
Scanned by CamScanner

K. V. KIM, Iu. E. NESTERov, V. A. SKoKov 

AND B. V. CHERKASSKII 

(USSR) 

An Efficient Algorithm for 
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1. Introduction 

' 

The development and use of methods for solving smooth extremal 

problems depend significantly both on the ability to organize the 

computation of total derivatives of the functions included in the 

problems' constraints and on the difficulty of or time taken by 

this process. The most important property of any optimizing 

method is the rank of the derivatives it requires. The higher it is, 

then, as a rule, the more quickly the method converges. At the 

~~e time, in choosing a method for solving a particular problem 

11 18 necessary first to establish whether it is possible to program 

f~rmulae for derivatives of the necessary order and whether the 

difficulty of computing them yields a return by increasing the 

speed of convergence. Comparative evaluations of the difficulty 

of computing derivatives usually start from the following plausi­

ble relationships: 

::--_ 
:Rus_sian _t_ext © 1984 by "Nauka" Publishers. "~ttektivnyi ?lgo_ritrn 

Ych1slenua proizvodnykh i ekstremal 'nye zaduch1, Ekono,mka , 

rnatematicheskie metody, 1984, vol. 20, no. 2, PP· 309-3 l 8, 

49 



Scanned by CamScanner

50 MATEKON 

t(F') =0 (t(F) n), 
(1) 

t (F") =0 ( t (F) n2
), 

where Fis a real function of n variables; F' is a vector of the 
(Tradient of function F, F'' is a matrix of second derivatives of 
function F; and t ((I)) is the difficulty of computing magnitude q>. 

For example, if a first-order method is chosen to solve a par­
ticular problem , then the investigator must write out, for the 
functions included in the problem's constraints, formulae for the 
first-order partial derivatives (which sometimes is by no means 
easy) and compile a program for computing them. In fact the 
computation time on the computer depends significantly on how 
efficiently the program has been written. Equations (1) only indi­
cate the existing uncertainty surrounding the question of the pos­
sible efficiency of a program which computes the first-order 
partial derivatives of a general non-linear function. 

The present article proposes a method for computing the de­
rivatives for a fairly general class of non-linear functions of n 
variables, using equations expressing the difficulty of the compu­
tation in the form: 

t(F')-0(t(F)), 

t(F"y)=0(t(F)), 

t (F") =0 (t(F) n), 

(2) 

where Y is an arbitrary direction in Rn and the rest of the notation 
is_ as in (1). We note that this method, which is justified and 
discussed in Section 2, can easily be automated. 
. Section 3 discusses the changes which should be introduced 
m~o a qualitative representation of the difficulty of some optimiz­
a!ion methods when account is taken of the change from equa­tions (1) to (2). 

The present article is not concerned with implementation 
aspects of automating the method. We merely note that tbe 
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automated version frees the user from the need to write the pro­
grams for co~puting the deri~atives. _These programs are gener­
ated automat1cal ly on the basis of a given algorithm for comput­
ing the functions. In the first place this method substantially 
simplifies the preliminaries for solving the problem and secondly 
it provides the user with very efficient programs-which satisfy 
equations (2)-for computing the derivatives. Automated differ­
entiation techniques can be used for a very broad class of non­
linear methods. Reference [ 1] contains some information about 
similar developments abroad. 

2. The differentiation algorithm 

We consider algorithms for computing the first and second de­
rivatives of a non-linear function inn variables when the difficul­
ty of doing so is given by (2). We begin with some formal con­
structions. 

We take a set of basic operations Q, consisting of real 
functions la.(Xi, ... , Xma), a.EA=(O, 1), such that /a: Ga.-+R, 
where CCL is some subset of space Rma. We choose an ar­
bitrary natural number n~ 1. Let IDl=9R ( s) = {~, J} , where 
t\r n+s n+s J { · h· .Ii } 
:«= {a.1Jk=n+i• a.1tEA, J = {J.,Jli=n+1, Ii= ]1 '· · · 'lma.k ' 

s~1. We shall call set IDl correct if for any k, n+1~k~n+s and 
any jE/1t inequality j<k is satisfied. . 

With each correct set gJI=IDl(s) we associate a function of n 
variables mmc (x) the value of which at point x= (i., · · ·, Xn) is 

T l n~ 
computed using a recursive sequence of numbers {y,,h~t , ac-
cording to rules: 

y,=x,, i=1, ... , n, 

(3) 

Yk = f ak (y. k' • • · 'Y .1i ), 
}I Jl 

k 

k = n + 1, ... , n -1-s, 
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n+s C\( 1 {] . k .k } 
where {a1.-h=n+1 == ~ , "h· = ma.k ' 1 

'· · · 'J 2 I I k k , 

{I }
n+s =l {~ J}=[Jl. Here cp~(x)=Yn +$• We assume that 

k k= n+l - , ' 
(J)9Ji (.) is defined only atx such ~at fo: any k, n+i~k~n+s the 
inclusion (y _,.. , ... , y _t ) E Ga,. 1s satisfied . We shall say that at 

Ji ✓, 
k 

these points the function <p9Jl ( ·) is computable. We note that all 
functions which are normally encountered can be represented in 

form (3). 
We denoted by<!>" the set of n variables corresponding to all 

possible correct sets ~ . For each function <p :1Ji E <D" , we can intro­
duce the notion of a formal gradient. For this purpose we define 
the set of gradients of basic operations Q' as follows : with each 
operation faEQ we associate a vector function: 

where fa': Ga'-+ Rma, Ga' is an open set from R_ma., a EA. We call 
vector j,/ (x) the formal gradient of operation ja at point xEGa.'. 

We choose an arbitrary point xER 11 and consider sequences of 
numbers { }n+s { ·}nJ..~ f n+s Y,.-1.·=1, P,.-I.-~1 o vectors {g!-h=n +i, defined by recur-

rent equations: 

(4) 

Pn+,=1, 

q = n + s - 1, ... , 1, 

where ~ l · " h f · d ' "' 1' ave the same sense as in (3) · -ci> is the set 0 

m exes corres d · , q 
ent pon ing to all operations f -aE~ in which Y9 

ers as an argume t· iq . a., e-
sponding to . n ' gt t Is a component of vector g, corr. 

magrutude Yq · We say that a function (J)Wl E4>r1 15 
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formally differentiable at_ po_int xERn, if in ( 4) for any 
k, n+1~k~n+s the following inclusion is satisfied: 

(y k , ••• , y k ) E. Ga. n c' 
· j k (J.k• '1 lk 

Here we ~hall call vec_tor•cp9n'(x) =(p1, ... , p,i)a formal gradi­
ent of function ·cp 9n at point x. The correctness of this definition is 
justified by the following theorem. 

Theorem 1. Assume that the following conditions are fulfilled 
for any ,a,E~: (]) function f c,. is continuously differentiable in set 
Ga.'; (2) set Gc,.nGc,.' is open; (3) for any xEGanGa' vector fa' (x) is 
the gradient of function f c,. ( •) at point x. Then if function (J)!m ( ·) 

from ©n is formally differentiable at point xER", then it is differ­
entiable at that point and magnitudes p 17 ••• , Pn are its partial 
derivatives at point x. 

Proof. It is enough to show that there is an open neighborhood 
B (x) of point x such that function cp9n ( ·) is computable at any 
vEB(x) and the following equation applies: 

<p!m (v) =<p~ (x) +<q,9n' (x), v-x>+o (Uv-xll). (5) 

Let /1 be a vector from space R"+s. We consider a fun~tion 
'I' (6.), the value of which is computed using recursive equations: 

(6) 

where Z1t ( 11) = ( Y ;," ( ~) , ... , Y .k (.1) ) and all the other notation 

has the same meaning as in (3;~kMoreover 'I'(~) =yn+• (~) · We 

note that 'I' (0) =<p9n (x). k . t (0) is an 
By the conditions of the theorem, for any porn z1i 

interior point of set Ga.k n G~k. Moreover it can be shown that for 
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sufficiently small ~ the following equation ~s ~atisfied: 
llz1t(~)-z1t(O) ll=O(II .L\11), k=1, ... '. n+s. From t~s, inparticu-
1 •t .collows that there exists a neighborhood B (x) of point x ar, 1 1

1 h . EB _ such that ·cpim (.) is computable at eac point v _(x). 
We show that for sufficiently small ~ the following formula is 

true: 

n+s 

'I' (L\) = 'I' (0) + L PJ/j.j + 0 (II L\ 11), (7) 
j=l 

where p; are numbers obtained in ( 4) when x=x. And L\ in (7) 
are said to be sufficiently small if z1r (~) E Gak fl G~k for all 
k=n+i, •.. , n+s. We shall prove equation (7) by induc­
tion. 

We choose a fairly small vector I\ ERn+s. We denote by .!). q 

the vector with the following components: ~ / =0, 1~ j~q-1 ; 
fl l =/j.;, q~j~n+s . We show that for any q, i~q ~ n+s: 

n+~ 
'P' (L\q) = -qr (0) + Li P;~j + 0 (II L\ II)- (8) 

i=q 

For q=n +s we have '¥ (~ n+s) = '¥ (O) + .~ n+s= 'I' (0) + 
Pn+sl\ 11+•· We assume that for q= m+i equation (8) is satisfied. 
We shall prove that it is also fulfilled for q= m. 

We introduce a vector xm + 1 "th -xm+1 - 6r1+1 ti -~ u wi components ,..1; -
or J -<Om, i1r +1 =,L\; + fa, (zj (L\m)) - fa -(z . (i m+1)) for jECl)rn 

(here · 1 
1 

1 

m+~ m IS the set from ( 4)) . It is not hard to see that 
Y1t(i1 ~ = y1i(L\m) for all k =l=m dm+t =O Hence we can assume that (8) is 1 · ' m · a so satisfied for vector x m+ 1 •th = + 1 Thus we have: u w1 q m . 
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'¥ (i1
111

) - '¥ (0) = 'P' (L1m+1) _ 'P' (0) = 

n+s 

.Li pjl'.lj + .Li Pi Ua.i (zj (L1m))-f a.i (zi (t1m+1))) + o (II~ II). 
J=m+l JEWm 

We note that in view of condition (I) of theorem 1 for all jEwm: 

i 

(for the definition of g i mi see ( 4)) . Consequently: 

n+ s 

'¥ (L1m) - 'Y (0) = Li Pi~i + 
I i=m+l 

n+s 

.Li Pig~mj~m + 0 (II L1 II)= Li P/!ij + 0 (II fl II), 
JEWm i=m 

. This last equation proves that (8) is true, and therefore (7) 

•~ true. It remains to note that (5) is a special case of equa­

tion (7) with ~= .Lli=O for n+1~j~n+s . The theorem is thus 

proved. 

Remark. We have shown that for k=1, ... , n, P11. are the 
. ' 

partial derivatives of function (J) with respect to x,. . In a similar 

way Pk for k>n can be interpreted as the derivative of (J) with 

respect to Yk , which makes it possible using (7) to evaluate the 

effect of an absolute error in fulfilling the k -th operation on the 

absolute error in computing the function. 

We note that in view of theorem 1 definition ( 4) can be viewed 

as a way of computing the gradient of function {l)!!Jl, We shall 

evaluate the difficulty of this method • 
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We consider two auxiliary functions in two variables: 

j ( X ) =x +x 2 and /1 (xi, x 2)=x1X2,mo=m1=2,Go=G 1=R2 '''e 
o X1, 2 t 

• VVI 

use the notation .if=AU{O}U{i}. _ 

We introduce a function T (,a): A~ R+== {xER• I x>O}, Which 

we shall call the difficulty of operation la-By T (a) we shall 

understand, for example, the time needed t_o carry out operation 

la. on a computer. Below we need the following property of set Q: 

{ 
ma (T (0) + T (1)) I -1 

µ = µ (Q) = sup T ( a) aE A . 

We shall everywhere assume that µ < ·00 • 

In a similar way we can introduce in set A a function 

T1(a): A-+-R+, which we shall call the difficulty of simulta­

neously computing the value and the formal gradient of operation 

la.. We assume that: 

Using the functions T (a) and T 1 (,a) we can define the notion of 

the difficulty of computing the value of function <p~ E<I>n and the 

diffic~It~ of computing its formal gradient. In view of _(3) 

the difficulty Tlp(IDl) of computing the value of functton 

<p!m, IDl={~, J} is naturally defined as: T <P (~) =~,Li T (a). 

I . ·1 a.E2[ t 

. n a sim~ ar w~y in view of (4) the difficulty T/ (~)of compu · 

mg the n-d1mens1onal vector of the formal gradient<p9J?' is defined 
thus: 

T, \1 n+s-1 

cp (~) = L...J T 1 (a)+ Li Li (T (0) + T (1)). 

aEW Q=l tEro 
q 

We note that: 
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LJ 7\ (a) < C LJ T (a) = CT<J> (ID?), 
al~ al~ 

11+ ~- 1 

LJ LJ (T (0) + 1' (1)) ~ LJ ma (T (0) + 
q= I t ·h>Q a.EVI 

1' (1)) < r µT (a)= µ1'cr (~). 
a.Elll 

We have thus proved the following theorem . 

Theorem 2. If fimction {P9J,E<Dn is formally differentiable at 

poillf xGR11
, then the difficulty of computing the n-dimensional 

vector of the gradient is related to the difficulty of computing this 

fimction by inequality: 

Tr/ (ID?)~ ( C+µ) 1\(ID?). (9) 

We note that constants C and ~t in estimation (9) do not depend 

on the dimension of space n. They are properties of sets Q and 

Q'. 

Let set Q consist of operations +,-,X,:. Then the algorithm 

for computing gradient of ( 4) can be written in a more economical 

form, which eliminates expressions with zeros, multiplications 

by one, and repeated computations of previously computed mag­

nitudes. The number of operations in this algorithm exceeds the 

number of operations in the algorithm for computing the function 

by at most five times. 
We now describe a method for computing the second deriva­

tives of function ,n E<D • We introduce set Q" of second deriva-
. 't'Wl n • • / EQ 

hves of the basic operations as follows: with each operation a 

We associate a matrix function: 

( J:f (,~1, . .. ' Xmal• ... ' :~~a '.x" ... ' Xma) 1 

f ." (x,, .. • , Xm ) = I : : : : : : : . . . } 
a v~a; (~1, .•. ' Xma;' . :_ . ·. La:•a ( X" ... ' Xma) j ' 
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f 
111-j 11, . G "_. R k l=1, .. . , ma., Ga." are open s where a. = a. • a. ' , . ets f 1

:JTn EA We fix an arbitrary point xERn and a directi· rom 1. a., a · 
on ERn We consider sequences of numbers {Yk}~i i\ l~h}r::~ Ll • 

n+ s n+s - l , 
{ }

71-f-:: {ti .}1'.~s of vectors {g,..}k=n+1 {g1Jk=n +1, and of matrice Ph· h"= l, I, k- 1, 
S 

{G 
.} 1'.±s defined by the recursive equations: Ii 1,- n+l . 

I 

Yli = f a.k (zk), gk = f a.k (zk), 

Gk=f~k(z,..), le= n + '1, ... , n + s, 

Pn+s=1, (10 ') 

q=n +s - 1, ... , 1; 

i=1, .. . , n, 

(10'') 

Pn+s=O, 

Pq = LJ [ptg!qt +. Ptg!qt], q = n + s - 1, . .. , 1, 
tEroq 

where zk =(y .Ii, ••• , y .k ), z1; = (!i .k, ... , y .k ) and the rest of the Ji 3lk Ji 3l 
notation is as in (4). We shall say that functi~n icpmE©n is formal­ly twice differentiable at point xERn if in ( 10 ') for anY 
k + 1 k h 

• • · · satisfied: , n ~ ~ n + s t e following 1nclus1on 1s G . ,, 11 vector Z1.t (1.k n Ga,k n Ga,k. Moreover we shall ca d <J>fill" (x, u.) = (p1, · • • , Pn) the product of the matrix of secon forma1 derivatives on vector u. 
We can now prove the following theorem. . • ns . Theorem 3. Assume that for any ,a,E~ the following condi~ioble are satisfied: (1) function fa. is twice continuously dijferentia 
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in set Gu.'': (2) set GunGu.'nGu" is open; (3) for any 
xGG,~nc/nGr/' , vector Ju.' (x ) is the gradient of.function la (.) 
while ,natrix /,/' (x ) is the matrix of second partial derivatives of 
fi111ctioll !u. ~ ·) a~ r:oint ~- Then if/unction (1)911 ( ·) from (J)n is 
formally twice d~fferent,abl e at point x, then it is twice differen­
tiable at point x and vector (1;1, ... , Pn) is equal to the product 
of the matrix of second derivatives on vector u. 

The proof of theorem 3 is similar to that of theorem I. 
Corollary 1. If for any a.E~ function !u is defined and is twice 

continuously differentiable in the whole space Rma and for any 
xG!lma, fu.'(x), and /a.''(x) are respectively the gradient and 
matrix of second derivatives of function <pa ( •) at point x, then 
function cp~ ( · ) is twice continuously differentiable in the whole 
space Ii" and 'Pwl" (x, u) is the product of the matrix of the 
second partial derivatives of function cp~ ( •) at point xER" in 
direction uER". 

We evaluate the difficulty of computing vector <p" (x, u) using 
formulae (10 ') and (IO "). For this purpose we introduce a func­
tion 1\ (a): A-R+ which we call the difficulty of simultaneously 
computing the value, the formal gradient, and the matrix of sec­
ond formal derivatives of operation la, 

We use notation: C'=sup{T 2 (a.)/T(a) laEA}. Moreover, let 
Ta' be the difficulty of simultaneously computing the value of the 
quadratic function and its gradient in space Rma. and let 
~'= sup{1',/ /T(a)I aEA}. Then Ti/' (IDl)-the difficulty of comput­
ing vector <p91l" (x, u)-can be evaluated as: 

n+,'1-1 

T 'P
11 

(~) = LJ T 2 (a) + LJ Ta' -t· 3 LJ E (1' (0) + T (1)) ~ 
(J.E1J.I r1.EIJ( ,,= 1 t E(J> 12 

n -j-8-1 

(C' + p,') LJ T (a) + 3 LJ maq (T (0) -!- T (1)) < 
aE~( q...,1 

(C' + 1.1' + 3µ) '1',r (9n). 

We note that in computing the product of the matrix of second 
formal derivatives of function rp!JR (x) and the different vectors 
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there is no need to repeat the calculations using formulae (1 o '). It 
is therefore possible to organize the computation of the matrix of 

second formal derivatives as follows: carry out the calculations 

using formulae ( 10 ') once, and then use formulae (10 '') n times 

choosing u=e,., where e11 is the k-th coordinate vector in spac; 

R". The difficulty T" (9R) of computing the matrix of second 

formal derivatives of function (J)Wl (x) by this algorithm is estimat­
ed as: 

Tep"(~)= LT2(a) + E Ta'+ 
aem aEm 

n+s-1 

E Li (T (0) + T (1)) + n [E ma(ma + 1)(T (0) + 
q=l tEroq aEm 

n+ s-1 

T (1)) + 2 E Li (T (0) + T (1))] < (C' + µ' + µ) T (I) (ID?)+ 
q=l tEroq 

n ( T (0) + T ( 1)) E ma ( ma + 3). 
etEW 

An analysis of formulae (IO') and (IO '') enables us to draw the 

fo11owing important conclusion: all information concerning the 

matrix of second formal derivatives of function cproi (:r) is stored 

in ''stripped-down'' form in sets {y11} , {gh}, { Gh), and {ph} • The 

difficulty of getting this information is a magnitude of o_rder 

O(Tq,(!JR) ). The dimension of space n only comes into the e5iuna­

tion of the number of additions and multiplications necessary 10 

"colJect" this information into an nXn matrix. 
n, b. . f on1put-
vvc now com me these estimations of the difficulty O c 

ing the second derivatives in the fol lowing theorem. 
Th . . f"rrere11-

. eorern 4. /f /un ct,on '<Pm, from (D
11 

is.formal~)' twl(:e t:.IJ.J' 

t table at point :r:0 R" then. 
· .r om· 

(1) the following estimation appli esfi or the diffi culty 01 c _ _ 
. I I derivo 

put mg I 1e produ ct of the matrix of second -order Jonna · 
lives of {J)9J? at point x and direction .uER": 
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T,/' {WI)~ ( C' +µ' +3µ) T
19 

(Wl); 
(11) 

(2) the follow_ing estimation applies for the difficulty of com­
puting the matnx of second formal derivatives of function cp\m at 
point x: 

T ~" (illl) < (C' + µ' + µ) T cp (m) + n (T (0) + 
(12) 

1' (1)) Li ma (ma.+ 3). 
a.Ell! 

We note that the dimensions m:z. of operations fa. of set Q do not 
depend in any way on the dimension of the functions from set <Dn. 
In fact ifwe take as the set of basic operations Q all the arithmetic 
operations and operations corresponding to the elementary func­
tions, then <I> n is the set of functions of n variables written in the 
form of a finite sequence of superpositions of operations from Q. 

Here the maximum value of ma. for the operations from this set is 
equal to two. In this case we can rewrite estimation (12) as: 

T19" (9Jl) ~ ( C'+µ' +µ) T(p(Wl) + 

10ns (T (0) +T (1)) =0 (nT(p (WI)). 

We now discuss the method with which we obtained our algo­
rithm for computing second formal derivatives of function (j)\m• 

We consider the vector function x (~) = x + ~u: R-+ Rn, 
x, uERn. Assume that we have to compute the derivative 
of vector function f' ( x ( ~) ) with respect to ~, where f : R 11

-+ R is 
a twice differentiable function. It is not hard to see that 
(f(x(~ )))ii' = f"(x(~))u. It is intuitively clear that, if there is a 
sequence of operations with which vector f' ( x) is computed, then 
b~ formally differentiating this sequence of operations _(program) 
With respect to ~ we derive a program for computmg vector 
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f" ( x ( ~)) u. We note only that if in the progr~m for computing 
t' (:r ) there were only one input (vector x), then m the program for 
computing f" (x) u there will be two ~vectors~ and x=u). This 
method was also used to derive algonthm (1~) and (10") from 
algorithm ( 4). It would be possible to proceed ~n exact~y the same 
way in constructing algorithms for computing derivatives of 
higher orders. This possibility is not discussed in detail in the 
present article. 

We now discuss the reason which made us use the term ''for-
mal differentiation'' in all the definitions and theorems of this 
section. The point is that all the algorithms considered above are 
algorithms for differentiating programs of some special type. In 
fact set IDl=IDl ( s) = {~, J}, which specifies a rule for computing the 
value of function cpm1, is a program in which there ares instruc­
tions, such that in the k-th command a h, ahE~ is the operation 
code, l1t, hEJ is the list of addresses of operands, and Y1t is the 
working cell into which the result of the operations is transferred. 

The rules for formal differentiation can be applied to any 
correct program ( or set) IDl where the values of all the operands 
of any operation lak are computed before fulfilling this operation. 
Here if alJ /ak, o:hE~ are differentiable and f ak are their gradients, 
then we derive a program for computing the gradient of function 
(()\JR. But the case may arise where some command a. from~ is not 
differentiable. It turns out in this case that it is possible to define 
the f?rmal gradient of operation fa: in such a way that the formal 
gradi~nt of function (()Wl will have a sensible meaning: for exam­
pl~,. if_ fa:(-:) = Ix I, xER, set fa:' (x) = sign .x . The issues 
a.ns_mg m this connection are not discussed in detail here. We 
hmit ourselves to stating the possibility of using the algorit11ms 
prop~sed to compute certain different analogs of derivatives for 
nondtfferentiable functions. 

To conclude this section we note that a method has actu~lly 
bheen proposed which enables us to use a program for computing t e value of funct · m1 • • g the . . ion ;u~ to establish a program for computtn 
denvatives of this function. The proposed method can easily bde automated Whe th d . . 1ate · n e envatives are computed by auton 

... 
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methods (or in any other way) some compl· t· . . ica ions may anse from the fact that at particular points the d · • . . . envative actually e.usts. even though in carrying out the computations" 11 .. ·ct •fy . 1orma y 1t is necessary to i entl indeter~in~cy of the type O/O, 0 . 00 , 

and so on. An example of this is provided by th fu • . ) , l+ i • e nction T(x, ~ =l x _Y at point (0, 0). However, these problems are 
elinunated usmg purely programming methods. 

3. Using automated differentiation 
algorithms to solve ~1remal 
problems 

Section 2 established some estimations of the difficulty of com­
puting derivatives for a broad class of non-linear functions. It is 
obvious that the estimations derived cannot be substantially im­
proved in terms of their difficulty. At the same time Section 2 
proposed algorithms which realize these estimations. Of course, 
it is possible in the case of a particular non-linear function to 
write a program for computing its derivatives which exhibits the 
same difficulty as the algorithms we have described. But in the 
case of a fairly cumbersome and complicated function writing 
such a program is a complex problem even for an experienced 
programmer. For this reason the algorithms of Section 2 yield the 
greatest return if they are implemented in automated form (let us 
say, after a program for computing the function has been com­
piled by the operator). We note that in the Central Mathematical 
Economics Institute (TsEMI) a system-DIANA-has been de­
veloped for dialog analysis of non-linear functions: which im~le­
~ents the algorithms we have outlined for computmg the denva­
hves. The system has been implemented on a NORD- lOO 
computer. 

Apart from the automation effect, which substantially light~ns 
~e task of data preparation and reduces the actual com~utat t~n 
ltme for particular problems on the computer, the algon thms_ m 
Section 2 enable us to change our quantitative views concerning 
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the difficulty of different methods for solving extremal problems. 
We consider some of them• 

1. Cubic inte,polation in 
one-dimensional, search methods 

In solving auxiliary problems of one-dimensional minimization 
in non-linear programming, [ we find that] one of the most effi­
cient techniques is the cubic interpolation procedure (see [2]). but 
for it to work it is necessary at each stage to compute the value of 
the objective function and its gradients. Here the gradient is used 
only to compute the directional derivative. In connection with 
this ''irrational'' use of the gradient, a number of authors, relying 
on relation (1), have argued against this procedure. Using the 
algorithm for automated computation of the gradient ( 4) removes 
such objections, as is clear from (9). 

2. The metlwd of conjugate gradients 

The various frameworks of conjugate gradient methods intended 
to solve unconstrained problems of minimizing a non-linear func­
tion f(x), xERn, include the following (see [3]): 

X1i+1=x1i-~1tS1t, k=O, 1, ... , 

So=!' (xo)' S1t=!' (x11)-shS1t-1, lc=1, 2, ... , 

; _ (f"(x1r)sk-i,f'(x1r) 
k - <f" (x,r)si.-11 Sk-1) 

~1t=arg min{/ (x1t-~sll) I ~~O}, k=O, 1, .... 

(13) 

H~wever, framework (13) has been little studied and used in 
pra~tice because of the need to implement the formula for corn­
~utmg lhei ~11 (again the impact of plausible estimations ( I)!). But 
If we use automated differentiation algorithm ( l O ')-( l O '') to 
compute these values, then in view of estimation ( 11) the difficul­
ty of computing SA will be of the order of difficulty of computing 
the value of the objective function. Hence in this case framework 
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(13) in terms .of its " ~>riori in<licnlors turns out to he full 
compctit ivc with other l ramcworks for the conjugnte grnd icnt: 
method. 

3. The Newton method 

Let function /( x), ,xG/l 11 be twice continuously d ifferentiublc and 
concave in the whole of ll 11

• If we adopt the Newton method to 
solve the problem of minin1izing / (x ) on ll 11

, then at each stage we 
have to solve the systen1 of linear equations: 

/" (x) s= - /' (x). ( 14) 

We estimate the overall difficulty of computing matrix 
G=f" (x) and vector g=f' (x) and of solving system ( 14) in the 
case where it is possible to use differentiation algorithm (IO')­
(10' '). 

Solving (14) comes down to minimizing quadratic function: 

1 Q (s) = 2 (Gs, s) + (g, s). ( 15) 

We use the conjugate gradient method to solve problem ( 15) • In 
order to obtain a precise solution s•=-G-•g, this method re­
quires n iterations. At each of them it will be necessary to com­
pute the gradient of function Q (s) ( Q' (s) = Gs+g= f" (x) s+f' (x)) 
and the scalar product <Gu, u>= <f" (x) u, ii> (in ord~r to ~nd u 
one-dimensional minimum) and to recompute two 11-d1mcns1onnl 
Vectors. 

Thus in view of estimations (11), (12) the overall difficulty of 
computing the Newtonian direction does not exceed: 

(C' + J.L' + µ) 7'<P (ro?) -1- in (1' (0) + 

1' ( 1)) LJ ma. (ma.+ 3) -1-0 (n 2
) = 0 (nT qi ('JJ?)); 

«El2l 
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. the difficu1 ty of computing a Newtonian step using meth 

1.e.' b f d 1 oct 

(lo ') d (IO") turns out to e o an or er equa to that of 
an . . f . once 

computing a difference approx1mat1on o the gradient. 

4. Optima/, control problems 

The proposed algorithm can be used to solve an optimal contra] 

problem. It is interesting to· note that, for some problems of a 

special type, it is identical with known methods of computing the 

gradient (for example, computing the gradient of a function using 

a conjugate system [4]) . At the same time for other problems this 

method turns out to be better than the traditional one. 

Let us consider the following example. Assume that in prob­

lem: 

function f(a) is computed using recursive equations: 

f (a) =(JJ (xN), 

Xk+1=<p1i.(x,0 a), k=O, ... , N-1, 

where xkERm and xo is fixed. Then the difficulty of the natural 

method of computing gradient: 

f (a) = V NQ)a:' ( x N) , 

Vk+1=Vk(q>h)x'(x,~, a)+(<p11)a'(x1i, a), k=O, . . . , N-1, 

(where v11 (cp ) , d , . 
' " «' an (<ph)o are matrices of dimensions nXm, 

;;m., ~d nXm respectively) depends on the difficulty of com­

u mg t e product of these matrices 
At the same time th · f rn-

utin , . e present article implies a method o co 

pf g f (~), the difficulty of which depends only on the difficultY 

o computmg function {1>1t. 
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