

JACOBS SCHOOL OF ENGINEERING Computer Science and Engineering

Hydra: Efficient Training for Larger-Than-Memory Deep Learning Models

Kabir Nagrecha | Advised by Arun Kumar

What's Needed: An efficient platform for distributed training of large models

Bottleneck: Traditional Model Parallelism uses multiple devices to handle the memory demands of a single model. But this reduces our ability to parallelize compute!

Hydra: Model Spilling, Shard Alternator Parallelism, and Double Buffering

Model Spilling

Shard Alternator Parallelism (SHARP)

Double Buffering Overlap communication with compute for low latency training

Detach training orchestration from GPU arrangement

Blend model and task parallelism for high throughput training

Evaluation

Workload:

Model Selection

12 1B+ parameter modelsTransformer pretraining task8-32 batch size128 sequence length

Hardware: Single-node, 8 12GB GPUs

Hydra produces near-optimal speedups!

82% Average GPU Utilization >7.4X Speedups with 8 Devices

Ongoing Work & Potential Impact

