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Problem
GPU memory is 

limited…
Deep Learning models 

are growing rapidly!

What’s Needed: An efficient platform for 
distributed training of large models

Bottleneck: Traditional Model Parallelism uses multiple devices to handle 
the memory demands of a single model. But this reduces our ability to 

parallelize compute!

Hydra: Model Spilling, Shard Alternator Parallelism, and Double Buffering

Model Spilling 

Detach training orchestration 

from GPU arrangement

DRAM

Shard Alternator Parallelism (SHARP) 
Blend model and task parallelism for high throughput 

training
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Double Buffering

Overlap communication with 

compute for low latency training

DRAM

GPUGPU

Model A 

Model B Model A 

Model B 

Model B 

Model C 

Model C 

Model C 

Evaluation

Benchmark Dataset: 
WikiText-2

Workload: 
Model Selection  

12 1B+ parameter models 
Transformer pretraining task 
8-32 batch size 
128 sequence length

Hardware: 
Single-node, 8 12GB GPUs

Hydra produces near-optimal speedups! 
82% Average GPU Utilization


>7.4X Speedups with 8 Devices

Ongoing Work & Potential Impact

User Study - Deep Learning for Physical SimulationsData Parallelism Concurrent Training at Scale
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