kernel Hilbert
space H(K; T) for T = (— o <t < =) consists of all space integrable func-
tions g(t) whose Fourier transforms G(w) are such that

wGwz—w o, 51
/_.,'“'f()"< (51)

If f(w) vanishes, a similar conclusion holds. Let N = [w: f(w) = 0] and
= [w: f(w) > 0]. Then H(K; T) consists of all square integrable functions
g(t) whose Fourier transforms G(w) vanish on N and such that

f |G(w)|2——-dw < .
Ne

J(w)

The foregoing results are easily extended to multiple time series [Xa(?),
—o <t< w,a=1,2, -, M). Assume thatfore,8=1,2,---, M
and — o < s§,t < oo,

Kap(s, 1) = E[Xa(s) Xp0)] = [ 7 €070 f, () do. (52)
Then H(K; T) consists of all functions g.(¢) on
T =[(a,)ia=1,""+ , M, —w << o] (53)

satisfying the condition

NG

[Z it < =, (54)
1

a

such that
/o] Z Ga(w) 1¥(w) Ga(@) | do < =0, (55)
a,f=1
where z denotes the complex conjugate of the complex number z,

Go(w) = % f ) €™t ga(t) dt, (56)

and [f**(w)] is the inverse of the matrix [f.s(w)]. Then (g, g)k 7 is given by
the expression in (55) and

[ 7. Gule) f°(w) dZs(w), (57)

1

X, 9k =

a

W
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where

Xa(t) = [ 7, ¢ dZu(w). (58)

Direct Product Hilbert Spaces

The notion of a direct product space plays an important part in our con-
siderations. Given two function spaces G; and (3, consisting of functiong
defined on T'; and T'», respectively, their direct product space, denoted G; @ G,,
is the Hilbert space completion of the set of functions gon 7'y ® T'; of the form

g(t, t2) = g1(tr) ga(t2), (59)

where g; € Gy and g2 € Gy. The norm of a function in G¢; ® G5 of the form
(59) is defined by

“g”%@Gz = ||gl”(2?1||g2||??2' (60)
The function g defined by (59) is on occasion denoted by g1 ® g».

It should be noted that if G, and G, are reproducing kernel Hilbert spaces,
with respective reproducing kernels K; and K, defined on 7 ® T, then G; ®
G, is a reproducing kernel Hilbert space with kernel K; ® Ko, where K; ® K,
is a function of four real variables defined by

K1 ® Ky(sy, 89, t1, ta) = Ki(s1, t1) Ko(ss, t2) (61)
and
(9, K1 ® Ks(:, *, t1, t2))grec: = g(t1, t2). (62)

When G; = Gy = Lyo(T, B, u), G; ® G4 consists of all (B ® B-measurable)
functions g on 7' ® T such that

loll3oas = [, [70%s 0) uds) w@t) < e (63)

If G, and G, are equal to the reproducing kernel Hilbert space consisting of all
Lo-differentiable functions on the interval (¢: @ < ¢ < b) with norm squared

1 b
lolles = > o@ + [ leicol? (o4
then G; ® G is a reproducing kernel Hilbert space with norm squared
1 1 (] a .
lollo0: = %@, 0) + 3 [ |2 06,01 |
1 (] a . 5
- g (65)
=} a/a = g(a,t)| dt

d

98 31 g(s, t)

U 2

+/ f ds dt.
a a

3. STOCHASTIC SIGNAL CASE

: ¥n this S_‘*Ction we shall determine conditions for the existence of the prOl(m‘
bility density functional (6) in the stochastic signal case described before (19)
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We shall prove below that Ps n is absolutely continuous with respect to Py if
and only 1f

IR i xromkimy < . (66)

It may be shown that a sufficient condition for (66) to hold is that

| Rl #xyem )y < . (67)

In pmctic.o, the condition we shall attempt to verify is (67). Consequently,
before proving that (66) is necessary and sufficient for p = dPsy n/dPy to

exist, let us show directly that (67) is a sufficient condition for p to exist and
let us obtain an explicit formula for p.

It may be shown that if (67) holds, then the signal process [S(t),t € T
may be written

S = ) v, 8.0, (68)

v=1

where (a) [n.] is a sequence of random variables satisfying

E(nay ng) = 8(, B)Aa (69)

for a suitable sequence [A,], and (b) [®,] is a sequence of functions in H(K)
satisfying

(Pa, Bp) (k) = 8(a, B). (70)

In fact, [A,] are the eigenvalues and [®,] are the corresponding eigenfunctions
of the linear transformation R on H(K) to itself defined by

R h(t) = (h: R(; t))H(K)' (71)
Further
z N = Rl Ewenm < - (72)
v=1
Forn=1,2 ---,let
Sa®) = Y m®D), Vo = (X, Pa)x. (73)
v=1

By the developments of Section 1, it follows that Pg,4~ is absolutely con-
tinuous with respect to Py with probability density function

_sun _TT (7 - ) G (i)d
Pe= 3Py [l / _ oWV ) R P\, )
p=1 (74)

n

_ -4 1 2 Ay A
=[Ja+wm axp(zv,lﬂy)

yom]

By martingale theory it may he shown that (72) implies that the probability
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density function exists and is given by the limit

l/”)\'l \ .
: | n (75
‘/l‘\‘ ””_'L P 7)/
so that
o - — Llog -N) F3VE—— ~
]”rs ({I)‘\. Z [ 2 I()L) (] ‘I A ) +_ 2 1 + }\,, (76)
v=1
If in addition to (72)
YA <, (77)
v=1
then the probability density function may be written
og 5 _ s N g 4a)+3 Y Vi (78)
g dI)N 2 g v 2 v 1 + )\,, )
v=1 v=1

The intuitive meaning of (77) is that almost all sample functions of the signal
process [S(¢), t € T belong to H(K), since from (68)

ISl = ),
v=1

EIS|x = ) .

1
It appears to establish (77) it would suffice to prove that
E[||S]|%] < <.

In order to obtain necessary and sufficient conditions that Pgyy be abso-
lutely continuous to Py in the stochastic signal case, let us begin by rephrasing
the problem. Let K; and K, be two positive definite covariance kernels, and
let P; be the probability measure induced on @ by a normal process [X (1),
t & T with zero means and covariance kernel K;. The following questions
arise:

I. Determine whether P’y and P, are orthogonal.
2. Determine dP,/dP if it exists.

We use equations (10) to (15). Let

y y —14 . P r
(ll)'zr"("l - |,!{2'7',I /_AHCXD ( = %.\ “1\ 2},,:‘\ ) (-‘-‘n

pr = = -y . =3
d[‘]’ll'/ ll(l'llul - (3xp (— .3‘\ “I\l_,}”‘\)

Jro = Bp,(log pp) — Ep,(log pr)

= § trace (KThoKo o — 1 — 1+ Ky ). (80)
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Amazingly enough, the right-hand side of (80) can be expressed as the norm of
a function in the reproducing kernel Hilbert space corresponding to the kernel
K; ® Ko, which is a function of four variables (s, §', ¢, {') defined by

K1 @ Ko(s, s, t,t") = Kq(s, t) Ko(s', V). (81)
If K1 and K, are nonsingular covariance matrices, we may verify that

trace (Kllfé_l) = (Kl, KI)K1®K27 (82)
since
(K1, Kmexs = ), Kils, ) KT'(s, 0) K35, 0) Ka(t, 0)

R

= ) 5,0 K7, ) Ka(t, 1)
BN (83)

= Y K3\, 0) K, 1)
t,t

= trace (K ,K31).
It may also be proved that
trace I = (K1, K2) k9K (84)
In this manner we may verify that
trace (K, K3! + K K7t — 2I) = |K, — K:||zi9k: (85)
XUKT'X — X"K7'X = (K2 — K1, X ® X)keKs (86)
where X ® X is the function on 7 ® T defined by

X ® X(s, 1) = X(s) X(¥). (87)

Using (85) and (86), we may rewrite (79) and (80):
pr = | Ky pK1,r|" exp 3(K» — K1, X ® X)kigks o] (88)
Jr = 3|K: — K1l ke ks e (89)

The following conclusions can be immediately inferred:

1. In order that P; and P be orthogonal, it is necessary and sufficient that

it is not so that
K, — K; belongs to H(K: ® Ky, T®T). (90)

2. If (90) holds, then the Radon-Nikodym derivative exists and is given by
the limit (as 77 — T) of (88). Formally, we may write
022 = DT exp (K — K1, X ® Drmomaror] (O
1
if
D(K7'Ky) = Jim [K5pKurl® (92)

18 assumed to exist.
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By using (91), we can sketch a proof of Woodward'’s theorem on linegy
transformation of Wiener integrals [Woodward (1961)].

Example 4. To illustrate the use of (67), we consider stationary time serjes
with spectral density functions, so that

R(s —1t) = [_: ¢ @G0 fo(w) dw,

K(s—1) = f: @O0 fy(w) dw.

We now show that a sufficient condition for (67) to hold for any finite interval
T = (:0 <t < T)is that

® fs(w) :
— dw < ®. 93
i@ W
To prove (93), we write
| Rl kex ror = “ f_: e %e™ fs(w) dw ”j(@K,T@T

- f—: deoy /—: dwafs(w1)fs(wa) (€“1970, ¢1C70) gor 101
= [—: deos /—: dwgfs(w])fs(wZ)l(eiu"’emno)K-le

< [[_: dw fs(w)HGm“%{,T]z-
From (49) we may deduce that

2
<

1 N 11 (7.
7 llellier < f dx[fw(x)rlfpl—%r [ ¢ d (94)
. .

As T tends to «, the right-hand side of (94) tends to
[27 f(w)] ™! (95)

as a limit in mean with respect to the finite measure on — 0 < w < ® with
density function fg(w). The desired conclusion may now be inferred.

It might be noted that by using (94) and (95) we can give simple proofs
of various extensions to continuous parameter time series of theorems on the
asymptotic efficiency of least-squares estimates of regression coefficients given
for discrete parameter time series by Grenander and Rosenblatt (1957)-
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