Module 2: Semantic Privacy

Privacy for Data Analysis and ML CS848 Fall 2024

Logistics

- Project
 - Project ideas will be posted on Learn (next Tue noon)
 - Start brainstorm your project
 - Choose project due is Sep 24
 - Project proposal due is Oct 3
- Paper reading and presentation
 - Site: <u>https://uauw-fall2024privacy.hotcrp.com/</u>
 - Link and more instructions will be sent to your email (by next Thur class)

Recap: Empirical Privacy

- De-anonymizing Data: A case study on de-anonymizing Netflix data
- 2. Measures of Anonymity/Privacy: k-Anonymity, l-Diversity, t-Closeness
- 3. Privacy Attacks Practicum: Privacy desiderata
- 4. Privacy Risks in ML: Membership inference attacks

Module 2: Semantic Privacy

- Problem (30 mins)
 - Why Differential Privacy (DP)?
- Basic DP Algorithms (45 mins)
 Building blocks for DP
- Designing Complex DP Algorithms (60 mins)
 Composition and in-class exercises

Why Differential Privacy (DP)? **PROBLEM**

Statistical Databases

Statistical Database Privacy (untrusted collector)

Statistical Database Privacy (untrusted collector)

Statistical Databases in real-world applications

Application	Data Collector	Private Information	Analyst	Function (utility)
Medical	Hospital	Disease	Epidemiologist	Correlation between disease and geography
Genome analysis	Hospital	Genome	Statistician/ Researcher	Correlation between genome and disease
Advertising	Google/FB	Clicks/Brow sing	Advertiser	Number of clicks on an ad by age/region/gender
Social Recommen- dations	Facebook	Friend links / profile	Another user	Recommend other users or ads to users based on social network

Statistical Databases in real-world applications

• Settings where data collector may not be trusted (or may not want the liability ...)

Application	Data Collector	Private Information	Function (utility)
Location Services	Verizon/AT&T	Location	Traffic prediction
Recommen-	Amazon/Google	Purchase	Recommendation
dations		history	model
Traffic	Internet Service	Browsing	Traffic pattern of groups of users
Shaping	Provider	history	

Privacy is *not* ...

• Encryption:

• Encryption:

Alice sends a message to Bob such that Trudy (attacker) does not learn the message. Bob should get the correct message ...

 Statistical Database Privacy: Bob (attacker) can access a database
 Bob must learn aggregate statistics, but

- Bob must not learn new information about individuals in database.

• Computation on Encrypted Data:

- Computation on Encrypted Data:
 Alice stores encrypted data on a server controlled by Bob (attacker).
 - Server returns correct query answers to Alice, without Bob learning *anything* about the data.
- Statistical Database Privacy:
 Bob is allowed to learn aggregate properties of the database.

• The Millionaires Problem:

- Secure Multiparty Computation:
 A set of agents each having a private input xi ...
 ... Want to compute a function f(x1, x2, ..., xk)
 - Each agent can learn the true answer, but must learn no other information than what can be inferred from their private input and the answer.

Statistical Database Privacy:
 Function output *must not disclose* individual inputs.

• Access Control:

Access Control:

- A set of agents want to access a set of resources (could be files or records in a database)

- Access control rules specify who is allowed to access (or not access) certain resources.

- 'Not access' usually means no information must be disclosed

- Statistical Database:

 - A single database and a single agent Want to release aggregate statistics about a set of records without allowing access to individual records

Privacy Problems

- In today's systems a number of privacy problems arise:
 - Encryption when communicating data across a unsecure channel
 - Secure Multiparty Computation when different parties want to compute on a function on their private data without using a centralized third party
 - Computing on encrypted data when one wants to use an unsecure cloud for computation
 - Access control when different users own different parts of the data
- Statistical Database Privacy: Quantifying (and bounding) the amount of information disclosed about individual records by the output of a valid computation.

What is privacy?

Privacy Breach: Attempt 1

A privacy mechanism M(D) that allows an unauthorized party to learn sensitive information about any individual in D,

which ***** could not have learnt without access to M(D).

Alice has Cancer

Is this a privacy breach? NO

Privacy Breach: Attempt 2

A privacy mechanism M(D) that allows an unauthorized party ***** to learn sensitive information about any individual Alice in D,

could not have learnt even with access to M(D) if Alice was *not in the dataset*.

Differential Privacy

between any D_1 and D_2 based on any O

$$\ln\left(\frac{\Pr[A(D_1) = o]}{\Pr[A(D_2) = o]}\right) \le \varepsilon, \qquad \varepsilon > 0$$

Why pairs of datasets *that differ in one row*?

Simulate the presence or absence of a single record

Why *all* pairs of datasets ...?

Guarantee holds no matter what the other records are.

Why all outputs?

Should not be able to distinguish whether input was D_1 or D_2 no matter what the output

Controls the degree to which D_1 and D_2 can be distinguished. Smaller the ε more the privacy (and worse the utility)

Desiderata for a Privacy Definition

- 1. Resilience to background knowledge
 - A privacy mechanism must be able to protect individuals' privacy from attackers who may possess background knowledge
- 2. Privacy without obscurity
 - Attacker must be assumed to know the algorithm used as well as all parameters [MK15]
- 3. Post-processing
 - Post-processing the output of a privacy mechanism must not change the privacy guarantee [KL10, MK15]
- 4. Composition over multiple releases
 - Allow a graceful degradation of privacy with multiple invocations on the same data [DN03, GKS08]

Building blocks for DP BASIC DP ALGORITHMS

Basic DP Algorithms

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism
- Gaussian Mechanism
- Noisy Max

. . . .

- Sparse Vector Technique
- Sample and Aggregate
Non-trivial deterministic Algorithms³⁷ do not satisfy differential privacy

Space of all inputs

Space of all outputs (at least 2 distinct ouputs)

Non-trivial deterministic Algorithms ³⁸ do not satisfy differential privacy

There exist two inputs that differ in one entry mapped to different outputs.

Randomized Response (a.k.a. local randomization)

D		0
Disease (Y/N)		Disease (Y/N)
Y	With probability p, Report true value With probability 1-p, Report flipped value	Y
Y		Ν
Ν		Ν
Y		Ν
Ν		Y
Ν		Ν

Differential Privacy Analysis

- Consider 2 databases D, D' (of size M) that differ in the jth value
 D[j] ≠ D'[j]. But, D[i] = D'[i], for all i ≠ j
- Consider some output O

$$\frac{P(D \to 0)}{P(D' \to 0)} \le e^{\varepsilon} \Leftrightarrow \frac{1}{1 + e^{\varepsilon}}$$

Utility Analysis

- Suppose *y* out of *N* people replied "yes", and rest said "no"
- What is the best estimate for π = fraction of people with disease = Y?

$$\hat{\pi} = \frac{\frac{y}{N} - (1-p)}{2p-1}$$

• $E(\hat{\pi}) = \pi$ $E(y) = p\pi N + (1-p)(1-\pi)N$

• $Var(\hat{\pi}) = \frac{\pi(1-\pi)}{N} + \frac{1}{N\left(16\left(p-\frac{1}{2}\right)^2 - \frac{1}{4}\right)}$

Sampling Variance due to coin flips

$$- Std(\hat{\pi}) = \Theta\left(\frac{1}{\sqrt{N}}\right); Std(\hat{\pi}N) = \Theta(\sqrt{N})$$

Randomized response for larger domains

• Suppose area is divided into k x k uniform grid.

• What is the probability of reporting the true location?

• What is the probability of reporting a false location?

Algorithm:

- Report true position: p
- Report any other position: q (< p)

$$p + q(k^2 - 1) = 1$$
$$p \le e^{\varepsilon}q$$

$$q = \frac{1}{e^{\varepsilon} + (k^2 - 1)}$$

• For
$$\varepsilon = \ln(3)$$
, $k = 10$: $p = \frac{3}{102}$

Output Randomization

- Add noise to answers such that:
 - Each answer does not leak too much information about the database.
 - Noisy answers are close to the original answers.

[DMNS 06]

Laplace Mechanism

How much noise for privacy?

Sensitivity: Consider a query q: $I \rightarrow R$. S(q) is the smallest number s.t. for any neighboring tables D, D', $|q(D) - q(D')| \leq S(q)$

Thm: If **sensitivity** of the query is **S**, then the following guarantees ε-differential privacy.

$$\lambda = S/\varepsilon$$

Sensitivity: COUNT query

- Number of people having disease
- Sensitivity = 1

- Solution: 3 + η,
 where η is drawn from Lap(1/ε)
 - Mean = 0
 - Variance = $2/\epsilon^2$

Sensitivity: SUM query

- Suppose all values x are in [a,b]
- Sensitivity = b

Privacy of Laplace Mechanism

- Consider neighboring databases D and D'
- Consider some output O

 $\frac{\Pr\left[A(D)=O\right]}{\Pr\left[A(D')=O\right]} = \frac{\Pr\left[q(D)+\eta=O\right]}{\Pr\left[q(D')+\eta=O\right]}$ $= \frac{\Pr\left[\eta=O-q(D)\right]}{\Pr\left[\eta=O-q(D')\right]} \qquad h(\eta) \ \alpha \exp(-|\eta|/\lambda)$ $= \frac{e^{-|O-q(D)|/\lambda}}{e^{-|O-q(D')|/\lambda}} \qquad S(q) \ge |q(D)-q(D')|$ $< e^{|q(D)-q(D')|/\lambda} < e^{S(q)/\lambda} = e^{\varepsilon}$

Utility of Laplace Mechanism

- Laplace mechanism works for **any function** that returns a real number
- Error: E[(true answer noisy answer)²] • $= \mathrm{E}[(Lap(\lambda))^2]$ $= E[(Lap(\lambda))^{2}] - E[Lap(\lambda)]^{2} = Var(Lap(\lambda))$ $= 2\lambda^2 = 2^*S(q)^2 / \epsilon^2$ Lap(λ) $\lambda = S(q)/\epsilon$ 0.6 0.4 0.2 0 -8 -10 -6 -2 Λ 2 10

Utility Theorem

Thm: $P[|A(D) - q(D)| > t \cdot \lambda] = e^{-t}$

Cor:
$$P\left[|A(D) - q(D)| > \frac{S(q)}{\varepsilon} \ln\left(\frac{1}{\delta}\right)\right] \le \delta$$

Laplace Mechanism vs Randomized Response (RR)

Privacy

- Provide the same ε-DP
- Laplace mechanism assumes data collected is trusted
- RR does not require data collected to be trusted
 - Also called a *Local* Algorithm, since each record is perturbed

Utility

- Suppose a database with N records where μN records have disease = Y.
- Query: # rows with Disease=Y
 - Std dev of Laplace mechanism answer: $O(1/\epsilon)$
 - Std dev of RR answer: $O(\sqrt{N/\epsilon})$

Basic DP Algorithms

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism
- Gaussian Mechanism
- Noisy Max

. . . .

- Sparse Vector Technique
- Sample and Aggregate

- For functions that do not return a real number ...
 - "what is the most common nationality in this room": Chinese/Indian/American...
- When perturbation leads to invalid outputs ...
 To ensure integrality/non-negativity of output

Consider some function f (can be deterministic or probabilistic):

How to construct a differentially private version of f?

- Scoring function w: Inputs \times Outputs $\rightarrow R$
 - *D*: nationalities of a set of people
 - #(*D*, *O*): # people with nationality *O*
 - f(D): most frequent nationality in D
 - A possible score function w(D,O) = #(D,O) - #(D,f(D))
- Sensitivity of *w*:

 $S_w = \max_{O,D,D': |D\Delta D'|=1} |w(D,O) - w(D',O)|$

Given an input *D*, and a scoring function *w*,

Randomly sample an output *0* from *Outputs* with probability

$$e^{\frac{\varepsilon}{2\Delta} \cdot w(D,O)}$$

$$\sum_{Q \in Outputs} e^{\frac{\varepsilon}{2\Delta} \cdot w(D,Q)}$$

• Note that for every output O, probability O is output > 0.

Utility of the Exponential Mechanism

- Depends on the choice of scoring function weight given to the best output.
- E.g.,
 "What is the most common nationality?"
 w(D,nationality) = # people in D having that nationality

Sensitivity of w is 1.

• Q: What will the output look like?

Utility of Exponential Mechanism

- Let OPT(D) = nationality with the max score
- Let $O_{OPT} = \{O \in Outputs : w(D,O) = OPT(D)\}$
- Let the exponential mechanism return an output O*

Theorem:

$$\Pr\left[w(D,O^*) \le OPT(D) - \frac{2\Delta}{\varepsilon} \left(\log \frac{|Outputs|}{|O_{OPT}|} + t\right)\right] \le e^{-t}$$

Utility of Exponential Mechanism

Theorem:

$$\Pr\left[w(D,O^*) \le OPT(D) - \frac{2\Delta}{\varepsilon} \left(\log \frac{|Outputs|}{|O_{OPT}|} + t\right)\right] \le e^{-t}$$

Suppose there are 4 nationalities Outputs = {Chinese, Indian, American, Greek}

Exponential mechanism will output some nationality that is shared by at least K people with probability 1-e⁻³(=0.95), where

 $K \ge OPT - 2(\log(4) + 3)/\epsilon = OPT - 6.8/\epsilon$

Laplace versus Exponential Mechanism

- Let f be a function on tables that returns a real number.
- Define: score function w(D,O) = -|f(D) O|
- Sensitivity of $w = \max_{D,D'} (|f(D) O| |f(D') O|)$ $\leq \max_{D,D'} |f(D) - f(D')| = \text{sensitivity of } f$
- Exponential mechanisms returns an output $f(D) + \eta$ with probability proportional to

$$e^{-\frac{\varepsilon}{2\Delta}|f(D)+\eta-f(D)|}$$

Laplace noise with parameter 2Δ/ε

Randomized Response vs Exponential Mechanism

- Input: a bit in {0,1}
- Output: a bit in {0,1}
- Score: w(0,0) = w(1,1) = 1; w(0,1) = w(1,0) = 0

Randomized response for larger domains

• Suppose area is divided into k x k uniform grid.

• What is the probability of reporting the true location?

• What is the probability of reporting a false location?

Different scoring functions give different algorithms

- Uniform:
 - Report true position: 1
 - Report a false position: 0
- Distance:
 - Report true position (i,j): 0
 - Report false position (x,y): (|i-x| + |j-y|)

Summary of Exponential Mechanism

- Differential privacy for cases when output perturbation does not make sense.
- Idea: Make better outputs exponentially more likely; Sample from the resulting distribution.
- Every differentially private algorithm is captured by exponential mechanism.
 - By choosing the appropriate score function.

Summary of Exponential Mechanism

- Utility of the mechanism only depends on log(|Outputs|)
 - Can work well even if output space is exponential in the input

• However, sampling an output may not be computationally efficient if output space is large.

Basic DP Algorithms

- Randomized Response
- Laplace Mechanism
- Exponential Mechanism
- Gaussian Mechanism
- Noisy Max

. . . .

- Sparse Vector Technique
- Sample and Aggregate

Gaussian Mechanism

• The L2–sensitivity of $f: \mathcal{D} \to \mathbb{R}^d$ is: $S_2(f) = \max_{D,D': |D\Delta D'|=1} \|f(D) - f(D')\|_2$

• **Gaussian mechanism** adds noise scaled to $N(0, \sigma^2)$ to each *d* component of the output \rightarrow satisfies (ϵ, δ) -DP if $\sigma \ge cS_2(f)/\epsilon$ for $c^2 > 2 \ln \frac{1.25}{\delta}, \epsilon \in (0,1)$

> (ϵ, δ) -DP: $\forall S$ $\Pr[M(D) \in S] \leq e^{\epsilon} \Pr[M(D') \in S] + \delta$

Take a break (5 mins)

- Download the in-class exercise (Jupyter Notebook) and datasets
 - https://cs.uwaterloo.ca/~xihe/cs848_f24/slides/ DPExercises/

BUILDING COMPLEX DP ALGORITHMS

Composition and in-class exercises
Sequential Composition M_{1}, ϵ_{1} $M_{1}(D)$ M_{2}, ϵ_{2} $M_{2}(D, M_{1}(D))$...

 If M₁, M₂, ..., M_k are algorithms that access a private database D such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ϵ -differential privacy with

$$\varepsilon = \varepsilon_1 + \dots + \varepsilon_k$$

Private Database

Parallel Composition

Private Database

 If M₁, M₂, ..., M_k are algorithms that access are algorithms that access disjoint databases D₁, D₂, ..., D_k such that each M_i satisfies ε_i -differential privacy,

then the combination of their outputs satisfies ϵ -differential privacy with

$$\varepsilon = \max(\varepsilon_1, \dots, \varepsilon_k)$$

Postprocessing

 If *M* is an ε-differentially private algorithm, any additional post-processing *A* ∘ *M* also satisfies εdifferential privacy.

Building Complex DP Algorithms

- Composition
- Problem 1: Answer multiple queries
 - Examples
 - DP algorithms optimization
- Problem 2: DP Gradient Descent
 - Gradient descent
 - Better composition (RDP)

Problem 1: Answering Multiple Queries

Sex	Height	Weight
М	6'2''	210
F	5'3"	190
F	5′9″	160
Μ	5′3″	180
Μ	6'7''	250

Queries:

- # Males with BMI < 25
- # Males
- # Females with BMI < 25
- # Females

- Design an ε-differentially private algorithm that can answer all these questions.
- What is the total error?

Algorithm 1

Return:

- (# Males with BMI < 25) + $Lap(4/\epsilon)$
- (# Males) + Lap($4/\epsilon$)
- (# Females with BMI) < $25 + Lap(4/\epsilon)$
- (# Females) + Lap $(4/\epsilon)$

Privacy

- Sensitivity of count = 1. So each query is answered using a $\epsilon/4$ -DP algorithm.
- By sequential composition, we get ε-DP.

Utility

Error:

 $\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$

Total Error:

$$Lap(\frac{4}{\epsilon}) \text{ for each query}$$
$$2\left(\frac{4}{\epsilon}\right)^{2} \times 4 = \frac{128}{\epsilon^{2}}$$

Algorithm 2

Compute:

- $\widetilde{q_1} = (\# \text{ Males with BMI} < 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_2} = (\# \text{ Males with BMI} > 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_3} = (\# \text{ Females with BMI} < 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_4} = (\# \text{ Females with BMI} > 25) + \text{Lap}(1/\epsilon)$

Return

• $\widetilde{q_1}, \widetilde{q_1} + \widetilde{q_2}, \widetilde{q_3}, \widetilde{q_3} + \widetilde{q_4}$

Privacy

- Sensitivity of count = 1. So each query is answered using a ε-DP algorithm.
- q_1, q_2, q_3, q_4 are counts on disjoint portions of the database. Thus by *parallel composition* releasing $\widetilde{q_1}, \widetilde{q_2}, \widetilde{q_3}, \widetilde{q_4}$ satisfies ε -DP.
- By the *postprocessing theorem*, releasing $\widetilde{q_1}$, $\widetilde{q_1} + \widetilde{q_2}$, $\widetilde{q_3}$, $\widetilde{q_3} + \widetilde{q_4}$ also satisfies ε -DP.

Utility

Error:

$$\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$$

Tighter privacy analysis gives better accuracy for the same level of privacy

Total Error:

$$2\left(\frac{1}{\varepsilon}\right)^2 + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^2 + 2\left(\frac{1}{\varepsilon}\right)^2 + 2\left(\frac{1}{\varepsilon}\right)^2 + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^2 = \frac{12}{\varepsilon^2}$$

 $\widetilde{q_1}$ $\widetilde{q_1} + \widetilde{q_2}$ $\widetilde{q_3}$ $\widetilde{q_3} + \widetilde{q_4}$

Generalized Sensitivity

• Let $f: \mathcal{D} \to \mathbb{R}^d$ be a function that outputs a vector of d real numbers. The L1-sensitivity of f is given by:

$$S_1(f) = \max_{D,D': |D\Delta D'|=1} ||f(D) - f(D')||_1$$

where
$$\|\mathbf{x} - \mathbf{y}\|_{1} = \sum_{i} |x_{i} - y_{i}|$$

Generalized Sensitivity

- $q_1 = #$ Males with BMI < 25
- $q_2 = #$ Males with BMI > 25
- q = # Males with BMI
- Let f_1 be a function that answers both q_1 , q_2
- Let f_2 be a function that answers both q_1 , q
- Sensitivity of $f_1 = 1$
- Sensitivity of $f_2 = 2$
- An alternate privacy proof for Alg 2 is to show that the generalized sensitivity of $\tilde{q_1}$, $\tilde{q_2}$, $\tilde{q_3}$, $\tilde{q_4}$ is 1.

Improving utility of Alg 2

Compute:

- $\widetilde{q_1} = #$ Males with BMI < 25 + Lap $(1/\epsilon)$
- $\widetilde{q_2} = #$ Males with BMI > 25 + Lap $(1/\epsilon)$

Return

• $\widetilde{q_1}, \widetilde{q_1} + \widetilde{q_2}$

We know $q_1 \le q_1 + q_2$, but $P[\widetilde{q_1} > \widetilde{q_1} + \widetilde{q_2}] > 0$

Constrained Inference

Constrained Inference

- q_1, q_2, \ldots, q_k be a set of queries
- $\widetilde{q_1}, \widetilde{q_2}, ..., \widetilde{q_k}$ be the noisy answers
- Constraint $C(q_1, q_2, ..., q_k) = 1$ holds on true answers (for all typical databases), but does not hold on noisy answers.
- Goal: Find $\overline{q_1}$, $\overline{q_2}$, ..., $\overline{q_k}$ that are:
 - Close to $\widetilde{q_1}, \widetilde{q_2}, ..., \widetilde{q_k}$
 - Satisfy the constraint $C(\overline{q_1}, \overline{q_2}, ..., \overline{q_k})$

Least Squares Optimization

$$\min \sum_{i=1}^{k} (\widetilde{q}_i - \overline{q}_i)^2$$

s.t. $C(\overline{q}_1, \overline{q}_2, \dots, \overline{q}_k)$

Geometric Interpretation

Geometric Interpretation

Theorem: $\|\boldsymbol{q} - \overline{\boldsymbol{q}}\|_2 \le \|\boldsymbol{q} - \widetilde{\boldsymbol{q}}\|_2$ when the constraints form a convex space

Ordering Constraint

Isotonic Regression:

 $\min\sum (\widetilde{q_1} - \overline{q_1})^2$

 $s.t.\overline{q_1} \leq \overline{q_1} \leq \dots \leq \overline{q_k}$

Building Complex DP Algorithms

- Composition
- Problem 1: Answer multiple queries
 - Examples
 - DP algorithms optimization
- Problem 2: DP Learning
 - DPSGD
 - Better composition (RDP)

PAGE 94

DP Training

DP Training

• DPSGD [ACG+16]

Initialize
$$\omega_0$$
 and choose a learning rate α
For $t = 0 \dots T - 1$
Take a random sample of size *L*
Compute gradient per sample and clip gradient to norm
bound *b*
Add noise $\mathcal{N}(0, b^2 \sigma^2)$ to the averaged clipped gradients
Descent ω_{t+1} from ω_t at learning rate α
We will see DP Gradient
Descent in the in-class

exercises

Building Complex DP Algorithms

- Composition
- Problem 1: Answer multiple queries
 - Examples
 - DP algorithms optimization
- Problem 2: DP Learning
 DPSGD

In-class exercise Time!!! (30 mins)

– How to compose the privacy noise?

In-class Exercises

This Photo by Unknown Author is licensed under CC BY-NC-ND

Building Complex DP Algorithms

- Composition
- Problem 1: Answer multiple queries
 - Examples
 - DP algorithms optimization
- Problem 2: DP Learning
 - DPSGD
 - Better composition (RDP)

Advanced Composition Theorem

- Basic Composition:
 - Compositing (ϵ_1, δ_1) -DP and (ϵ_2, δ_2) -DP is $(\epsilon_1 + \epsilon_2, \delta_1 + \delta_2)$ -DP
 - n-fold composition of (ϵ, δ) -DP is $(n\epsilon, n\delta)$ -DP
- Advanced Composition:
 - n-fold composition of ϵ -DP is $\left(\sqrt{2n \ln(\frac{1}{\delta}) \epsilon}, \delta\right)$ -DP, for $\delta < 1$
 - Applicable to (ϵ, δ) -DP

Trouble with (ϵ, δ) -DP

Composing advanced composition

Murtagh, Vadhan, ``The complexity of computing the optimal composition of differential privacy", TCC 2016-A.

Trouble with (ϵ, δ) -DP

Composing advanced composition

• Gaussian + Advanced Composition is not tight

Better Notion of Closeness

• ϵ -DP • Rényi Divergence at ∞

$$\max_{x} P(x)/Q(x) < e^{\varepsilon} \qquad D_{\infty}(P||Q) < \varepsilon$$

Rényi Divergence

$$D_1(P||Q) = \lim_{\alpha \to 1} D_\alpha(P||Q) = E_P \left[\log \frac{P(x)}{Q(x)} \right]$$
$$D_\alpha(P||Q) = \frac{1}{\alpha - 1} \log E_Q \left[\left(\frac{P(x)}{Q(x)} \right)^\alpha \right]$$
$$D_\infty(P||Q) = \lim_{\alpha \to \infty} D_\alpha(P||Q) = \log \max_x \frac{P(x)}{Q(x)}$$

Rényi Differential Privacy (RDP)

• (α, ϵ) -Rényi Differential Privacy (RDP): $\forall D, D': D_{\alpha}(M(D)||M(D')) \leq \epsilon$

• (∞, ϵ) -RDP is ϵ -DP

• (α, ϵ) -RDP $\Rightarrow (\epsilon + \frac{\log 1/\delta}{\alpha - 1}, \delta)$ -DP for any δ

"Bad Outcomes" Interpretation

• ϵ -DP: $\forall S$

 $\Pr[M(D) \in S] \le e^{\epsilon} \Pr[M(D') \in S]$

• (α, ϵ) -Rényi DP: $\forall S$ $\Pr[M(D) \in S] \leq (e^{\epsilon} \Pr[M(D') \in S])^{1-1/\alpha}$ No Catastrophic Failure Mode!

• (ϵ, δ) -DP: $\forall S$ $\Pr[M(D) \in S] \leq e^{\epsilon} \Pr[M(D') \in S] + \delta$

"Nuclear Option":

- With probability δ publish everything
- With probability 1 publish δ fraction of inputs

Composition

• Simultaneous release of (α, ϵ_1) -RDP and (α, ϵ_2) -RDP is $(\alpha, \epsilon_1 + \epsilon_2)$ -RDP

Rényi Budget Curve: Gaussian Mechanism

• $N(0,\sigma^2)$

RDP as Privacy Accountant (e.g., DPGD)

 (α, ϵ) -RDP $\Rightarrow (\epsilon + \frac{\log 1/\delta}{\alpha - 1}, \delta)$ -DP for any δ
RDP as Privacy Accountant (e.g., DPSGD)

- Tight analysis of Gaussian noise
- Privacy amplification via sub-sampling

Reference	Conditions	Privacy bound
Abadi et al.[ACG ⁺ 16]	$q < \frac{1}{16\sigma} \\ \alpha \le 1 + \sigma^2 \ln \frac{1}{q\sigma}$	$(\alpha, q^2 \frac{\alpha}{(1-q)\sigma^2} + O(q^3 \alpha^3 / \sigma^3))$ -RDP for $q \to 0$
Abadi et al.[ACG+16]	integer α	Numerical procedure
Bun et al. [BDRS18]	$q \leq \frac{1}{10}, \sigma \geq \sqrt{5}$ $\alpha \leq \frac{1}{2}\sigma^2 \ln \frac{1}{q}$	$(\alpha, q^2 \cdot \frac{6\alpha}{\sigma^2})$ -RDP for fixed-size sample
Mironov et al. [MTZ19]	$\begin{aligned} q &< \frac{1}{5}, \sigma \ge 4\\ \alpha &\leq \frac{1}{2}\sigma^2 L - 2\ln\sigma\\ \alpha &\leq \frac{\frac{1}{2}\sigma^2 L^2 - \ln 5 - 2\ln\sigma}{L + \ln(q\alpha) + \frac{1}{2\sigma^2}} \end{aligned}$	$(\alpha, q^2 \cdot \frac{2\alpha}{\sigma^2})$ -RDP for i.i.d. (Poisson) sample
Mironov et al. [MTZ19]	arbitrary $\alpha \geq 1$	Numerical procedure

Summary

- An algorithm is differentially private if its output is insensitive to the presence/absence of a single row.
- Building blocks
 - Randomized Response
 - Laplace mechanism
 - Exponential Mechanism
 - Gaussian Mechanism
- Designing complex DP algorithms
 - Composition
 - Answer multiple queries
 - DPSGD