
CHAPTER 11 

Probability Density Functionals and 
Reproducing Kernel Hilbert Spaces* 

Emamul Parzen, Stanford University 

ABSTRACT 

The extraction, detection, and prediction of signals in the presence of noise 
are among the central problems of statistical communication theory. Over 
the past few years I have sought to develop an approach to those problems that 
would simultaneously apply to stationary or nonstationary, discrete parameter 
or continuous parameter, and univariate or multivariate time series and would 
distinguish between their statistical and analytical aspects. In particular, 
they would clarify the role played by various widely employed analytical 
techniques (such as the Wiener-Hopf equation and eigenfunction expansions). 

In the development of this approach, two basic concepts are used: the notion 
of the probability density functional of a time series and the notion of a repro
ducing kernel Hilbert space. The purpose of this chapter is to sketch the 
relation between these concepts. 

1. THE PROBABILITY DENSITY FUNCTIONAL 
OF A NORMAL TIME SERIES 

Let [S(t), t E T] and [N(t), t E T] be time series, called, respectively, the 
signal process and the noise process. Let n be the space of all real-valued 
functions on T. Let PN and Ps+N be probability measures defined on the 
measurable subsets B of n by 

PN[B] = prob l[N(t), t ET] EB} 

Ps+NlB] = prob { [S(t) + N(t), t E T] E B}. 

(1) 

(2) 

We are trying to determine, if it exists, a function p on n with the property that 

Ps+N[B] = J B p dPN. (3) 
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, . . \J . 11 d the prouabililU dens'il!) f'unclional of P s+N with 
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0 

c.lenotcd 1"J[X(l) t E T] and called the pro a 1 1ty density t - . , 1s a ::i . , 

functional of the signal-plus-noise process 

X(t) = S(t) + N(t), t E T, (4) 

with respect to the noise process [N(t), t E T]. 
symbolically as a derivative, 

The function pis often written 

dPs+N 
p = dPN 

(5) 

and called the Radon-Nikodym derivative of Ps+N with respect to PN [see 
Halmos (1950), p. 329]. 

A necessary and sufficient condition that the probability density (5) exist is 
that Ps+N be absolutely continuous with respect to P N in the sense that, for 
every measurable subset A of n, 

PN[A] = 0 implies Ps+N[A] = 0. (6) 

In order that Ps+N be not absolutely continuous with respect to PN, it is neces
sary and sufficient that there exist a set A such that 

(7) 

The probability measures PN and Ps+N are said to be orthogonal if there exists 
a set A such that 

(8) 

We can regard (8) as an extreme case of being not absolutely continuous. 
The notion of orthogonality derives its importance from detection theory 

(the theory of testing hypotheses). The simple hypotheses 

Ho: X(·) = N(-) 

H1: X(·) = S(-) + N(·) 

are said to be perfectly detectable if there exists a set A such that 

PN[A] = prob {[X(t), t ET] E AjH 0 } = 0 

Ps+N[A] = prob { [X (t), t E TJ E AjH i} = 1. 
(9) 

Clearly, the hypotheses Ho and H 1 are perfectly detectable if and only if PN 
and PB+N are orthogonal. 

Given the probability measures p N and p s+N' the following questions arise: 

~- ~etcrm~ne whether PN an? Ps+N are orthogonal. 
• D eterm~ne whether Ps+f-! 1s absolutely continuous with respect to PN-

3• etermme the Radon-N1kodym derivative (5) if it exists. 

To answer these question th t . 1 · • h 8 , e na ma way to proceed 1s to approximate t e 
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infinite dimensional case by finite dimensional cases. For any finite subset 

1'' = (ti, • • • , tn) of T (10) 

let PN,T' and Ps+N,1'' denote the probability distributions of [X(t) t E T'] 
u_nder PN_ and Ps+N, respectively. Assume that Ps+N,T' is absolu~ely con
tinuou,s with respect to P N ,1'', with Radon-Nikodym derivative denoted 

df>:s+N 7" 
PT'= ' (lJ) 

dPN,T' 

The div~rgencc between Ps+N and P N on the l>asis of having observed [X(t), 
l E T'] 1s defined by 

J r 1 = E s+N (log Pr 1) - EN (log pr,). (12) 

Using the theory of martingales, it may be shown that 

(13) 

Consequently, the limit 
(14) 

exists and is finite or infinite. Further, it may be shown [see Hajek (1958)] 
that (a) if Jr < oo, then Ps+N is absolutely continuous with respect to PN and 

dPs+N . . 
p = --- = lim PT', 

dPN T'--->T 
(15) 

(b) if Jr= oo, and both the time series [N(t), t ET] and [S(t) + N(t), t ET] 
are normal, then P s+N and P N are orthogonal. 

We next apply these criteria under the following assumptions. 
The noise process [N(t), t E T] is a normal process with zero means and 

covariance kernel 
K(s, t) = E[N(s) N(t)J, (16) 

which is positive definite in the sense that for every finite subset T' = I ti, 
, tn} of T the covariance matrix 

(17) 

is nonsingular, with inverse matrix denoted 

K;;;] = [K- 1(ti, t1)], (18) 

(It should be noted that the assumption of pmiitivo delinitenc ss is mnde only 
for mathematical convenience in the present exposition; it can be ornitted.) 
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In r gnrd to thr ..:ignal I roe two cases are of most intcre t: 

t. , ·,,re signal cnsc. [, '(t , t E T] i a nonrandom function. 
2. , ·tnchaf;fic ignal cas . [ (t), t E T] is a normal time series, independent 

f the noi~r proc .s, with zero means and positive definite covariance kernel 

R(s, l) = E[S(s) S(t)]. (l9) 

To employ th criterion (15), we first need to compute the divergence 
J T' defined by (12). In this section we consider the sure ignal case; the 
stocha ic ignal ca e is considered in Section 3. 

In th ure ignal ca e 

log PT'= (X, S)K,T' - ½(S, S)K,T' (20) 

where v,e define for any functions f and g on T 

(f, g)K,T' = l f(s)K- 1(s, t) g(t). 
s,tET' 

Consequently 

Jr,= Es+N[(X, S)K,T'] - EN[(X, S)K,T'] 
and 

J T < co if and only if lim (S, S)K,T' < co. 
T'-+T 

(S, S)K,T' 

(21) 

(22) 

(23) 

In words, in the sure signal case, Ps+N is absolutely continuous with respect to 
PN if and only if (S, S)K,T' approaches a limit as T' tends to T. Fortunately 
it is possible to characterize those functions S(-) that have this property. 
To do so, we introduce the notion of a reproducing kernel Hilbert space. 

2. REPRODUCING KERNEL HILBERT SPACES 

Let K(s, t) be the covariance kernel of a time series [X(t), t E T]. For each 
tin T, let K(·, t) be the function on T whose value at sin Tis equal to K(s, t). 
It may be shown [see Aronszajn (1950)] that there exists a unique Hilbert 
space, denoted H(K; T), with the following properties: 

1. The members of H (K; T) are real-valued functions on T [if K ( s, t) were 
complex-valued, they would be complex-valued functions]. 

2. For every t in T 
K(·, t) E H(K; T). 

3. For every t in T and f in H (K; T) 

f(t) = (f, K(·, t))K,T, 

(I) 

where the inner product between two functions f and gin H(K; T) i written 
(f, (J)K,T• 

Example 1. Suppose T = (1,2, ... , n) for 8ome positive int r n n,i~d 

that the covariance kernel K is given by 11 symmotri • positiv d finit n1atr1:-: 
[Ki;] with inverse [K' 1]. The corresponding reproducing k rnel pac H(K; 7') 
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consisLs of all n-dimen~ional vectors f = (.{1, • • • , fn) with inner product 

n 

(f, g)K,7' = ,l fsK 8 tgt, (24) 
s,t=l 

To prove (24) we need only to verify that the reproducing property holds for 
u = I, • • • , n 

n n 

(f, K,u.)K,7' = l fsK 8 tKtu = l fs o(s, u) = fu, 
s,t=l s=l 

The inner product may also be written as a ratio of determinants: 

Ku Kin !1 Ku Kin 

(f, g)K,T = - --. (25) 

Kn1 Knn fn 
Kn1 Knn 

g1 gn 0 

To prove (25), we again need only to verify the reproducing property. When 
the covariance matrix K is singular, we may define the corresponding reproduc
ing kernel inner product in terms of the pseudo-inverse of the matrix K. 

Example 2. Let T = [t: a ~ t ~ b] and let [N(t), a ~ t ~ b] be the Wiener 
process; that is, it has independent increments and covariance function 

K(s, t) = u 2 min (s, t) (26) 

for some parameter u 2. Consider the Hilbert spaces H(K; T) consisting of all 
functions f on a ~ t ~ b of the form 

f(t) = f(a) + J t f'(u) du (27) 

for some square integrable measurable function f' on a ~ t ~ b [which can be 
called the £ 2-derivative of fl, with inner product defined by 

(f, g)K,T = :, [~f(a) g(a) + J.' f'(u) g'(u) du l 
If we define 

we may rewrite (27): 

I l u > = 1 if a ~ u ~ t 

= 0 if t < u ~ b, 

f(t) = f(a) + Jab f'(u) lt(u) du. 

Now the covariance kernel K(s, t) may be represented as 

K(s, t) = u2a + u2 f
0

b ls(u) I,(u) du. 

(28) 

(29) 
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Ther fore, for each l in T, K (-, l) he long.· to H (K; T) with L
2 

derivative 

Further, 

d i ( ) - J( ( s, l) = <I 1 t s . 
ds 

(f, K(·, t))K,r - :, uf(a)u 2a + f f'(u)u
2 

I,(u) du] 

- f(a) + J.' f'(u) du - f(t). 

Thus we see that the reproducing kernel Hilbert space corresponding to the 
covariance kernel (26) consists of all Lrdifferentiable functions on T with 
inner product given by (28). 

The relevance of the theory of reproducing kernel Hilbert spaces to the 
theory of probability density functionals derives from the following fact: it 
may be shown (using martingale theory) that 

lim (S,S)K,T' < oo if and only if SEH(K;T). (30) 
T'--+ T 

Further, if S E H(K; T), then 

lim (S, S)K,T' = (S, S)K,T· (31) 
T'--+ T 

It follows in the sure signal case that P s+N is absolutely continuous with 
respect to P N if and only if the signal function [S(t), t E T] belongs to the 
reproducing kernel Hilbert space H (K; T) corresponding to the covariance 
kernel K of the noise process [X(t), t E T]. If SE H(K; T), then the prob
ability density functional is given by 

dPs+N ) 
p[X(t), t E T] = dPN = exp [(X, S)K,T - ½(S, S)K,T] (32 

where by (X, S)K,T we mean the limit (in the sense both of convergence with 
probahility one and convergence in quadratic mean) 

(X, S)K,T = lim (X, S)K,T'• 
T'--+T 

(33) 

It should be emphasized that although we use inner product notation to 
write (X, 8)K,T this is not a true inner product between two elements int\ 
Hil~ert space, since the sample function [X(t), t E T] does not belong to 
11 (K); that if,, 

lim (X, X)" 'l'' is infinite with probability one. (iJ•l 
T'-+'J' ' 

In practice, it will ho ,~hmr how to (fof-ino (X S) .,. ,,. by suitably modifying t •. ht' 
• ' I o '• • {01' 

expression for the mnor pro<l1wt; l>otwoon two functions in /l(K). 'f'hus 
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the covariance kernel given by (26), instead of the expression 

(X, S)K.7' = u\ [~ X(a) S(a) + f.' S'(u) X'(u) du] 

suggested by (28), we may show that 

(X, S)K.T = :, U X(a) S(a) + J.' S'(u) dX(u)} 

There is a variety of ways in which one can determine whether a function S 
belongs to a reproducing kernel Hilbert space H (K; T) and compute the norm 
(S, S)x,T and the random variable (X, S)K.T• These are discussed elsewhere 
[see Parzen (1961)]. 

However, certain general principles deserve to be stated at this point. 
Roughly speaking, a function g( ·) belongs to a reproducing kernel Hilbert 

space H(K; T) only if it is at least as "smooth" as the functions K(·, t), since 
every function gin H(K; T) is either a linear combination 

n 

g(-) = I cJ((·, tJ 
i=l 

or a limit of such linear combinations. For example, if T is an interval and 
K is continuous on T ® T, then every function in H(K; T) is continuous; 
if K is twice differentiable on T ® T, then every function in H(K, T) is 
differentiable. 

We are led to the following heuristic conclusion: In order that a signal not be 
perfectly detectable in the presence of a noise, it is necessary and suffi.cient that 
the signal be as smooth as the noise. In the case of a sure signal the signal is as 
smooth as the noise if and only if SE H(K; T), where K is the covariance 
kernel of the noise. In the case of stochastic signals the signal is as smooth 
as the noise if S E H (K; T) for almost all sample functions of the signal 
process: a rigorous formulation of this assertion is given in Section 3. 

A basic tool in the analytical evaluation of a reproducing kernel inner 
product is provided by the following theorem. 

Integral representation theorem 

Let K be a covariance kernel. If (a) a measurable space (Q, B, µ) exists 
and (b) in the Hilbert space of all B-measurable real-valued functions on Q 
satisfying 

(!, f),, = JQJ2 dµ < oo (35) 

there exists a family [f (t), t E T] of functions satisfying 

K(s, t) = (.f(s), f(t)),, = J(/(s) f(t) clµ, (36) 

then the reproducing kernel Hillwrt space H (K; 'l') consists of all functions 
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g on 'I', which may be represented as 

g(t) = f Q g* f(t) dµ, (37) 

for some unique function g* in the Hilbert subspace L[f(t), t E T] of L2(Q, B, µ) 
spanned by the family of functions [f(t), t E T]. The norm of g is given by 

(g, g)K ,T = (g*, g*),. (38) 

If [f(t), t E T] spans L2(Q, B, µ), then X(t) may be represented as a stochastic 
integral with respect to an orthogonal random set function [Z(B), BE BJ 
with covariance kernel µ: 

X(t) = JQ f(t) dZ (39) 

E[Z(B1) Z(B2)] = µ(B1B2), (40) 
Further 

(X, g)K,T = JQ g* dZ. (41) 

As an immediate consequence of the integral representation theorem one 
obtains the following example. 

Example 3. Stationary noise process. Let T = [t: - oo < t < oo] and let 
[X(t), - oo < t < oo] be a stationary time series with spectral density func
tion f(w) so that 

K(s, t) = J _"".,, iw(s-t) f(w) dw. 

Then H (K; T) consists of all functions g on T of the form 

g(t) = f _"".,, g*(w)eiwt f(w) dw 

for which the norm 

(42) 

(43) 

(44) 

is finite. The corresponding random variable (X, g)x,T can be expressed in 
terms of the spectral representation of X(·). If 

X(t) = J _"".,, eitw dZ(w), (45) 

then 

(X, g)K,T = f _00

00 
g*(w) dZ(w). (46) 

Assume that the spectral density functionj(w) is uniformly bounded. Then 
~(t), bein~ the Fourier transform of the square integrable function g*(w) f((.,.,•), 
1s square mtegrable. Let 

1 /"' • G(w) = - e-itw g(t) dt. 
271' -oo 

(-17) 

Then 

a*(w) f(w) = G(w). (48) 
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Assume now that f(w) never vanishes. We may then write 

Joo I G(w) 1
2 

f"' l (g, g)K,T = _.., f(w) f(w) dw = _.., JG(w)j
2 

f(w) dw (49) 

(X ) - f"' G(w) 
, g K,T - -oo f(w) dZ(w). (50) 

To sum up, in the case of a stationary process whose spectral density function 
is uniformly bounded and never vanishes, the reproducing kernel Hilbert 
space H (K; T) for T = ( - oo < t < oo) consists of all space integrable f unc
tions g(t) whose Fourier transforms G(w) are such that 

Joe 1 
-oc JG(w)J

2 
f(w) dw < oo. (51) 

If f(w) vanishes, a similar conclusion holds. Let N = [w: f(w) = O] and 
Ne= [w: f(w) > O]. Then H(K; T) consists of all square integrable functions 
g(t) whose Fourier transforms G(w) vanish on N and such that 

The foregoing results are easily extended to multiple time series [Xa(t), 
- oo < t < oo, a = 1, 2, • • • , Jlll]. Assume that for a, {3 = l, 2, • , M 
and - oo < s, t < oo, 

Ka,tls, t) = E[Xa(s) X11(t)] = f _00

00 
i"'<a-1) fa,tJCw) dw. (52) 

Then H(K; T) consists of all functions Oa(t) on 

T = [(a, t): a = 1, • • • , M, - oo < t < oo], 

satisfying the condition 
M 

l f _00

00 
o!(t) dt < oo, 

a=l 

such that 
M f _'°.., [ l Ga(w) r11(w) G11(w)] dw < 00, 

a.P-1 

where z denotes the complex conjugate of the complex number z, 

(53) 

(54) 

(55) 

(56) 

and [J0 tl(w)] is the inverse of the matrix [fa11(w)]. Then (g, g)K,T is given by 
the expression in (55) and 

M 

(X, g)K,T = l f _00

00 
Ga(w) j° 11(w) dZ11(w), (57) 

a,fJ-1 
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where 
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Direct Product Hilbert Spaces 

(58) 

The notion of a direct product space plays an important part in our con
siderations. Given two function spaces Gi and G2, consisting of functions 
defined on T 1 and T 2, respectively, their direct product space, denoted Gi ® G2, 

is the Hilbert space completion of the set of functions g on Ti ® T 2 of the form 

(59) 

where gi E Gi and g2 E 0 2. The norm of a function in Gi ® G2 of the form 
(59) is defined by 

(60) 

The function g defined by (59) is on occasion denoted by g1 ® g2. 
It should be noted that if Gi and G2 are reproducing kernel Hilbert spaces, 

with respective reproducing kernels Ki and K 2 defined on T ® T, then Gi ® 
G2 is a reproducing kernel Hilbert space with kernel Ki ® K 2, where Ki ® K2 

is a function of four real variables defined by 

(61) 
and 

(g, Ki® K2(·, ·, ti, t2))G1®G2 = g(ti, t2). (62) 

When Gi = G2 = L 2(T, B, µ), Gi ® G2 consists of all (B ® B-measurable) 
functions g on T ® T such that 

(63) 

If G1 and G2 are equal to the reproducing kernel Hilbert space consisting of all 
L2-differentiable functions on the interval (t: a ~ t ~ b) with norm squared 

(64) 

then G1 ® G2 is a reproducing kernel Hilbert space with norm squared 

1 1 Jb I a 2 IIYllb1®G2 = 2 r/(a, a) + - -a g(s, a) ds 
a a a 8 

1 Jb I a 12 + - -g(a, t) dt 
a a at 

(G5) 

+ Jb ib a a 12 - - g(s, t) ds dt. 
as at 

3. STOCHASTIC SIGNAL CASE 

In this section we shall determine conditions for the existence of t,he probti
bility density functional (6) in the stochastic signal case described before (H)). 
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We slrnll pron hrlow 1 hat Ps+,,· is a.h1:;olutely continuous with respect to P N if 
nnd only if 

IIRll1-1(K)®l-l(K+R) < CX), (66) 

It, m:.t, be ~hown that a sufficient condition for (66) to hold is that 

IIRlln<K>@HUO < CX)_ (67) 

In practi c, the condition we shall attempt to verify is (67). Consequently, 
before proving that (66) is necessary and sufficient for p = dPs+N/dPN to 
exi t, let us show directly that (67) is a sufficient condition for p to exist and 
let us obtain an explicit formula for p. 

It may be shown that if (67) holds, then the signal process [S(t), t E T] 
may be written 

00 

S(t) = l 7/, <I>.(t), (68) 
•-1 

where (a) [77.] is a sequence of random variables satisfying 

(69) 

for a suitable sequence [>...], and (b) [<I>.] is a sequence of functions in H(K) 
satisfying 

(70) 

In fact, [>...] are the eigenvalues and [<I>.] are the corresponding eigenfunctions 
of the linear transformation Ron H(K) to itself defined by 

R h(t) = (h, R(·, t))H(K)• (71) 
Further 

00 

l A~ = II Rll~(K)®H(K) < CX). 
(72) 

•-1 

For n = 1, 2, • • , let 
n 

Sn(t) = l 7/v <f>,(t), Vn = (X, <I>n)K, (73) 
•-1 

By the developments of Section 1, it follows that Psn+N is absolutely con
tinuous with respect to P N with probability density function 

By martingale! theory it rm.1.y hn Hhown thn.t (72) implimi thnt the probnbility 



I !iii ,'TIW<'TlJH1\I, l'HOIILl•J I.' 

ckn~i1,' function<' is(s nrnl is ~i\1'11 hy tlir· liiniL 

d 11.-q \ 
- litn JJn 

di', 11•00 

. 1 t hnt 

dP. --jN 

log -df>. 
' 1\ 

If in addition to (72) 

v=l 

00 

l Av < 00 I 

•=l 

th n the probability density function may be written 

(76) 

(77) 

(78) 

The intuitive meaning of (77) is that almost all sample functions of the signal 
process [S(t), l ET] belong to H(K), since from (68) 

00 

11s11i = I 1);, 

v=l 

00 

E[JJsJJkJ = l A,. 
v=l 

It appears to establish (77) it would suffice to prove that 

E[IIS//1d < 00 • 

In order to obtain necessary and sufficient conditions that Ps+N be abso
lutely continuous to PN in the stochastic signal case, let us begin by rephrasing 
the problem. Let K 1 and K 2 be two positive definite covariance kernels, and 
let Pi be the probability measure induced on Q by a normal process [X (t), 
t E T] with zero means and covariance kernel Ki, The following questions 
arise: 

J. Determine whether P 1 and P 2 are orthogonal. 
2. JJetcrmine dP2/dP 1 if it exists. 

We use equations (10) to (15). Let 

dP2,T 1 /K 2,'L'' -r~ exp ( - 1 _ytr1( 2~,,X) 
'P'I'' = -- = ;...____c_-1------"- -----"-'' ' 

dP1 ,T' /IC 1 ,'L'' -Hi xp ( - ~.\ 1•11{1)1',X 

.f,p, = J!i'p~(]og P1•1 ) - h'1•1(loµ; '))11•1 ) 

= 1 Lruco (/(1,lj11 /\''.!,'I'' - r - I+- 1<-;;_!i.,J•t,.,,.,. ( 0) 
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Amazingly enough, the right-hand side of (80) can be expressed as the norm of 
a function in the reproducing kernel Hilbert space corresponding to the kernel 
[{ 1 ® K2, which is a function of four variables (s, s', t, t') defined by 

K.1 ® K2(s, s', t, t') = K 1(s, t) K 2(s', t'). (81) 

If K 1 and K 2 are nonsingular covariance matrices, we may verify that 

trace (K 1IC21) = (K 1, K 1)x 1®x 2 , (82) 
since 

(K1, K1)K1®K2 = l K1(s, s') K1
1(s, t) K21(s', t') K1(t, t') 

s,s',t,t' 

= l o(s', t) Ki 1(s', t') K i(t, t') 
s'.t,t' (83) 

= l K2 1(t, t') K1(t, t') 
t,t' 

= trace (K 1K 21
). 

It may also be proved that 

trace I = (K1, K2)Ki®K 2- (84) 

In this manner we may verify that 

trace (K 1K 21 + K2K11 - 2[) = //K1 - K21/K1®K2 (85) 

xtrK1 1 X - xtrK-;;1 X = (K2 - K 1, X ® X)K1®K2, (86) 

where X ® X is the function on T ® T defined by 

X ® X(s, t) = X(s) X(t). (87) 

Using (85) and (86), we may rewrite (79) and (80): 

PT' = /K2,~•K1,T'/¼ exp [½(K2 - Ki, X ® X)K1®K2,T'®T'] (88) 

JT, = ½I/K2 - K11/K1®K2,T'®T'· (89) 

The following conclusions can be immediately inferred: 

1. In order that P 1 and P 2 be orthogonal, it is necessary and sufficient that 
it is not so that 

(90) 

2. If (90) holds, then the Radon-Nikodym derivative exists and is given by 
the limit (as T' - T) of (88). Formally, we may write 

dP 2 = D(K 2
1K 1) exp [½(K2 - K1, X ® X)K1®K2,T®T] (91) 

dP1 
if 

D(K21K1) = lim /K2}K1,T'/~
2 

T'-+T 
(92) 

1s assumed to exist. 
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By using (91), we can sketch a proof of Woodward' theorem on linear 
transformation of Wiener integrals [Woodward (1961)]. 

Example 4,. To illustrate the use of (67), we con ider tationary lime ·erics 
with spectral density functions, so that 

R(s - t) = f _00

00 
</"'C3 -t> fs(w) dw, 

K(s - t) = f _00

00 eiw(.,-t) !N(w) dw. 

We now show that a sufficient condition for (G7) to hold for any finite interval 
T = (t: 0 ~ t ~ T) is that 

(!J3) 

To prove (93), we write 

IIRl]k®K,T®T = II/_"° .. ei"'ae-iwt fs(w) dw 11:®K,T®T 

= f _00

00 

dw1 f _00

00 

dwds(w1)fs(w2)(ei"'i(a-t), ei"'z<•-t>)K®K.T©T 

= J _
00

00 
dw1 J _

00

00 
dwzfs(wi)f s(w2)] (ew1•,i" 2')K,T\ 

2 

~ [/_

00

00 
dwfs(w)\Je 1

:"'
3 \lk,T ]2. 

From ( 49) we may deduce that 

_!_ Jli"''llk.T ~ f "° dX[f N(X)]- 1 _!_ _!_ {T ei,(w->.) ds 1

2

• 
T -ao T 21r } 0 

As T tends to oo, the right-hand side of (94) tends to 

[21r f N(w)r 1 

(9-!) 

(95) 

as a limit in mean with respect to the finite measure on - oo < w < 00 with 
density function f 8 (w). The desired conclusion may now be inferred. 

It might be noted that by using (94) and (95) we can give simple proofs 
of various extensions to continuous parameter time series of theorems on the 
asymptotic efficiency of least-squares estimates of regression coefficients given 
for discrete parameter time series by Grenander and Rosenblatt (1957). 
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