Differential Privacy

Privacy & Fairness in Data Science CS848 Fall 2019

Outline

• Problem

• Differential Privacy

• Basic Algorithms

Statistical Databases

Statistical Database Privacy (untrusted collector)

Statistical Database Privacy (untrusted collector)

Statistical Databases in real-world applications

Application	Data Collector	Private Information	Analyst	Function (utility)
Medical	Hospital	Disease	Epidemiologist	Correlation between disease and geography
Genome analysis	Hospital	Genome	Statistician/ Researcher	Correlation between genome and disease
Advertising	Google/FB	Clicks/Brow sing	Advertiser	Number of clicks on an ad by age/region/gender
Social Recommen- dations	Facebook	Friend links / profile	Another user	Recommend other users or ads to users based on social network

Statistical Databases in real-world applications

• Settings where data collector may not be trusted (or may not want the liability ...)

Application	Data Collector	Private Information	Function (utility)
Location Services	Verizon/AT&T	Location	Traffic prediction
Recommen-	Amazon/Google	Purchase	Recommendation
dations		history	model
Traffic	Internet Service	Browsing	Traffic pattern of groups of users
Shaping	Provider	history	

Privacy is *not* ...

• Encryption:

• Encryption:

Alice sends a message to Bob such that Trudy (attacker) does not learn the message. Bob should get the correct message ...

 Statistical Database Privacy: Bob (attacker) can access a database
 Bob must learn aggregate statistics, but

- Bob must not learn new information about individuals in database.

• Computation on Encrypted Data:

- Computation on Encrypted Data:
 Alice stores encrypted data on a server controlled by Bob (attacker).
 - Server returns correct query answers to Alice, without Bob learning *anything* about the data.
- Statistical Database Privacy:
 Bob is allowed to learn aggregate properties of the database.

• The Millionaires Problem:

- Secure Multiparty Computation:
 - A set of agents each having a private input xi ...
 - ... Want to compute a function f(x1, x2, ..., xk)
 - Each agent can learn the true answer, but must learn no other information than what can be inferred from their private input and the answer.

Statistical Database Privacy:
 Function output *must not disclose* individual inputs.

• Access Control:

Access Control:

- A set of agents want to access a set of resources (could be files or records in a database)

- Access control rules specify who is allowed to access (or not access) certain resources.

- 'Not access' usually means no information must be disclosed

- Statistical Database:

 - A single database and a single agent Want to release aggregate statistics about a set of records without allowing access to individual records

Privacy Problems

- In today's systems a number of privacy problems arise:
 - Encryption when communicating data across a unsecure channel
 - Secure Multiparty Computation when different parties want to compute on a function on their private data without using a centralized third party
 - Computing on encrypted data when one wants to use an unsecure cloud for computation
 - Access control when different users own different parts of the data
- Statistical Database Privacy: Quantifying (and bounding) the amount of information disclosed about individual records by the output of a valid computation.

What is privacy?

Privacy Breach: Attempt 1

A privacy mechanism M(D) that allows an unauthorized party to learn sensitive information about any individual in D,

Is this a privacy breach? NO

Privacy Breach: Attempt 2

A privacy mechanism M(D) that allows an unauthorized party 眷 to learn sensitive information about any individual Alice in D,

which **marcelearnt** even with access to M(D) if Alice was not in the dataset.

Outline

• Problem

• Differential Privacy

• Basic Algorithms

Differential Privacy

between any D_1 and D_2 based on any O

$$\ln\left(\frac{\Pr[A(D_1) = o]}{\Pr[A(D_2) = o]}\right) \le \varepsilon, \qquad \varepsilon > 0$$

Why pairs of datasets *that differ in one row*?

Simulate the presence or absence of a single record

Why *all* pairs of datasets ...?

Guarantee holds no matter what the other records are.

Why all outputs?

Should not be able to distinguish whether input was D_1 or D_2 no matter what the output

Controls the degree to which D_1 and D_2 can be distinguished. Smaller the ε more the privacy (and worse the utility)

Desiderata for a Privacy Definition

- 1. Resilience to background knowledge
 - A privacy mechanism must be able to protect individuals' privacy from attackers who may possess background knowledge
- 2. Privacy without obscurity
 - Attacker must be assumed to know the algorithm used as well as all parameters [MK15]
- 3. Post-processing
 - Post-processing the output of a privacy mechanism must not change the privacy guarantee [KL10, MK15]
- 4. Composition over multiple releases
 - Allow a graceful degradation of privacy with multiple invocations on the same data [DN03, GKS08]

Differential Privacy

• Two equivalent definitions:

Every subset of outputs

$\Pr[A(D_1) \in \Omega] \leq e^{\varepsilon} \Pr[A(D_2) \in \Omega]$

Number of row additions and deletions to change X to Y

$\Pr[A(X) \in \Omega] \leq e^{\varepsilon \cdot d(X,Y)} \Pr[A(Y) \in \Omega]$

Outline

• Problem

• Differential Privacy

• Basic Algorithms

Non-trivial deterministic Algorithms³⁵ do not satisfy differential privacy

Space of all inputs

Space of all outputs (at least 2 distinct ouputs)

Non-trivial deterministic Algorithms ³⁶ do not satisfy differential privacy

There exist two inputs that differ in one entry mapped to different outputs.

Randomized Response (a.k.a. local randomization)

D		0
Disease (Y/N)		Disease (Y/N)
Y	With probability p, Report true, value	Y
Y	With probability 1-p,	Ν
Ν	Report flipped value	Ν
Y		Ν
Ν		Y
Ν		Ν

Differential Privacy Analysis

- Consider 2 databases D, D' (of size M) that differ in the jth value
 D[j] ≠ D'[j]. But, D[i] = D'[i], for all i ≠ j
- Consider some output O

$$\frac{P(D \to 0)}{P(D' \to 0)} \le e^{\varepsilon} \Leftrightarrow \frac{1}{1 + e^{\varepsilon}}$$

Utility Analysis

- Suppose *y* out of *N* people replied "yes", and rest said "no"
- What is the best estimate for π = fraction of people with disease = Y?

$$\hat{\pi} = \frac{\frac{y}{N} - (1-p)}{2p-1}$$

• $E(\widehat{\pi}) = \pi$

• $Var(\hat{\pi}) = \frac{\pi(1-\pi)}{N} + \frac{1}{N\left(16\left(p-\frac{1}{2}\right)^2 - \frac{1}{4}\right)}$ Sampling Variance due to coin flips Randomized response for larger domains

• Suppose area is divided into k x k uniform grid.

• What is the probability of reporting the true location?

• What is the probability of reporting a false location?

Algorithm:

- Report true position: p
- Report any other position: q (< p)

$$p + q(k^2 - 1) = 1$$
$$p \le e^{\varepsilon}q$$

$$q = \frac{1}{e^{\varepsilon} + (k^2 - 1)}$$

• For
$$\varepsilon = \ln(3)$$
, $k = 10$: $p = \frac{3}{102}$

Output Randomization

- Add noise to answers such that:
 - Each answer does not leak too much information about the database.
 - Noisy answers are close to the original answers.

Laplace Mechanism

[DMNS 06]

How much noise for privacy?

Sensitivity: Consider a query q: *I* → R. S(q) is the smallest number s.t. for any neighboring tables D, D', $|q(D) - q(D')| \le S(q)$

Thm: If **sensitivity** of the query is **S**, then the following guarantees ε-differential privacy.

$$\lambda = S/\epsilon$$

Sensitivity: COUNT query

- Number of people having disease
- Sensitivity = 1

- Solution: 3 + η,
 where η is drawn from Lap(1/ε)
 - Mean = 0
 - Variance = $2/\epsilon^2$

Sensitivity: SUM query

- Suppose all values x are in [a,b]
- Sensitivity = b

Privacy of Laplace Mechanism

- Consider neighboring databases D and D'
- Consider some output O

 $\frac{\Pr\left[A(D)=O\right]}{\Pr\left[A(D')=O\right]} = \frac{\Pr\left[q(D)+\eta=O\right]}{\Pr\left[q(D')+\eta=O\right]}$ $= \frac{e^{-|O-q(D)|/\lambda}}{e^{-|O-q(D')|/\lambda}}$

$$\leq e^{|q(D)-q(D')|/\lambda} \leq e^{S(q)/\lambda} = e^{\varepsilon}$$

Utility of Laplace Mechanism

• Laplace mechanism works for **any function** that returns a real number

• Error: E(true answer – noisy answer)²

$$= Var(Lap(S(q)/\epsilon))$$

 $= 2^* S(q)^2 / \varepsilon^2$

Utility Theorem

Thm: $P[|A(D) - q(D)| > t \cdot \lambda] = e^{-t}$

$$P[|A(D) - q(D)| > t \cdot \lambda] = \int_{-\infty}^{-t} \frac{e^{-\frac{|x|}{\lambda}} dx}{2\lambda} + \int_{t}^{\infty} \frac{e^{-\frac{|x|}{\lambda}} dx}{2\lambda}$$
$$= 2\int_{t}^{\infty} \frac{e^{-\frac{|x|}{\lambda}} dx}{2\lambda} = e^{-t}$$

Cor:
$$P\left[|A(D) - q(D)| > \frac{S(q)}{\varepsilon} \ln\left(\frac{1}{\delta}\right)\right] \le \delta$$

Laplace Mechanism vs Randomized Response

Privacy

- Provide the same ε-differential privacy guarantee
- Laplace mechanism assumes data collected is trusted
- Randomized Response does not require data collected to be trusted
 - Also called a *Local* Algorithm, since each record is perturbed

Laplace Mechanism vs Randomized Response

Utility

- Suppose a database with N records where μN records have disease = Y.
- Query: # rows with Disease=Y
- Std dev of Laplace mechanism answer: $O(1/\epsilon)$
- Std dev of Randomized Response answer: $O(\sqrt{N/\epsilon})$

Outline

- Problem
- Differential Privacy
- Basic Algorithms
 - Randomized Response
 - Laplace Mechanism
 - Exponential Mechanism

- For functions that do not return a real number ...
 - "what is the most common nationality in this room": Chinese/Indian/American...
- When perturbation leads to invalid outputs ...
 To ensure integrality/non-negativity of output

Consider some function f (can be deterministic or Inputs probabilistic): Outputs

How to construct a differentially private version of f?

- Scoring function *w*: *Inputs x Outputs* $\rightarrow R$
- D: nationalities of a set of people
- #(D, O): # people with nationality O
- f(D): most frequent nationality in D
- w(D, O) = #(D, O) #(D, f(D))

• Scoring function *w*: *Inputs x Outputs* $\rightarrow R$

• Sensitivity of w

$$\Delta_{w} = \max_{O \& D, D'} |w(D, O) - w(D, O')|$$

where D, D' differ in one tuple

Given an input D, and a scoring function w,

Randomly sample an output O from *Outputs* with probability

$$e^{\frac{\varepsilon}{2\Delta} \cdot w(D,O)}$$

$$\sum_{Q \in Outputs} e^{\frac{\varepsilon}{2\Delta} \cdot w(D,Q)}$$

• Note that for every output O, probability O is output > 0.

Utility of the Exponential Mechanism

- Depends on the choice of scoring function weight given to the best output.
- E.g.,
 "What is the most common nationality?"
 w(D,nationality) = # people in D having that nationality

Sensitivity of w is 1.

• Q: What will the output look like?

Utility of Exponential Mechanism

- Let OPT(D) = nationality with the max score
- Let $O_{OPT} = \{O \in Outputs : w(D,O) = OPT(D)\}$
- Let the exponential mechanism return an output O*

Theorem:

$$\Pr\left[w(D,O^*) \le OPT(D) - \frac{2\Delta}{\varepsilon} \left(\log \frac{|Outputs|}{|O_{OPT}|} + t\right)\right] \le e^{-t}$$

Utility of Exponential Mechanism

Theorem:

$$\Pr\left[w(D,O^*) \le OPT(D) - \frac{2\Delta}{\varepsilon} \left(\log \frac{|Outputs|}{|O_{OPT}|} + t\right)\right] \le e^{-t}$$

Suppose there are 4 nationalities Outputs = {Chinese, Indian, American, Greek}

Exponential mechanism will output some nationality that is shared by at least K people with probability 1-e⁻³(=0.95), where

 $K \geq OPT - 2(\log(4) + 3)/\epsilon = OPT - 6.8/\epsilon$

Laplace versus Exponential Mechanism

- Let f be a function on tables that returns a real number.
- Define: score function w(D,O) = -|f(D) O|
- Sensitivity of w = $\max_{D,D'}(|f(D) O| |f(D') O|)$ $\leq \max_{D,D'}|f(D) - f(D')| = \text{sensitivity of } f$
- Exponential mechanisms returns an output $f(D) + \eta$ with probability proportional to

$$e^{-\frac{\varepsilon}{2\Delta}|f(D)+\eta-f(D)|}$$

Laplace noise with parameter 2Δ/ε

Randomized Response vs Exponential Mechanism

- Input: a bit in {0,1}
- Output: a bit in {0,1}
- Score: w(0,0) = w(1,1) = 1; w(0,1) = w(1,0) = 0

Randomized response for larger domains

• Suppose area is divided into k x k uniform grid.

• What is the probability of reporting the true location?

• What is the probability of reporting a false location?

Different scoring functions give different algorithms

- Uniform:
 - Report true position: 1
 - Report a false position: 0
- Distance:
 - Report true position (i,j): 0
 - Report false position (x,y): (|i-x| + |j-y|)

Summary of Exponential Mechanism

- Differential privacy for cases when output perturbation does not make sense.
- Idea: Make better outputs exponentially more likely; Sample from the resulting distribution.
- Every differentially private algorithm is captured by exponential mechanism.
 - By choosing the appropriate score function.

Summary of Exponential Mechanism

- Utility of the mechanism only depends on log(|Outputs|)
 - Can work well even if output space is exponential in the input

• However, sampling an output may not be computationally efficient if output space is large.

Summary

- An algorithm is differentially private if its output is insensitive to the presence or absence of a single row.
- Building blocks
 - Randomized Response
 - Laplace mechanism
 - Exponential Mechanism

Next Class

- Designing complex algorithms
- Composition
- In-class mini-project (bring your laptop)