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Fig. 1. We propose a framework for efficiently reusing light paths to pixels arranged in arbitrary 2D shapes in image space, each defined by multiple pixels.
Our approach enables such reuse with a sublinear cost relative to the number of points in the shape. Top row: Our method can be implemented on top of
point splatting methods such as PT, PSSMLT, or ReSTIR PT. (Left) We present equal time offline comparison, where our method consistently outperforms its
single-pixel counterpart. (Right) When combined with ReSTIR PT, our method also suppresses color noise. Bottom row: Our method involves: (A) generating
a primary light path using a baseline sampling method; associating each pixel with a 2D shape and (B) flattening it to 1D by running space-filling curve
throughout the shape; (C) unbiasedly estimating weighted path contribution over the shape using a telescoping sum debiasing estimator [Misso et al. 2022].
We approximate the contribution with a constant function, then debias by evaluating one term of the telescoping sum with probability 𝑝𝑘 , sampling 𝑘 pixels
within the shape, linearly interpolating them, and computing the difference by excluding one non-center pixel.

A typical Monte Carlo rendering method contributes one light path only to
a single pixel at a time. Reusing light paths across multiple pixels, however,
can amortize the cost and improve the efficiency. The state of the art of path
reuse is to employ shift mapping to reduce the cost of path reuse, while
its computation cost is still proportional to the number of pixels processed
in shift mapping. We propose a general framework for efficiently reusing
light paths to multiple pixels arranged in arbitrary two-dimensional shapes.
Our shape is defined as a set of multiple pixels, and the framework allows
us to reuse light paths among pixels in a shape faster than simply evalu-
ating all pixels via shift mapping. The key idea is to sparsely evaluate the
contribution of shifted paths at random pixels within the shape and inter-
polate the contribution to the other pixels. We apply a debiasing estimator
to ensure unbiasedness. Our method can be integrated with many existing
rendering methods and brings consistent improvement over its single-pixel
counterpart.
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1 INTRODUCTION
Monte Carlo rendering samples light paths between light sources
and sensors to estimate the expected values of the sensor responses.
Rendering thus requires sampling contributing light paths for every
pixel (sensor) in the image. For example, path tracing [Kajiya 1986]
samples a path that goes through each pixel from the sensor side,
and repeats this process for all the pixels multiple times. The path
integral formulation [Veach 1997]models this process as considering
a single point on the image plane for each sampled light path and
accumulating its contribution to the relevant pixels. Almost all
existing Monte Carlo rendering methods build upon this concept,
and each path sample can be thought as a point sample on the image.
We propose a framework which extends this correspondence

between a light path and a single point to multiple points on the
image. Since such multiple points often corresponds to neighboring
pixels that form a certain shape (e.g., a square centered at each pixel),
we refer to them as shapes in this paper. While it may be tempting
to think that path reuse [Bauszat et al. 2017; Bekaert et al. 2002; Lin
et al. 2022] already addresses this task, path reuse only achieves to
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generate multiple paths at an amortized cost per sample, and its
computational cost is still proportional to the number of points in
the shape.

Our framework instead fundamentally reduces the computational
cost of sampling a shape to sublinear to the number of points in the
shape, making splatting shape samples an effective replacement of
point splatting. The key idea is to approximate the contributions of
all the points in a shape using a biased yet cheap estimator and apply
debiasing [Misso et al. 2022] to remove the bias. By carefully con-
structing such a debiasing estimator, we can compute the unbiased
contributions of a shape of ≈ 60 pixels by generating only 4 point
samples on average, for instance. We formulate shape sampling and
splatting as a multi-proposal MCMC step and weight the contri-
butions according to MCMC acceptance probabilities. Our MCMC
formulation allows us to effectively combine path samples from
all the overlapping shapes without relying on multiple importance
sampling which would otherwise incur a quadratic computation
cost. We demonstrate the effectiveness of our framework by adding
shape splatting to various Monte Carlo rendering methods. Shape-
splatting variants of those methods consistently outperform the
point-splatting counterparts, and can be added even on top of path
reuse. Our technical contributions are a debiasing estimator for un-
biased shape splatting with sublinear cost to the shape size, and an
MCMC formulation of shape splatting that allows a fast evaluation
of the sample weights with lower variance than pairwise MIS.

2 RELATED WORK
Line segment sampling. Line segments are one of the simplest shapes
other than points. Previous work has explored accelerating Monte
Carlo rendering by either generating segments in the image space or
analytically integrating over line segments. Segment samples were
used to compute analytic aliasing [Jones and Perry 2000], motion
blur [Gribel et al. 2011, 2010], depth-of-field [Tzeng et al. 2012].
Barringer et al. [2012] employed line samples to compute accurate
visibility of thin curves. Sun et al. [2013] constructed line segment
samples with blue-noise properties using frequency analysis. Shirley
and Wyman [2017] generated stratified 2D segments by wrapping
stratified points in 2D unit squares. Singh et al. [2017] analyzed the
variance and convergence properties of line and segment samples.
Our work focuses on sampling a set of 2D points arranged in a
specified manner (shape) based on a point sample, which has not
been addressed before.

Path reuse. Bekaert style-path reusing [Bekaert et al. 2002] and its
generalization [Bauszat et al. 2017] armotizes sampling cost by con-
necting eye subpaths to light subpaths of all other pixels in a tile.
ReSTIR and Generalized RIS [Bitterli et al. 2020; Lin et al. 2022] amor-
tize sampling cost by employing resampled importance sampling
(RIS) to select light subpaths and reuse them spatio-temporally via
shift mapping. As demonstrated by Lin et al. [2022], ReSTIR gained
most of its advantage by using RIS to quickly approximate the target
distribution, instead of simply reusing light paths via shift mapping.
The cost of path reuse is directly proportional to the number of

shift mappings performed. If shift mapping is as costly or slower
than generating a new sample from scratch, path reuse provides no
benefit.We also use shift mapping to all the pixels within a shape, but

we instead achieve a sublinear cost to the number of pixels within a
shape. This property allows us to achieve some improvement even
when shift mapping is slow or as costly as sampling a new path.
We can also apply our shape splatting to the existing path reuse
methods to further improve its efficiency.

Gradient-domain rendering. Gradient-domain rendering (GDR) [Gru-
son et al. 2018; Kettunen et al. 2015; Lehtinen et al. 2013; Manzi et al.
2015; Sun et al. 2017] computes image gradient by a pair of correlate
paths sampled at adjacent pixels. GDR can also be interpreted as a
form of path reuse since a sampled path will contributed to multi-
ple pixels through shift mapping and Poisson reconstruction. Our
method does not rely on a separate reconstruction step, and it can
be seen as yet another form of path reuse besides GDR.

3 MOTIVATION
Let us go over a simplified example of sampling shapes from a
given 2D distribution to establish the concept of shape splatting in
this paper. Figure 2 shows this example where we are given a PDF
𝑝 (𝑥,𝑦) in the 2D space of (𝑥,𝑦) as an image and (𝑥,𝑦) represents
a 2D pixel index. The variables (𝑥,𝑦) are discrete since they are
integers indexing pixels. Let us consider the problem of copying
the image 𝐼 (𝑥,𝑦) by sampling from 𝑝 (𝑥,𝑦), which is equivalent to
estimating a histogram of samples generated according to 𝑝 (𝑥,𝑦)
as was also used by Cline and Egbert [2005] to explain MCMC.

Point samples. Samples are usually 2D points (𝑥𝑖 , 𝑦𝑖 ) ∝ 𝑝 (𝑥,𝑦)
and the histogram is estimated by counting the number of samples
within each pixel. Due to the stochastic nature, any pixel can po-
tentially have zero samples given a finite number of total samples.
Figure 2 shows the results of this baseline, and one can see that
there are many zero histogram bins (black pixels) when the number
of samples is small, and each sample contributes to one pixel.

Shape samples. Instead of point samples, we propose to sample
shapes that are still distributed according to the same PDF 𝑝 (𝑥,𝑦).
We define a shape as a set of (usually consecutive) points. Figure 2
shows our results, where the shape is a rotated quad that contains 61
points (pixels). One can recognize individual shapes being "splatted"
as samples when the number of samples is small. We use "points"
and "pixels" interchangeably in this paper whenever feasible. If the
cost of generating each shape sample is less than that of generating
all the point samples within the shape, shape samples effectively
increase the number of samples.

Ourmain technical contribution is a general framework to achieve
efficient shape splatting. Our framework allows us to splat this shape
sample of 61 points in Figure 2 at the cost only of 4 point samples on
average. Shape splatting is also more efficient than point splatting
with an equal number of point samples taken (i.e., 4 times more for
point samples) as Figure 2 demonstrates.

4 SHAPE SPLATTING
We first explain our method for splatting 1D shapes on a 1D image,
and then we will discuss generalization to 2D shapes in Sec. 4.4.
Listing 1 is a pseudocode of our method. Consider an image 𝐼 of 𝑁
pixels. We focus on scalar pixel values in the following, and colors
are handled similarly to what is commonly done in MC rendering.
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Fig. 2. We compare sampling a 2D distribution using points and shapes
under the equal point-sample counts. The shape is a rotated quad with 61
points (pixels). Our method sample each shape with the cost of 4 point
samples on average. Shift mapping in this example has the same cost as
generating a new sample, so any gain is not coming from sample reuse.
Shape samples fill in more pixels at the same cost, making it far more
efficient than point sampling.

Let us consider a more general problem than the example in
Figure 2 where the histogram is proportional to an integral 𝐼𝑖 =∫
𝑔(𝑖, x)𝑑x of a higher dimensional function 𝑔(𝑖, x). The example in

Figure 2 corresponds to a casewhere the integrals 𝐼 are directly given
as an image. This generalized problem covers rendering with the
path integral formulation where the pixel value 𝐼𝑖 is determined by
integrating a product of the pixel filter ℎ(𝑖, x) and the contributions
𝑓 (x) of light transport paths x as

𝐼𝑖 =

∫
P
𝑔(𝑖, x)𝑑x =

∫
P𝑖

ℎ(𝑖, x) 𝑓 (x)︸       ︷︷       ︸
𝑔 (𝑖,x)

𝑑x. (1)

The integration domain changes to P𝑖 as a subset of the path space∫
P where ℎ(𝑖, x) > 0. Let us consider ℎ(𝑖, x) = 1 within the pixel 𝑖
in the following so that we can simplify as 𝑔(𝑖, x) = 𝑓 (x) over P𝑖 .
The vector of pixel values 𝐼 is thus defined as

𝐼 =


.
.
.

𝐼𝑖
.
.
.

 =


.

.

.∫
P 𝑔(𝑖, x)𝑑𝑥

.

.

.


=


.
.
.∫

P𝑖
𝑓 (x)𝑑𝑥
.
.
.


. (2)

To estimate 𝐼 , we first sample a pixel index 𝑖 according to a discrete
distribution 𝑝𝑖 (·) and then sample a path x ∼ 𝑝 (x|𝑖).We refer to such
x as point samples. While this formulation may sound incompatible
with a typical scenario where we just loop over all the pixels and
sample paths within each pixel (e.g., path tracing), it is equivalent
to sample 𝑖 from uniform distribution but with perfectly stratified

� �
1 # Unbiased shape splatting on a 1D image
2 # Input: pixel index i
3 # Output: An unbiased estimate of contribution
4 # of the shape centered at i
5 def UnbiasedShapeSplatting(i):
6 # 1. Sample the primary sample x from p( ·)
7 x, S = SamplePathAtPixel(i), ShapeAt(i)
8 k, pmf_k = RandInt(1, |S|-1)
9
10 # 2. Sample secondary pixels and path samples
11 # via shift mapping
12 js = sort(
13 {i} + sample k distinct pixels from S-{i})
14 ys = [𝑇𝑖→𝑗 (𝑥 ) for j in js]
15 # Compute MCMC weights that keeps p( ·) invariant
16 # Eq. (7)
17 ws = [MCMCWeights(x, y, |𝜕x𝑇𝑖→𝑗 (𝑥 ) |) for y in ys]
18
19 # 3. Debiasing. Sec. 4.3
20 def C(x): return f(x) / p(x)
21 𝐷 (1) = Ones(|S|) * C(x)
22 𝐷 (𝑘 + 1) = Interpolate(C(ys) * ws)
23 res = 𝐷 (1)
24 # Eq. (10)
25 for j′ in js:
26 if j′ == i:
27 continue
28 js′ = js - {j′}
29 ys′ = [𝑇𝑖→𝑗 (𝑥 ) for j in js′]
30 ws′ = [MCMCWeights(x, y, |𝜕x𝑇𝑖→𝑗 (𝑥 ) |) for y in ys′]
31 𝐷 (𝑘 ) = Interpolate(C(ys′) * ws′)
32 res += (𝐷 (𝑘 + 1) − 𝐷 (𝑘 )) / (pmf_k * k) # Eq. (11)
33 return res� �
Listing 1. Overview of our method. Note we demonstrate a naive implemen-
tation of debiasing here for simplicity. In practice, we cache the evaluation
of 𝑓 ( ·) and compute all differences between interpolations in a single pass.

sampling. The distribution of pixel index 𝑖 and path x form a joint
distribution (𝑖, x) ∼ 𝑝 (·). Since each path corresponds to a single
pixel index 𝑖 , we simply refer to x ∼ 𝑝 (·) as sampling both the index
and path. Once a path x is sampled at 𝑖 , we would like to splat its
contribution to other pixels such that the sum of all such shape
splatting estimates 𝐼 in an unbiased manner.

Shapes. We define a shape S as an ordered set of pixel indices
S = {𝑖1, ..., 𝑖 |S | }(𝑖1 < ... < 𝑖 |S | ) where |S| is the number of points
within the shape (e.g., 61 in Figure 2). We index each shape as
S𝑖 to enable a different shape per pixel. We denote 𝐶 (S𝑖 ) 𝑗 as the
contribution to the pixel 𝑗 by the shape S𝑖 . We also refer to the pixel
𝑖 as the center pixel of S𝑖 . The contribution to any other pixel that
is not in the shape is zero. The exact definition of 𝐶 (S𝑖 ) 𝑗depends
on how shape splatting is performed. The only requirement is that
the sum of 𝐶 (S𝑖 ) 𝑗 of all pixel 𝑖 unbiasedly estimates the image 𝐼

𝐼 𝑗 =

𝑁∑︁
𝑖=1

𝐶 (S𝑖 ) 𝑗 . (3)

In each shape S𝑖 , we call the corresponding point sample that goes
though the pixel 𝑖 as the primary sample, and all the other point
samples as the secondary samples.

Shape as Multiple Point Samples. A naive approach to sample a
shape is to sample all the (primary and secondary) points within the
shape by performing point sampling repeatedly. Each pixel value 𝐼 𝑗

ACM Trans. Graph., Vol. 43, No. 6, Article 233. Publication date: December 2024.



233:4 • Xiaochun Tong and Toshiya Hachisuka

is estimated by taking an average of all the point samples from all the
shapes that fall within the pixel 𝑗 . The cost of sampling one shape in
this naive approach is equivalent to sampling all the points within
the shape, so this approach would not bring any benefit over point
sampling with an equivalent number of samples. It nevertheless is
useful as a baseline for our algorithm.

4.1 Amortized Shape Splatting via Mutations
Instead of sampling each point within a shape S𝑖 from scratch,
one can perform path reuse of the primary sample (which goes
through 𝑖) to generate all the secondary samples within the shape.
We focus on the contributions coming from a given shape S𝑖 to all
the other pixels (points) {𝑖1, ..., 𝑖 |S | } within it, which is equivalent to
consider splatting of the contributions of each shape as opposed to
gathering [Gharbi et al. 2019]. They are mathematically equivalent,
but we found that splatting partially reused samples naturally maps
to mutation in MCMC rendering.

Mutation involves generating a secondary sample {x𝑖1 , . . . , x𝑖 |S| }
given the primary sample x𝑖 (e.g, from a path tracer) and a distribu-
tion of mutated samples is called a proposal distribution. We choose
a simple proposal distribution 𝑇𝑖 ( 𝑗) that mutates pixel indices uni-
formly within the support of S𝑖 at equal probabilities:

𝑇𝑖 ( 𝑗) = 1/|S𝑖 | · 1S𝑖 ( 𝑗) (4)

Because𝑇𝑖 ( 𝑗) is a simple binary function, we canmutate the primary
samples x𝑖 to the all the other secondary samples deterministically
by selecting each 𝑗 in S𝑖 exactly once over |S𝑖 | proposals. While
there are many different approaches to mutate or reuse path samples,
we use shift mapping techniques developed for gradient-domain
rendering [Bauszat et al. 2017; Kettunen et al. 2015; Lehtinen et al.
2013]. Due to the amortized cost per sample in mutation (or shift
mapping), the cost of generating all the points within a shape is less
than generating an equal number of point samples.

In general, secondary samples in the pixel 𝑗 mutated to the pixel
𝑖 will be distributed differently than samples within the pixel 𝑖 . We
need to take this difference into account to define a valid estimator
of 𝐼𝑖 . When all the pixels have the same shape S and the Jacobian
of shift mapping from 𝑖 to 𝑗 is

��𝜕x𝑇𝑖→𝑗

��, the probability density of
generating a sample from the shape at the pixel 𝑖 to the pixel 𝑗
is 𝑝 (x|𝑖)/

��𝜕x𝑇𝑖→𝑗

�� which in general would be different from the
probability density 𝑝 (x| 𝑗) at the pixel 𝑗 itself.
While this problem setting fits well with multiple importance

sampling [Veach and Guibas 1995], the number of techniques here is
𝑂 ( |S𝑖 |) and we found that the evaluation cost of the balance heuris-
tic is impractical because each shape will cost 𝑂 ( |S𝑖 |2) for having
|S𝑖 | points and the balance heuristic for each point takes 𝑂 ( |S𝑖 |).
We propose an alternative based on a common practice of splatting
proposals [Veach and Guibas 1997]. While we also experimented
with a more practical alternative of pairwise MIS [Bitterli 2021], we
found that our MCMC approach generates more accurate results,
especially when combined with our debiasing estimator.

4.2 MCMC-based Weighting for Shape Splatting
By seeing each secondary sample as a proposal in MCMC, we can
utilize the acceptance probability of the Metropolis-Hastings algo-
rithm [Hastings 1970] to weight the contribution of each sample

properly. In theMetropolis-Hastings algorithm, given a current state
𝑥 , the proposal 𝑦 is accepted according the probability 𝑎(𝑥 → 𝑦)
designed to maintain the detailed-balance condition:

𝑎(𝑥 → 𝑦) =𝑚𝑖𝑛

(
𝜋 (𝑦)T (𝑦 → 𝑥)
𝜋 (𝑥)T (𝑥 → 𝑦) , 1

)
, (5)

where T (𝑥 → 𝑦) denotes the proposal distribution from state 𝑥 to
𝑦. Given that T is ergodic, the Markov chain will, in the limit, at-
tain the unique stationary distribution 𝜋 (𝑥). A common practice in
rendering is to accumulate the contributions coming from both the
proposal and the current state regardless of the outcome of the ac-
ceptance of the proposal [Veach and Guibas 1997]. The contribution
from the proposal 𝑦 is weighted by 𝑎(𝑥 → 𝑦) and the contribution
from the current state is weighted by 1 − 𝑎(𝑥 → 𝑦). This technique
would not introduce bias to the result because 𝑦 is essentially re-
placing the stochastic process of accumulating either 𝑥 or 𝑦 alone
by its mean. We utilize this technique to weight the contributions
of all the points in an arbitrary shape sample.
In our current implementation via (invertible) shift mappings,

the ratio T(𝑦→𝑥 )
T (𝑖→𝑗 ) turns out to be exactly

��𝜕x𝑇𝑖→𝑗

��. The acceptance
probability, thus the weight, can be computed as:

𝑎(x𝑖 → x𝑗 ) =𝑚𝑖𝑛

(
𝑝 (x𝑗 ) |S𝑖 |
𝑝 (x𝑖 ) |S 𝑗 |

��𝜕x𝑇𝑖→𝑗

��, 1), (6)

with an additional |S𝑖 |
|S 𝑗 | factor to account for secondary pixels being

sampled uniformly from shapes with different sizes. The contribu-
tion of each pixel in the shape can be estimated by computing the
expected outcome of the accept decision accordingly:

𝑤𝑖→𝑗 =


1

|S𝑖 | 𝑎(x𝑖 → x𝑗 ) (𝑖 ≠ 𝑗)
1

|S𝑖 | (1 +
∑
𝑘≠𝑖

1 −𝑤𝑖→𝑘 ) (𝑖 = 𝑗). (7)

By mutating x𝑖 to all pixels in S𝑖 and weighting according to Eq. (7),
we obtain a pointwise estimator 𝑃 (S𝑖 ) of 𝐶 (S𝑖 ).

⟨𝐶 (S𝑖 ) 𝑗 ⟩ = 𝑃 (S𝑖 ) 𝑗 = 𝑤𝑖→𝑗

𝑓 (x𝑗 )
𝑝 (x𝑗 )

where x𝑗 = 𝑇𝑖→𝑗 (x𝑖 ) (8)

Differences from MCMC. Unlike MCMC, we already have samples
that are distributed according 𝑝 (·) at each pixel. By setting the tar-
get as 𝜋 (·) = 𝑝 (·), MCMC mutation keeps 𝑝 (·) invariant because
samples are already at the stationary distribution. The outcome of
the acceptance of the proposal in our method is thus irrelevant be-
cause one can always generate a new sample (state) 𝑥 that is already
distributed according to 𝑝 (·). We also have multiple proposals 𝑦
from the same 𝑥 because 𝑥 corresponds to the primary sample and
𝑦 correspond to all the secondary samples that are generated by
perfectly stratified sampling of the proposal in Equation (4).

4.3 Efficient Shape Estimator via Debiasing
Our pointwise estimator 𝑃 (S𝑖 ) Eq. (8) can reduce the cost of shape
splatting without introducing any additional error. However, the
overall splatting cost is nevertheless still 𝑂 ( |S𝑖 |) since we need to
evaluate the contribution of all the samples within the shape. To
make our method more efficient, we would like to estimate𝐶 (S𝑖 ) as
a whole at a sublinear cost to |S𝑖 |. We propose to employ telescoping
sum debiasing estimators [Misso et al. 2022] to achieve this goal. Let
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us focus on a single shape S𝑖 to drop the superscript 𝑖 for the rest
of the discussion. Since all pixels 𝑗 ∉ S have zero contribution to
the shape, we refer to only the pixels in the shape 𝑗 ∈ S in the
following. We also refer to the contribution 𝐶 (S) of S as an R |S |

vector. One can reduce the cost of evaluating𝐶 (S) by not sampling
secondary samples but by replacing their contributions with the
primary sample 𝑃 (S)𝑖 . The outcome of this is a biased estimator,
which we refer to as𝐷 (1) since it requires only 1 point sample. For a
debiasing estimator, we first need to define a sequence of estimators
𝐷 (𝑚) such that the bias B[𝐷 (𝑚)] → 0 as 𝑚 approaches a limit
[Misso et al. 2022]. The limit in our case is |S| which samples all the
points within the shape and thus 𝐷 ( |S|) = 𝑃 (S). We now need to
define 𝐷 (𝑚) as a series of increasingly finer approximations of the
unbiased estimator 𝑃 (S) such that the bias decreases with increas-
ing𝑚. Let 1 ≤ 𝑘 ≤ |S| − 1 be a random integer with probability 𝑝𝑘 .
We sample an ordered subsetK ⊂ S, 𝑖 ∈ K of 𝑘 +1 pixels, including
the center and the other 𝑘 pixels. A pointwise estimator 𝑃 (K) for
this subset K is defined as 𝑃 (K) 𝑗 = 𝑃 (S) 𝑗 for 𝑗 ∈ K and 0 other-
wise. Note that this estimator costs only 𝑂 ( |K |) because there are
only |K | points to be evaluated. To approximate 𝑃 (S) with 𝑃 (K),
we employ an interpolation operator 𝐴S : 𝑅𝑘 → 𝑅 |S | that fills in
missing pixels in 𝑃 (K), thus we a have 𝐴S (𝑃 (K)) = 𝑃 (S) when
K = S. We express 𝑃 (S) as a telescoping sum [Misso et al. 2022]

𝑃 (S) = 𝐷 (1) +
|S |−1∑︁
𝑘=1

Δ𝐷 (𝑘) (9)

where Δ𝐷 (𝑘) = 𝐷 (𝑘 + 1) − 𝐷 (𝑘) and 𝐷 (𝑘) = 𝐴S (𝑃 (K)). The
resulting debiasing estimator is

⟨𝐶 (S)⟩ = 𝐷 (1) + Δ𝐷 (𝑘)
𝑝𝑘

. (10)

Similar to the approach by Misso et al. [2022], we correlate es-
timates for 𝐷 (𝑘) and 𝐷 (𝑘 + 1) by using the same set of pixels. We
uniformly sample 𝑘 distinct secondary pixels to obtain a set of 𝑘 + 1
pixels K . To reuse samples as much as possible, we loop over all 𝑘
different ways of removing one secondary pixel fromK and estimate
⟨𝐷 (𝑘 + 1) − 𝐷 (𝑘)⟩ for each of the removed pixels as

⟨𝐷 (𝑘 + 1) − 𝐷 (𝑘)⟩ = 1
𝑘

∑︁
𝑗∈K, 𝑗≠𝑐

𝐴S (𝑃 (K)) −𝐴S (𝑃 (K − { 𝑗})). (11)

The remaining problem is to find a suitable 𝑝𝑘 . Choosing 𝑝𝑘
to minimize the V[⟨𝐶 (S)⟩] as was done by Misso et al. [2022] is
not very helpful in our case since we rather want to minimize
the work-variance V[⟨𝐶 (S)𝑘 ⟩]C[⟨𝐶 (S)𝑘 ⟩] to account for both the
variance and the cost. Minimizing the work-variance directly is
challenging as it requires the knowledge of𝐶 (S) itself. We, however,
empirically found that having 𝑝𝑘 ∝ 𝑘−2 produces reasonably low
variance through numerical experiments. The average number of
point evaluation

∑ |S |
𝑘=1 𝑘𝑝𝑘 is a normalized partial sum of harmonic

series that is known to grow only logarithmically to 𝑘 , achieving a
sublinear cost for each estimate of 𝑃 (S).

Efficient Interpolation Operator. While there are many different 1D
interpolation operators, we found that simple linear interpolation

works well. We experimented with high order polynomial interpola-
tion but found that they usually increase variance as the interpolated
contributions are not bounded by the minimum or maximum of
𝑃 (K). We thus approximate 𝑃 (S) by linearly interpolatingweighted
path contributions evaluated at two neighboring secondary pixels,
and compute Eq. (7) using the interpolated values. For pixels 𝑗 be-
yond the endpoints, we define (𝐴S) 𝑗 by using the contribution
of nearest endpoint. A naive implementation of Eq. (11) requires
evaluating the interpolation operator 𝑘 times, resulting in a overall
O(𝑘 |S|) complexity. We can speed it up to O(|S|) by taking the
advantage of the fact that the contribution of each 𝑗 is only affected
by the two neighboring pixels. For each pixel 𝑗 , we first interpolate
it by its neighbors, then we consider the alternative interpolation
results by removing one of its neighbors and compute the difference.
It only requires keeping track of two nearest neighbors in both
directions. The total cost of computing Eq. (11) in this manner is
𝑂 ( |S|).

4.4 Generalization to 2D Shapes
Most concepts in previous sections such as shapes, MCMC weights,
and debiasing estimators, generalize to 2D without modification.
The only exception is the interpolation operator 𝐴S . We have to
choose a scheme that allows evaluating Eq. (11) in linear time to
prevent the computation cost exploding at large shapes.We explored
a few interpolation methods and found out that simple 1D linear
interpolation along a space filling curve (e.g. Hilbert curve) works
well. For each shape S𝑖 , we run a space filling curve throughout
S and order the pixels according to the curve, reducing the shape
back into 1D. The secondary pixels are subsequently sampled and
sorted in this order.

4.5 Spatially Varying Shape
Our method can support spatially varying shapes across pixel to
further reduces variance in Eq. (10). Since the debiasing estimator
works best when the difference between base estimator 𝐷 (1) and
point estimator 𝑃 (S) is small, we would like to ideally include
only those pixels that have similar contributions. We estimate pixel
similarity based on auxiliary features such as albedo and geometry
normals, similar to feature-preserving denoiser kernels [Dammertz
et al. 2010; Rousselle et al. 2013]. To construct such shapes, we first
assign a spatially uniform base shape S𝐵 to every pixel in the image.
We redefine S𝑖 at each pixel 𝑖 by selecting pixels 𝑗 ∈ S𝑖

𝐵
such that

𝑛𝑖 · 𝑛 𝑗 ≥ 𝜏𝑛 ∧ ||𝑐𝑖 − 𝑐 𝑗 | |∞ ≤ 𝜏𝑐 , (12)

where 𝑛𝑖 and 𝑐𝑖 are the geometry normal and albedo at 𝑖 . We em-
pirically set the thresholds for the differences 𝜏𝑛 and 𝜏𝑐 as 𝜏𝑛 =√
2/2, 𝜏𝑐 = 0.1. Note that the shape Eq. (12) is deliberately con-

structed to be symmetric; if 𝑗 ∈ S𝑖 , we also have 𝑖 ∈ S 𝑗 . It is because
our shape splatting formulates secondary samples as MCMC muta-
tions, and symmetric shapes ensure that all the secondary samples
receive non-zero weights.

4.6 Decorrelating Shape Splats
Shape splatting results in lower numerical error by increasing the
effective number of samples per pixel. However, it often introduces
lower frequency noise due to inter-pixel correlation as also seen in
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other path-reusing methods. We propose a simple technique to ad-
dress this issue. We first inserts strides between pixels in the shape,
shifting the noise to higher frequencies. We additionally randomly
rotate the shapes in each sample, further decorrelating shape splats.
This approach generally makes the correlation less perceptible in
the image space, but shifting mapping to such randomized points
increases per-pixel error by ≈ 10 ∼ 15%, with large strides resulting
in higher error but less correlation. One benefit is that a decorrelated
image can usually be denoised effectively by a neural network de-
noiser such as OpenImageDenoise [Áfra 2019] in Fig. 3. Due to the
flexibility of shape splatting and that we have direct control over the
splatting location, it might be possible to combine our framework
with blue-noise dithered sampling [Georgiev and Fajardo 2016] to
achieve a more desirable error distribution over the image.

4.7 Optional Mixing with Point Splats
Our debiasing estimator is not free from occasional artifacts or even
negative-valued pixels when the base estimator differs significantly
from the point estimator, due to outliers in the path contribution
that cannot be easily detected via auxiliary features in Sec. 4.5. For
example, when the primary sample is a high energy outlier, its overly
high contribution is likely to spread to neighbor pixels to produce a
group of outlier pixels, especially if there are not enough secondary
samples to correct the bias. The artifact can also be produced if one
of the secondary sample is an outlier.
We empirically found this issue is primarily relevant to shape

splatting combined with vanilla path tracers, although shape splat-
ting with other methods also benefit from point mixing. We alleviate
this issue by combining the already-available point samples at each
center pixel and secondary samples as they form two unbiased esti-
mators that are free of such artifacts. Since these three estimators
are correlated and use samples drawn from the same density, we can-
not use MIS weights to weight the estimators. Instead, we compute
per-pixel variance estimates for each estimator and weight them
according to their inverse variance. Unfortunately, it introduces
small amount of bias manifests as energy loss around high variance
regions due to the variance estimates being correlated with the
estimators. Nevertheless, we found the trade-off to be worthwhile
as it is generally effective in removing artifacts. Investigating an
unbiased mixing scheme could be an interesting future work.

5 RESULTS
We implemented our method on a CPU/GPU rendering framework
powered by the Rust frontend [Tong et al. 2023] of LuisaCompute
[Zheng et al. 2022]. We built it upon a mega-kernel path tracer,
unidirectional PSSMLT [Kelemen et al. 2002], and offline ReSTIR
[Lin et al. 2022]1. Our method can be easily integrated into existing
rendering systems, requiring no major change to the path tracer,
especially when the rendering system has already implemented
hybrid shift mapping (e.g., ReSTIR). We also propose a simple and
efficient implementation of our method on GPUs. Since each pixel
uses a potentially different number of debiasing samples, naively
implementing our method results in poor performance due to thread

1The code is available at https://github.com/splatting-shapes/Efficient-Image-Shape-
Splatting

B

A

(A).correlated (B).decorrelated (A)+denoise  (B)+denoise

Fig. 3. We insert strides and randomly rotating the shape to greatly re-
duce low frequency artifacts and correlation between neighbor pixels. The
decorrelated image can be further denoised by a machine learning denoiser
without introducing outstanding artifacts.

divergence. We propose to implement shape splatting in a wave-
front manner while keeping the mega-kernel path tracer: we launch
separate kernels to sample primary paths, the secondary paths,
and compute telescoping sum to guarantees that all threads have
equal work loads. Compared to our CPU implementation, our GPU
implementation only requires tens of lines of additional code to
implement this wavefront scheduling logic. The memory overhead
is negligible as it only requires recording the correspondence be-
tween secondary and primary samples. Our program spends around
50% of time tracing primary paths, 40% on secondary paths, and
10% on computing the telescoping sum and splatting contribution.
We implemented hybrid shift mapping [Lin et al. 2022] due to its
simplicity and effectiveness, where we evaluate the Jacobian and
sample distribution 𝑝 (·) under primary sample space parameteri-
zation. The optimal shape size depends on the image resolution as
well as shift mapping efficiency. Our method works well for shape
sizes ranging from 20 ∼ 80 pixels. Using shapes larger than 80 pixels
are possible but subjected to increased memory overhead during
splatting. Finding the optimal shape for a given scene and image
resolution is left for future work.

We measure the performance of our shape splatting on top of PT
and offline ReSTIR PT on an NVIDIA RTX 3070Ti GPU, where we
additionally compared with Bekaert-style path reusing (BPR). For
ReSTIR PT, we sample 32 initial candidates and perform 3 rounds
of spatial reuse with 6 neighbors each round in a 10 pixel radius.
We offered two variants for our method combined with ReSTIR:
the RIS PT+Ours variant replace all 3 spatial reuse rounds with 8
rounds of shape splatting using randomized 61 pixel shapes; the
ReSTIR PT+Ours variant replace the last spatial reuse in ReSTIR
with 8 rounds of shape splatting. Shape splatting with PSSMLT are
measured on an Intel i9-13900K 24C/32T processor. We tested our
method on a variety of scenes in equal time settings. Fig. 1 and
Fig. 10 show some closeups. 2 Since offline ReSTIR PT is mainly for
computing indirect lighting, we compare all methods on indirect
lighting only. However, our method is also able to handle direct
lighting efficiently. We show error plots of our method against their
point splatting baselines in MAPE metrics in Fig. 8 and Fig. 9.

2LIVING ROOM by courtesy of Jay-Artists under CC-BY 3.0; FIREPLACE ROOM and
BREAKFAST ROOM by courtesy of Wig42 under CC-BY 3.0; SALLE DE BAIN by cour-
tesy of nacimus under CC-BY 3.0; SAN MIGUEL by courtesy of Guillermo M. Leal
Llaguno under CC-BY 3.0; BISTRO by courtesy of Amazon Lumberyard under CC-BY
4.0; CLASSROOM by courtesy of Christophe Seux under CC0
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Fig. 4. Visualizing the weights when mixing with point samples. Blue cor-
responds to a higher weight for shape splatting than points. Our method
works best when the geometry and lighting is smooth, but it can also handle
non-smooth shading such as image textures.

The results show that our method consistently outperforms point
splatting in all test scenes under equal time. Our debiasing and
secondary sample generation by shift mapping allows us to reduce
an actual cost of shape splatting equivalent to only two point samples
on average. With the help of spatially varying kernels, our shape
splatting can adapt to textured materials and sharp geometry edges.
Fig. 8 demonstrates how our shape splatting can accelerate a vanilla
path tracer and existing path reusing methods such as ReSTIR. The
improvements on top of the path reusing methods show that our
shape splatting is not simply yet another path reuse method. For
example, even RIS PT+Ours is already almost as effective as ReSTIR
on many scenes. Note that one does not need to choose between
RIS PT+Ours and ReSTIR PT as that our method and ReSTIR are not
exclusive to each other. One can achieve better performance with
the combined ReSTIR PT+Ours variant. RIS/ReSTIR PT+Ours is also
free from color noises that usually present in ReSTIR PT (Fig. 1). Our
decorrelation approach is generally effective at reducing artifacts
except for very challenging scenes or when the base estimator itself
exhibits strong inter-pixels correlation. (e.g. DIFFICULT LIVING
ROOM scene in Fig. 10)

5.1 Ablation Study
We conduct an ablation study to investigate the effectiveness of
various components of our method in Fig. 6. We focus on analyzing
shape splatting with PT in this section.

Mixing with point samples. Fig. 6 col. B is a result of using only
primary and secondary point samples during shape splatting. It is
quite noisy due to its point splatting nature. Col D. instead uses
only shape samples. While shape splatting reduces noise, it produces
outliers around texture discontinuities and geometry edges. Mixing
points and shapes (col F) using weighted inverse variance removes
outliers effectively while preserving the low variance of the shape
estimator. Fig. 4 visualizes mixing weights on a few scenes. Shape
splatting receives larger weights in most cases. In regions where
high frequency geometry dominates, our method offer less improve-
ment over point splatting as the contribution of shape splatting is
negated by the variance from debiasing.

Effect of debiasing. To demonstrate that debiasing is indeed neces-
sary, in col.E Fig. 6, we only compute the telescoping sum up to
𝑘 = 3 in Eq. (10) so that the bias is not completely removed. While
it has lower error at low sample count, it is neither unbiased nor
consistent. Notice the obvious blurring of texture and geometry,

FIREPLACE ROOM (PT) FIREPLACE ROOM (PSSMLT)

Fig. 5. We compared our debiasing estimator with naive shape splatting
under equal time. In PSSMLT+Ours (right), our debiasing estimator out-
performs naive shape splatting by a large margin. In PT+Ours (left), while
debiasing without mixing with point samples produces higher relMSE due
to the presence of outliers, mixing with point samples effectively suppresses
outliers and has lower variance than naive shape splatting.

even when we already use spatially varying shapes described in
Sec. 4.5 to group similar pixels.

Comparison between pairwise MIS and MCMC weights. To evaluate
MCMC weights in Eq. (7), we compared them against pairwise MIS
[Bitterli 2021] in col. C of Fig. 6. We found that MIS weights tend to
produce higher variance and more outliers than our MCMCweights.

Comparison of PMFs for Debiasing. We have tested different choices
of the PMF in Eq. (10) with the form of 𝑝𝑘 ∝ 𝑘−𝑚 . If we ignore
the cost of the estimator and chose the PMF according to variance
only, 𝑝𝑘 = 𝑘−1 has lowest variance among them. However, once we
consider the overall efficiency, our choice of 𝑝𝑘 = 𝑘−2 performs the
best.

Debiased and naive shape splatting. Our shape estimator introduces
additional noise due to debiasing. This raises the question of whether
the advantages of splatting shapes outweigh this noise. In Fig. 5,
we compared against naive shape splatting where all pixels in the
shape is estimated by point sampling from scratch. Our debiasing es-
timator outperforms the naive approach even without mixing. Once
we mix with point samples, our debiasing estimators significantly
outperforms naive shape splatting. To provide further insights, we
provide closeups in Fig. 7. Under equal shape sample, our debias-
ing estimator performs equally well as naive splatting in smooth
regions but with significantly lower computational cost, while naive
splatting exhibits lower variance around geometry discontinuities.
In equal time comparisons our debiasing estimator already outper-
forms in smooth region due to reduced correlation artifacts due to
higher sample count, except for the presence of outliers. Mixing
with point samples effectively eliminates these outliers and results
in a lower mean image error.

6 CONCLUSION
We proposed a framework for efficient shape splatting in image
space by leveraging MCMC mutations and debiasing. While our
framework can improve various point-sample counterparts already,
it has a few aspects that can be further studied.

Firstly, shape splatting may not work efficiently if the underlying
rendering algorithm has a large variance (i.e., firefly noise). In this
case, a sampled shape might splat outlier samples to other pixels in
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the shape, resulting in a visual artifact. Mixing with point samples
helps but may result in energy loss due to the biased nature of this
mixing. Utilizing combiner methods developed for denoising [Back
et al. 2020, 2022; Gu et al. 2022; Zheng et al. 2021] to mix point splats
and shape splats could be helpful.
Secondly, our interpolation scheme only interpolates weighted

path contribution, but it potentially enables a wide range of interpo-
lation schemes. For example, one could decompose path contribution
into BSDF and irradiance terms and interpolate them separately.
Investigating a better interpolation scheme could improve perfor-
mance in the presence of high frequency geometries and textures.
Lastly, applications of our framework to any other problems in-

volving many correlated integrals would be interesting to explore.
For example, integrating our framework with Monte Carlo esti-
mators of partial differential equations [Rioux-Lavoie et al. 2022;
Sawhney and Crane 2020; Sugimoto et al. 2023] is likely fruitful
because one would usually want to run such an estimator for con-
secutive points in space just like pixels in images.
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Fig. 6. We demonstrate the performance of different components of our method. Note while E has lower error, it is inconsistent and has blurring artifact.
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Fig. 7. Our debiasing estimator outperforms naive shape splatting, mixing with point samples improves efficiency further by removing outliers.

Fig. 8. Error plots of shape splatting vs point splatting baselines on GPU.
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