Module 2: Semantic Privacy

Privacy for Data Analysis and ML
CS848 Fall 2024

WATERLGo| DBSE:



Logistics

* Project
— Project ideas will be posted on Learn (next Tue noon)
— Start brainstorm your project
— Choose project due is Sep 24
— Project proposal due is Oct 3

* Paper reading and presentation
— Site: https://uauw-fall2024privacy.hotcrp.com/

— Link and more instructions will be sent to your email
(by next Thur class)


https://uauw-fall2024privacy.hotcrp.com/

Recap: Empirical Privacy

1. De-anonymizing Data:
A case study on de-anonymizing Netflix data

2. Measures of Anonymity/Privacy:
k-Anonymity, 1-Diversity, t-Closeness

3. Privacy Attacks Practicum:
Privacy desiderata

4. Privacy Risks in ML:
Membership inference attacks



Module 2: Semantic Privacy

* Problem (30 mins)
— Why Differential Privacy (DP)?

* Basic DP Algorithms (45 mins)
— Building blocks for DP

* Designing Complex DP Algorithms (60 mins)

— Composition and in-class exercises



Why Differential Privacy (DP)?

PROBLEM
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Statistical Database Privacy
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Statistical Database Privacy
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Statistical Database Privacy
(untrusted collector)

compute f

Server wants to >\

Individuals do not
want server to infer
their records

(.)

Server

Person 1
r; I

Person 2
r, I

l

Person 3
r; I

e o o |PersonN
ry I

()

)

l

)

()



Statistical Database Privacy
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Statistical Databases in real-world

applications
Application Data Private Analyst Function (utility)
Collector | Information

Medical Hospital Disease Epidemiologist Correlation between
disease and
geography

Genome Hospital Genome Statistician/ Correlation between

analysis Researcher genome and

disease

Advertising  Google/FB  Clicks/Brow Advertiser Number of clicks on

sing an ad by
age/region/gender
Social Facebook Friend links Another user Recommend other
Recommen- / profile users or ads to users
dations based on social

network
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Statistical Databases in real-world
applications

 Settings where data collector may not be
trusted (or may not want the liability ...)

Application | Data Collector Private Function (utility)
Information

Location Verizon/AT&T Location Traffic prediction
Services
Recommen- Amazon/Google  Purchase Recommendation
dations history model
Traffic Internet Service =~ Browsing Tratfic pattern of

Shaping Provider history groups of users



Privacy is not ...



Statistical Database Privacy is not ...

* Encryption:



Statistical Database Privacy is not ...

* Encryption:
Alice sends a message to Bob such that Trudy
(attacker) does not learn the message. Bob
should get the correct message ...

* Statistical Database Privacy:
Bob (attacker) can access a database
- Bob must learn aggregate statistics, but
- Bob must not learn new information about
individuals in database.



Statistical Database Privacy is not ...

* Computation on Encrypted Data:



Statistical Database Privacy is not ...

* Computation on Encrypted Data:
- Alice stores encrypted data on a server
controlled by Bob (attacker).
- Server returns correct query answers to
Alice, without Bob learning anything about
the data.

» Statistical Database Privacy:
- Bob is allowed to learn aggregate
properties of the database.



Statistical Database Privacy is not ...

e The Millionaires Problem:



Statistical Database Privacy is not ...

* Secure Multiparty Computation:
- A set of agents each having a private input xi ...
- ... Want to compute a function f(x1, x2, ..., xk)
- Each agent can learn the true answer, but must
learn no other information than what can be
inferred from their private input and the answer.

* Statistical Database Privacy:
- Function output must not disclose individual
inputs.



Statistical Database Privacy is not ...

 Access Control:



Statistical Database Privacy is not ...

* Access Control:
- A set of agents want to access a set of resources
(could be files or records in a database)
- Access control rules specifty who is allowed to
access (or not access) certain resources.

- ‘Not access’ usually means no information must
be disclosed

* Statistical Database:
- A single database and a single agent
- Want to release aggregate statistics about a set of
records without allowing access to individual
records



Privacy Problems

* In today’s systems a number of privacy problems arise:

Encryption when communicating data across a unsecure channel

Secure Multiparty Computation when different parties want to
compute on a function on their private data without using a
centralized third party

Computing on encrypted data when one wants to use an
unsecure cloud for computation

Access control when ditferent users own different parts of the
data

« Statistical Database Privacy:
Quantitying (and bounding) the amount of information disclosed
about individual records by the output of a valid computation.



What 1s privacy?



Privacy Breach: Attempt 1

A privacy mechanism M(D)
that allows
an unauthorized party (Y.
to learn sensitive information about any individual in D,

which 79" could not have learnt without access to M(D).

e



Filter by Percentage of male deaths due to smoking: all ages, 2010 SMOKING &
I — | PASSIVE SMOKING
CAUSES CANCER

Is this a privacy breach?

NO

Alice has
Cancer

26



Privacy Breach: Attempt 2

A privacy mechanism M(D) that allows
an unauthorized party g“'
to learn sensitive information about

any individual Alice in D,

which ﬁ’ could not have learnt even with access to M(D)
if Alice was not in the dataset.
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Ditferential Privacy

[Dwork ICALP 2006]
For every pair of inputs

that differ in one row
D, D, O

Adversary should not be able to distinguish
between any D, and D, based on any O

Pr[A(D;) = o]
In (Pr[A(DZ) — 0]) < g e>0

For every output ...




Why pairs of datasets that differ in
one row?

For every pair of inputs
that differ in one row

D, D,

For every output ...

O

Simulate the presence or absence
of a single record

29
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Why all pairs of datasets ...?

For every pair of inputs
that differ in one row

D, D,

Guarantee holds no matter what
the other records are.

For every output ...

O



Why all outputs?

Set of all
outputs

P[AMD) =0,]

—

|
P[AD,) = O]

31



Should not be able to distinguish whether input
was D, or D,no matter what the output

&

Worst discrepancy
in probabilities

32
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Privacy Parameter ¢

For every pair of inputs
that differ in one row

D, D,

Pt[AD,) = o] < & Pt[AD,) = o]

For every output ...

O

Controls the degree to which D; and D, can be distinguished.
Smaller the e more the privacy (and worse the utility)




Desiderata for a Privacy Detinition

1. Resilience to background knowledge

— A privacy mechanism must be able to protect individuals’ privacy
from attackers who may possess background knowledge

2. Privacy without obscurity

—  Attacker must be assumed to know the algorithm used as well as
all parameters [MK15]

3. Post-processing

—  Post-processing the output of a Erivac mechanism must not
change the privacy guarantee [KL10, MK15]

4. Composition over multiple releases

—  Allow a graceful degradation of privacy with multiple invocations
on the same data [DIN03, GKS08



BASIC DP ALGORITHMS



Basic DP Algorithms

* Randomized Response

Laplace Mechanism
* Exponential Mechanism
* Gaussian Mechanism



Non-trivial deterministic Algorithms ~

do not satisty differential privacy

Space of all inputs Space of all outputs
(at least 2 distinct ouputs)




Non-trivial deterministic Algorithms -~
do not satisty differential privacy

Each input mapped to a distinct
output.
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There exist two inputs that differ in one
entry mapped to ditferent outputs.

Pr>0




Random Sampling ...

40

... also does not satisty ditferential privacy

Input Output

. i
D, D,

. . 1 Pr
Pr[D, =2 O] = 0 implies Og[Pr

O

Dﬁ@]} _

D, 2 O]
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Randomized Response (a.k.a. local randomization)

D O
Disease Disease
(Y/N) W)

Y With probability p, ¥
Report true value

v N
With probability 1-p,

N Report flipped value N

Y — N

N Y



Ditferential Privacy Analysis

* Consider 2 databases D, D’ (of size M) that
differ in the jth value

— D[j] # D’[j]. But, D[i] = D’[i], for all i #]

* Consider some output O

P(D—»O){< R 1 cp< et
P(D’>0) = ° — T+e P ST1es
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Utility Analysis

* Suppose y out of N people replied “yes”, and rest said “no”

What is the best estimate for n = fraction of people with disease = Y?

y
ﬁzﬁ—(l—z?)
2p — 1
« E(M) == i'mnmi
e Var(®) = m1-m) -

2
N Iy 1
v(as(p-3)" -3)
Sampling  Variance due to coin flips

- std(®) = 0 (=) ; Std(&N) = 6(VN)



Randomized response for larger domains

* Suppose area is divided into k x k uniform grid.

* What is the probability of
reporting the true location?

¢ YOU ARE HERE
(and we know 1t)

——

.

P . Lo

NEW YORk G'VY

* What is the probability of
reporting a false location?



Algorithm:

* Report true position: p
* Report any other position: q (< p)

p+qk*-—1)=1
p < e“q

1
1= et + (k4 —-1)

+ Fore=In(3), k=10:p = —
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Output Randomization

Query

<

—

|
/
/}

Researcher

®

 Add noise to answers such that:

— Each answer does not leak too much information
about the database.

— Noisy answers are close to the original answers.



TOVNSoeF
Laplace Mechanism

Query q |

= =
) \A\\\

1

G Researcher
Privacy depends on -

the A parameter
V T
h(T]) X exp(— | M |/ /\) Laplace Distribution —
Lap(A)
Mean: 0, !

Variance: 2 A? 05 A
0

-10 -8 -6 4 -2 0 2 4 6 8 10



How much noise for privacy?

Sensitivity: Consider a query q: I 2 R. 5(q) is the smallest
number s.t. for any neighboring tables D, D,

q(D)-q(D’) I < S(q)

Thm: If sensitivity of the query is S, then the following
guarantees e-differential privacy.

A=5/¢



Sensitivity: COUNT query |
Disease

* Number of people having disease

* Sensitivity =1

* Solution: 3 + 1,
where 1 is drawn from Lap(1/¢)
— Mean =0 N
— Variance = 2/¢€?

49



Sensitivity: SUM query

* Suppose all values x are in [a,b]

* Sensitivity =b



Privacy of Laplace Mechanism

* Consider neighboring databases D and D’

* Consider some output O

Pr(A(D) =0] Prlq(D)+n=20]
Pr[A(D") =0] Pr[q(D") +n=0]

B ELR ISy 1) o1 /)
Pr[n =0 — q(D')]
o —10-q(D)1/2

~ e-lo—q@"1/2 M 7) = 1q9(D)=q(l

< ela®@-a(D)/2 < oS@/A — e

51



Utility of Laplace Mechanism

« Laplace mechanism works for any function that returns
a real number

 Error: E[(true answer — noisy answer)?]
2
= E[(Lap(1))"]

~E[(Lap(1))”] - E[Lap(D)]? = Var(Lap(2))

= 21%=2*S(q)? / €2 Lap(A) A=S(q)/e

" A
VAN

-0 -8 -6 -4 -2 0 2 4 6 8 10



Utility Theorem

Thm: P[|A(D) — q(D)| >t 1] = et

0.6 Lap(A)

0.4

/\
oA

-0 8 6 -4 -2 0 2 4 6 8 10

P[IA(D) —q(D)| > ¢t - 4]

_Ix] |x]

_j e /1dx+j°°e_7dx
), 22 Y

x|

_2j°°e_7dx_ _t
—4), T TF

Cor: p[m(p)— )| > 2L (q) <5>]sa

53



Laplace Mechanism vs Randomized
Response (RR)

Privacy
* Provide the same ¢-DP
* Laplace mechanism assumes data collected is trusted

* RR does not require data collected to be trusted
— Also called a Local Algorithm, since each record is perturbed

Utility
* Suppose a database with N records where uN records
have disease =Y.

* Query: # rows with Disease=Y

— Std dev of Laplace mechanism answer: O(1/¢)
— Std dev of RR answer: O(VN/¢)



Basic DP Algorithms

* Randomized Response

Laplace Mechanism
* Exponential Mechanism
* Gaussian Mechanism



Exponential Mechanism

 For functions that do not return a real number ...

— “what is the most common nationality in this room”:
Chinese/Indian/American...

* When perturbation leads to invalid outputs ...

— To ensure integrality/non-negativity of output



SO

Consider some function £ (can be deterministic or probabilistic):
Inputs Outputs

- \ —\
[ , \AA

How to construct a differentially private version of f?

Exponential Mechanism




Exponential Mechanism

* Scoring function w: Inputs X Outputs 2 R
— D: nationalities of a set of people
— #(D, 0): # people with nationality O
— f(D): most frequent nationality in D

— A possible score function
w(D,0) = #(D,0) — #(D, f(D))

 Sensitivity of w:
Sw = maxg p p'. pap’|=1 IW(D,0) —w(D’, 0)]



Exponential Mechanism

Given an input D, and a scoring function w,

Randomly sample an output O from Outputs with
probability
E

eﬂ'W(D,O)

E
>AaW(D,Q)
ZQEOutputs e24

* Note that for every output O, probability O is output > 0.



Utility of the Exponential Mechanism

* Depends on the choice of scoring function — weight
given to the best output.

* Eg,
“What is the most common nationality?”
w(D,nationality) = # people in D having that nationality

Sensitivity of w is 1.

* Q: What will the output look like?



Utility of Exponential Mechanism

* Let OPT(D) = nationality with the max score
* Let Ogpr ={O € Outputs : w(D,0) = OPT(D)}

* Let the exponential mechanism return an output O*

Theorem:

2A Outputs
Pr{w(D,0") < OPT(D) — —(logl P |+ t)] < et
€ |00pr|



Utility of Exponential Mechanism

Theorem:

2A |Outputs| _t
Pr|w(D,0") < OPT(D) — - log + t <e

100pr|

Suppose there are 4 nationalities
Outputs = {Chinese, Indian, American, Greek}

Exponential mechanism will output some nationality that is shared by
at least K people with probability 1-e(=0.95), where

K > OPT -2(log(4) + 3)/s = OPT - 6.8/¢



Laplace versus Exponential Mechanism

Let f be a function on tables that returns a real number.

* Define: score function w(D,0O) =-1{(D) - Ol
* Sensitivity of w = maxp , (1{(D) - Ol - [{(D”) - Ol)
<maxpy [ {(D)-£(D’)| = sensitivity of f

* Exponential mechanisms returns an output £f(D) + n with probability
proportional to

< Laplace noise with
e_ﬂ|f(D)+17—f(D)| parameter 2A/e

63
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Randomized Response vs Exponential
Mechanism

* Input: a bitin {0,1}
* Output: a bit in {0,1}

« Score: w(0,0) = w(1,1) = 1, w(0,1) = w(1,0) = 0

* Sensitivity of w=1 Randomized
Response with

parameter €/2

/
E 2

E
1+e /2

Output the same value with prob:



Randomized response for larger domains

* Suppose area is divided into k x k uniform grid.

* What is the probability of
reporting the true location?

¢ YOU ARE HERE
(and we know 1t)

——

.

P . Lo

NEW YORk G'VY

* What is the probability of
reporting a false location?



Different scoring functions give different
algorithms

* Uniform:
— Report true position: 1
— Report a false position: 0

 Distance:
— Report true position (i,j): 0
— Report false position (x,y): - (li-x| + lj-y1)



Summary of Exponential Mechanism

* Differential privacy for cases when output perturbation
does not make sense.

* Idea: Make better outputs exponentially more likely;
Sample from the resulting distribution.

« Every differentially private algorithm is captured by
exponential mechanism.
— By choosing the appropriate score function.



Summary of Exponential Mechanism

 Utility of the mechanism only depends on
log(1Outputsl)

— Can work well even if output space is exponential in the input

* However, sampling an output may not be
computationally efficient if output space is large.



Basic DP Algorithms

* Randomized Response

Laplace Mechanism
* Exponential Mechanism
* Gaussian Mechanism



Gaussian Mechanism

* The L2-sensitivity of f: D - R% is:
S2(f) = max If (D) = f(DO)l2

D,D': |DAD'|=1

e Gaussian mechanism adds noise scaled to N(0, c?) to

each d component of the output = satisfies (¢, 5)-DP if

o > cS,(f)/€ for ¢ > ZIn%S,e € (0,1)

(¢, 5)-DP: VS

Pr[M(D) € S] < e Pr[M(D") eS| + §

70



Take a break (5 mins)

* Download the in-class exercise (Jupyter
Notebook) and datasets

— https://cs.uwaterloo.ca/~xihe/cs848_f24/slides/
DPExercises/



BUILDING COMPLEX DP
ALGORITHMS
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Sequential Composition

M,, &
M, (D)

. <€
| A Mo & i
_ < M, (D, M,(D))

« It M;, M,, ..., M, are algorithms that access a private
database D such that each M; satisfies ¢; -differential
privacy,

>

Private Database

then the combination of their outputs satisfies -
differential privacy with

€=€1+...+€k



Parallel Composition

M;, g
M, (D;)

o D g
‘ Z/l_ © M,, &, S
| j M,(D,) ‘

Private Database

>

« It M;, M,, ..., M, are algorithms that access are
algorithms that access disjoint databases D;, D,, ...,
D, such that each M,; satisfies ¢, -differential privacy,

then the combination of their outputs satisfies -
differential privacy with

¢ =max(&q, ..., &)

74
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Postprocessing

M, €

o
/
‘q - AMD)) W - M(D)

» If M is an e-differentially private algorithm, any
additional post-processing A o M also satisfies é-
differential privacy.

Private Database



Building Complex DP Algorithms
* Composition

* Problem 1: Answer multiple queries
— Examples

— DP algorithms optimization

 Problem 2: DP Gradient Descent

— Gradient descent
— Better composition (RDP)



Problem 1: Answering Multiple Queries

M 6’2" 210
F 53" 190
F 5'9” 160

M 53" 180

M 6’7" 250

* Design an e-differentially private algorithm that

Queries:

# Males with BMI < 25

# Males

# Females with BMI < 25
# Females

can answer all these questions.

e What is the total error?

77



Algorithm 1

Return:

* (# Males with BMI <25) + Lap(4/¢)

* (# Males) + Lap(4/¢)

* (# Females with BMI) <25 + Lap(4/¢)
* (# Females) + Lap(4/¢)



Privacy

* Sensitivity of count = 1. So each query is
answered using a ¢/4-DP algorithm.

* By sequential composition, we get e-DP.



Utility

Error:

> E (@ -a)’)

Total Error:




Algorithm 2

Compute:

* 1 = (# Males with BMI < 25) + Lap(1/¢)

* @ = (# Males with BMI > 25) + Lap(1/¢)

* @3 = (# Females with BMI < 25) + Lap(1/¢)
* @z = (# Females with BMI > 25) + Lap(1/¢)

~ ~ ~ 7’ S’ 7’ S 7’ S

* q1, q1+q2/ d3, q3+q4



Privacy

* Sensitivity of count = 1. So each query is
answered using a ¢-DP algorithm.

* 41,92, q3, 44 are counts on disjoint portions of
the database. Thus by parallel composition
releasing q7, 93, 43, 4 satisties e-DP.

* By the postprocessing theorem, releasing qy, q1+qz,
g3, qz+q, also satisfies e-DP.



Utility

Error:
> E(@m - a)’)

Tighter privacy analysis gives better accuracy for

the same level of privacy

Total Error:

1\° 1\° 1\° 1\ 12
2(=) +2-2(=) +2(=] +2-2(=) = =
E E E E E

q1 1+ q; qs qs + s

83




Generalized Sensitivity

* Let f: D - R% be a function that outputs a
vector of d real numbers. The L1-
sensitivity of f is given by:

51(f) = madx If (D) — f(D)Hll;

D,D':|DAD'|=1

where [|x —yl|l; = X;lx; — vl



Generalized Sensitivity

* g, = # Males with BMI < 25
* g, = # Males with BMI > 25
g = # Males with BMI

* Let f; be a function that answers both q4, g
* Letf, be a function that answers both q4, q

* Sensitivity of f; =1
 Sensitivity of f, =2

* An alternate privacy proof for Alg 2 is to show that the

—~ —~ —~ ~~
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Improving utility of Alg 2

Compute:
* q1 = # Males with BMI <25 + Lap(1/¢)
* q; = # Males with BMI > 25 + Lap(1/¢)

Return

() ~’ ~—|-~
11, 4174z We know g, < g1 + g5,

but P[q7 > q1+q;] >0




Constrained Inference

DATA OWNER

/

Q(l)

>
g

Diff.
Private
Interface

ANALYST

Q

~

— q —

Data

Constrained
Inference




Constrained Inference

* 41, 92, ---, Qi be a set of queries
* q1, 92, ---,qx be the noisy answers

* Constraint C(qq, g5, ..., qx) =1 holds on true
answers (for all typical databases), but does not
hold on noisy answers.

* Goal: Find q, q5, ..., q that are:
— Close toq71,q5, ...,qx
— Satisty the constraint C(qy, 92, ..., Qx)



Least Squares Optimization

min ) (@ - 4’

S.t. C(ﬁ;%: ;%)



Geometric Interpretation

20
k)

S.t.C(q1, g oor Qi)

Space of
Outputs

satistying the

constraint

90



Geometric Interpretation

/ min ) @i = @*
- qk) S. tc(myﬁj ;%)

hRN Space of
Outputs

satisfying the
constraint

Theorem: ||g — qll, < |lg — q||, when the constraints
form a convex space

91
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Ordering Constraint

Isotonic Regression:

300

501

200

150 |

100

min » (@ — @)’

s.t.q7 <G; < .. <k

We will see such a problem in

the in-class exercises

25



Building Complex DP Algorithms
* Composition

* Problem 1: Answer multiple queries
— Examples

— DP algorithms optimization

* Problem 2: DP Learning
— DPSGD

— Better composition (RDP)



DP Training

—
Data
Sources

Data > Data
Acquisition Cleaning
Data Training

Exploration Data

4

Hyper-
parameter
Tuning

I~

Validatio
n

>

Inferences




DP Training

. DPSGD [ACG+16]

Compute gradient
VL(wy) on random
sample

Compute gradient
“1 VL(w;) on random @2
= wy — aVL(wg) lsample = w; — aVL(w,)
Clip Clip
Add noise Add noise

T—-1

Initialize wy and choose a learning rate «
Fort=0..
Take a random sample of size L
Compute gradient per sample and clip gradient to norm
bound b
Add noise V' (0, b%*c*) to the averaged clipped gradients
Descent w;,; from w; at learning rate «

95




Building Complex DP Algorithms
* Composition
* Problem 1: Answer multiple queries

— Examples

— DP algorithms optimization

96

* Problem 2: DP Learning
— DPSGD

— How to compose the privacy noise?




In-class Exercises

This Photo by Unknown Author is licensed under CC BY-NC-ND


https://www.ohioemployerlawblog.com/2020/08/coronavirus-update-8-26-2020-new-dol.html
https://creativecommons.org/licenses/by-nc-nd/3.0/

Building Complex DP Algorithms
* Composition

* Problem 1: Answer multiple queries
— Examples

— DP algorithms optimization

* Problem 2: DP Learning
— DPSGD

— Better composition (RDP)



Advanced Composition Theorem

* Basic Composition:
— Compositing (€4, 61)-DP and (e,, 6,)-DP is (e1 + €3,81 + 6,)-DP
— n-fold composition of (g, §)-DP is (ne, né)-DP

* Advanced Composition:

— n-fold composition of e-DP is ( \/ 2n ln(%) €0 )—DP, ford <1

— Applicable to (¢, §)-DP



Trouble with (g, 6)-DP

* Composing advanced composition

El'DP

€,-DP

(€1,6"1)-DP

El'DP

(€2,6'2)-DP

(€n, 6')-DP

— ... #P Hard

Murtagh, Vadhan, " 'The complexity of computing the optimal
composition of differential privacy”, TCC 2016-A.



Trouble with (g, 6)-DP

* Composing advanced composition

El'DP

€,-DP

V3, (€,(8), 8)-DP

El'DP

v§, (€5(8), 5)-DP

V8, (,(8),5)-DP

N(0,1) Gaussian I:> (E 6)-DP

-\

ced
051t10n

. yN%(0,1) Gaussian
Gap

* Gaussian + Advanced Composition is not tight
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Better Notion of Closeness

* e-DP * Renyi Divergence at o

max P(x)/Q(z) < e° Doo(P||Q) < €

X




Renyi Divergence

Di(PIQ) = lim Da(PIQ) = Ep [log 7|
1 (P(r)\ Y
Da(PIQ) = 5 Eq | (1)

P
Do(P|Q) = lim_Da(P|Q) = log max Qgg




Renyi Differential Privacy (RDP)

* (a, €)-Renyi Ditferential Privacy (RDP):
VD,D": Do (M(D)||M(D")) < €

e (0,€)-RDP is e-DP

log 1/5
a—

* (a,€)-RDP = (€

,0)-DP for any §
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“Bad Outcomes” Interpretation

« e-DP: VS
Pr[M(D) € S] < e Pr[M(D') € S]

, . No Catastrophic Failure Mode!
. (@ €)-Rényi DP: vS

Pr(M(D) € S] < (e€ Pr[M(D') e St~/

. (¢, 8)-DP: VS
PriM(D) € S] < e“Pr[M(D)e S| + 6

“Nuclear Option”:

* With probability & publish everything
* With probability 1 publish 6 fraction of inputs




Composition

* Simultaneous release of (a, €;)-RDP and
(a, €,)-RDP is (a, €; + €5)-RDP

8 . (81+82)'DP f(D), g(D)

/81-DP

/082-DP g(D)
j
—

N |

i(D)




Renyi Budget Curve: Gaussian Mechanism
* N(0,0%)

SA




RDP as Privacy Accountant

(e.g., DPGD)
M, M-
P xS e W
2 €12 ¥, &n,2 . (2,8)
3 ke rk 03, (3,8,) (e, 5)-DP
32 €13 €23 €z .(:;3.2,832)
2 2 2

(a,€)-RDP = (€ +10g1/8

§)-DP for any 6
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RDP as Privacy Accountant
(e.g., DPSGD)

» Tight analysis of Gaussian noise
+ Privacy amplification via sub-sampling

Reference

Conditions

Privacy bound

Abadi et al.[ACG*16]

1
q < 165

aﬁl—kazlnqig

(. ¢* =555= + O(g°a’/a?))-RDP for ¢ — 0

Abadi et al.[ACG*16] integer o Numerical procedure
< i, o > \/5
Bun et al. [BDRS18] 1= }0 21 1 (o, g% - 82)-RDP for fixed-size sample
a < 507 In 1 v
qg < %} o>4

Mironov et al. [MTZ19]

a < %O'QL —2lno

%GQLQ —Inb—2Ineo

IN

a
L+ In(qa) + ﬁ

(v, ¢* - 2%)-RDP for i.i.d. (Poisson) sample

Mironov et al. [MTZ19]

arbitrary o > 1

Numerical procedure




Summary

* An algorithm is differentially private if its output is
insensitive to the presence/absence of a single row.

* Building blocks

— Randomized Response
— Laplace mechanism

— Exponential Mechanism
— Gaussian Mechanism

* Designing complex DP algorithms
— Composition
— Answer multiple queries
— DPSGD
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