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Instructor

Xi He:

• Research interest: privacy and security for 
data management and analysis

• CS848, Fall 2024: 
– Thur: 1:00pm – 3:40pm (DC2568)
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Bailey Kacsmar:

• University of Alberta 

• Research interest: human-centered technical 
privacy solutions

• Co-designer and guest lecturer



Tell me …
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… why do you want to do this course?



Personalization …
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In perspective: ~90% of Google’s revenue comes from online ads (as of 2015)

Online Advertising
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In perspective: ~90% of Google’s revenue comes from online ads (as of 2015)

Online Advertising
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Health
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Detecting influenza epidemics using search 
engine query data

http://www.nature.com/nature/journal/v457/n

7232/full/nature07634.html

Red: official numbers from Center for Disease Control and Prevention; weekly 
Black: based on Google search logs; daily (potentially instantaneously)



Medicine
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https://www.nature.com/news/personalized-medicine-time-for-

one-person-trials-1.17411



Precision Medicine
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Source: forbes.com



Predictive Policing
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Predictive Policing
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https://www.youtube.com/watch?v=YxvyeaL7NEM


The dark side of the force…
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http://ragekg.deviantart.com/art/The-Dark-Side-of-the-Force-

174559980



39% of the experts agree…

Thanks to many changes, including the building of “the Internet 
of Things,” human and machine analysis of Big Data will 
cause more problems than it solves by 2020. The existence of 
huge data sets for analysis will engender false confidence in 
our predictive powers and will lead many to make significant 
and hurtful mistakes. Moreover, analysis of Big Data will be 
misused by powerful people and institutions with selfish 
agendas who manipulate findings to make the case for what they 
want. And the advent of Big Data has a harmful impact because 
it serves the majority (at times inaccurately) while 
diminishing the minority and ignoring important outliers. 
Overall, the rise of Big Data is a big negative for society in nearly 
all respects.

       —  2012 Pew Research Center Report
http://pewinternet.org/Reports/2012/Future-of-Big-
Data/Overview.aspx
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Where is the data coming from?
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Where is the data coming from?

• Census surveys

• IRS Records

• Medical records

• Insurance records

• Search logs

• Browse logs

• Shopping histories

• Photos

• Videos

• Smart phone Sensors

• Mobility trajectories

• …
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How is this data collected?
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http://graphicsweb.wsj.com/docum

ents/divSlider/media/ecosystem10

0730.png

http://graphicsweb.wsj.com/documents/divSlider/media/ecosystem100730.png


Isn’t my data anonymous ?
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Device Fingerprinting
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20

https://panopticlick.eff.org/



Let’s get rid of unique identifiers …
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The Massachusetts Governor 
Privacy Breach [Sweeney IJUFKS 2002]

•Name
•SSN
•Visit Date
•Diagnosis
•Procedure
•Medication
•Total Charge

Medical Data

• Zip

• Birth

  date

• Sex
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The Massachusetts Governor 
Privacy Breach [Sweeney IJUFKS 2002]

•Name
•SSN
•Visit Date
•Diagnosis
•Procedure
•Medication
•Total Charge

•Name
•Address
•Date 
   Registered
•Party 
   affiliation 
•Date last
   voted

• Zip

• Birth

  date

• Sex

Medical Data Voter List
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The Massachusetts Governor 
Privacy Breach [Sweeney IJUFKS 2002]

•Name
•SSN
•Visit Date
•Diagnosis
•Procedure
•Medication
•Total Charge

•Name
•Address
•Date 
   Registered
•Party 
   affiliation 
•Date last
   voted

• Zip

• Birth

  date

• Sex

Medical Data Voter List

• Governor of MA
   uniquely identified
    using ZipCode, 
    Birth Date, and Sex.
    
Name linked to 
Diagnosis
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The Massachusetts Governor 
Privacy Breach [Sweeney IJUFKS 2002]

•Name
•SSN
•Visit Date
•Diagnosis
•Procedure
•Medication
•Total Charge

•Name
•Address
•Date 
   Registered
•Party 
   affiliation 
•Date last
   voted

• Zip

• Birth

  date

• Sex

Medical Data Voter List

• Governor of MA
   uniquely identified
    using ZipCode, 
    Birth Date, and Sex.
    

Quasi 
Identifier

87 % of US population
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AOL data publishing fiasco
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AOL data publishing fiasco …
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Xi222
Xi222
Xi222
Xi222
Abel156
Abel156
Jane12345
Jane12345
Jane12345
Jane12345
Bob222
Bob222

Uefa cup
Uefa champions league
Champions league final
Champions league final 2013
exchangeability
Proof of deFinitti’s theorem
Zombie games
Warcraft
Beatles anthology
Ubuntu breeze
Python in thought
Enthought Canopy



User IDs replaced with random 
numbers
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Uefa cup
Uefa champions league
Champions league final
Champions league final 2013
exchangeability
Proof of deFinitti’s theorem
Zombie games
Warcraft
Beatles anthology
Ubuntu breeze
Python in thought
Enthought Canopy

865712345
865712345
865712345
865712345
236712909
236712909
112765410
112765410
112765410
112765410
865712345
865712345



Privacy Breach
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[NYTimes 2006]



Machine learning models can 
reveal sensitive information

30

[Korolova JPC 2011]

Facebook Profile

+
Online Data

Number of 
Impressions

+ Who are 
interested in 

Men

+ Who are 
interested in 

Women
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0

Facebook’s learning algorithm uses private information to predict match to ad



Genome wide association studies

31

Did Bob participate in the study

Results of a GWAS study
High density SNP profile of Bob

[Homer et al PLOS Genetics 08]
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Deep Learning

Incredibly powerful tool for …

• Extracting regularities from data 
according to a given data

• Amplifying privacy concerns!
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This course:
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http://www.webvisionsevent.com/userfiles/lightsabercrop_large_

verge_medium_landscape.jpg

Learn to combat the dark side



You will …

• empirically evaluate privacy 

• mathematically formulate privacy

• investigate human-centered privacy 

• bridge privacy gaps in policies, practices, 
and technologies
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Course Format

• Module 1: Empirical privacy

• Module 2: Semantic privacy

• Module 3: Useable privacy

• Module 4: Legal privacy

• Seminars:  

– Paper Reading by Topics
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Lectures
In-class Exercise

Read papers
Paper discussion
Research Project



Administrivia

• Website
–  https://cs.uwaterloo.ca/~xihe/cs848_f24

– Schedule (with links to slides, readings, projects, etc.)

• Grading

– Project: 50%

– Paper reviews, presentation and discussion: 50% 

• LEARN for submission and grades:

– https://learn.uwaterloo.ca/d2l/home/1046490   
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https://cs.uwaterloo.ca/~xihe/cs848_f24
https://learn.uwaterloo.ca/d2l/home/1046490


Administrivia - Project 

• Projects: (50% of grade)

– Human centered privacy

– Privacy attacks (“break” existing privacy algorithms) 

– Privacy-preserving theory/algorithms design

– Implement/adapt exiting work to new domains 

– Privacy policies and regulations w.r.t. PETs

• Goals:

– Literature review

– Some original research/implementation 
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Administrivia - Project 

• Timeline:
– Sep 26: Choose Project (ideas will be posted…new ideas 

welcome) 

– Oct 3: Project proposal (1-4 pages describing the project) 5%

– Nov 7: Mid-project review (2-3 page report on progress) 10%

– Dec 5 [TBD]: Final presentations (10-15 minute talk) 10% 

– Dec 9: Final report (6-8 page conference style paper) 25%
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Administrivia - Paper

• Paper presentation and discussion: 50% 

– Paper reviews (15 papers across the term): 15%

– Seminar style presentations (1-2 per term): 20%

– Participation in paper discussions: 10%

– Quality of feedback on peers: 5%

• Details can be found here
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https://docs.google.com/document/d/1_LrYWG8k6NqW6IT-uJPy8pdkWkpxJ6kDdcSe8CWVTeE/edit?usp=sharing
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What we expect you to know …

• Strong background in 

– Probability

– Proof techniques

• Some knowledge of 

– Programming with Python

– Machine learning

– Statistics

– Algorithms
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Academic Integrity

• See course website 
https://cs.uwaterloo.ca/~xihe/cs848_f24/ 

• Paper critiques are individual work and 
submission. 

• All suspected cases of violation will be 
aggressively pursued
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https://cs.uwaterloo.ca/~xihe/cs848_f24/
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