# Building complex DP algorithms using composition

Privacy & Fairness in Data Science CS848 Fall 2019





# Outline

- Recap
  Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
  - Utilizing Parallel Composition
  - Postprocessing & Inference
  - Strategy Selection
  - Data dependent noise

# **Differential Privacy**



$$\forall \Omega \in \operatorname{range}(A), \ln\left(\frac{\Pr[A(D_1) \in \Omega]}{\Pr[A(D_2) \in \Omega]}\right) \le \varepsilon, \quad \varepsilon > 0$$



# Outline

- Recap
  Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
  - Utilizing Parallel Composition
  - Postprocessing & Inference
  - Strategy Selection
  - Data dependent noise

# Sequential Composition $M_{1}, \epsilon_{1}$ $M_{1}(D)$ $M_{2}, \epsilon_{2}$ $M_{2}(D, M_{1}(D))$ ...

 If M<sub>1</sub>, M<sub>2</sub>, ..., M<sub>k</sub> are algorithms that access a private database D such that each M<sub>i</sub> satisfies ε<sub>i</sub> -differential privacy,

then the combination of their outputs satisfies  $\epsilon$ -differential privacy with

$$\varepsilon = \varepsilon_1 + \dots + \varepsilon_k$$

**Private Database** 

## Parallel Composition



 If M<sub>1</sub>, M<sub>2</sub>, ..., M<sub>k</sub> are algorithms that access are algorithms that access disjoint databases D<sub>1</sub>, D<sub>2</sub>, ..., D<sub>k</sub> such that each M<sub>i</sub> satisfies ε<sub>i</sub> -differential privacy,

then the combination of their outputs satisfies  $\epsilon$ -differential privacy with

$$\varepsilon = \max(\varepsilon_1, \dots, \varepsilon_k)$$

# Postprocessing



 If *M* is an ε-differentially private algorithm, any additional post-processing *A* ∘ *M* also satisfies εdifferential privacy.



- $\sigma_V$ : Stability of the transformation
  - Maximum number of rows in V that can change due to changing a single row in D

### Transformations & Stability



- Executing an  $\varepsilon$ -differentially private algorithm M on a transformation of a database V(D) satisfies  $\varepsilon \cdot \sigma_V$ -differential privacy.
- $\sigma_V$ : Stability of the transformation
  - Maximum number of rows in V that can change due to changing a single row in D

#### Transformations & Stability

• V<sub>1</sub>: For each row (x1, x2, x3)  $\rightarrow$  (x1, x2+x3)

Stability = 1

 V<sub>2</sub>: Each row in D is a tweet (id, {words}). For each row in D, generate k rows with first k words {(id, word<sub>1</sub>), ..., (id, word<sub>k</sub>)}

Stability = k

V<sub>3</sub>: Sample each row with probability p.
 Stability = 1 ... but can prove 2pε -differential privacy\*

\*Adam Smith, Differential Privacy and Secrecy of the Sample

# Outline

- Recap
  Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms

   Utilizing Parallel Composition
  - Postprocessing & Inference
  - Strategy Selection
  - Data dependent noise

# Problem

| Sex | Height | Weight |
|-----|--------|--------|
| М   | 6'2''  | 210    |
| F   | 5′3″   | 190    |
| F   | 5′9″   | 160    |
| М   | 5′3″   | 180    |
| Μ   | 6'7''  | 250    |

#### **Queries:**

- # Males with BMI < 25
- # Males
- # Females with BMI < 25
- # Females

- Design an ε-differentially private algorithm that can answer all these questions.
- What is the total error?

# Algorithm 1

#### Return:

- (# Males with BMI < 25) + Lap( $4/\epsilon$ )
- (# Males) + Lap( $4/\epsilon$ )
- (# Females with BMI) <  $25 + Lap(4/\epsilon)$
- (# Females) +  $Lap(4/\epsilon)$

# Privacy

- BMI can be computed by transforming each row (s, h, w) → (s, bmi). This is stability 1.
- Sensitivity of count = 1. So each query is answered using a  $\epsilon/4$ -DP algorithm.
- By sequential composition, we get  $\varepsilon$ -DP.

# Utility

Error:

$$\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$$

Total Error:

$$2\left(\frac{4}{\varepsilon}\right)^2 \times 4 = \frac{128}{\varepsilon^2}$$

# Algorithm 2

Compute:

- $\widetilde{q_1} = (\# \text{ Males with BMI} < 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_2} = (\# \text{ Males with BMI} > 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_3} = (\# \text{ Females with BMI} < 25) + \text{Lap}(1/\epsilon)$
- $\widetilde{q_4} = (\# \text{ Females with BMI} > 25) + \text{Lap}(1/\epsilon)$

Return

•  $\widetilde{q_1}, \widetilde{q_1} + \widetilde{q_2}, \widetilde{q_3}, \widetilde{q_3} + \widetilde{q_4}$ 

# Privacy

- Sensitivity of count = 1. So each query is answered using a ε-DP algorithm.
- $q_1, q_2, q_3, q_4$  are counts on disjoint portions of the database. Thus by *parallel composition* releasing  $\widetilde{q_1}, \widetilde{q_2}, \widetilde{q_3}, \widetilde{q_4}$  satisfies  $\varepsilon$ -DP.
- By the *postprocessing theorem*, releasing  $\widetilde{q_1}$ ,  $\widetilde{q_1} + \widetilde{q_2}$ ,  $\widetilde{q_3}$ ,  $\widetilde{q_3} + \widetilde{q_4}$  also satisfies  $\varepsilon$ -DP.

# Utility

Error:

$$\sum E\left(\left(\tilde{q}(D)-q(D)\right)^2\right)$$

Total Error:

$$2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} = \frac{12}{\varepsilon^{2}}$$

 $\widetilde{q_1} \qquad \widetilde{q_1} + \widetilde{q_2} \qquad \widetilde{q_3} \qquad \widetilde{q_3} + \widetilde{q_4}$ 



Tighter privacy analysis gives better accuracy for the same level of privacy

#### Total Error:

$$2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2\left(\frac{1}{\varepsilon}\right)^{2} + 2 \cdot 2\left(\frac{1}{\varepsilon}\right)^{2} = \frac{12}{\varepsilon^{2}}$$

 $\widetilde{q_1} \qquad \widetilde{q_1} + \widetilde{q_2} \qquad \widetilde{q_3} \qquad \widetilde{q_3} + \widetilde{q_4}$ 

### Generalized Sensitivity

• Let  $f: \mathcal{D} \to \mathbb{R}^d$  be a function that outputs a vector of *d* real numbers. The sensitivity of *f* is given by:

$$S(f) = \max_{D,D': |D\Delta D'|=1} ||f(D) - f(D')||_1$$

where  $\|\mathbf{x} - \mathbf{y}\|_{1} = \sum_{i} |x_{i} - y_{i}|$ 

## Generalized Sensitivity

- $q_1 = #$  Males with BMI < 25
- $q_2 = #$  Males with BMI > 25
- q = # Males with BMI
- Let  $f_1$  be a function that answers both  $q_1$ ,  $q_2$
- Let  $f_2$  be a function that answers both  $q_1$ , q
- Sensitivity of  $f_1 = 1$
- Sensitivity of  $f_2 = 2$
- An alternate privacy proof for Alg 2 is to show that the generalized sensitivity of  $\tilde{q_1}$ ,  $\tilde{q_2}$ ,  $\tilde{q_3}$ ,  $\tilde{q_4}$  is 1.

# Outline

- Recap
  Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
  - Utilizing Parallel Composition
  - Postprocessing & Inference
  - Strategy Selection
  - Data dependent noise

# Improving utility of Alg 2

Compute:

- $\widetilde{q_1} = #$  Males with BMI < 25 + Lap $(1/\varepsilon)$
- $\widetilde{q_2} = #$  Males with BMI > 25 + Lap $(1/\epsilon)$

Return

•  $\widetilde{q_1}, \widetilde{q_1} + \widetilde{q_2}$ 

We know  $q_1 \le q_1 + q_2$ , but  $P[\widetilde{q_1} > \widetilde{q_1} + \widetilde{q_2}] > 0$ 

#### **Constrained Inference**



#### **Constrained Inference**

- $q_1, q_2, \ldots, q_k$  be a set of queries
- $\widetilde{q_1}, \widetilde{q_2}, ..., \widetilde{q_k}$  be the noisy answers
- Constraint  $C(q_1, q_2, ..., q_k) = 1$  holds on true answers (for all typical databases), but does not hold on noisy answers.
- Goal: Find  $\overline{q_1}$ ,  $\overline{q_2}$ , ...,  $\overline{q_k}$  that are:
  - Close to  $\widetilde{q_1}, \widetilde{q_2}, ..., \widetilde{q_k}$
  - Satisfy the constraint  $C(\overline{q_1}, \overline{q_2}, ..., \overline{q_k})$

## Least Squares Optimization

 $\min \sum (\widetilde{q_1} - \overline{q_1})^2$  $s.t.C(\overline{q_1},\overline{q_2},\ldots,\overline{q_k})$ 

#### Geometric Interpretation



#### Geometric Interpretation



Theorem:  $\|\boldsymbol{q} - \overline{\boldsymbol{q}}\|_2 \le \|\boldsymbol{q} - \widetilde{\boldsymbol{q}}\|_2$  when the constraints form a convex space

# Ordering Constraint

#### Isotonic Regression:

 $\min\sum (\widetilde{q_1} - \overline{q_1})^2$ 

 $s.t.\overline{q_1} \leq \overline{q_1} \leq \dots \leq \overline{q_k}$ 



# Outline

- Recap
  Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
  - Utilizing Parallel Composition
  - Postprocessing & Inference
  - Strategy Selection
  - Data dependent noise

# Problem

| Sex | Height | Weight |
|-----|--------|--------|
| М   | 6'2''  | 210    |
| F   | 5'3"   | 190    |
| F   | 5′9″   | 160    |
| М   | 5′3″   | 180    |
| Μ   | 6'7''  | 250    |

#### **Queries:**

- # people with height in [5'1", 6'2"]
- # people with height in [2'0", 4'0"]
- # people with height in [3'3", 7'0"]

- Design an ε-differentially private algorithm that can answer all range queries.
- What is the total error?

### Problem

- Let  $\{v_1, ..., v_k\}$  be the domain of an attribute
- Let {x<sub>1</sub>, ..., x<sub>k</sub>} be the number of rows with values v<sub>1</sub>, ..., v<sub>k</sub>
- Range Query:  $q_{ij} = x_i + x_{i+1} + ... + x_j$
- Goal: Answer all range queries

# Strategy 1:

- Answer all range queries using Laplace mechanism
- Sensitivity:  $O(k^2)$
- Total Error:  $O(k^4/\epsilon^2)$

# Strategy 2:

- Estimate each individual x<sub>i</sub> using Laplace mechanism
- Answer:  $q_{ij} = \widetilde{x_i} + \widetilde{x_{i+1}} + \ldots + \widetilde{x_j}$
- Error in each  $\widetilde{x}_i$ :  $O(1/\varepsilon^2)$
- Error in  $q_{1k}$ :  $O(k/\varepsilon^2)$
- Total Error:  $O(k^3/\varepsilon^2)$

• Estimate all the counts in the tree below using Laplace mechanism



- Sensitivity: log k
- Every range query can be answered by summing up at most 2 log *k* nodes in the tree.



- Error in each node:  $O((\log k)^2 / \varepsilon^2)$
- Max error on a range query:  $O((\log k)^3 / \varepsilon^2)$
- Total Error:  $O(k^2(\log k)^3/\varepsilon^2)$



- Error in each node:  $O((\log k)^2 / \varepsilon^2)$
- Max error on a range query:  $O((\log k)^3 / \varepsilon^2)$
- Total Error:  $O(k^2(\log k)^3/\varepsilon^2)$
- Error can be further reduced using constrained inference
  - Here the constraint is that parent counts should not be smaller than child counts.

# Strategy based mechanisms



- Can think of nodes in the tree as coefficients.
- Other algorithms use other transformations
  - Wavelets, Fourier coefficients
- Should be able to *losslessly* reconstruct the original data/query answers.
- General Idea:
  - Apply transform
  - Add noise to the transformed space (based on sensitivity)
  - Reconstruct original data/query answers from noisy coefficients

# Outline

- Recap
  Laplace Mechanism
- Composition Theorems
- Optimizing accuracy of DP algorithms
  - Utilizing Parallel Composition
  - Postprocessing & Inference
  - Strategy Selection
  - Data dependent noise

#### Data dependent noise mechanisms



[LHMY14] Li et al. A data- and workload-aware algorithm for range queries under differential privacy. In PVLDB, 2014.

#### Data dependent noise mechanisms

• Use a data dependent sensitivity measure called Smooth sensitivity.

K. Nissim, S. Raskhodnikova, A. Smith, "Smooth Sensitivity and sampling in private data analysis", STOC 2007

# Summary

- Composition theorems help build complex algorithms using simple building blocks
  - Sequential composition
  - Parallel composition
  - Postprocessing
  - *There are more advanced forms of composition.*

# Summary

- For the same privacy budget, a better designed algorithm can extract more utility
  - When possible use parallel composition
  - Inference on constraints between queries can reduce error
  - Answering a different *strategy* of queries can help reduce error