UCSan Diego

JACOBS SCHOOL OF ENGINEERING
Computer Science and Engineering

Hydra: Efficient Training for Larger-Than-Memory

— —>

Deep Leamning Models

Kabir Nagrecha | Advised by Arun Kumar

“roblem
GPU memory is Deep Learning models
limited... are growing rapidly! GPU GPU GPU
Models AN IMPOSSIBLE J
A) Model CHOICE! Task/Data
Parallelism Parallelism
-
N— ﬁ

What’s Needed: An efficient platform for Bottleneck: Traditional Model Parallelism uses

distributed training of large models
parallelize compute!

multiple devices to handle

the memory demands of a single model. But this reduces our ability to

Hydra: Model Spilling, Shard Alternator
GPU

Carallelism, and

TIME —

[T
C_LU @) GPU 2l F odel B
© <
000 0. c GPU
o O
G
Active Model Shard O — GPU
=
DRAM €1=]§ | Model A Model C Model B
all
E C12UM Model B Model A Model C
C:F) CId WM \iodel C Model B Model A

Idle Model Shards

Model Spilling
Detach training orchestration
from GPU arrangement

Shard Alternator Parallelism (SHARP)
Blend model and task parallelism for high throughput
training

Suffering

GPU
000

Active Model Shard

?

Idle Model Shard

DRAM

Idle Model Shards

Double Buffering
Overlap communication with
compute for low latency training

—valuation

End-to-End Runtime Speedup (8 devices)

Benchmark Dataset: 100

WikiText-2 o 8 7.45X
= 80
Z
5 6 g
o) ~ 60
Workload: = 5
Model Selection g 4 N 40
1A - o 5
2 3+ oarameterlmodels 2, ! By 1 dax .
ransformer pretraining task o 1.0X -
8-32 batch size I

0
128 sequence length

PyTorch

Microsoft FlexFlow
DeepSpeed (Model/Data
Parallel)

Hydra

Native (SHARP)

Total GPU Ultilization

82%

26%

Microsoft FlexFlow
DeepSpeed (Model/Data
Parallel)

23%

%

PyTorch
Native

Hydra
(SHARP)

Hydra produces near-optimal speedups!

Hardware: i 82% Average GPU Utilization
Single-node, 8 12GB GPUs >7.4X Speedups with 8 Devices
Ongoing Work & Potential Impact
e

.

e

-—"

Data Parallelism User Study - Deep Learning for Physical Simulations Concurrent Training at Scale

