FRECHET CLASSES AND COMPATIRILITY
OF DISTRIBUTION FUNCTIONS (*)

G. DALL’AgLio

In a paper published in 1951 [13] M. Fréchet gave for the first
time o systematic study of the family of two-dimensional d.f.’s (di-
stribution functions) with given marginals. IFor this reason we have
called Frechet classes this family and, more generally, the analogous
ones arising in more than two dimensions.

Scope of this paper is to give an account (with some improvements)
of results obtained in this field and in some related topics, particularly
on the problem of compatibility. This problem arises naturally when
one undertakes the study of Fréchet classes in more than two dimensions,
if the eiven marginal d.f.s are «overlapping »: take for instance the
class of d.fs in R®* having as marginal d.f.’s F(@,, @), Fi(@,2),
F.(r,,r,). In this case the first question to be answered is whether
the class is not void, i.e. whether there exists at least a d.f. F (2, ,, 2,)
whose marginal d.f.’s are Fp,, Fyy, Fy; we will say then that F,,, F,,,
F., are compatible.

Some applications will also be presented, with special regard to
Gini's «indice di dissomiglianza » and measures of distances between
two d.f.’s.

* ok ok

Some brief remarks about notations will be useful to avoid confusion.
We will consider functions on R, F(w) = I'(@,, ey ).

We will denote by Fy(x,) functions on R4l where A is a set of
indices (1 subset of 1, 2, ..., n) and [A| the number of olements in A.

A d.f. F(z) will be a left continuous, non decreasing function on
R, which tends to 1 when all variables tend to + oo, and to 0 when

at least one variable tends to — co.

(*) Conferenza tenuta il 17 marzo 1971,
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The variation on an interval [a, b), which by the «non decreasing »
condition must be non negative, will be denoted by

AR () = A2 ... Ay B (2yy ..oy Ty)
) 4

where a = (a,, ..., a,), b= (by, ..., b,) (ai<"bi).
When there is no danger of confusion, F,(z,) will denote a marginal
df. of F(z):

F(x,) = F(e,,+ o0)

that is the d.f. obtained letting the variables zi(i¢ A) tend to + oo.

1. Two-dimensional Fréchet classes.

Given two one-dimensional d.f.’s F,(x,), F,(r,), we call Fréchet
class I'(F,, F,) the family of two-dimensional d.f.’s which have F,, F,
as marginal d.f.’s:

I'(Fy, F,) = {F(x,,,): F is a d.f., F(x,, + oo) = F\(x,), F(+ o0, x,) =
= Fz(*"’z)} -

This family of d.f.’s is introduced in [13], where its principal pro-
perties are studied. I'(F,, F,) is obviously not void, since it contains
the «independence » d.f.

F*(z,, ®,) = F\(x,) F,(,) .
The following results hold:
THEOREM 1:
i) Fel'(Fy, F,) iff F is a d.f. and

(]) Fl(ml’ wz)<F(wlrmz) E:1;’”(3’1’ mz)
where
F'(zy, ©,) = maz {Fy(x,) + Fo(z,) —1, 0}

'z, ®,) = min F\(x,), Fa(wz)}
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ared . ’s. and therefore the minimum and maxrimum elements of I'(F,, F,):

i) [F, F,) is convexr and closed (under wsual convergence

of d.f. 'f)

. i) F*= F <> F*= F'<<['(F,. F.) contanins only one element
«~F, and or F, are degenerate d.f.’s.

The proof of these results is very simple and for some of them will
be ziven later for » dimensions. What is interesting is to point out
the properties of extreme d.f.s F and F’'. Let us first remark that
their properties are exchangeable, since, if F' is the joint d.f. of the
r.v.'s random variables) X, X.. F~ can be regarded as the d.f. of
(X,.— X.. Now if X,. X, have the joint d.f. F’, each r.v. is functio-
nally dependent on the other. in the sense that (except possibly for
discontinuity points of F,), the conditioned r.v.'s X,(x,) are degenerate
and Y.(r,) is not decreasing with r,. In other words, the distribution
is concentrated on a non decreasing curve of the plane (x,..). Thus
X, and X. have the maximum positive dependence (or correlation);
and. if F,—= F,. F~ corresponds to (a.s.) equal r.v.'s.

F'. on the contrary, gives the maximum negative dependence, and
the distribution is concentrated on a non increasing curve.

These remarks were earlier pointed out, for discrete distributions,
by C. Gini [19] and by T. Salvemini [33). The latter introduced the
¢« tabelle di cograduazione e contrograduazione » which correspond to
F’and F . and gave a method to construct them, which is now known,
in linear programming, as the N.W. corner rule.

s it will be seen later. remarks about maximum positive or nega-

tive correlation can be applied also to the value of correlation coefficient,

when X, and X. possess finite second moments.
*x ¥ ¥

Among other studies about Fréchet classes in two dimensions, we
' 29], from a geometric point of view,

recall here those by A. Nataf [2 . ric poin .
and by G. Letac [27]. who, for atomic marginal distributions, gives

a characterization of extremal functions of I

General definition of Fréchet classes. The case of one-dimensional

marginal distribution functions.

(8]

Let N denote the set of the first n natural numbers, and £ a family
of subsets of N. Given the set of df.'s {F‘(a{,), A e A}, we define
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[riehet class 1'(F,, A e 4&) as the class of n-dimensional d.f.’8 having
the given F, as marginal d.f.’s:

(1, Aec &) AF(xy, ..y w,): Figa d.f., Flz,,+oo)=F,(z,) for A E:t},

We will assume that 4 does not contain N (since then F, would
obviously be the only d.f. in /') and that:

U 4=n,

ack
since otherwise the study could be conducted, with same results, on
an K% with a smaller number of dimensions than N.

& ¥k K

The most immediate generalization of the two-dimensional case
all one-dimensional. The Fréchet class ['(Fy, ..., F,) is again ob-
viously not void, since it contains the independence d.f. F*= IIF:.

i

Properties of I'(F,, ..., F,) have been studied in [11] for » =3 and
in [32] for n=4, but it is not difficult to extend the results obtained.
It can be seen that ['(F,, ..., F',) has all the properties as for n = 2,
with only one major exception:

THEOREM 2:

i) F(z,, ..., x,) belongs to I'(Fy, ..., F,) iff it is a d.f. and

(4) F'(@yy ooy Bp) < F(@yy ooy Ba) < F'(2y, ..., @)
where
(5) F'(@y, vy #,) = min {Fy(2,), ..., Fo(w,)}

belongs to I’y while
(6) F'(zy, ..., ,) = maz {Fy(@) + ... + F,(z,) —n+ 1, 0}
for n >2 is not, in general, a d.f.

it) I'(#y, ..., F,) i8 convex and closed

iii) F*=F'<>F*=F"<>I(F,,..., F,) containg only one element<=-at
least n—1 among the n d.f. Fy are degenerate.

Some of the statements in the theorem are almost obvious. The
left inequality in (4) will be proved as a separate lemma which will
be useful in the sequel. The fact that F’ is not always a d.f. will be
investigated later. We prove now:
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a) F'" is a d.f. Since other conditions are immediately verified,
we have to prove that " is not decreasing, i.e. that it has non-negative
variation on every interval [z, #") with 2’ < 2”. We assume, for sim-
plicity of notations, that Fl(:c;)'--’ Fe(a:;)r' :fF"(:v,',). Then

- 4%, Tn oo (o
SR = AR AT éﬂlz;' min {F(x,), ..., F(2,)} =

z
z %1z,
r
T3

= Az; J:" min {Fl(a:'l'), F(z,), ..., F,,(w,,)} —

ZnTn

_ ]: 41:: min {Fy(@,), Fy(@y)y ...y Foul®,)}.

By assumption,

Fl(a:;)g F.-(:r.;)f 'Fi(.r':) for 1>1

so that all the terms in the last variation written above are equal to
Fl(.r;), and the variation is zero. Now:

AEF' = J:’ ..... I:" min {Fl(w':.), F,(x,), ..., F,,(a:,,)} =

z, T2 Zpn

AT J:: min {F,(x;), Fy(@y), Fy(@s), ooy Ful@wn)} —

3 Za

— z_fljé o A% min {Fy(@y), Fo(@;), Fol@s)y .. Fala)}

z5%n

and the last variation is again zero, since all the terms are equal to
min {Fy(x)), Fa(,)}.
Continuing, we obtain

NEE = L3 min (B o Fastls) P}

which is clearly non-negative

b) F*= F'=>at least n—1 among the n d.f. F; are degenerate.
Suppose that there are two marginal d.f.’s, say F, and f',, which are
not degenerate. Then there exist two values z,,,, such that
0<Fz)<1,0< F,(x;) < 1. If F*=F', letting #;— 4 oo for 1> 2,
we obtain

maz {Fy(@,) + Fa(z,) —1, 0} = Fy(@))Fy(a;).

Since the right member cannot vanish, we have

Fl(w;) + F:(w;) —1= Ft(a’;)Ft(m;)
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and therefore:
[1— Fy(@)][1 — Fy(xy)] =0
which proves the inconsistency of the assumptions.

The same arcument applies if we start from F*— F".
The proof of the theorem will terminate with the following:

LeEMMA 1: If Fel(F,. .., F,), then for ever x = (T, ..., &)

(7) Fla,, ....x,) > XiFiax) —n+ 1.
Equality in (7) holds iff, for every pair i,)
(S) f".‘l(.l','. .17,) = F.‘(.i".‘) L F,(.I‘,) —1.

Considering » r.v.'s X,,... X, whose joint d.f. is F' we have:

F((l‘l, B e e P{ﬂ.‘(,Y.'< .L‘i)} = 1— P{U.‘(X.‘ :D.)} o
>1— S.‘P{AY.'T—*Z'.'} =1—n-+ E;F.‘(.’E,‘)

which proves (7). Condition (8) follows from the fact that, in the
inequality above, equality holds iff, for every pair 7, j, P{X,-\:-m.-,
X,~xz}=0.

® % %

When sets 4 in A& are pairwise disjoint, the existence of the in-

dependence d.f. F*(z) = I__LFJ(ETA) assures again that ['(F,, A€ #) is
A€s

not void, also if sets 4 contain more than one element. But in this
case I” will not have, in general, a maximum d.f.. This can be seen, for
instance, in R3, if F, and F, are given. Then a d.f. F(x,, z;, @)
belongs to I'(F,, F,;) ift:

max {Fl(ml) + Fuylx,, x,) —1, O} <L F(@y, oy, ;) <min {Fl(ml)! Foy(a,, 'TS)}

but the functions on the two sides may not be d.f. (see [31], 2.6.1).

3. Compatibility of distribution functions.

As soon as sets A of A are not pairwise disjoint, the question arises
whether the class ['(F',, A € A) is not void.

We will say that d.f’s. ¥,, A € #& are compatible if I'(F,, A € &) is
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not void, 1.e. if there exists a d.f. F(z,, ..., z,) such that ¥ (z,,+oo)=
— I, (x,) for every Ae 4.

A necessary condition for compatibility can be immediately esta-
blished:

(9) Ay, A,eA; AcA N A, =F, (v,,+ co) = F, (2,4 o0).
This condition is not always sufficient, as can be easily seen.

* % %k

First studies about compatibility where developed in R2, when
df’s Filey, 2), Fry(@,, @), Fy(2,, x;) are given. Assuming finitess of
second moments, J. Bass [1] gave a necessary and sufficient condition
on the moments FX,X,, FX X,, FX,X,. The class of d.f.’s F,, com-
patible with given F,,, F,, is studied in [ 7], through the class /(F,,, F,,).
It is first shown (under assumption of validity of (9) for F,,, F,,, i.e.
F(x,,+ c0) = Fyy(@,,+4 o)) that all the d.f’s of I'(F,,, F,;) are
given by

L

(10) F(r,, x,, x;) = an(-’”ar 'T3I‘rl) dF(r,)

— 0

where F(«,, @,]x,) belong to the Fréchet class I'(Fym,|e,), Fo(w|w,))
determined by the conditional d.f.s. F,(a,|z,), Fy(as|x,) of Fiyy Fiyy.
Then all the d.f.s F,, compatible with given Fy,, F;; are obtained

letting #, —> + oo in (10). They are thus given by
+c

Py, #3) = | Faa(s, %o|,) dFy(21)

—@

and this result permits to obtain some properties of the class of d.f.’s
F,, compatible with F,, and F,;. This class has a maximum function

given by
+@

f m'in{Fg(mz[ml), If‘s(mslml)}dﬁ’l(w,)
and a minimum one, given by

4@

f maa:{ﬂ (.

—®

-"1) + F:;(-Ts |Tl) —1, O}dFl(ml) .

10
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to give counter-examples.

The class is not convex; it is easy (see [T ) :
hese results are given by

Some extension to four dimensions of t

V. Pagani in [30].

condition (9) is sufficient in some

As the example seen above shows,
an be extended to more

cases to assure compatibility. This example ¢
general situations.

A comprehensive result has been given in [24] by . Kellerer.

He proves that, in order that condition (9) be sufficient for compati-
bility, it is necessary and sufficient that the family #€ possess the fol-
lowing structure: it is possible to order the sets A of A& in a way
A, ..., 4, such that:

-1kn(U A;)EU fj‘(/],) for 1 k-1
i<k

i<k

where 9(4;) denotes the family of subsets of A;.
% X ¥

In the same paper H. Kellerer solves the general problem of com-
patibility, proving the following result: a necessary and sufficient
condition for compatibility of d.f’s {F,, 4 € A} is that

Aeh
zl4l

(11) %94 (4) >0 = Z J‘gA(J*'A) dF  (x4) =0
A€
for every set {g‘(a:A), Ae .JE} of continuous bounded functions.
The necessity of (11) is immediate, since the existence of an n-di-

mensional d.f. F with the given marginals F, implies

2 3 J‘yA(mA) dF,(z,) = f (Agﬁg“ (w,l)) dF(x).

A€
R4l

The sufficiency is proved on the basis of a previous result obtained
?)y the same author for general measures [23]. This result is first proved
in the finite case (i.e. for given marginal distributions concentrated
on a finite set of points): the set of given data of the problem is re-
presented as a point of a space R™; it is shown that the set of points
of B~ for which the problem is solvable forms a convex cone, and
then a necessary and sufficient condition is given in order that a point
belong to this cone. Then the general condition is obtained by limit
on suitable sequence of «finite case » given marginal measures.
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Kellerer investigates also whether it is possible to restrict condi-
tion (11) to functions g assuming only values —1,0,1, and obtains
that for a particular case, which will be seen later. In general he pro-
ves that if given marginal measures are concentrated on a finite number
of points, (11) is sufficient for compatibility if functions g, are integer-
valued, with |g,[-~», where y is determined from the given marginal
measures. The same problem is investigated by G. Bernardini [2]
for compatibility of F,,, IF',;, F,, in R3, obtaining only partial results:
he proves that, if one-dimensional distributions F,, F,, F, are concen-
trated on at most three points, it is sufficient for compatibility that

Gas(5y 5) < gya(y, Ia) oy, £y) iffgzadpza’ J:[ A, + fgladFm

for gi., 15, g2; assuming only values 0 and 1, i.e. for set indicators.
k k Ok

Kellerer extends also his results to infinite index sets I, giving a
slight generalization of Kolmogorov theorem, in the sense that joint
distributions are not required for every finite set of indices, but for a
slightly smaller class of sets.

Such results are extended by V. Strassen [36] to more general
spaces. He finds also a condition for existence of martingales with
given marginals: given a sequence {,u,,} of probability distribution
in R*, a k-dimensional martingale with marginals u, exists iff distribu-
tions u, possess finite expectations and for any concave function f
on R* the sequence ffd,un is non increasing.

4. Compatibility of minimum distribution functions.

It is interesting to examinate when two-dimensional d.f.’s minimum
in their Fréchet classes are compatible, that is under what conditions,

n
given » one-dimensional d.f.’s. F,, ..., F,, the (2) d.f.’s. F,',(m,-, @) =

= maz {F () + F,(z;)—1, 0} are compatible. .

The question arises since if two r.v.’s. X,, X; have maximum
negative correlation to a third r.v. X,, one should expect that X, and
X, are positively correlated. As a matter of fact in [7] it is shown
that, given F,,= maz {F,+ 1:"—1,0} (i=2,3), under mild condi-
tions (e.g. ¥, continuous) the only d.f. Fy(w,, ®,) compatible with
them is F,,= min {F,, F,}. This result is easily achieved using the
representation of section 3 ((10) and following remarks).
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or that compatibility of minimum d.f.’s. brings
The problem is studied in [8] in
there obtained can be extended

It is therefore cle:
severe restrictions on the d.f.s. I
the three-dimensional case; the results
to I" as it is shown in following Theorem 3.

First 2 lemma will be given, which is useful for the proof of Theo-
rem 3, and clarifies the structure of n-dimensional distributions when
the two-dimensional marginal d.f.’s. are minimum.

LEMMA 2: If in R" the (;) d.frs ¥} —=maz {Fi+ F;—1, 0} (i,j=

= 1,2, .., n; LA ]) are compatible, and at least three among the Fi are
not degenerate, then the corresponding n-dimensional distribution is con-
centrated on a set formed by n ortogonal half-lines parallel to the azes,
starting from the same point either all in the positive direction or all in

the negative one.

The essential idea of the proof is that the projection of the support
of the n-dimensional distribution on every coordinate plane must
belong to a non-increasing curve, and the only sets which have this
property are the two sets described by the lemma. In order not to
cumber excessively the calculations, the proof will be given for atomic
distributions.

Let us consider two non-null (i.e. of positive probability) points
(@, o @)y (@), ey @) With 52 2] for i=1, 2. Since the two-dimen-
sional d.f’s are minimum, by remarks after Theorem 1 points (), @)
and (o, ") must be on a non-increasing curve, say <@, &> T,.
Now on the (z,, ;) plane (i 1,2) for the same reason it must be
#.~a, and on the (z,, ;) plane @<z, so that z;=a;, and the
considered points belong to a plane parallel to the coordinate plane
(1, @)

Let us now assume that at least three of d.f.’s. F'; don’t degenerate,
say Fl,J;'?’g,Fa. ’J’?rhen there must be at least two non-null points
(24, ey a:,,)” a,n(,i (w,ﬂ, .., Zy), with the two first coordinates different,
Say ¥, < &,, %> ®,, and, as it has been shown, they must belong
to a plane of equations, say, z;=¥; (i = 3,4, ...,n). The non-null
points outside this plane must have the first two coordinates either
all equal to (zy, #,) or all equal to («7, #,), and at least one such point
exists, since F, do not degenerate.

I‘f the _ﬁrsfz ca-_se :%ppﬁes, putting a:;= Ui, m::yz, we may affirm
thz}t the distribution is concentrated on a set formed by the two po-
sitive half-lines of plane #;= y.(i = 3, 4, ..., n), parallel to the axes,
starting from (yy, ;) with positive direction, and the (n — 2)-dimen-
sional spacerorthogonul to that plane and passing through the point
(Y14 .oy Yn)- By same argument applied to other coordinate planes,
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we may conclude that the distribution is concentrated on the » po-
sitive half-lines parallel to the axes, issued from (y,. .... ¥.). If on the
contrary the first two coordinates are equal to (1 .r._',)_. we obtain the
same result except that all the » orthogonal half-lines have negative
direction.

The lemma is thus proved.

THEOREM 3: For n one-dimensional d.f.’s F;, following statements
are equivalent:
i) mazx {FI-} oot Fyo—n 41, (l} is a d.f.
i) I'(F,, .., F,) has a minimum d.f.
n . N . . .
i) The (n) d.f’s F , = nm.r{f.—-,--- F,—1, (l} are compatible
-

iv) If at least three among F; are not degenerate, then putting:

;;", = inf {.r;: Fi(ri) > 0}, ::: sup {.r.-: Fi(xp) < 1}

either

(12) Fyz +) et Foan+)>n—1
or

(13) Fi(z]) + oot Fulz) <1

Obviously i) implies ii) and iii). We prove now the other implieations

a) ii) implies iii). If I'(Fy, ..., F,). has 2 minimum d.f.
G(xy, ..., x,), then for every pair i,j it is:

G(ry, ..., x,) -~ max {Fi(@)+ Fi(z,) —1, 0} TI F.(=.)

s#i.d

since the function on the right belongs to I'(F,, ..., F,); hence, letting
x,— + co for s+#1,j,

G‘J(a."? z;) = G(wi; 25, + OO) = mar {Fi(‘r‘) _I_ F,(.‘B,)—l, 0}-

But also the inverse inequality holds, since Gi; € I'(F, F,), so that
the d.f.s maz{F;+ F,—1,0} are marginals of @, and they are
compatible.
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b) iii) implies iv). If iii) holds, and there are at least three non
degenerate d.f’s. F,, Lemma 2 applies. We assume that the first
case hold, i.e. the n-dimensional underlying distribution is concen-
trated on » half lines parallel to the axes, starting from (y,, ..., ,)
in the positive direction.

Now it is clearly, for every i, I'i(y:) = 0, Fi(yi + &) =0 for e >0,

so that y; — znff:, Fi(w;) = }: :,'. Moreover, it x; > y; for every 1,

it follows from 111( structure of the support that, for every pair 1, j:
1— Fy(x) — Fi(x;) + Fi(xi, @)= Pr {X,—' -y, X; > fL‘,} =0

so that, by Lemma 1,

Fl("'lfl) _+_ e _+_ I"n("“u) —n + | = I'J(J."l, ceey .'f/'n) 0

and (12) holds.
By same argument, if the half-lines of Lemma 2 have negative

direction, (13) follows. The assertion is thus proved.

¢) iv) implies i). We have to prove that the variation of F =
= max {Fﬁ e+ F,—n 41, U} is non-negative. This is easily seen
if at most two among the F; are not degenerate.

Let us now assume that (12) holds. If Fi(x;) = 0 for at least one 1,
Fy(wy) 4+ oo Fo(@,) - 0 — 1 and maz {Fy(z)) + ..+ Fo(@,) —n+ 1, 0}=
— 0. If on the contrary Fi(z;) > 0 for .nllz by( 12) maz {F,(2,) + ...+
+ Fo(w,) —n+ 1,0 = Fya) + .. 4 Iy (w )+w—1

Consider now the variation AZF, with &'= (2y, ..., 2,); &' =
= (&, ..., x0); @ <z If @ —z, for at ledst one %, all terms vanish
and A%F'= 0. Assume then 2] >z, for every i. If <z, for every i,
AZF'= max {F( (@) - o Fo(ap) —n + 1, 0} = 0. If «;> 2] for exactly

s(1 < s n) indices ¢, say +=1, 2, ..., s, then

M= [ 4, @) + ok Fo() + Fa@hn) +
+ oot Fo(@,) —n+1]
and it is easily seen that
N5 P =F\(&)) — Fy(x}) >0
if s=1, while AZF'= 0 if s> 1.

Finally let us assume that (13) holds.
Then if »;- 2" for at least two variables, say », and x,, it follows

from (13):
Fi(@) + oot Fo(@y) —n + 121+ Fy(ag) 4 ..o+ Fy(®,) —n+1<0
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. . u / . . ’ " -
cover the variation AT vanishes if @, -z, for at least one 1
Mor ) { { ’
/
ginee (take @, - Zy):

A AT A [ {(Fyfr) o B () o 2, 0)
man (Bl oot Fylwn) —n 2,05 =0.

o Ty B ! " .
Therefore A%F can be different from zero only if @<z, for all 7, and
” rop ) e M " ! : .
af - z; for at most one . If @, -z, only for i— j, the only non va-
.« 1 "o . . LR "
nishing terms are when @ —x, for @ /), and then ALK Pi(wy) -
! " " . . .
— Py(x,) 0. If @y -z for all 4 the only non vanishing terms are

" g . ! -
when ;= o, for all 4, or @ =, for only one #, 80 that
" . ] f
AR =1 — (@) — oo — Fo(@,) 0

The assertion is thus proved and the proof of the theorem is com-

pleted.
ko

Lemma 2 makes clear the nature of condition (12): the d.f.’s Fi(ay)
must start their increase by a jump, and the sum of the jumps must
be large enough in order to obtain a distribution of the type described
by the lemma.

Condition (13) is clearly symmetric of (12), in the sense that is
obtained from it changing sign to all the variables. To symmetry
of conditions on the Fy’s corresponds the symmetry of the n-dimensional
distributions.

From Lemma 2, and from the proof of ¢) of Theorem 3, which
confirm it, one deduces as corollary that, if at least three of the d.f.’s
F;are not degenerate, the class I (maz {F£+ F,—1, (}}; iy =1, 2,...,0;
i #j) contains only one function. This shows that, when the given
marginal d.f.’s are not one-dimensional, /' may contain only one func-
tion even if one-dimensional d.f.’s are not degenerate. In the case
considered, of course, the given two-dimensional marginal d.f.’s are
in some way degenerate in the sense that, for cach one of them,
distribution is concentrated on a curve.

5. Fréchet classes with bounds.

In connection with some problems in linear programming, M. Fré-
chet posed the following question | 14]. Given r-}- 8 + rs non negalive
numbers Ny, N; and my (G=1,2,..,7; ]=1,2,...,8), with 2N, =
= Y N,= N, is it possible to find r¢ non negative numbers #;; such
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that

! o . 7
Ty = Ny, Zmiy= Nz iy Miye

If {N;} and {N;} are regarded as marginal frequency or })Jiohuhi]it'_\,'
distributions, the question corresponds to ask whether, given two
one-dimensional d.f.’s Fi(z,), F,(x,), each one <f0‘n(:f_entrutre¢] on 4
finite number of values {z{'}, {z#}, and non negative numf()jr,e]rs mi,
2§ UOTE

: ] ’ — pld) —

sts in J'(F .) a d.f. unde h P{X,= o], A=
there exists in I'(F,, F,) a d.f. under which P{X,= o7, X, =7
Fréchet investigated the conditions for existence, finding the ne-

cessary condition

(14) S Smy—3SNi—3 N+ N0

el jJEJ €l jES

for every I and J, where I(J) is a subset of the set of the first r(s) na-
tural numbers.

Fréchet proved also the sufficiency of condition (14) for particular
cases, studying also, in these cases, the class of solutions ([14], [17],
[18]).

The sufficiency, in general, of condition (14) was proved in [9], where
a method to build a solution was presented. The proof is by induction
on the number of lines of the matrix, and it shown that if Ny, 2\';, My
are integer, also the particular solution constructed is integer-valued.

A simpler proof was given later by F. Stivali [37], which, on a
hint by C. Berge, makes use of results in graph theory.

The proof of sufficiency of (14) is also given by H. Kellerer in [22],
where, in a measure-theoretic framework, more general results are
obtained. The main theorem, established for more general spaces, in
our framework states that, given two one-dimensional d.f.’s F,, F,,
and a (non negative) finite measure p(4) on R?, in order that there
exists a d.f. Fe['(F,, F,) with

fde(wu Z,)<p(4)

for every Borel set A in R?, it is necessary and sufficient that

(15) 0(4; X 4,) —|dF,(z,) — j dFy(w,) + 10

4,

for every pair A,, A, of Borel sets in E.
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This condition 18 the direct extension of (14). The proof of suffi-
cieney 18 given starting from the result for the « finite case » i.e. from
(14}, and extending it, by limit on suitably chosen sequences of mea-
sures, first to the « denumerable » case and then to the zeneral one

%= % =%

It is easy to zee (for the «finite case » it is shown in [9). and the
extension to the general case is immediate) that the problexﬁ ;)f Fréchet
clagses with bounds can be stated as a problem of compatibility of
three two-dimensional d.f.°s, where one of the one-dimensional distri-
butions i8 concentrated in two points. In this framework (15) appears
as condition (11) restricted a particular kind of functions g, which
agsume only values — 1, 0, 1: more precisely, to functions g,.. g3, — gn.
where g, are indicators of intervals in =

. Applications: distance between distributions.

In this section we will discuss the application of Fréchet classes to
distance between distributions. First we recall some other applications.

Connections with linear programming, particularly the transport
problem, have been already hinted. They have been studied by M.
Fréchet [15], A. Herzel [20] and R. Feron [12]. Condition have been
found under which the « N. W. corner rules. corresponding to the
maximum function in the Fréchet class, gives the solution of the linear
programming problem: and ways have been suggested to restrict the
lass of admissible solutions among which the optimal solution must
be searched for.

Frichet classes have been 2lso applied in [10] to the study of relations
between convergence in distribution and in probability. It is easily
proved that the sequence of r.v.’s X .. with d.f.’s F,. tends in probability
to X, with d.f. F, iff

Gz, y)=P{X<r. X.< y} — min {F(z), F(y)} .

e Sm—

It is thus clarified the intuitive idea that X, converges in proba-
bility to X if it converges in distribution and the correlation between
X. and X tends to be maximum. In addition, the new form of the
convergence permits to obtain immediately various known results.

=% %

Application of Fréchet classes to distance between distributions
starts from the study of « dizsimilarity index s firstly introduced by
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(!, Gini in [19] for discrete frequency distributions and investigated,

among others, by T. Salvemini in [32], [33].
The dissimilarity index is defined as the minimum of

Yislei—m|fis

cy distribution, given by fi;, when
fixed. Tt is shown that the minimum
distribution corresponding to ma-
a di cograduazione », which cor-

with respect to the joint frequen
the marginal frequencies fis f:. are
is attained for the joint frequency
cimmm association, 1L.e. for the « tabell
responds to the maximum d.f. in the Fréchet class.

In the same way, starting from the square of the differences, the
« quadratic dissimilarity index » is defined.

This study was continued later by G. Landenna ([25], [26]) who,
utilizing Fréchet classes, gave i systematic treatment of the study
of the index, extending it to general distributions and pointing out
its distance properties.

The extension is based on the following results, obtained in [6].

Given two one-dimensional 1.v.’s X, Y, with df’s F, F,, and
joint d.f. F, we denote by

+ @
(16) A (X, Y) = d.(F) = Ep| X — Y|~ =JJ x—y|*dF(x, y)

the moment of order « with respect to the line »=y. It is assumed

that X* and Y* are integrable.
For « =1, splitting the integral in the sum of the integrals for

x>y and for x <y, putting (for > y)
x—y =|di
v

and changing the order of integration, it is easily obtained that:
+ @
) G V) = 4l = (R + P 27, 9.

For o>1, in a slightly more complicate way, one obtains:

(18) d.x(X, Y) = da(F) = Cx(m —1) fJ[Fa(v) —F('u, ’U)] (u___v):t—-z du dv +

4+ ale—1) f fm(u) — Py v) (v — w2 dudo .

u<v
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The difference between case « =1, in which only values of ¥ on
the line z =y give a contribution, and case o > 1, in which all values
are involved, accounts for difference in extremal. For a > 1. (18) shows
immediately that the minimum of d (F), when Fel'(F,, F,), is
obtained for the maximum function of ['(F,, F,), i.e. when I — F"=
= min {F,(r), Fy(y)}. The maximum of d(F) is given by /= F' but
this will not insisted on, since, as it has been already remarked, we
can pass from maximum to minimum d.f.’s changing sign one variable.

For o =2, (18) was already obtained by W. Hoefiding [21], and
since d,(F) = FX*+ EY: —2FXY, it shows that the maximum of
correlation coeflicient, for given marginal distributions, is obtained
when joint d.f. is £,

For =1 the minimum is obtained when F(r, y) is maximum for
# =y, and there is a class I™(F, F,)c I'(F,, F,) of d.f.’s satisfying
this condition. /™(F,F,) has obviously I’ as maximum d.f.; it has
also a minimum d.f. F** given by

r<r<0y

IFI(.I') - nm‘z‘{ inf [F,(z) — Fu(2)], 0} if vy,
|

Fu(y)— ma,.r{ inf [Fo(2) — Fy(2)], 0} if 2>y.

y<:<z

Tt is easily seen that for F'e I'*, i.e. if F(z,2) = min {F(2), Fy(2)},
the value of d,(F) is

mind,(F) =J|F1(z) — Fy(2)|dz .
Fell

According to discussion above, this is the dissimilarity index be-
tween X and Y, and it appears as a reasonable definition of a distance
between F, and F,.

For = 1 the minimum has not a simple form; some expressions
for it are given by M. Fréchet in [16].

A more general definition of distance between distributions, along
the same lines, is given by P. Levy in [28]. He proves that, given
a distance d(X, Y)=d(F) between r.v.’s, the minimum of d(X, Y)
when all the joint distributions of X, Y are considered (i.e. the min-
imum of d(F) when Fe I'(Fy, F,)) has again the properties of a di-
stance, and thus can be considered as a distance between d.f.'s.

M. Fréchet [16] develops this idea defining a class of distances be-
tween r.v.’s as

(19) d(X, Y) = d(F') = Bf(|X — Y|)
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where [(z), for z 0, i un inereaging  sub-additive function with
fO) 05w corresponding class of distance bebweern A1 remaing
detined an widd ahove, e sugeests also, according to the results above,
Lhat o distanee between d.1.75 can be defined, starting from a distanee
between v my and chooring 1 ak their joint, .75,

Further vesnlts are obtained by 8. Bertino in [11] (see also [31],
[41). He considers o digtance hetween rovs defined ag above, with
funetion [ possessing Grst and second derivatives, and by a transfor-
mation which generalizes (17) and (18) shows that if the second de-
rivative fof fis non-negative, the minimum of the digtance is obtained
by /I, Morcover, in oa paper yet Lo appear, he proves (under
some limitations) that, if 7 is non-pogitive, the minimum is obtained
by the d.f. % given above,

Aninteresting property of d.f. /"* jg that the underling distribution
hag the muximum concentration on the line. That means, for discrete
distributions, that for every z:

PIX 2 Voo zp - min [ P{X =z}, P{Y = z}]

and a similar property holds for other kind of distributions. Such
property is not possessed by 7, for which, as for all d.f.’s of 1'%, it is
for every z:

P{X <z, Y = zf = min [ P{X < 2}, P{Y < 2}].

The results above shows the important role played by the class
I'*(F,, FF,) in minimizing d(F) in (19). If /.0 (but not identically
zero), the only minimizing d.f. is the maximum function F” of [I'*;
if f* i identically zero all the d.f.’s of I'™* give the minimum value of
d(F); if f"< 0 the only minimizing d.f. is the minimum, F**, of /™.

Testo pervenuto il 26 maggio 1971.
Bozze licenziate 11 17 aprile 1972,
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