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1. Introduction

The development and use of methods for solving smooth exFremal
problems depend significantly both on the ability to organize the
computation of total derivatives of the functions included in the
problems’ constraints and on the difficulty of or time tgke.n‘by
this process. The most important property of any ?ptlml?lflg
method is the rank of the derivatives it requires. The higher it 1s,
then, as a rule, the more quickly the method converges. At the
Same time, in choosing a method for solving a par‘ticular problem
It is necessary first to establish whether it is possible to program
formulae for derivatives of the necessary order and whether the
difficulty of computing them yields a return by increasing the
Speed of convergence. Comparative evaluations of thq dlfﬁcult'y
of computing derivatives usually start from the following plausi-
ble relationships:
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t(F')=0(t(F)n)’ (1)

t(F")=0 (t(F)n?),

where F is a real function of n variables; F" is a vector of g,
gradient of function F, F'' is a matrix of seco.nd deI'IVE}tiVES of
function F; and #(g) is the difficulty of computing magnitude Q.

For example, if a first-order method is chosen to solve 3 par-
ticular problem, then the investigator must write out, for the
functions included in the problem’s constraints, formulae for the
first-order partial derivatives (which sometimes is by no meang
easy) and compile a program for computing them. In fact the
computation time on the computer depends significantly on how
efficiently the program has been written. Equations (1) only indi-
cate the existing uncertainty surrounding the question of the pos-
sible efficiency of a program which computes the first-order
partial derivatives of a general non-linear function.

The present article proposes a method for computing the de-
rivatives for a fairly general class of non-linear functions of n

variables, using equations expressing the difficulty of the compu-
tation in the form:

t(F')=0(t(F)),
t(F"y) =0 (¢(F)), (2)
t(F")=0(t(F)n),

where y is an arbitrary direction in R and the rest of the notation
is‘ as in (1). We note that this method, which is justified and
discussed in Section 2, can easily be automated.
. Section 3 discusses the changes which should be introduced
Into a qualitative representation of the difficulty of some optimiz-
a.tlon methods when account s taken of the change from equa-
tions (1) to (2).

The present article 1S not concerned with implernentatiOn
aspects of automating the method. We merely note that the
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qutomated version frees the user from the need to write the pro-
grams for computing the derivatives. These programs are gener-
ated automatically on the basis of a given algorithm for comput-
ing the functions. In the first place this method substantially
simplifies the preliminaries for solving the problem and secondly
it provides the user with very efficient programs—which satisfy
equations (2)—for computing the derivatives. Automated differ-
entiation techniques can be used for a very broad class of non-

linear methods. Reference [1] contains some information about
similar developments abroad.

2. The differentiation algorithm

We consider algorithms for computing the first and second de-
rivatives of a non-linear function in n variables when the difficul-

ty of doing so is given by (2). We begin with some formal con-
structions.

We take a set of basic operations €, consisting of real
functions f.(zy, ..., Zme), @€A=(0, 1), such that f.: Ga—R,
where G, is some subset of space R™«. We choose an ar-
bitrary natural number n=1. Let M=M(s)={%, J}, where

U= {a.‘:};;:n-!-i' 'thA, J= {Ih'})?:in{—lv Ilf = {jlk’ g £ j’;"ak}'
s=1. We shall call set M correct if for any k, nt1<k<n+s and
any j€/, inequality j<<k is satisfied.

With each correct set =M (s) we associate a function of n
variables g (z), the value of which at point z=(z, .. 'lx") 18
computed using a recursive sequence of numbers {y:}i=i , ac-
cording to rules:

3)

yk=fa,,(yjk,...’y_;,-)v ’C=n—|—1,...,n—]-s,
1 Jlk
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K "
where {aiw=%, h=ma > Uth--oj =g

nes 7, (9, J}=". Here ow () =Yn+s. We assume thy

{] '}k=n+1
q;.;e (+) is defined only at x such that for any &, n+1<k<n+g the

inclusion (y]_k, . 55 yj'k ) € Gy, 18 satisfied. We shall say that g
1
k

these points the function @ (+) is computable. We note that a]]
functions which are normally encountered can be represented i
form (3).

We denoted by®,the set of n variables corresponding to all
possible correct sets 2. For each function ¢ €®., we can intro-
duce the notion of a formal gradient. For this purpose we define
the set of gradients of basic operations Q' as follows: with each
operation f,6Q we associate a vector function:

fo (@1r + - o» Tmg) = (Fa (@1r + « o3 Tmg)s « + o1 Faz o (@1, - - oy Ty,

where f.”: G.’>R™, G.’ is an open set from R™«, afA. We call
vector .’ (z) the formal gradient of operation j,. at point z€G.'.
We choose an arbitrary point z€R* and consider sequences of

numbers {y,}r=, {py}i— of vectors {g,}15,-., defined by recur-
rent equations:

Yi=x;, i=1, A (3
yk=fak(y_k1 st Yk )y
a & "
gh———fak(yk ,.'.’y‘k), k:n—{—i,...,n—l—Sa
i1 ’zk 4)
pﬂ+a=1a
Pg= Zptg:% g=n-4+s—1,..., 1
fqu

i‘:lzz;zsagoﬁi;esm ha\./e the same sense as in (3); g 18 the. set of
enters as an arpzndmg' toiqal'l operations f,, €9 in which ¥
sponding ¢ gument; g:'t is a component of vector £ corTe

& 10 magnitude y,. We say that a function <sz6¢“ B
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formally differentiable at point z€R™. if in (4) for any
k, n+i<k<nts the following inclusion is satisfied:

W2 Up) €6ay 16

Here we shall call vectorog’ (z) =(p,, ..., Pn)a formal gradi-
ent of function g at point x. The correctness of this definition is
justified by the following theorem.

Theorem 1. Assume that the following conditions are fulfilled
for any o€%: (1) function f. is continuously differentiable in set
Go'; (2) set GL.NG,' is open, (3) for any z€G.NG,’ vector f.' (z) is
the gradient of function f.(-) at point x. Then if function g (-)
from ®,, is formally differentiable at point T€R", then it is differ-
entiable at that point and magnitudes p, ..., p. are its partial
derivatives at point T.

Proof. It is enough to show that there is an open neighborhood
B(Z) of point & such that function pg (-) is computable at any
véB(z) and the following equation applies:

om (V) = (F) Hon' (&), v—2>FTo(lv=2l). (5)

Let A be a vector from space R"**. We consifier a fun_ction
¥ (A) , the value of which is computed using recursive equations:

.%(A) =fi+Ai, l=1, eeey I (6)
yk(A)=fak(zk(A)) 4= Ak! k=n-+ 1! R + s,

notation

Where 2 (A) = (y;0(A)y ..., yx (D)) and all the other
ok (A). We

has the same meaning as in (3). Moreover W (A) =Yn+s

hote that W (0) =qux (Z). | |
By the conditions of the theorem, for any k point 2 (0) 1s an

interj : d i e shown that for
Interior point of set G“k N Gak. Moreover 1t can b



54  MATEKON

sufficiently small A the following equation .is ?atiSfied:
|24 (A) —2(0) =0 (lAll), k.-——-l, e n+s. From this’ in particy.
lar, it follows that there exists a nelghborh-ood B(Z) of poin -
such that o (+) is computable at each point v€B(x).

We show that for sufficiently small A the following formy, is

true:

n--s
¥ (A)="F(0)+ Y pid;+o(lA]), )

i=1

where p; are numbers obtained in (4) when z=z. And A in (7)
are said to be sufficiently small if z, (4) €Ga, N G;t;, for all

k=nt1, ..., nts. We shall prove equation (7) by induc-
tion.

We choose a fairly small vector A€R™+s. We denote by A
the vector with the following components: A =0, 1<j<¢—1;
Af=A; g<j<nts. We show that for any ¢, 1<<q<nts:

n--s
FAY=F©0) + Y psA; + o) A]). &)
i=q

For g=n-+ts we have 'lIJ'(An+a)=IIj‘(0)+IA1I+S=IP(O)+

Pn+sAnss. We assume that for g=m+1 equation (8) is satsfied
We shall prove that it is also fulfilled for g=m.

We introduce 3 vector Am+t
for jéw,, At

H
. “~mt1 __ n
with components A7 =24

i . =fAJ' - faj (Zj (Am)) _ faj (Zj (K‘m-}-l)) for fE‘(IJm
( ??mﬁm 'S the set from (4)). It is not hard to see th®
Yn )=yr(A™) for all ks, A™ 0. Hence we can qssume

that (8) is a] : g €
= ) is also satisfied for vector A" with g—m-+1. Thus ¥
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N (Am) — ¥ (O) = ¥ (Em-{-l) — ¥ (0) =

n-t-s
n--$

% o~ !
Y, PR oA =} pa+ ¥ pEM L o(ap—
j=m-1 jjz(fru?;ni_l €0,

n--s

Z pidj +~ Z Pj (fa; (25 (A™)) — fa; (25 Bmta))) 4 0 () A ).

j=m+l _iE(l)m
We note that in view of condition (1) of theorem 1 for all j€wm:
fay (23 (A™) — fa; (33 Bi1)) = glmit,, 40 ([ A

(for the definition of g;mj see (4)). Consequently:

n-+s
¥YEm—vO)= Y pA+

] j=m+1

n-s

Y pigimidn oA D= Y, psds+ o(IA]).

i€,

) refore (7)
This last equation proves that (8).1S true,c?;dciz of equa-
IS true. It remains to note that (5_) ISJ a speh theorem is thus
tion (7) with A: A=0 for nti<j<ns . The
Proved. _ Pr are the
Remark. We have shown that, ?Or k—il:; t01:c’i, In a similar
Partial derivatives of function @ with respb;l rivative of % with
Way pu for k>n can be interpreted. as the' , (7) to evaluate the
'Spect to yx, which makes it poss.lble uSlII;g.th operation on the
effect of an absolute error in fulfilling -the
absolute error in computing the flll'lCthIl.. i ), ShEBE e
We note that in view of theorem 1 deﬁ?;nggon pm. We shall
% a way of computing the gradient dOf !
®Valuate the difficulty of this method.
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We consider two quxiliary functions in two variap]g.
Jo(@y, T2) =T: 22 and f,(z1, 22) =, Ty, Mo =M1 =2, Go=CG =R W,
use the notation A=AU {opu{1}.

We introduce a function T () : AR ={zCR'|2>0}, whigy
we shall call the difficulty of operation fa. By T'(a) we shy||
understand, for example, the time needed to carry out operatiop
f, ona computer. Below we need the following property of set 0

ATO+FTA) | 7
uEu(9)=SUP{m ( (T)(a) = I“EA}'

We shall everywhere assume that p<ce.
In a similar way we can introduce in set A a function

T.(a): A—R*, which we shall call the difficulty of simulta-
neously computing the value and the formal gradient of operation

f.. We assume that:

C =sup {—T],l—((%l aEA}< 0.

Using the functions 7 () and T, () we can define the notion of
tl!e difficulty of computing the value of function @ €®- and the
dlfﬁcqlt){ of computing its formal gradient. In view of .(3)
the difficulty 7,(M) of computing the value of function
om, M={%, J} is naturally defined as: Lo (™) =Y 7@

. . . . aEQI -
In a similar way in view of (4) the difficulty T’ () of compUtd

;Eg the n-dimensional vector of the formal gradienton’ i3 efire
us:

n4s—1

Ty (®)= Y 7, (o) + Y Y ao+rd)

acA a—1 1€ “’q

We note that:
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Y M@ <CY T @ =Ty (my,

N ael
n-ts—1 .
2 L (TO)4T 1) < Z me, (T (0) +
q=1 t(;(n)q a Gl
T(1) < Y 0T (@) =pTq (W),
aERl

We have thus proved the following theorem.

Theorem 2. If function @n€®, is formally differentiable at
point 2€R", then the difficulty of computing the n-dimensional

vector of the gradient is related to the difficulty of computing this
function by inequality:

Ty (M) < (C+Hp) To(M). 9

We note that constants C and p in estimation (9) do not depend
on the dimension of space n. They are properties of sets € and
Q'

Let set Q consist of operations +,—,X,:. Then the algorithm
for computing gradient of (4) can be written ina more e.cor.lorrpcal
form, which eliminates expressions with zeros, multiplications
by one, and repeated computations of previousl){ computed mag-
nitudes. The number of operations in this algon{hm exceeds jche
number of operations in the algorithm for computing the function
by at most five times. _

We now describe a method for computing the second der¥va-
tives of function gp€®,. We introduce set Q" of seconfi derngz;
tives of the basic operations as follows: with each operation fa
We associate a matrix function:

1m,
g(-‘rl,...,xma),.-.,faa'(x]_,...,x.ma)

f
fq"(xh_“‘xma):‘ : ' . - . e

" Me Mgy, ..x
78 @y ooy Tmg)s oo L (e )
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where fM=f" G~ R, k, I=1,..., Ma, G.” are Open e
L s . - n S
from R™a, «.6A. We fix an arbitrary point z€R" and 5 direction
wER". We consider sequences of numbers {y,}i; (g,
. ':;1

n--s

s + ,
(P (pp)idil, of vectors {8 iYint1 {€xYhent1, and of Matrices
(G,)its ., defined by the recursive equations:

y=xz;, i=1,...; n,
Yr = foy, (2k), &x= f:xk (2x),
Gh.=f;k(zk), k=n-+1,...,n+s,
Prse=1, (107

Pg= Zptgiqf, g=n-+s—1,...,1;

‘lE(.)q
Vyi=uw;, i=1,..., n,
Yn=Xgn, Zn’,
gi=Guis, k=n+1,..., nts, (107

ﬁﬂ+s=01

Py = Z [peg %FPtgiﬂ‘], g=n-Lts—1,...,1,

tE(oq

where Zk=(y5’1"’ e Y )s&x==(i 1 ..., ) and the rest of the
. . . k

notation is as in (4). We shall say that function €@ is formal

ly twice differentiable at point z€R" if in (107 for aW

B, nti<k<n+s the following inclusion 1is satisfied

2k€Goy; [ G;xk N G;k- Moreover we shall call veet”'

" . . : d
P (2, ) =(ps,..., pu) the product of the matrix of sec"
formal derivatives on vector 4.

We can now prove the following theorem.

Theorem 3. Assume that Jor any a6 the following co"

ditions
are satisfied: (1) function f, is twice continuously differe” he

ble
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in set GJ": (2) set GJNGS/NG.” is open; (3) for any
H0G.NG/ NG, vector [/ (x) is the gradient of function fu(*)
while matrix 1" (x) is the matrix of second partial derivatives of
function fu() at ./.)m'm X. Then if function ¢y () from ©, is
formally twice differentiable at point %, then it is twice differen-
tiable at point x and vector (py, ..., p.) is equal to the product
of the matrix of second derivatives on vector u.

The proof of theorem 3 is similar to that of theorem 1.

Corollary 1. If for any «€¥ function f, is defined and is twice
continuously differentiable in the whole space R™. and for any
26", fo'(z), and f.”(z) are respectively the gradient and
matrix of second derivatives of function ¢, (-) at point x, then
function g (-) is twice continuously differentiable in the whole
spacc ™ and ¢w” (Z, w) is the product of the matrix of the
second partial derivatives of function ¢ (-) at point ZER™ in
direction u€R™,

We evaluate the difficulty of computing vector ¢” (z, u) using
formulae (10”) and (10'"). For this purpose we introduce a func-
tion 7,(x): A—~R* which we call the difficulty of simultaneously
computing the value, the formal gradient, and the matrix of sec-
ond formal derivatives of operation f..

We use notation: ¢’=sup{T.(c)/T(x)|a€A}. Moreover, let
I.” be the difficulty of simultaneously computing the value of the
quadratic function and its gradient in space "« and let
p’=sup{’[’,,,’/T(a)| %€A}. Then 7., (M)—the difficulty of comput-
INg vector qup” (z, u)—can be evaluated as:

n-{-8—1
=Y Ty $ 7043 Y, DT OFT W)
L6 oA q=1 'qu
n--8—1
C5 ) YT (@) +3 Y, may(T O+
aGU q=1

(C" 4y - 3p) T (T).

We note that in computing the product of the matrix of second
Ormal derivatives of function pm (z) and the different vectors
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there is no need to repeat the calculations using formulae (1( 0Tt
is therefore possible to organize the computation of the matri of
second formal derivatives as follows: carry out the calculationg
using formulae (10") once, and then use formulae (10'") n times,
choosing u=e,, where e is the k-th coordinate vector in space
R®. The difficulty 7”(:) of computing the matrix of secong
formal derivatives of function g () by this algorithm is estimat-

ed as:

To (@)=Y Ta(@)+ Y Ta' +
oaE6A e
n-+s—1
Yo Y T@+T @ +n] Y, malma+ 10T (0)+

g=1 temq el

n+s—1
T +2 Y Y @o+ray]<e 4w+ wTe®+

q=1 tqu

n(T(0)+ T (1)) Y, ma (ma + 3).
€U

An analysis of formulae (10’) and (10’ ") enables us to draw the

following important conclusion: all information concerning the
matrix of second formal derivatives of function p () is stored
in “*stripped-down’’ form in sets {y.}, (@), {G)}, and {p}- The
difficulty of getting this information is a magnitude of OAl‘dCr
O(7,(M)). The dimension of space n only comes into the estima-
tion of the number of additions and multiplications necessary {©
““collect’” this information into an nXn matrix.
. Wenow combine these estimations of the difficulty of comput
ing the second derivatives in the following theorem. =
. Theorem 4. If function Qm from ©, is formally twice differe’
tiable at point 2¢R" then: '

(1) the following estimation applies for the difficulty of C(.”,’:,
puting the product of the matrix Ofse(,';)n d-order ﬁ,rmal derivé
tives of o at point x and direction wER":
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T (M) <(C"+p'+3p) T, (M) ; (11)

(2) the following estimation applies for the difficulty of com-
puting the matrix of second formal derivatives of function gy at
point X

Te" (M) << (C"+p' + W) To(M) 4+ n (7'(0) + (12)

(1) mo(my + 3).

aecA

We note that the dimensions m.. of operations f, of set Q do not
depend in any way on the dimension of the functions from set @,,.
In fact if we take as the set of basic operations Q all the arithmetic
operations and operations corresponding to the elementary func-
tions, then @,, is the set of functions of n variables written in the
form of a finite sequence of superpositions of operations from Q.
Here the maximum value of m. for the operations from this set is
equal to two. In this case we can rewrite estimation (12) as:

TS (M) < (C'+p/+p) To (M) +

10ns (T (0)+T (1)) =0 (rT,(M)).

We now discuss the method with which we obtained our algo-
rithm for computing second formal derivatives of function @p.

We consider the vector function z(B)=%+pu: R~ A",
Z,u€R*  Assume that we haveto compute the derlvatlv.e
of vector function f (z(B)) with respect to p, where f: R" >R 1s
4 twice differentiable function. It is not hard to see t‘hat
(F(z(8)) )s'=f"(z(B))u. It is intuitively clear that, if there is a
S€quence of operations with which vector f'(z) is c_omputed, then
by formally differentiating this sequence of operations .(program)
With respect to B we derive a program for computing vector
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7 (z(B) )u. We note only. that if in the program for computing
# («) there were only one input (vector x), then in the Program fo,
computing /*(z)u there will be two {vectors x and d=u), Ty
method was also used to derive algorithm ( IQ’) and (10" from
algorithm (4). It would be possible to proceed in exacqy the same
way in constructing algorithms for cc?mputmg . derivatives of
higher orders. This possibility is not discussed in detail i the
present article.

We now discuss the reason which made us use the term ““for-
mal differentiation’” in all the definitions and theorems of thig
section. The point is that all the algorithms considered above are
algorithms for differentiating programs of some special type. In
fact set M=W (s) = {¥, J},which specifies a rule for computing the
value of function ¢u, is a program in which there are s instruc-
tions, such that in the k-th command o, 0,69 is the operation
code, Ii, 1,6/ is the list of addresses of operands, and y, is the
working cell into which the result of the operations is transferred.

The rules for formal differentiation can be applied to any
correct program (or set) M where the values of all the operands
of any operation f, » are computed before fulfilling this operation.
Hereifall f.,, 0,89 are differentiable and fop are their gradients,
then we derive a program for computing the gradient of function
P- But the case may arise where some command & from % is not
differentiable. It turns out in this case that it is possible to defin
the fgrmal gradient of operation fz in such a way that the formal
gradient of function w will have a sensible meaning: for exam-
g:f”. if fa (2) =|z|, 2€R, set f (z) = sign . The 1SSues
. Iilsilglgull'llet:ll:;ls connec_tlon are not discussed in detail here. We

€S to stating the possibility of using the algorithm®

Proposed to cOmpute certain different analogs of derivatives for
nondifferentiable functions,

To conclude this Section we note that a method has actually

3?:35:1?)(:}8?3 w}.)ich enables us to use a program for COnl'pllt:gi

i ncFlon m Fo establish a program for comP”t".lg
atives of this functjop_ The proposed method can easily ’

automated. When the derivatives are computed by automa(®
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methods (or in any other way) some com
from the fact that at particular points th
exists, even though in carrying out the com
necessary to identify indeterminacy of the type 0/0, 0-oo
and so on. An example of this is Provided by the functior;
f(x.¥)=Yz'ty* at point (0,0). However

. , these problems are
eliminated using purely programming methods.

plications may arise
€ derivative actually
putations formally it is

3. Using automated differentiation
algorithms to solve extremal
problems

Section 2 established some estimations of the difficulty of com-
puting derivatives for a broad class of non-linear functions. It is
obvious that the estimations derived cannot be substantially im-
proved in terms of their difficulty. At the same time Section 2
proposed algorithms which realize these estimations. Of course,
It is possible in the case of a particular non-linear function to
write a program for computing its derivatives which exhibits the
same difficulty as the algorithms we have described.' But in the
Case of a fairly cumbersome and complicated function writing
such a program is a complex problem even for an expe.rlenced
Programmer. For this reason the algorithms of Section 2 yield the
greatest return if they are implemented in auto.mated form (let us
Say, after a program for computing the function has been com-
Piled by the operator). We note that in the Central Mathematical
Economics Institute (TsEMI) a system—DIANA—has been de-
Veloped for dialog analysis of non-linear functions, which 1m!)l'c-
ments the algorithms we have outlined for computing the deriva-
tives. The system has been implemented on a NORD-100
Computer, _ ‘
Apart from the automation effect, which substantially llgl\tc?ns
\¢ task of data preparation and reduces the actual compllllut 1(::
tme for particular problems on the computer, tl'le a‘lgoru ms
€ction 2 enable us to change our quantitative views concerning
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the difficulty of different methods for solving extremal problemg.
We consider some of them.

1. Cubic interpolation in
one-dimensional search methods

In solving auxiliary problems of one-dimensional minimizatjop
in non-linear programming, [we find that] one of the most effi.
cient techniques is the cubic interpolation procedure (see [2]). but
for it to work it is necessary at each stage to compute the value of
the objective function and its gradients. Here the gradient is used
only to compute the directional derivative. In connection with
this “‘irrational”” use of the gradient, a number of authors, relying
on relation (1), have argued against this procedure. Using the
algorithm for automated computation of the gradient (4) removes
such objections, as is clear from (9).

2. The method of conjugate gradients

The various frameworks of conjugate gradient methods intended

to solve unconstrained problems of minimizing a non-linear func-

tion f(z), z€R", include the following (see [3]):
$h+1=$k‘_ﬁh3h, k=0, 1, ooy

30=fl(x0), Sn=f, (wh)—?;ash-u k=1,2,- sisy
£, — <L @)k, [ ()

T () Skt SE—1 D

(13)

Br=arg min {j(:r,.—-ﬁsh) |p=0}, k=0,1,....

However, framework (13) has been little studied and used if
Praf:tlce because of the need to implement the formula for com”
puting the &, (again the impact of plausible estimations (1)!)- BY!
if we use automated differentiation algorithm (10)-(10"") '
compute these values, then in view of estimation (11) the difficul-
ty of computing &, will be of the order of difficulty of computing
the value of the objective function. Hence in this case frameworX
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(13) in terms of its a priori indicators turng out (o be
competitive with other frameworks for the conjugate ar
method.

[ully
adients

3. The Newton method

Let function f(z), zGR" be twice continuously differentiable and
concave in the whole of 12", If we adopt the Newton method to
solve the problem of minimizing f (x) on R", then at cach stage we
have to solve the system of linear equations:

[" (@) s=—{"(x). (14)

We estimate the overall difficulty of computing matrix
G=["(z) and vector g=f'(x) and of solving system (14) in the
case where it is possible to use differentiation algorithm (10")-
(10",

Solving (14) comes down to minimizing quadratic function:

Q (6) =g <G, 83 + <& - (1)

We use the conjugate gradient method to solve prgblcm (15).In
order to obtain a precise solution s*=—G~'g, this method re-
Quires n iterations. At each of them it will be necessary to com-
Pute the gradient of function Q(s) (Q’(s)=Gs+g=["(x)s+] (z))
and the scalar product <Gu, u>=<j" (z)u,u> (in order to find a

one-dimensional minimum) and to recompute two n-dimensional
vectors,

Thus in view of estimations (11), (12) the overall difficulty of
“*mputing the Newtonian direction does not exceed:

(€ ) T (M) - 20(T (0)

(1)) Z e (Mo 4 3) + 0 (n%) =0 (nTo (M)

acdU
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. : Newtonian step usin
- ficulty of computing a 8 Mmethg
i.e., the difficulty t to be of an order equal to that of Onc(:,

' 10'") turns ou QLT .
c(:f)(r)ni)sgcrll; a dszerence approximation of the gradient,

4. Optimal control problems

The proposed algorithm can be used to solve an optimal contr
problem. It is interesting to note that, for some problems of 4

special type, it is identical with known methods of computing the
ple, computing the gradient of a function using

gradient (for exam :
a conjugate system [4]). At the same time for other problems this

method turns out to be better than the traditional one.
Let us consider the following example. Assume that in prob-

lem:
min {f(a) |a€R"}

function f(a) is computed using recursive equations:

f(a)=¢ (Zx),
Thp1 =@ (2p,a), k=0,...,N—1,

where z,6R™ and z, is fixed. Then the difficulty of the natural
method of computing gradient:

f'(“)’—‘VNfo'(xN)v
VhH:Vh(‘Ph)x’(xhv a’)+({Ph)a’(xhp a), k=0,..., N-1,

where 4 ; : : ,
( Vi, (@), and (qu).’ are matrices of dimensions nXm

mxm, and nXm respectively) depends on the difficulty of ™
puting the product of these matrices.

At thf’: same time the present article implies a method of ¢0
puting f'(a), the difficulty of which depends only on the diffic?
of computing function Pr.

m-
Ity
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