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Differential Privacy

For every output …

OD2D1
Adversary should not be able to distinguish 

between any D1 and D2 based on any O

For every pair of inputs 
that differ in one row

[Dwork ICALP 2006]
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∀Ω ∈ range A , ln
Pr[𝐴 𝐷0 ∈ Ω]
Pr[𝐴 𝐷2 ∈ Ω]

≤ 𝜀, 𝜀 > 0



Laplace mechanism
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Sequential Composition

• If M1, M2, ..., Mk are algorithms that access a private 
database D such that each Mi satisfies εi -differential 
privacy, 

then the combination of their outputs satisfies ε-
differential privacy with 

ε = ε1 + ... + εk
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D

Private Database

M1, ε1

M1(D)
M2, ε2

M2(D, M1(D))

…



Parallel Composition

• If M1, M2, ..., Mk are algorithms that access are 
algorithms that access disjoint databases D1, D2, …, 
Dk such that each Mi satisfies εi -differential privacy, 

then the combination of their outputs satisfies ε-
differential privacy with 

ε = max(ε1 , ... , εk)
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D2

Private Database

M1, ε1

M1(D1)
M2, ε2
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…
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Postprocessing

• If M is an ε-differentially private algorithm, any 
additional post-processing 𝐴 ∘ 𝑀 also satisfies ε-
differential privacy. 
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D

Private Database

M, ε

M(D)
A

A(M(D))



Transformations & Stability

• 𝜎F : Stability of the transformation
– Maximum number of rows in V that can change due 

to changing a single row in D
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D

Private Database

M, ε

M(V(D)) V(D)

Transformed
Database

V

Transformation need 
not satisfy DP



Transformations & Stability

• Executing an ε-differentially private algorithm 
M on a transformation of a database V(D) 
satisfies 𝜀 G 𝜎F-differential privacy. 

• 𝜎F : Stability of the transformation
– Maximum number of rows in V that can change due 

to changing a single row in D
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Transformations & Stability
• V1: For each row (x1, x2, x3) à (x1, x2+x3)

• V2: Each row in D is a tweet (id, {words}). For 
each row in D, generate k rows with first k words
{(id, word1), …, (id, wordk)} 

• V3: Sample each row with probability p.
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Stability = 1 

Stability = k 

Stability = 1 … but can prove 2p𝜀 -differential privacy*

*Adam Smith, Differential Privacy and Secrecy of the Sample

https://adamdsmith.wordpress.com/2009/09/02/sample-secrecy/
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Problem

• Design an ε-differentially private algorithm that 
can answer all these questions. 

• What is the total error?
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Sex Height Weight
M 6’2” 210
F 5’3” 190
F 5’9” 160
M 5’3” 180
M 6’7” 250

Queries: 

• # Males with BMI < 25
• # Males
• # Females with BMI < 25
• # Females



Algorithm 1

Return: 

• (# Males with BMI < 25) + Lap(4/ε)
• (# Males) + Lap(4/ε)
• (# Females with BMI) < 25 + Lap(4/ε)
• (# Females) + Lap(4/ε)
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Privacy

• BMI can be computed by transforming each row 
(s, h, w) à (s, bmi). This is stability 1. 

• Sensitivity of count = 1. So each query is 
answered using a ε/4-DP algorithm.

• By sequential composition, we get ε-DP.
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Utility

Error:	

M𝐸 O𝑞 𝐷 − 𝑞 𝐷 2

Total Error: 

2
4
𝜀

2

×4 =
128
𝜀2
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Algorithm 2

Compute: 
• V𝑞0 = (# Males with BMI < 25) + Lap(1/ε)
• V𝑞2 = (# Males with BMI > 25) + Lap(1/ε)
• V𝑞W = (# Females with BMI < 25) + Lap(1/ε)
• V𝑞X = (# Females with BMI > 25) + Lap(1/ε)

Return
• V𝑞0, V𝑞0+V𝑞2, V𝑞W, V𝑞W+V𝑞X
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Privacy

• Sensitivity of count = 1. So each query is 
answered using a ε-DP algorithm.

• 𝑞0, 𝑞2, 𝑞W, 𝑞X are counts on disjoint portions of 
the database. Thus by parallel composition
releasing V𝑞0, V𝑞2, V𝑞W, V𝑞X satisfies ε-DP.

• By the postprocessing theorem, releasing V𝑞0, V𝑞0+V𝑞2, 
V𝑞W, V𝑞W+V𝑞X also satisfies ε-DP.

18



Utility

Error:	

M𝐸 O𝑞 𝐷 − 𝑞 𝐷 2

Total Error: 

2
1
𝜀

2

+ 2 G 2
1
𝜀

2

+ 2
1
𝜀

2

+ 2 G 2
1
𝜀

2

=
12
𝜀2
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V𝑞0 V𝑞0 + V𝑞2 V𝑞W V𝑞W + V𝑞X



Utility

Total Error: 

2
1
𝜀

2

+ 2 G 2
1
𝜀

2

+ 2
1
𝜀

2

+ 2 G 2
1
𝜀

2

=
12
𝜀2
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V𝑞0 V𝑞0 + V𝑞2 V𝑞W V𝑞W + V𝑞X

Tighter privacy analysis gives better 
accuracy for the same level of privacy



Generalized Sensitivity

• Let 𝑓:𝒟 → ℝ] be a function that outputs a 
vector of d real numbers. The sensitivity of 
f is given by:

𝑆 𝑓 = max
a,ab: |a∆ab|e0

𝑓 𝐷 − 𝑓(𝐷f) 0

where 𝐱 − 𝐲 0 = ∑j 𝑥j − 𝑦j
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Generalized Sensitivity
• 𝑞0 = # Males with BMI < 25 
• 𝑞2 = # Males with BMI > 25 
• 𝑞 = # Males with BMI

• Let f1 be a function that answers both 𝑞0, 𝑞2
• Let f2 be a function that answers both 𝑞0, 𝑞

• Sensitivity of f1 = 1
• Sensitivity of f2 = 2

• An alternate privacy proof for Alg 2 is to show that the 
generalized sensitivity of V𝑞0, V𝑞2, V𝑞W, V𝑞X is 1.
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Improving utility of Alg 2

Compute: 
• V𝑞0 = # Males with BMI < 25 + Lap(1/ε)
• V𝑞2 = # Males with BMI > 25 + Lap(1/ε)

Return
• V𝑞0, V𝑞0+V𝑞2

24

We know 𝑞0 ≤ 𝑞0 + 𝑞2, 
but P[V𝑞0 > V𝑞0+V𝑞2] > 0



Constrained Inference
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ABSTRACT
We show that it is possible to significantly improve the accu-
racy of a general class of histogram queries while satisfying
di↵erential privacy. Our approach carefully chooses a set
of queries to evaluate, and then exploits consistency con-
straints that should hold over the noisy output. In a post-
processing phase, we compute the consistent input most
likely to have produced the noisy output. The final out-
put is di↵erentially-private and consistent, but in addition,
it is often much more accurate. We show, both theoreti-
cally and experimentally, that these techniques can be used
for estimating the degree sequence of a graph very precisely,
and for computing a histogram that can support arbitrary
range queries accurately.

1. INTRODUCTION
Recent work in di↵erential privacy [8] has shown that it is

possible to analyze sensitive data while ensuring strong pri-
vacy guarantees. Di↵erential privacy is typically achieved
through random perturbation: the analyst issues a query
and receives a noisy answer. To ensure privacy, the noise
is carefully calibrated to the sensitivity of the query. Infor-
mally, query sensitivity measures how much a small change
to the database—such as adding or removing a person’s pri-
vate record—can a↵ect the query answer. Such query mech-
anisms are simple, e�cient, and often quite accurate. In
fact, one mechanism has recently been shown to be optimal
for a single counting query [9]—i.e., there is no better noisy
answer to return under the desired privacy objective.

However, analysts typically need to compute multiple sta-
tistics on a database. Di↵erentially private algorithms ex-
tend nicely to a set of queries, but there can be di�cult
trade-o↵s among alternative strategies for answering a work-
load of queries. Consider the analyst of a private student
database who requires answers to the following queries: the
total number of students, xt, the number of students xA,
xB , xC , xD, xF receiving grades A, B, C, D, and F respec-
tively, and the number of passing students, xp (grade D or

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 13-17,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 2150-8097/10/09... $ 10.00.
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Q(I) = q

Proving results from [1] and applying to degree sequence.

Lemma 1. Let A be an algorithm that on input x outputs A(x) = f(x) + S(x)
� Z. For any inputs x, y, we

have:
Pr[A(x) � S] = Pr[Z � Zx(S)]

where zx(s) = s�f(x)
S(x)/� and Zx(S) = {zx(s) | s � S}. And

Pr[A(y) � S] = Pr[Z � Zy(S)]

where zy(s) = S(x)
S(y)

�
zx(s) + f(x)�f(y)

S(x)/�

�
= s�f(y)

S(y)/� and Zy(S) = {zy(s) | s � S}. In shorthand, Zx and Zy are

related as:
Zy(S) = �(Zx(S) + �)

where � = S(x)
S(y) and � = f(x)�f(y)

S(x)/� .

Proposition 1. Let Z be a Laplace random variable. Let c, � > 0 be fixed. For any � such that |�| � c,
the following sliding property holds:

Pr[Z � Z] � ecPr[Z � Z + �]

For any � such that � � 1 + c/ln 1
� , the following dilation property holds:

Pr[Z � Z] � ecPr[Z � �Z] + �

Further, they can combined:
Pr[Z � Z] � e2cPr[Z � �(Z + �)] + �

Proof. For any c, we have:

Pr[Z � Z] =

�

z�Z

1

2
e�|z|dz

�
�

z�Z

1

2

e|�|�|z+�|

e�|z| e�|z|dz because |�| �| z + �| + |z| � 0, observe |�| + |z| � |z + �|

= e|�|
�

z�Z

1

2
e�|z+�|dz

= e|�|Pr[Z � Z + �] � ecPr[Z � Z + �]

XXXXX For dilation, need to prove it but I know that there is some set Z such that for the dilation property
to hold, it must be that � � 1 + c/ ln 1

� . But it may be the case that it is necessary for � < 1 + c/ ln 1
� to be

true for all Z.

1

Step 1

Step 2
Step 3

Figure 1: Our approach to querying private data.

higher).
Using a di↵erentially private interface, a first alternative

is to request noisy answers for just (xA, xB , xC , xD, xF ) and
use those answers to compute answers for xt and xp by sum-
mation. The sensitivity of this set of queries is 1 because
adding or removing one tuple changes exactly one of the five
outputs by a value of one. Therefore, the noise added to in-
dividual answers is low and the noisy answers are accurate
estimates of the truth. Unfortunately, the noise accumulates
under summation, so the estimates for xt and xp are worse.

A second alternative is to request noisy answers for all
queries (xt, xp, xA, xB , xC , xD, xF ). This query set has sen-
sitivity 3 (one change could a↵ect three return values, each
by a value of one), and the privacy mechanism must add
more noise to each component. This means the estimates for
xA, xB , xC , xD, xF are worse than above, but the estimates
for xt and xp may be more accurate. There is another con-
cern, however: inconsistency. The noisy answers are likely to
violate the following constraints, which one would naturally
expect to hold: xt = xp + xF and xp = xA + xB + xC + xD.
This means the analyst must find a way to reconcile the fact
that there are two di↵erent estimates for the total number
of students and two di↵erent estimates for the number of
passing students. We propose a technique for resolving in-
consistency in a set of noisy answers, and show that doing
so can actually increase accuracy. As a result, we show that
strategies inspired by the second alternative can be superior
in many cases.

Overview of Approach. Our approach, shown pictorially
in Figure 1, involves three steps.

First, given a task—such as computing a histogram over
student grades—the analyst chooses a set of queries Q to
send to the data owner. The choice of queries will depend on
the particular task, but in this work they are chosen so that
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Constrained Inference

• 𝑞0, 𝑞2, …, 𝑞m be a set of queries 
• V𝑞0,V𝑞2, …,V𝑞m be the noisy answers
• Constraint C(𝑞0, 𝑞2, …, 𝑞m) = 1 holds on true 

answers (for all typical databases), but does not 
hold on noisy answers. 

• Goal: Find 𝑞0, 𝑞2, …, 𝑞m that are: 
– Close to V𝑞0,V𝑞2, …,V𝑞m
– Satisfy the constraint C(𝑞0, 𝑞2, …, 𝑞m)
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Least Squares Optimization

minM V𝑞0 − 𝑞0 2

𝑠. 𝑡. 𝐶(𝑞0, 𝑞2, … , 𝑞m)
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Geometric Interpretation
minM V𝑞0 − 𝑞0 2

𝑠. 𝑡. 𝐶(𝑞0, 𝑞2, … , 𝑞m)

28

𝒒 = (𝑞0, 𝑞2, …, 𝑞m)

7𝒒 = (V𝑞0,V𝑞2, …,V𝑞m)

Noise

Projection
t𝒒 = (𝑞0, 𝑞2, … , 𝑞m)

Space of 
Outputs 

satisfying the
constraint



Geometric Interpretation

Theorem: 𝒒 − t𝒒 2 ≤ 𝒒 − 7𝒒 2 when the constraints 
form a convex space
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𝒒 = (𝑞0, 𝑞2, …, 𝑞m)

7𝒒 = (V𝑞0,V𝑞2, …,V𝑞m)

Noise

Projection
t𝒒 = (𝑞0, 𝑞2, … , 𝑞m)

Space of 
Outputs 

satisfying the
constraint

minM V𝑞0 − 𝑞0 2

𝑠. 𝑡. 𝐶(𝑞0, 𝑞2, … , 𝑞m)



Ordering Constraint
30

minM V𝑞0 − 𝑞0 2

𝑠. 𝑡. 𝑞0 ≤ 𝑞0 ≤ … ≤ 𝑞m
Isotonic Regression:
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Problem

• Design an ε-differentially private algorithm that 
can answer all range queries. 

• What is the total error?

32

Sex Height Weight
M 6’2” 210
F 5’3” 190
F 5’9” 160
M 5’3” 180
M 6’7” 250

Queries: 

• # people with height in [5’1”, 6’2”]
• # people with height in [2’0”, 4’0”]
• # people with height in [3’3”, 7’0”]
• …



Problem

• Let {v1, …, vk} be the domain of an attribute
• Let {x1, …, xk} be the number of rows with 

values v1, …, vk

• Range Query: qij = xi+ xi+1 + …+ xj

• Goal: Answer all range queries
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Strategy 1: 

• Answer all range queries using Laplace 
mechanism

• Sensitivity: O(𝑘2)
• Total Error: O(𝑘X/𝜀2)
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Strategy 2: 
• Estimate each individual xi using Laplace 

mechanism
• Answer: 𝑞jw = 7𝑥j + V𝑥jx0 +…+ 7𝑥w

• Error in each 7𝑥j: 𝑂(1/𝜀2)
• Error in 𝑞0m: 𝑂(𝑘/𝜀2)
• Total Error: 𝑂(𝑘W/𝜀2)
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Strategy 3: Hierarchy

• Estimate all the counts in the tree below 
using Laplace mechanism

36

x1 x2 x3 x4 x5 x6 x7 x8

x12 x34 x56 x78

x1234 x5678

x1-8 x5+ x6+ x7+ x8



Strategy 3: Hierarchy

• Sensitivity: log 𝑘
• Every range query can be answered by summing 

up at most 2 log 𝑘 nodes in the tree.
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x1 x2 x3 x4 x5 x6 x7 x8

x12 x34 x56 x78

x1234 x5678

x1-8 x5+ x6+ x7+ x8



Strategy 3: Hierarchy

• Error in each node: 𝑂((log 𝑘)2/𝜀2)
• Max error on a range query: 𝑂((log 𝑘)W/𝜀2)
• Total Error: 𝑂(𝑘2(log 𝑘)W/𝜀2)
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x1 x2 x3 x4 x5 x6 x7 x8

x12 x34 x56 x78

x1234 x5678

x1-8 x5+ x6+ x7+ x8



Strategy 3: Hierarchy

• Error in each node: 𝑂((log 𝑘)2/𝜀2)
• Max error on a range query: 𝑂((log 𝑘)W/𝜀2)
• Total Error: 𝑂(𝑘2(log 𝑘)W/𝜀2)

• Error can be further reduced using constrained 
inference 
– Here the constraint is that parent counts should not 

be smaller than child counts. 
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Strategy based mechanisms

• Can think of nodes in the tree as coefficients.
• Other algorithms use other transformations

– Wavelets, Fourier coefficients
• Should be able to losslessly reconstruct the original 

data/query answers. 
• General Idea:

– Apply transform
– Add noise to the transformed space (based on sensitivity)
– Reconstruct  original data/query answers from noisy coefficients

40

Original 
Data

Transform
Coefficients Noisy 

Coefficients
Noise

Private Data
Reconstruct
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Data dependent noise mechanisms
42

Original 
Data

Transform
Coefficients Noisy 

Coefficients
Noise

Private Data
Reconstruct

Transformation 
can be lossy

Reconstruction 
is non-unique

[LHMY14] Li et al.  A data- and workload-aware algorithm for range queries 
under differential privacy.  In PVLDB, 2014.



Data dependent noise mechanisms

• Use a data dependent sensitivity measure 
called Smooth sensitivity.

43

K. Nissim, S. Raskhodnikova, A. Smith, “Smooth Sensitivity and sampling in 
private data analysis”, STOC 2007



Summary

• Composition theorems help build complex 
algorithms using simple building blocks
– Sequential composition
– Parallel composition
– Postprocessing
– There are more advanced forms of composition. 
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Summary

• For the same privacy budget, a better 
designed algorithm can extract more 
utility
–When possible use parallel composition
– Inference on constraints between queries can 

reduce error
– Answering a different strategy of queries can 

help reduce error
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