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What’s Needed: An efficient platform for Bottleneck: Traditional Model Parallelism uses

distributed training of large models
parallelize compute!

multiple devices to handle

the memory demands of a single model. But this reduces our ability to

Hydra: Model Spilling, Shard Alternator
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Idle Model Shards

Model Spilling
Detach training orchestration
from GPU arrangement

Shard Alternator Parallelism (SHARP)
Blend model and task parallelism for high throughput
training
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Double Buffering
Overlap communication with
compute for low latency training
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Hydra produces near-optimal speedups!

Hardware: i 82% Average GPU Utilization
Single-node, 8 12GB GPUs >7.4X Speedups with 8 Devices
Ongoing Work & Potential Impact
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Data Parallelism User Study - Deep Learning for Physical Simulations Concurrent Training at Scale




