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Recap: Disparate Impact
• Let D=(X, Y, C) be a labeled data set, where X = 0 means 

protected, C = 1 is the positive class (e.g., admitted), and 
Y is everything else.

• We say that a classifier f has disparate impact (DI) of 𝜏 (0 
< 𝜏 < 1) if: 

Pr 𝑓 𝑌 = 1	 𝑋 = 0)
Pr(𝑓 𝑌 = 1	| 𝑋 = 1) ≤ 𝜏

that is, if the protected class is positively classified less than 
𝜏 times as often as the unprotected class. (legally, 𝜏 = 0.8 is 
common).



Recap: Disparate Impact
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X1 … … … … Race Bail

0 … 0 1 … 1 1 (Y)

1 … 1 0 … 1 0 (N)

1 … 1 0 … 0 0 (N)

.. … … … … … …

Y (features)
f(Y) (prediction)

X (protected attribute)

𝑃012 𝐸 = Pr[𝐸|𝑋 = 1]𝑃016 𝐸 = Pr[𝐸|𝑋 = 0]

protected group



Recap: Disparate Impact
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X1 … … … … Race Bail

0 … 0 1 … 1 1 (Y)

1 … 1 0 … 1 0 (N)

1 … 1 0 … 0 0 (N)

.. … … … … … …

Y (features)
f(Y) (prediction)

X (protected attribute)

𝑃016 𝑓 𝑌 = 1
𝑃012[𝑓 𝑌 = 1] ≤ 𝜏

protected group

Classifier f has DI of 𝜏:



Demographic parity 
(or the reverse of disparate impact) 
• Definition. Classifier f satisfies demographic parity if f is 

independent of X 

• When f is binary 0/1-variables, this means, for all groups 
𝑥 and	𝑥′,	

𝑃01= 𝑓 𝑌 = 1 = 𝑃01=> 𝑓 𝑌 = 1

• Approximate versions:
– ?@AB C D 12

?@AB>[C D 12] ≥ 1 − 𝜖

– 𝑃01= 𝑓 𝑌 = 1 − 𝑃01=> 𝑓 𝑌 = 1 ≤ 𝜖



Demographic parity Issues
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X = 1

X = 0

C = 1



Demographic parity Issues

• Does not seem “fair” to allow random 
performance on X = 0

• Perfect classification is impossible
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X = 1

X = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔ ✔ ✔ ✔
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True Positive Parity (TPP) 
(or equal opportunity)
• Assume classifier f and label C are binary 0/1-variables 

• Definition. Classifier f satisfies true positive parity if for 
all groups 𝑥 and	𝑥′,	
𝑃01= 𝑓 𝑌 = 1|𝐶 = 1 = 𝑃01=> 𝑓 𝑌 = 1|𝐶 = 1

• When positive outcome (1) is desirable
• Equivalently, primary harm is due to false negatives

– Deny bail when person will not recidivate
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TPP

• Forces similar performance on C = 1
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X = 1

X = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔✔



False Positive Parity (FPP) 
• Assume classifier f and label C are binary 0/1-variables 

• Definition. Classifier f satisfies false positive parity if for 
all groups 𝑥 and	𝑥′,	
𝑃01= 𝑓 𝑌 = 1|𝐶 = 0 = 𝑃01=> 𝑓 𝑌 = 1|𝐶 = 0

• TPP & FPP: Equalized Odds, or Positive Rate Parity

f satisfies equalized odds if 
f is conditionally independent of X given C.
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Positive Rate Parity
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X = 1

X = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔

✔

✔ ✔

𝑃012 𝑓(𝑌) = 1	 	𝐶 = 1] =?

𝑃016 𝑓(𝑌) = 1	 	𝐶 = 1] =?

𝑃012 𝑓(𝑌) = 1	 	𝐶 = 0] =?

𝑃016 𝑓(𝑌) = 1	 	𝐶 = 0] =?	



Positive Rate Parity
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X = 1

X = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔

✔

✔ ✔

𝑃012 𝑓(𝑌) = 1	 	𝐶 = 1] = 1

𝑃016 𝑓(𝑌) = 1	 	𝐶 = 1] = 1

𝑃012 𝑓(𝑌) = 1	 	𝐶 = 0] = 1/2

𝑃016 𝑓(𝑌) = 1	 	𝐶 = 0] = 1/2	
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Predictive Value Parity
• Assume classifier f and label C are binary 0/1-variables 

• Definition. Classifier f satisfies
– positive predictive value parity if if for all groups 𝑥 and	𝑥′,	

𝑃01= 𝐶 = 1|𝑓 𝑌 = 1 = 𝑃01=> 𝐶 = 1|𝑓 𝑌 = 1
– negative predictive value parity if if for all groups 𝑥 and	𝑥′,	

𝑃01= 𝐶 = 1|𝑓 𝑌 = 0 = 𝑃01=> 𝐶 = 1|𝑓 𝑌 = 0
– predictive value parity if satisfies both of the above. 

• Equalized chance of success given acceptance. 
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Predictive Value Parity
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X = 1

X = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔

✔

✔ ✔

𝑃012 𝐶 = 1	 	𝑓(𝑌) = 1] =	

𝑃016 𝐶 = 1	 	𝑓(𝑌) = 1] =	

𝑃012 𝐶 = 1	 	𝑓(𝑌) = 0] =	

𝑃016 𝐶 = 1	 	𝑓(𝑌) = 0] =	



Predictive Value Parity
18

X = 1

X = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔

✔

✔ ✔

𝑃012 𝐶 = 1	 	𝑓(𝑌) = 1] = 8/9	

𝑃016 𝐶 = 1	 	𝑓(𝑌) = 1] = 1/3	

𝑃012 𝐶 = 1	 	𝑓(𝑌) = 0] = 0	

𝑃016 𝐶 = 1	 	𝑓(𝑌) = 0] = 0	



Trade-off

• Proposition. Assume differing base rates and an 
imperfect classifier 𝑓 ≠ 𝐶. Then either 
– Positive rate parity fails, or 
– Predictive value parity fails. 

• We will look at a similar result later in the course 
due to Kleinberg, Mullainathan and Raghavan 
(2016)
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Intuition

• So far, predictor is perfect.
• Let's introduce an error.
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Intuition

• But this doesn't satisfy positive rate parity!
• Let's fix that!
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Intuition

• Satisfies positive rate parity!
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Intuition

• Does not satisfy predictive value parity!
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Equalized Odds

f satisfies equalized odds if 
f is conditionally independent of protected X 

given outcome C. 

• Let 𝑓P be any classifier out of the existing training 
pipeline for the problem at hand that fails to 
satisfy equalized odds
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Classifier 𝑓Pthat does not satisfy 
equalized odds 
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X = 1

X = 0

✔ ✔ ✔ ✔ ✔ ✔ ✔ ✔

✔

✔

✔

𝑃012 𝑓P(𝑌) = 1	 	𝐶 = 0] ≠ 𝑃016 𝑓P(𝑌) = 1	 	𝐶 = 0]



Derived Classifier

• A new classifier 𝑓Q is derived from 𝒇S and the 
protected attribute X 
– 𝑓Q is independent of features Y conditional on (𝑓P,X)
– 𝑃012 𝑓Q 𝑌 = 𝑐|𝐶 = 1 is 
∑ 		𝑃 𝑐|𝑓P 𝑌 = 𝑐V, 𝑋 = 1	 ⋅ 𝑃012 𝑓P 𝑌 = 𝑐′|𝐶 = 1�
Y>∈{6,2}

– 𝑃012 𝑓Q 𝑌 = 𝑐|𝐶 = 0 is 
∑ 		𝑃 𝑐|𝑓P 𝑌 = 𝑐V, 𝑋 = 1	 ⋅ 𝑃012 𝑓P 𝑌 = 𝑐′|𝐶 = 0�
Y>∈{6,2}

– 𝑃016 𝑓Q 𝑌 = 𝑐|𝐶 = 1
– 𝑃016 𝑓Q 𝑌 = 𝑐|𝐶 = 0
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X=1 c'=0 c’=1
c=0 p0 p1
c=1 1-p0 1-p1

X=0 c’=0 c’=1
c=0 p2 p3
c=1 1-p2 1-p3



Derived Classifier
• Options for 𝑓Q:
– 𝑓Q = 𝑓P (+)
– 𝑓Q = 1 − 𝑓P (x)
– 𝑓Q = (1,1)
– 𝑓Q = (0,0)
– Or some randomized 

combination of these
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𝑃012 𝑓Q(𝑌) = 1	 	𝐶 = 0]
𝑃 0

1
2
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Derived Classifier
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𝑓Q is in this region 
for X = 0

𝑓Q is in this region 
for X = 1

𝑃0 𝑓Q(𝑌) = 1	 	𝐶 = 0]

𝑃 0
𝑓Q (
𝑌)

=
1	
	𝐶
=
1]



Derived Classifier

• Loss minimization: 𝑙: 0,1 _ → 𝑅
– Indicate the loss of predicting 𝑓Q 𝑌 = 𝑐 when the 

correct label is 𝑐′′

• Minimize the expected loss E	[𝑙 𝑓Q(𝑌), 𝐶 ] s.t.
– 𝑓Q is derived
– 𝑓Q satisfies equalized odds

• 𝑃012 𝑓Q 𝑌 = 1|𝐶 = 1 = 𝑃016 𝑓Q 𝑌 = 1|𝐶 = 1
• 𝑃012 𝑓Q 𝑌 = 1|𝐶 = 0 = 𝑃016 𝑓Q 𝑌 = 1|𝐶 = 0
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Derived Classifier
• E	 𝑙 𝑓Q 𝑌 , 𝐶 = ∑ 𝑙 𝑐, 𝑐V′ Pr[𝑓Q(𝑌) = 𝑐, 𝐶 = 𝑐VV]�

Y,Y>>∈{6,2}

• Pr[𝑓Q = 𝑐, 𝐶 = 𝑐′′]
= Pr 𝑓Q = 𝑐, 𝐶 = 𝑐′′ 𝑓Q = 𝑓P Pr 𝑓Q = 𝑓P
+Pr 𝑓Q = 𝑐, 𝐶 = 𝑐′′ 𝑓Q ≠ 𝑓P Pr 𝑓Q ≠ 𝑓P
= 	Pr 𝑓P = 𝑐, 𝐶 = 𝑐′′ Pr 𝑓Q = 𝑓P
+Pr 𝑓P = 1 − 𝑐, 𝐶 = 𝑐′′ Pr 𝑓Q ≠ 𝑓P
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Based on the joint distribution X=1 c'=0 c’=1
c=0 p0 p1
c=1 1-p0 1-p1

X=0 c'=0 c’=1
c=0 p2 p3
c=1 1-p2 1-p3

𝑓Q

𝑓P



Summary: Multiple fairness measures

• Demographic parity or disparate impact
– Pro: Used in the law
– Con: Perfect classification is impossible
– Achieved by modifying data

• Equal odds/ opportunity
– Pro: Perfect classification is possible
– Con: Different groups can get different rates of 

positive prediction
– Achieved by post processing the classifier
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Summary: Multiple fairness measures

• Equal odds/opportunity
– Different groups may be treated unequally
– Maybe due to the problem
– Maybe due to bias in the dataset

• While demographic parity seems like a good fairness 
goal for the society, …
Equal odds/opportunity seems to be measuring 
whether an algorithm is fair (independent of other 
factors like input data).
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Summary: Multiple fairness measures

• Fairness through Awareness:
– Need to define a distance function d(x,x’)
– A guarantee at the individual level (rather than on 

groups)
– How does this connect to other notions of fairness?
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