
Hydra: Efficient Training for Larger-Than-Memory Deep Learning Models
Kabir Nagrecha | Advised by Arun Kumar

Problem
GPU memory is

limited…
Deep Learning models

are growing rapidly!

What’s Needed: An efficient platform for
distributed training of large models

Bottleneck: Traditional Model Parallelism uses multiple devices to handle
the memory demands of a single model. But this reduces our ability to

parallelize compute!

Hydra: Model Spilling, Shard Alternator Parallelism, and Double Buffering

Model Spilling

Detach training orchestration

from GPU arrangement

DRAM

Shard Alternator Parallelism (SHARP)
Blend model and task parallelism for high throughput

training

Model A

Model A

Model A

M
od

el
 P

ar
al

le
l

Tr
ai

ni
ng

SH
AR

P

GPU

GPU

GPU

Double Buffering

Overlap communication with

compute for low latency training

DRAM

GPUGPU

Model A

Model B Model A

Model B

Model B

Model C

Model C

Model C

Evaluation

Benchmark Dataset:
WikiText-2

Workload:
Model Selection

12 1B+ parameter models
Transformer pretraining task
8-32 batch size
128 sequence length

Hardware:
Single-node, 8 12GB GPUs

Hydra produces near-optimal speedups!
82% Average GPU Utilization

>7.4X Speedups with 8 Devices

Ongoing Work & Potential Impact

User Study - Deep Learning for Physical SimulationsData Parallelism Concurrent Training at Scale

Model A

Active Model Shard

Idle Model Shards

Active Model Shard

Idle Model Shard

Idle Model Shards

GPU

GPU

GPU

Model B

Model B

Model B

Model C

Model C

Model C

TIME

GPU GPU GPU

