Fairness in ML 2: Equal opportunity and odds

Privacy & Fairness in Data Science CS848 Fall 2019

Slides adapted from https://fairmlclass.github.io/4.html

Outline

- Recap: Disparity impact
 Issues with Disparate Impact
- Observational measure of fairness
 - Equal opportunity and Equalized odds
 - Predictive Value Parity
 - Tradeoff
- Achieving Equalized Odds

 Binary Classifier

Recap: Disparate Impact

- Let D=(X, Y, C) be a labeled data set, where X = 0 means protected, C = 1 is the positive class (e.g., admitted), and Y is everything else.
- We say that a classifier *f* has **disparate impact (DI) of** *τ* (0 < *τ* < 1) if:

$$\frac{\Pr(f(Y) = 1 \mid X = 0)}{\Pr(f(Y) = 1 \mid X = 1)} \le \tau$$

that is, if the protected class is positively classified less than τ times as often as the unprotected class. (legally, $\tau = 0.8$ is common).

Re	cap	: D	Disparate Im Y (features)			pact X (protected attribute) f(Y) (prediction)		
	X1					Race	Bail	
	0		0	1		1	1 (Y)	
	1	•••	1	0	•••	1	0 (N)	
	1	•••	1	0		0	0 (N) rotected gro	1111
				•••		<i>p</i> ,		ναρ

 $P_{X=0}[E] = \Pr[E|X=0]$ $P_{X=1}[E] = \Pr[E|X=1]$

Re	cap	: D	ispara Y (features		$\begin{array}{c} \mathbf{pact} \\ X \ (protected \ attribute) \\ f(Y) \ (prediction) \end{array}$			
	X1					Race	Bail	
	0		0	1		1	1 (Y)	
	1		1	0		1	0 (N)	
	1	•••	1	0	•••	0	0 (N) rotected gro	1111
						P.		νup

Classifier f has DI of τ :

$$\frac{P_{X=0}[f(Y) = 1]}{P_{X=1}[f(Y) = 1]} \le \tau$$

Demographic parity (or the reverse of disparate impact)

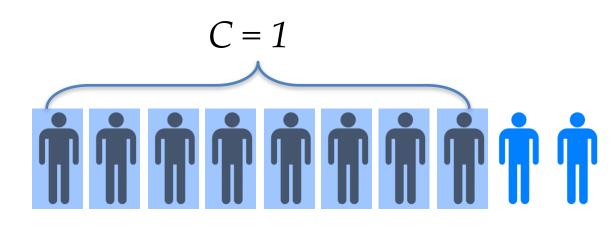
- Definition. Classifier *f* satisfies **demographic parity** if *f* is independent of *X*
- When *f* is binary 0/1-variables, this means, for all groups *x* and *x*',

$$P_{X=x}[f(Y) = 1] = P_{X=x'}[f(Y) = 1]$$

• Approximate versions:

$$- \frac{P_{X=x}[f(Y)=1]}{P_{X=x'}[f(Y)=1]} \ge 1 - \epsilon - |P_{X=x}[f(Y)=1] - P_{X=x'}[f(Y)=1]| \le \epsilon$$

Demographic parity Issues



X = 1

İİİİİ

X = 0

Demographic parity Issues

X = 1

X = 0

- Does not seem "fair" to allow random performance on X = 0
- Perfect classification is impossible

Outline

Recap: Disparity impact – Issues with Disparate Impact

- Observational measure of fairness
 - Equal opportunity and Equalized odds
 - Predictive Value Parity
 - Tradeoff
- Achieving Equalized Odds

 Binary Classifier

True Positive Parity (TPP) (or equal opportunity)

- Assume classifier *f* and label *C* are binary 0/1-variables
- Definition. Classifier *f* satisfies **true positive parity** if for all groups *x* and *x'*, $P_{X=x}[f(Y) = 1 | C = 1] = P_{X=x'}[f(Y) = 1 | C = 1]$
- When positive outcome (1) is desirable
- Equivalently, primary harm is due to false negatives
 Deny bail when person will not recidivate

TPP

X = 1

• Forces similar performance on C = 1

False Positive Parity (FPP)

- Assume classifier *f* and label *C* are binary 0/1-variables
- Definition. Classifier *f* satisfies **false positive parity** if for all groups *x* and *x'*, $P_{X=x}[f(Y) = 1 | C = 0] = P_{X=x'}[f(Y) = 1 | C = 0]$
- TPP & FPP: Equalized Odds, or Positive Rate Parity

f satisfies equalized odds if f is conditionally independent of X given C.

Positive Rate Parity

X = 1

 $P_{X=1}[f(Y) = 1 | C = 1] =? \quad P_{X=1}[f(Y) = 1 | C = 0] =?$ $P_{X=0}[f(Y) = 1 | C = 1] =? \quad P_{X=0}[f(Y) = 1 | C = 0] =?$

Positive Rate Parity

X = 1

 $P_{X=1}[f(Y) = 1 | C = 1] = 1 P_{X=1}[f(Y) = 1 | C = 0] = 1/2$ $P_{X=0}[f(Y) = 1 | C = 1] = 1 P_{X=0}[f(Y) = 1 | C = 0] = 1/2$

Outline

Recap: Disparity impact – Issues with Disparate Impact

- Observational measure of fairness

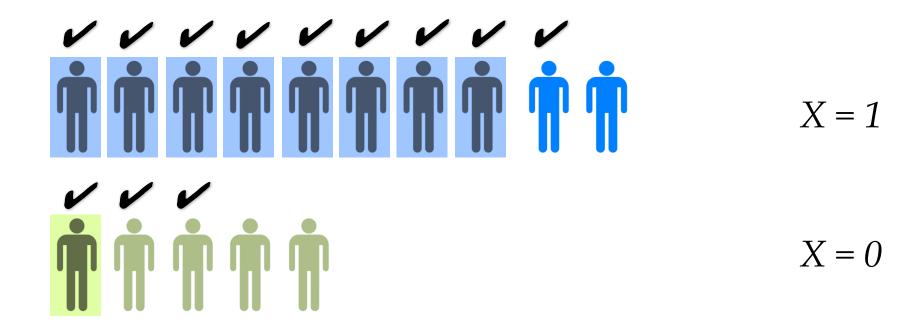
 <u>– Equal opportunity and Equalized odds</u>
 <u>– Predictive Value Parity</u>
 <u>– Tradeoff</u>
- Achieving Equalized Odds

 Binary Classifier

Predictive Value Parity

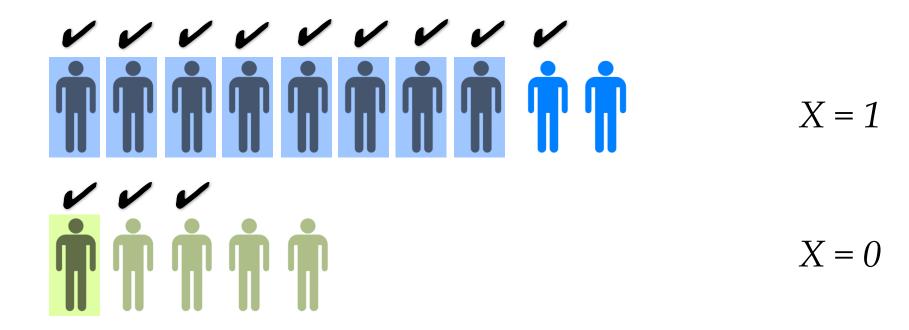
- Assume classifier *f* and label *C* are binary 0/1-variables
- Definition. Classifier *f* satisfies
 - positive predictive value parity if if for all groups x and x', $P_{X=x}[C = 1|f(Y) = 1] = P_{X=x'}[C = 1|f(Y) = 1]$
 - negative predictive value parity if if for all groups x and x', $P_{X=x}[C = 1|f(Y) = 0] = P_{X=x'}[C = 1|f(Y) = 0]$
 - predictive value parity if satisfies both of the above.
- Equalized chance of success given acceptance.

Predictive Value Parity



 $P_{X=1}[C = 1 | f(Y) = 1] = P_{X=1}[C = 1 | f(Y) = 0] =$ $P_{X=0}[C = 1 | f(Y) = 1] = P_{X=0}[C = 1 | f(Y) = 0] =$

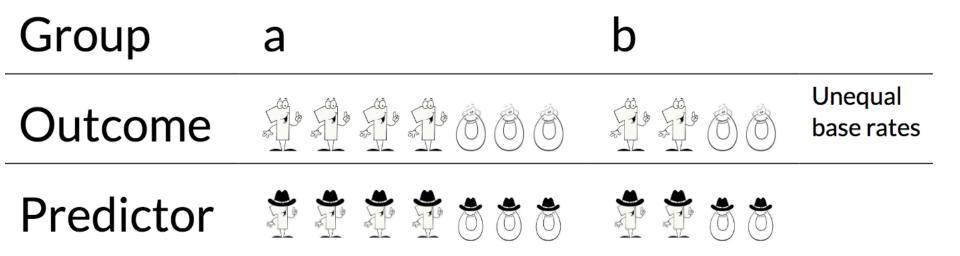
Predictive Value Parity



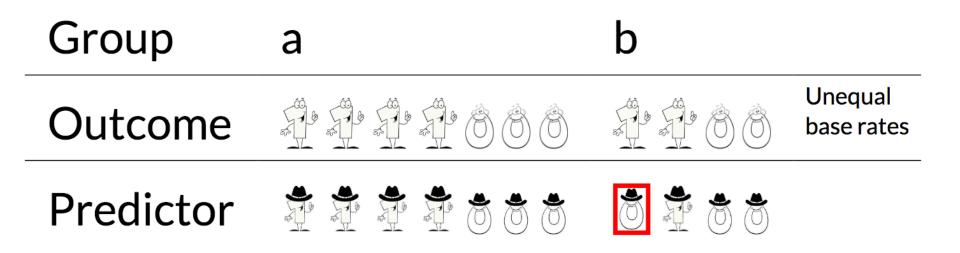
 $P_{X=1}[C = 1 | f(Y) = 1] = 8/9 \qquad P_{X=1}[C = 1 | f(Y) = 0] = 0$ $P_{X=0}[C = 1 | f(Y) = 1] = 1/3 \qquad P_{X=0}[C = 1 | f(Y) = 0] = 0$

Trade-off

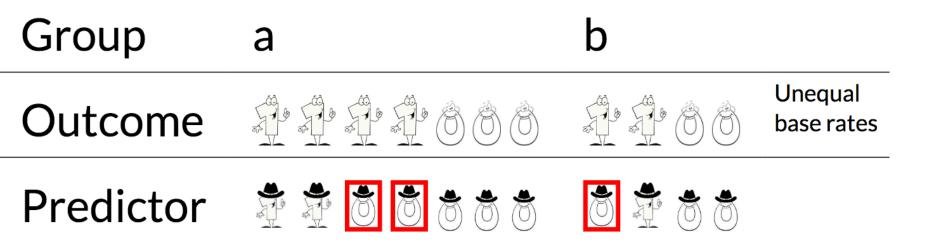
- Proposition. Assume differing base rates and an imperfect classifier $f \neq C$. Then either
 - Positive rate parity fails, or
 - Predictive value parity fails.
- We will look at a similar result later in the course due to <u>Kleinberg, Mullainathan and Raghavan</u> (2016)



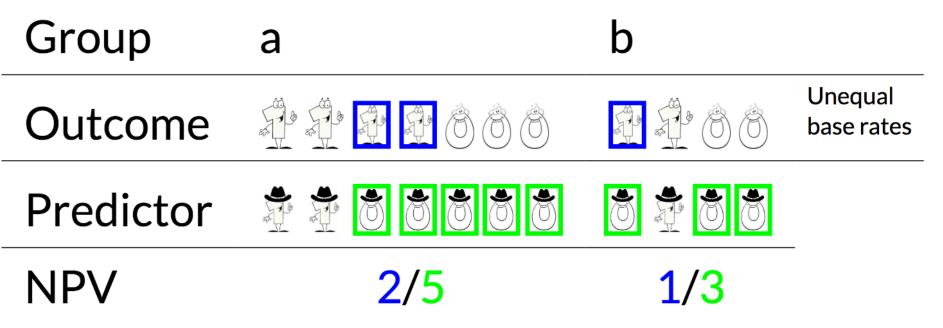
- So far, predictor is perfect.
- Let's introduce an error.



- But this doesn't satisfy positive rate parity!
- Let's fix that!



• Satisfies positive rate parity!



Does not satisfy predictive value parity!

Proof. Assume unequal base rates $p_a, a \in \{0, 1\}$, imperfect classifier $C \neq Y$, and positive rate parity. W.I.o.g., $p_0 > 0$ (since $p_0 = p_1 = 0$ is trivial) **Show that predictive value parity fails.**

Proof by googling the first Wiki entry on this:

$$PPV_a = \frac{TPRp_a}{TPRp_a + FPR(1-p_a)}$$

Hence, $PPV_0 = PPV_1$ implies either TPR = 0 or FPR = 0. (But not both, since $C \neq Y$)

NPV_a =
$$\frac{(1 - \text{FPR})(1 - p_a)}{(1 - \text{TPR})p_a + (1 - \text{FPR})(1 - p_a)}$$

In either case, $NPV_0 \neq NPV_1$. Hence predictive value parity fails.

Outline

- Recap: Disparity impact
 Issues with Disparate Impact
- Observational measure of fairness

 Equal opportunity and Equalized odds
 Predictive Value Parity
 Tradeoff
- Achieving Equalized Odds

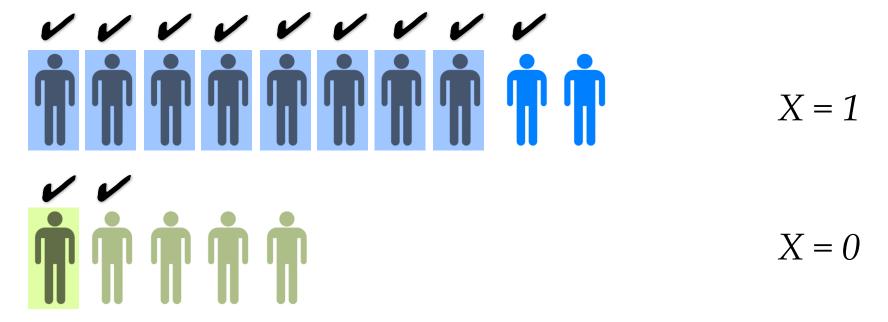
 Binary Classifier

Equalized Odds

f satisfies equalized odds if f is conditionally independent of protected X given outcome C.

• Let \hat{f} be any classifier out of the existing training pipeline for the problem at hand that fails to satisfy equalized odds

Classifier \hat{f} that does not satisfy equalized odds

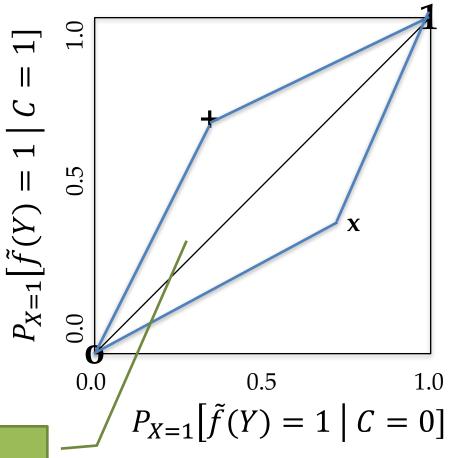


$$P_{X=1}[\hat{f}(Y) = 1 \mid C = 0] \neq P_{X=0}[\hat{f}(Y) = 1 \mid C = 0]$$

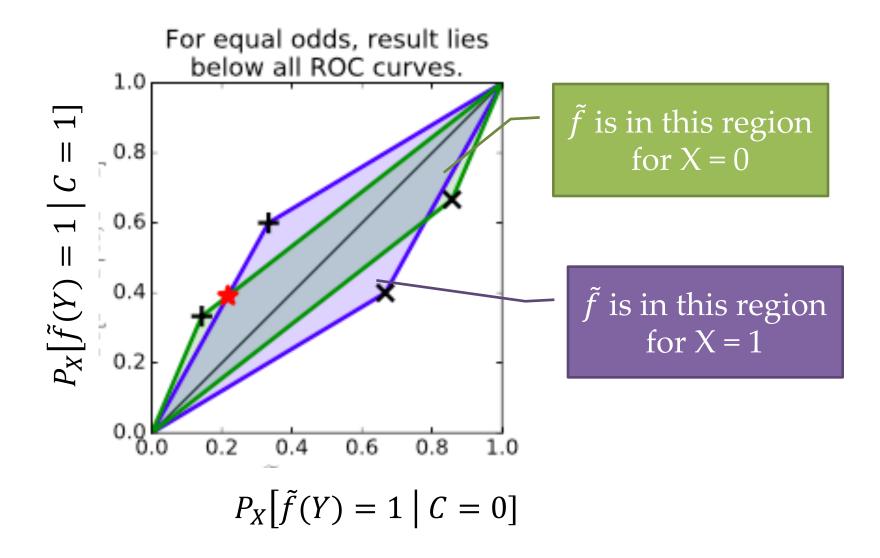
- A new classifier *f* is derived from *f* and the protected attribute *X*
 - \tilde{f} is independent of features Y conditional on (\hat{f}, X)

$$- P_{X=1}[\tilde{f}(Y) = c|C = 1] \text{ is} \\ \sum_{c' \in \{0,1\}} P[c|\hat{f}(Y) = c', X = 1] \cdot P_{X=1}[\hat{f}(Y) = c'|C = 1] \\ - P_{X=1}[\tilde{f}(Y) = c|C = 0] \text{ is} \\ \sum_{c' \in \{0,1\}} P[c|\hat{f}(Y) = c', X = 1] \cdot P_{X=1}[\hat{f}(Y) = c'|C = 0] \\ - P_{X=0}[\tilde{f}(Y) = c|C = 1] \underbrace{X=1 \quad c'=0 \quad c'=1}_{c=1} \quad \underbrace{X=0 \quad c'=0 \quad c'=1}_{c=1} \quad \frac{c'=0 \quad c'=1}{c=1 \quad 1-p2 \quad 1-p3}$$

- Options for \tilde{f} :
 - $-\tilde{f} = \hat{f}$ (+) $-\tilde{f} = 1 - \hat{f}$ (x) $-\tilde{f} = (1,1)$
 - f = (1,1) $-\tilde{f} = (0,0)$
 - Or some randomized combination of these



 \tilde{C} is in the enclosed region



- Loss minimization: $l: \{0,1\}^2 \rightarrow R$
 - Indicate the loss of predicting $\tilde{f}(Y) = c$ when the correct label is c''
- Minimize the expected loss $E[l(\tilde{f}(Y), C)]$ s.t.
 - $-\tilde{f}$ is derived
 - \tilde{f} satisfies equalized odds
 - $P_{X=1}[\tilde{f}(Y) = 1 | C = 1] = P_{X=0}[\tilde{f}(Y) = 1 | C = 1]$
 - $P_{X=1}[\tilde{f}(Y) = 1 | C = 0] = P_{X=0}[\tilde{f}(Y) = 1 | C = 0]$

• $E\left[l(\tilde{f}(Y), C)\right] = \sum_{c,c'' \in \{0,1\}} l(c, c'') \Pr[\tilde{f}(Y) = c, C = c'']$

•
$$\Pr[\tilde{f} = c, C = c'']$$

$$= \Pr[\tilde{f} = c, C = c''|\tilde{f} = \hat{f}]\Pr[\tilde{f} = \hat{f}]$$

$$+ \Pr[\tilde{f} = c, C = c''|\tilde{f} \neq \hat{f}]\Pr[\tilde{f} \neq \hat{f}]$$

$$= \Pr[\hat{f} = c, C = c'']\Pr[\tilde{f} = \hat{f}]$$

$$+ \Pr[\hat{f} = 1 - c, C = c'']\Pr[\tilde{f} \neq \hat{f}]$$
Based on the joint distribution
$$\frac{\mathbf{X=1} \quad \mathbf{c'=0} \quad \mathbf{c'=1}}{\tilde{f}}$$

$$\frac{\mathbf{X=0} \quad \mathbf{c'=0} \quad \mathbf{c'=1}}{\tilde{f}}$$

$$\frac{\mathbf{X=0} \quad \mathbf{c'=0} \quad \mathbf{c'=1}}{\tilde{f}}$$

$$= \Pr[\hat{f} = 1 - c, C = c'']\Pr[\hat{f} \neq \hat{f}]$$

$$= \Pr[\hat{f} = 1 - c, C = c'']\Pr[\hat{f} \neq \hat{f}]$$

Summary: Multiple fairness measures

- Demographic parity or disparate impact
 - Pro: Used in the law
 - Con: Perfect classification is impossible
 - Achieved by modifying data
- Equal odds/ opportunity
 - Pro: Perfect classification is possible
 - Con: Different groups can get different rates of positive prediction
 - Achieved by post processing the classifier

Summary: Multiple fairness measures

- Equal odds/opportunity
 - Different groups may be treated unequally
 - Maybe due to the problem
 - Maybe due to bias in the dataset
- While demographic parity seems like a good fairness goal for the society, ... Equal odds/opportunity seems to be measuring

whether an algorithm is fair (independent of other factors like input data).

Summary: Multiple fairness measures

- Fairness through Awareness:
 - Need to define a distance function d(x,x')
 - A guarantee at the individual level (rather than on groups)
 - How does this connect to other notions of fairness?