Hydra: Efficient Training for Larger-Than-Memory Deep Learning Models
Kabir Nagrecha | Advised by Arun Kumar

Problem

GPU memory is limited...
Deep Learning models are growing rapidly!

What's Needed: An efficient platform for distributed training of large models

Bottleneck: Traditional Model Parallelism uses multiple devices to handle the memory demands of a single model. But this reduces our ability to parallelize compute!

Hydra: Model Spilling, Shard Alternator Parallelism, and Double Buffering

Model Spilling
Detach training orchestration from GPU arrangement

Shard Alternator Parallelism (SHARP)
Blend model and task parallelism for high throughput training

Double Buffering
Overlap communication with compute for low latency training

Evaluation

Benchmark Dataset:
WikiText-2

Workload:
Model Selection
12 1B+ parameter models
Transformer pretraining task
8-32 batch size
128 sequence length

Hardware:
Single-node, 8 12GB GPUs

End-to-End Runtime Speedup (8 devices)
- PyTorch Native: 1.0X
- Microsoft DeepSpeed: 1.3X
- FlexFlow (Model Parallel): 1.93X
- Hydra (SHARP): 7.46X

Total GPU Utilization
- PyTorch Native: 7%
- Microsoft DeepSpeed: 26%
- FlexFlow (Model/Data Parallel): 23%
- Hydra (SHARP): 82%

Hydra produces near-optimal speedups!
- 82% Average GPU Utilization
- >7.4X Speedups with 8 Devices

Ongoing Work & Potential Impact

Data Parallelism
User Study - Deep Learning for Physical Simulations
Concurrent Training at Scale