This course will explore …

- How to define a good privacy promise?
- How to design a privacy-preserving algorithms?
- How to build a privacy-aware database systems?

Greatly depend on the architecture setup and trust assumptions

- Client-server with trusted data curator
- Data federation
- Cloud service provider
Outline

• Part I: Local Differential Privacy (LDP)

• Part II: Marrying DP with Crypto

• Upcoming Papers and Announcements
No Trusted Data Curator

- Local DP
 - No trusted data curator

- Centralized DP
 - Trusted data curator

Data Owners

\[x_1 \rightarrow o_1 \]
\[x_i \rightarrow o_i \]
\[x_N \rightarrow o_N \]

Data Analyst

\[M(D) \]

LDP
Low trust

CDP
High trust
No Trusted Data Curator

- Local DP
 - No trusted data curator

- Centralized DP
 - Trusted data curator

$$\ln \left(\frac{\Pr[A(x_i) = o]}{\Pr[A(x_i') = o]} \right) \leq \varepsilon$$

$$\ln \left(\frac{\Pr[M(D) = o]}{\Pr[M(D') = o]} \right) \leq \varepsilon$$
Randomized Response (a.k.a. local randomization)

<table>
<thead>
<tr>
<th>D</th>
<th>Disease (Y/N)</th>
<th>O</th>
<th>Disease (Y/N)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Y</td>
<td></td>
<td>Y</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td></td>
<td>N</td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>N</td>
<td></td>
<td></td>
<td>N</td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td>N</td>
<td></td>
</tr>
<tr>
<td>Y</td>
<td></td>
<td></td>
<td>N</td>
</tr>
</tbody>
</table>

- With probability p, Report true value
- With probability $1-p$, Report flipped value
Privacy Analysis of RR

- Considering a record taking values (x, x')
- Consider some output/response O

<table>
<thead>
<tr>
<th>Input</th>
<th>Output</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>$1-p$</td>
</tr>
<tr>
<td>Y</td>
<td>p</td>
</tr>
</tbody>
</table>

$e^{-\epsilon} \leq \frac{\Pr[A(N) = No]}{\Pr[A(Y) = No]} \leq e^{\epsilon}$

$e^{-\epsilon} \leq \frac{\Pr[A(Y) = Yes]}{\Pr[A(N) = Yes]} \leq e^{\epsilon}$

$\frac{1}{1 + e^\epsilon} \leq p \leq \frac{e^\epsilon}{1 + e^\epsilon}$

$e^{-\epsilon} \leq \frac{p}{1-p} \leq e^{\epsilon}$
Utility Analysis of RR

• Suppose y out of N people replied “yes”, and rest said “no”; what is the best estimate for π = fraction of people with disease = Y?

• Expected number of “yes” responses:
 \[E[y] = \pi N \cdot p + (1 - \pi) N \cdot (1 - p) \]

• Unbiased estimator for π: $\hat{\pi} = \frac{\frac{y}{N} - (1 - p)}{2p - 1}$

 $\quad \quad - E(\hat{\pi}) = E\left[\frac{\frac{y}{N} - (1 - p)}{2p - 1} \right] = \pi$

 $\quad \quad - Var(\hat{\pi}) = \frac{\pi (1 - \pi)}{N} + \frac{1}{N \left(16 \left(p - \frac{1}{2}\right)^2 - \frac{1}{4}\right)}$

 Sampling Variance due to coin flips
RR for Larger Domains (mini-assignment 2)

• Suppose area is divided into $k \times k$ uniform grid.

• How to achieve LDP?
 – What is the probability of reporting the true location?
 – What is the probability of reporting a false location?
Browser configurations can identify users
Problem

[Erlingsson et al CCS’14]

What are the frequent unexpected Chrome homepage domains?

→ To learn malicious software that change Chrome setting without users’ consent

Finance.com

Fashion.com

WeirdStuff.com
How to ensure privacy?

Can use Randomized Response ...

On a binary domain:
 With probability p report true value
 With probability $1-p$ report false value

... but the domain of all urls is very large ...

... original value is reported with very low prob.
RAPPOR Solution

• Idea 1: Use bloom filters to reduce the domain size
RAPPOR Solution

• Idea 2: Use RR on bloom filter bits
RAPPOR Solution

• Idea 3: Again use RR on the Fake bloom filter

Why randomize two times?

- Chrome collects information each day
- Want perturbed values to look different on different days to avoid linking
Server Report Decoding

• Step 4: estimates bit frequency from reports $\tilde{f}(D)$
• Step 5: estimate frequency of candidate strings with regression from $\tilde{f}(D)$

Finance.com Fashion.com WeirdStuff.com

\[
\begin{array}{cccccccccc}
1 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 0 \\
\ldots \\
0 & 1 & 0 & 1 & 0 & 0 & 0 & 1 & 0 & 1 \\
\end{array}
\]

$\tilde{f}(D)$
Evaluation

http://google.github.io/rappor/examples/report.html

Simulation Input

Number of clients 100,000
Total values reported / obfuscated 700,000
Unique values reported / obfuscated 50

RAPPOR Parameters

k Size of Bloom filter in bits 16
h Hash functions in Bloom filter 2
m Number of Cohorts 64
p Probability p 0.5
q Probability q 0.75
f Probability f 0.5
Limitations of Local DP

• Local DP: Less accurate/expressive
 – $\Omega(\sqrt{N/\epsilon})$ for statistical counting queries, where N is datasmize
 – Separation results between the accuracy and sample complexity of LDP and CDP [KLNRS08]
 • E.g. disjunctive normal form (DNF) queries
Shifting Trust Assumptions

- Trusted anonymous communication channels
 [BEMMRLRKTS17, CSUZZ18, EFMRTT19, BBGN19]
Shifting Trust Assumptions

• Trusted multi-party secure computation (MPC) [NH12, BEEGKR17, AHKM18]
Outline

• Part I: Local DP
 – Randomized Response
 – RAPPOR
 – Limitations of Local DP

• Part II: Marrying DP with Crypto
 – Secure Multi-party computation
 – Crypte

• Upcoming Papers and Announcements
No Trusted Data Curator

• Trusted multi-party secure computation (MPC) [NH12, BEEGKR17, AHKM18]

MPC: (informally) to compute a function of private inputs without revealing information about the inputs beyond what is revealed by the function
Multi-party Secure Computation

• Motivated use cases:
 – Can we have an auction without auctioneer?
 – Hospitals which cannot share their patient records with anyone want to mine on the combined data.

• Emulate a source of trusted computation
 – It will not “leak” a party’s information to others
 – And it will not cheat in the computation
Simulation-based MPC

• 2-party example

Real world

Ideal model
Simulation-based MPC

• 2-party example

For every real adversary

There exists an (efficient) adversary S

Real world

Ideal model

\[
\{\text{view}_B(\text{real protocol}), O_A, O_B\} \approx \{S_B(x_B, f_B), f_A, f_B\}
\]
Simulation-based MPC

- Protocol for computing $f(X_A, X_B)$ between A and B is secure if there exist efficient simulator algorithms S_A and S_B such that for all input pairs (x_A, x_B)
 \[
 \{\text{view}_A(\text{real protocol}), O_A, O_B\} \approx \{S_A(x_A, f_A), f_A, f_B\}
 \]
 \[
 \{\text{view}_B(\text{real protocol}), O_A, O_B\} \approx \{S_B(x_B, f_B), f_A, f_B\}
 \]

- Correctness: $(O_A, O_B) \approx f(x_A, x_B)$
 - In the ideal model, the function is always computed correctly
 - Thus, the same is true in the real-model
Adversary Model

• Computation power:
 – Prob. polynomial time v.s. all-powerful

• Adversarial behavior:
 – Semi-honest: follows the protocol, but tries to learn more (aka passive; honest-but curious)
 – Malicious: deviates from the protocol in arbitrary ways

• Corruption behavior:
 – Static: set of corrupted parties fixed at onset
 – Adaptive: can choose to corrupt parties at time during computation

• Number of corruptions:
 – Honest majority v.s. unlimited corruptions
Feasibility

• Any multiparty functionality can be securely computed
 – For any number of corrupted parties: security with abort is achieved, assuming enhanced trapdoor permutations [Yao,GMW]
 – With an honest majority: full security is achieved, assume private channels only [BGW,CCD]
Public-key Encryption

• Let \((G, E, D)\) be a public-key encryption scheme

 \(G\) : a key-generation algorithm \(\langle pk, sk \rangle \leftarrow G\)

 • \(pk\) : public key; \(sk\) : secret key

 • Terms: \(m\) denotes plaintext; \(c\) denotes ciphertext

 – Encryption: \(c = E_{pk}(m)\)

 – Decryption: \(m = D_{sk}(c)\)

 – Concept of one-way function: knowing \(c, pk, E_{pk}\), it is still computationally intractable to find \(m\)
Construction Paradigms

• Passively-secure computation for two-parties
 – Use oblivious transfer to securely select a value

• Passively-secure computation with shares
 – Use secret sharing scheme such that data can be reconstructed from some shares

• From passively-secure protocols to actively secure protocols
 – Use zero-knowledge proofs to force parties to behave in a way consistent with the passively secure protocol
1-out-of-2 Oblivious Transfer (OT)

- A inputs two bits
- B inputs the index of one of A’s bits
- B learns his chosen bit, A learns nothing
 - A does not learn which bit B has chosen; B does not learn the value of the bit that he did not choose
Semi-Honest OT

• Let \((G, E, D)\) be a public-key encryption scheme

 \(G\) : a key-generation algorithm \((pk, sk) \leftarrow G\)

 • Assume that a \(pk\) can be sampled without knowledge of its \(sk\)
 [oblivious key generation, e.g., El-Gamal encryption]: \(pk \leftarrow OG\)

 – Encryption: \(c = E_{pk}(m)\)

 – Decryption: \(m = D_{sk}(c)\)
Generalization [min-assignment 2]

• Can define 1-out-of-k oblivious transfer

• How?

\[b_0, \ldots, b_{k-1}, i \in \{0,1, \ldots, k-1\} \]
General GMW Construction
[Goldreich-Micali-Wigderson]

• For simplicity – consider 2-party
 – Let f be the function that the two parties wish to compute over their inputs (a,b): $f(a,b)$

• Idea:
 – Represent f as an arithmetic circuit with addition and multiplication gates
 – Aim to compute gate-by-gate, revealing only random shares each time
Random Shares Paradigm

• Let a be some value:
 – Party 1 holds a random value a_1
 – Party 2 holds $a + a_1$
 – Note that without knowing a_1, $a + a_1$ is just a random value revealing nothing of a
 – We say that parties hold random shares of a

• The computation will be such that all the intermediate values are random shares (and so they reveal nothing)
Circuit Computation

• Stage 1: each party randomly shares its input with the other party

• Stage 2: compute gates of circuits as follows
 – Given random shares to the input wires, compute random shares of the output wires

• Stage 3: combine shares of the output wires in order to obtain actual output
Addition Gates

• Input wires to gate have values a and b:
 – Party 1 has shares a1 and b1
 – Party 2 has shares a2 and b2
 – Note: a1+a2=a, b1+b2=b

• To compute random shares of output c=a+b
 – Party 1 locally computes c1=a1+b1
 – Party 2 locally computes c2=a2+b2
 – Note: c1+c2 = a1+b1+a2+b2 = a+b=c
Multiplication Gates

• Input wires to gate have values a and b:
 – Party 1 has shares a1 and b1
 – Party 2 has shares a2 and b2
 – Wish to compute c = ab = (a1+a2)(b1+b2)

• Party 1 knows (a1,b1)
• Party 2’s values (a2,b2) are unknown to Party 1, but there are only 4 possibilities
 – (depending on correspondence to 00,01,10,11)
Multiplication Gates (cont.)

• Let r be a random bit chosen by Party 1
• Party 1 prepares a table as follows:
 – Row 1: $ab+r$ when $a_2=0$, $b_2=0$
 – Row 2: $ab+r$ when $a_2=0$, $b_2=1$
 – Row 3: $ab+r$ when $a_2=1$, $b_2=0$
 – Row 4: $ab+r$ when $a_2=1$, $b_2=1$

• For example
 – Assume $a_1=0$, $b_1=1$
 – Assume $r=1$

<table>
<thead>
<tr>
<th>Row</th>
<th>Party 2’s shares</th>
<th>Output Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_2=0$, $b_2=0$</td>
<td>$(0+0)(1+0)+1=1$</td>
</tr>
<tr>
<td>2</td>
<td>$a_2=0$, $b_2=1$</td>
<td>$(0+0)(1+1)+1=1$</td>
</tr>
<tr>
<td>3</td>
<td>$a_2=1$, $b_2=0$</td>
<td>$(0+1)(1+0)+1=0$</td>
</tr>
<tr>
<td>4</td>
<td>$a_2=1$, $b_2=1$</td>
<td>$(0+1)(1+1)+1=1$</td>
</tr>
</tbody>
</table>
The Gate Protocol

• The parties run a 1-out-of-4 OT

For example

– Assume $a_1=0, b_1=1$
– Assume $r=1$

<table>
<thead>
<tr>
<th>Row</th>
<th>$ab+r$ value</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$(0+0)(1+0)+1=1$</td>
</tr>
<tr>
<td>2</td>
<td>$(0+0)(1+1)+1=1$</td>
</tr>
<tr>
<td>3</td>
<td>$(0+1)(1+0)+1=0$</td>
</tr>
<tr>
<td>4</td>
<td>$(0+1)(1+1)+1=1$</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Row</th>
<th>Party 2’s shares</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>$a_2=0, b_2=0$</td>
</tr>
<tr>
<td>2</td>
<td>$a_2=0, b_2=1$</td>
</tr>
<tr>
<td>3</td>
<td>$a_2=1, b_2=0$</td>
</tr>
<tr>
<td>4</td>
<td>$a_2=1, b_2=1$</td>
</tr>
</tbody>
</table>

$i = 1, or 2, or 3, or 4$

$\text{row}_3 = ab+r$
Challenges in Practice

• (m+1)-party MPC protocols are usually expensive

• Data owners need to be online
Challenges in Practice

• Security/privacy proofs can be tricky
 – Even for stand-alone crypto/DP mechanisms [BR06, LSL17]
 – Hybrid approach is vulnerable to faulty proofs [HMFS17]

//NoisyMax [DR14]:

For $i = 1, \ldots, L$: $[c'_i] \leftarrow [c_i] + [\eta_i]$, where $\eta_i \sim Lap\left(\frac{1}{\epsilon}\right)$

Release $\text{argmax}_{i \in [1, L]} c'_i$

//Release counts for $i \leq 10$:

For $i = 1, \ldots, 10$: $[c'_i] \leftarrow [c_i] + [\eta_i]$, where $\eta_i \sim Lap\left(\frac{\Delta}{\epsilon}\right)$

Release $(c'_1, c'_2, \ldots, c'_10)$

[xxx] denotes cipher text
Challenges in Practice

• Performance optimization is non-trivial

//Accurate Histogram Publication (AHP) [ZCXMX14]:

For $i \in [1, L]$: $[c'_i] \leftarrow [c_i] + [\eta_i]$, where $\eta_i \sim Lap(\frac{1}{\epsilon_1})$

$([c'_{i_1}], \ldots, [c'_{i_L}]) \leftarrow Sort(Threshold([c'_1], \ldots, [c'_L]))$

$C \leftarrow Cluster([c'_{i_1}], \ldots, [c'_{i_L}])$

For $C_i \in C$: $[C_i] \leftarrow \Sigma_{c_j \in C_i} [c'_i] / |C_i|$

For $i \in [1, L]$: $[c''_i] \leftarrow [C_i] + [\eta_i] / |C_i|$, where $\eta_i \sim Lap(\frac{1}{\epsilon_2})$

Release (c''_1, \ldots, c''_L)

EMP toolkit 800s for a dataset of size 33k → 3.4x less time with optimization!!
Outline

• Part I: Local DP
 – Randomized Response
 – RAPPOR
 – Limitations of Local DP

• Part II: Marrying DP with Crypto
 – Secure Multi-party computation
 – Crypte

• Upcoming Papers and Announcements
Crypte

-
 - (m+1)-party MPC protocols are usually expensive
 - Data owners need to be online
 - Security/privacy proofs can be tricky
 - Performance optimization is non-trivial

2-Server Model with minimal trust assumption
- Computationally bounded adversary
- Semi-honest behavior and non-collusion
Crypte

- (m+1)-party MPC protocols are usually expensive
- Data owners need to be online
- Security/privacy proofs can be tricky
- Performance optimization is non-trivial

Data owners are offline
- CSP acts on behalf of data owners
- CSP is minimally involved in the protocols
Homomorphic Encryption

- Allows computations on the ciphertext without knowing the secret key, meanwhile ensures that the decryption of the resulting ciphertext is the same as the computations over the plaintext.

- Development
 - Idea about privacy homomorphism was proposed [RAD78]
 - Partially Homomorphic Encryption Schemes [RSA78] [Paillier99]
 - 1st generation FHE based on ideal lattice (bootstrapping) [Gen09b]
 - 2nd generation FHE based on RLWE (key/modulus switch) [BV11b][BGV12]
 - 3rd generation FHE based on LWE (approximate eigenvector) [GSW13]
Crypte

- $(m+1)$-party MPC protocols are usually expensive
- Data owners need to be online
- Security/privacy proofs can be tricky
- Performance optimization is non-trivial

Programming Framework (logical)
- Compile high level operators down to black box
- Prove security/privacy in modular fashion

Data Analyst

[Diagram showing data flow and interactions between Cryptographic Service Provider (CSP), Analytics Server (AS), and Data Analyst]
Crypte

- (m+1)-party MPC protocols are usually expensive
- Data owners need to be online
- Security/privacy proofs can be tricky
- Performance optimization is non-trivial

Built-in Performance Optimization
- DP-index optimization
- Crypto-engineering optimization

Diagram:
- Data [x₁, x₂, ..., xₙ] from [N] clients
- Cryptographic Service Provider (CSP)
- Analytics Server (AS)
- Data Analyst
- Noisy output
- Crypte Program
- Built-in performance optimization

Cryptographic Service Provider (CSP)
Design Principles in Crypte

- 2-server model with minimal trust assumptions
- Data owners are offline
- Programming framework
- Built-in performance optimization
Crypte Overview

1. Key manager
2. Aggregator
3. Program executor
4. Privacy engine
5. Data decryption

Data Owners

Data Analyst

Analytics Server (AS)

Cryptographic Service Provider (CSP)

Noisy output

Crypte Program

Crypte Program

Crypte Program

Crypte Program
Design Principles

- 2-server model with minimal trust assumptions
- Data owners are offline
- Programming framework
- Built-in performance optimization
Programming Framework

• Logical program: a sequence of operators

- Transformation operators: $[D] \rightarrow [V]/[c]$
 E.g. $\sigma_{\text{condition}}, \pi_A(), \text{count}, \gamma_A^{\text{count}}$

- Measurement operators: $[V] \rightarrow \tilde{V}$
 E.g. $\text{Lap}(), \text{NoisyMax}()$

- Postprocessing operators: $\tilde{V} \rightarrow \tilde{O}$
 E.g. $\geq 0, \text{Post}_{c.d.f.}$

• Views of AS and CSP
 - AS sees either encrypted values or noised values in the clear
 - CSP always sees noised values (encrypted/in the clear)
Program Example

• Database schema: Age(A), Gender(G), NativeCountry(N), Race(R)
• P1: Compute the cumulative distribution of Age ranged [1,100]

For $i \in [1,100]$:

\[
\hat{c}_i \leftarrow \text{Lap}_{\epsilon_i, \Delta=1} \left(\text{count} \left(\sigma_{\text{Age} \in (0,i)} \left(\pi_{\text{Age} \in (\bar{D})} \right) \right) \right);
\]

\[
\text{output} \leftarrow \text{post} \text{c.d.f.}([\hat{c}_1, \ldots, \hat{c}_{100}])
\]

DP noised Encrypted
Program Example

- Database schema: *Age(A), Gender(G), NativeCountry(N), Race(R)*
- P5: Count the no. of male employees of Mexico having age 30

\[\hat{c} \leftarrow \text{Lap}_{\epsilon,\Delta=1} \left(\text{count} \left(\sigma_{A=30 \land G=M \land N=\text{Mexico}} \left(\pi_{A,G,N}(\bar{D}) \right) \right) \right) \]

- P7: Count the no. of age values having at least 100 records

\[\hat{c} \leftarrow \text{Lap}_{\epsilon,\Delta=2} \left(\text{count} \left(\sigma_{\text{Count} \in [100, m]} \left(\gamma_{A}^{\text{count}}(\pi_{A}(\bar{D})) \right) \right) \right) \]

DP noised Encrypted
Implementation Details

\[\hat{c}_{30} \leftarrow \text{Lap}_{\epsilon_{30}, \Delta=1} \left(\text{count} \left(\sigma_{Age \in (0,30]} \left(\pi_{Age} (\overline{D}) \right) \right) \right); \]

<table>
<thead>
<tr>
<th>A</th>
<th>G</th>
<th>N</th>
<th>R</th>
<th>Bit</th>
</tr>
</thead>
<tbody>
<tr>
<td>[18]</td>
<td></td>
<td></td>
<td></td>
<td>[1]</td>
</tr>
<tr>
<td>[35]</td>
<td></td>
<td></td>
<td></td>
<td>[1]</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td>...</td>
</tr>
<tr>
<td>[42]</td>
<td></td>
<td></td>
<td></td>
<td>[1]</td>
</tr>
<tr>
<td>[23]</td>
<td></td>
<td></td>
<td></td>
<td>[1]</td>
</tr>
</tbody>
</table>

18th position

Linear Homomorphic Encryption: \(\text{Dec}([x]+[y])=x+y \)
Alternative Implementations

• Secret share based MPC protocol
 – 2 servers do the similar amount of work
• Joint noise generation [DKMMN06, NH12]
 – More expensive MPC protocol
• Other improvements:
 – Data representation: multi-attribute one-hot-encoding
 – Optimized HE scheme or GC

All are possible, due to the separation of logical programming framework and underlying physical implementation!
Security Sketch (Semi-honest)

For $i \in [1,100]$:
$$
\hat{c}_i \leftarrow \text{Lap}_{\epsilon_i,\Delta=1}\left(\text{count}\left(\sigma_{\text{Age} \in (0,i]}(\pi_{\text{Age}}(D))\right)\right);
$$

output $\leftarrow \text{post}_{c.d.f.}([\hat{c}_1, \ldots, \hat{c}_{100}])$

Satisfy SIM-CDP [MVRV09]

Exists PPT $\text{Sim}_\text{AS}, \text{Sim}_\text{CSP}$, such that

$$
\text{Sim}_\text{AS}(P^{\text{CDP}}(D,\epsilon)) =_c \left(\text{View}_\text{AS}^{\Pi}(P,D,\epsilon),\right. \\
\left.\text{Output}^{\Pi}(P,D,\epsilon)\right)
$$

$$
\text{Sim}_\text{CSP}(P^{\text{CDP}}(D,\epsilon)) =_c \left(\text{View}_\text{CSP}^{\Pi}(P,D,\epsilon),\right. \\
\left.\text{Output}^{\Pi}(P,D,\epsilon)\right)
$$

r.v.: the output of running P in CDP model
Security Sketch (Semi-honest)

For $i \in [1,100]$:

\[
\hat{c}_i \leftarrow \text{Lap}_{\epsilon_i, \Delta=1} \left(\text{count} \left(\sigma_{Age \in (0,i]} \left(\pi_{Age} (\bar{D}) \right) \right) \right);
\]

output $\leftarrow \text{post}_{c.d.f.}([\hat{c}_1, \ldots, \hat{c}_{100}])$

\[
\begin{align*}
\text{Program } P & \\
\text{Satisfy SIM-CDP [MVRV09]} & \\
\text{Encryption} & \\
\ldots & \\
\text{Garbled circuit} & \\
\text{Laplace operator} & \\
\text{Composition theorem} & [G. Oded. Foundations of Cryptography]
\end{align*}
\]
Design Principles

- 2-server model with minimal trust assumptions
- Data owners are offline
- Programming framework
- Built-in performance optimization
 - DP-index Opt
 - E.g. index on NativeCountry
 - Crypto-engineering Opt
 - DP range tree
 - Pre-computation
 - Offline processing

P5: 1201.12s \rightarrow 29.21s
Evaluation

• Dataset of 32,651 rows and 7 Crypte programs

• Accuracy:
 – The same order as that of CDP implementation
 – 2-orders of smaller error than that of LDP implementation

• Performance:
 – Optimizations improve the performance by up to 5667×
 – A large class of programs execute within 5 mins and scale linearly with the data size
 – AS performs majority of the work for most programs
Take-away and Future work

- User-specified query in a high-level language
- A larger class of programs
- Malicious setting

Key: Separation of logical programming framework and underlying physical implementation!

Key: Leaky crypto for performance-privacy trade-off!

- DP for Crypto to improve performance
 - Computation [BHEMR17]
 - Access pattern [TDG16, WCM18]
 - Communication [HLZZ15, TGLZZ17, LGZ18]
Summary

• Part I: Local DP
 – Randomized Response
 – RAPPOR
 – Limitations of Local DP

• Part II: Marrying DP with Crypto
 – Secure Multi-party Computation
 – Crypte
Discussion Time
Paper Readings

• Week 7
 – 2a. Prochlo
 – 2b. Orchard
 – 2c. EncryptedDB

• Week 8
 – 2d. Collecting data jointly under LDP
 – 2e. DJoin
 – 2f. Shrinkwrap
Announcement

• Assignment 1
 – Release after Wed session
 – Latex file will be available
 – Submit pdf on Learn, by Feb 22, 11pm

• Feedback on projects will be emailed before/during the reading week
Slides Credits

- https://www.cs.utexas.edu/~shmat/courses/cs380s_fall09/15smc.ppt
- http://www.mathcs.emory.edu/~lxiong/cs573_s12/share/slides/12crypt.pdf