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Abstract. In this paper, we investigate space-time tradeoffs for answer-
ing Boolean conjunctive queries. The goal is to create a data structure in
an initial preprocessing phase and use it for answering (multiple) queries.
Previous work has developed data structures that trade off space usage
for answering time and has proved conditional space lower bounds for
queries of practical interest such as the path and triangle query. However,
most of these results cater to only those queries, lack a comprehensive
framework, and are not generalizable. The isolated treatment of these
queries also fails to utilize the connections with extensive research on
related problems within the database community. The key insight in
this work is to exploit the formalism of relational algebra by casting
the problems as answering join queries over a relational database. Using
the notion of boolean adorned queries and access patterns, we propose a
unified framework that captures several widely studied algorithmic prob-
lems. Our main contribution is three-fold. First, we present an algorithm
that recovers existing space-time tradeoffs for several problems. The al-
gorithm is based on an application of the join size bound to capture the
space usage of our data structure. We combine our data structure with
query decomposition techniques to further improve the tradeoffs and show
that it is readily extensible to queries with negation. Second, we falsify
two proposed conjectures in the existing literature related to the space-
time lower bound for path queries and triangle detection for which we
show unexpectedly better algorithms. This result opens a new avenue for
improving several algorithmic results that have so far been assumed to
be (conditionally) optimal. Finally, we prove new conditional space-time
lower bounds for star and path queries.

1 Introduction

Recent work has made remarkable progress in developing data structures and
algorithms for answering set intersection problems [12], reachability oracles and
directed reachability [3, 4, 9], histogram indexing [7, 18], and problems related
to document retrieval [2, 20]. This class of problems splits an algorithmic task
into two phases: the preprocessing phase, which computes a space-efficient data
structure, and the answering phase, which uses the data structure to answer the
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requests to minimize the answering time. A fundamental algorithmic question
related to these problems is the tradeoff between the space S necessary for data
structures and the answering time T for requests.

For example, consider the 2-Set Disjointness problem: given a universe of
elements U and a collection of m sets C1, . . . , Cm ⊆ U , we want to create a
data structure such that for any pair of integers 1 ≤ i, j ≤ m, we can efficiently
decide whether Ci∩Cj is empty or not. Previous work [9,12] has shown that the
space-time tradeoff for 2-Set Disjointness is captured by the equation S ·T 2 = N2,
where N is the total size of all sets. The data structure obtained is conjectured
to be optimal [12], and its optimality was used to develop conditional lower
bounds for other problems, such as approximate distance oracles [3, 4]. Similar
tradeoffs have been independently established for other data structure problems
as well. In the k-Reachability problem [8,12] we are given as an input a directed
graph G = (V,E), an arbitrary pair of vertices u, v, and the goal is to decide
whether there exists a path of length k between u and v. In the edge triangle
detection problem [12], we are given an input undirected graph G = (V,E), and
the goal is to develop a data structure that takes space S and can answer in time
T whether a given edge e ∈ E participates in a triangle or not. Each of these
problems has been studied in isolation and, as a result, the algorithmic solutions
are not generalizable.

In this paper, we cast many of the above problems into answering Con-
junctive Queries (CQs) over a relational database. CQs are a powerful class of
relational queries with widespread applications in data analytics and graph ex-
ploration [11, 30, 31]. For example, by using the relation R(x, y) to encode that
element x belongs to set y, 2-Set Disjointness can be captured by the follow-
ing CQ: φ(y1, y2) = R(x, y1) ∧ R(x, y2). The insight of casting data structure
problems into CQs over a database allows for a unified treatment for developing
algorithms within the same framework. In particular, we can leverage the tech-
niques developed by the data management community through a long line of
research on efficient join evaluation [22,23,32], including worst-case optimal join
algorithms [22] and tree decompositions [13,26]. Building upon these techniques,
we achieve the following:
– We obtain in a simple way general space-time tradeoffs for any Boolean CQ

(a Boolean CQ is one that outputs only true or false). As a consequence,
we recover state-of-the-art tradeoffs for several existing problems (e.g., 2-Set
Disjointness as well as its generalization k-Set Disjointness and k-Reachability)
as special cases of the general tradeoff. We can even obtain improved tradeoffs
for some specific problems, such as edge triangles detection, thus falsifying
existing conjectures. This also gives us a way to construct data structures
for any new problem that can be cast as a Boolean CQ (e.g., finding any
subgraph pattern in a graph).

– Space-time tradeoffs for enumerating (non-Boolean) query results under static
and dynamic settings have been a subject of previous work [1,11,14,16,17,24].
The space-time tradeoffs from [11] can be applied to the setting of this paper
by stopping the enumeration after the first result is observed. We improve
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upon this result by (i) showing a much simpler data structure construction
and proofs, and (ii) shaving off a polylogarithmic factor from the tradeoff.

We next summarize our three main technical contributions.

1. We propose a unified framework that captures several widely-studied data
structure problems. More specifically, we use the formalism of CQs and the
notion of Boolean adorned queries, where the values of some variables in the
query are fixed by the user (denoted as an access pattern), and aim to evalu-
ate the Boolean query. We then show how this framework captures the 2-Set
Disjointness and k-Reachability problems. Our first main result (Theorem 1)
is an algorithm that builds a data structure to answer any Boolean CQ under
a specific access pattern. We show how to recover existing and new trade-
offs using this general framework. The first main result may sometimes lead
to suboptimal tradeoffs since it does not take into account the structural
properties of the query. Our second main result (Theorem 2) combines tree
decompositions of the query structure with access patterns to improve space
efficiency. We then show how this algorithm can handle Boolean CQs with
negation.

2. We explicitly improve the best-known space-time tradeoff for the k-Reachability
problem for k ≥ 4. For any k ≥ 2, the tradeoff of S · T 2/(k−1) = O(|E|2)
was conjectured to be optimal by [12], where |E| is the number of edges
in the graph, and was used to conditionally prove other lower bounds on
space-time tradeoffs. We show that for a regime of answer time T , it can
be improved to S · T 2/(k−2) = O(|E|2), thus breaking the conjecture. To
the best of our knowledge, this is the first non-trivial improvement for the
k-Reachability problem. We also refute a lower bound conjecture for the edge
triangles detection problem established by [12] that appeared at WADS’17.

3. Our third main contribution applies our framework to CQs with negation.
This allows us to construct space-time tradeoffs for tasks such as detecting
open triangles in a graph. We also show a reduction between lower bounds
for the problem of k-Set Disjointness for k ≥ 2, which generalizes the 2-Set
Disjointness to computing the intersection between k given sets.

2 Notation and Preliminaries

Data Model. A schema is defined as a collection of relation names, where each
relation name R is associated with an arity n. Assuming a (countably infinite)
domain dom, a tuple t of relation R is an element of domn. An instance of
relation R with arity n is a finite set of tuples of R; the size of the instance will
be denoted as |R|. An input database D is a set of relation instances over the
schema. The size of the database |D| is the sum of sizes of all its instances.
Conjunctive Queries. A Conjunctive Query (CQ) is an expression of the form
φ(y) = R1(x1)∧R2(x2)∧. . .∧Rn(xn). The expressions φ(y), R1(x1), R2(x2), . . . , Rn(xn)
are called atoms. The atom φ(y) is the head of the query, while the atoms Ri(xi)
form the body. Here, y,x1, . . . ,xn are vectors where each position is a variable
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(typically denoted as x, y, z, . . . ) or a constant from dom (typically denoted
a, b, c, . . . ). Each xi must match the arity of the relation Ri, and the variables
in y must occur in the body of the query. We use vars(φ) to denote the set of
all variables occurring in φ, and vars(Ri) to denote the set of variables in atom
Ri(xi). A CQ is full if every variable in the body appears also in the head, and
Boolean if the head contains no variables. Given variables x1, . . . , xk from vars(φ)
and constants a1, . . . , ak from dom, we define φ[a1/x1, . . . , ak/xk] to be the CQ
where every occurrence of a variable xi, i = 1, . . . , k, is replaced by the constant
ai. Given an input database D and a CQ φ, we define the query result φ(D)
as follows. A valuation v is a mapping from dom ∪ vars(φ) to dom such that
v(a) = a whenever a is a constant. Then, φ(D) is the set of all tuples t such that
there exists a valuation v for which t = v(y) and for every atom Ri(xi), we have
Ri(v(xi)) ∈ D.4

Example 1. Suppose that we have a directed graph G that is represented through
a binary relation R(x, y): this means that there exists an edge from node x to
node y. We can compute the pairs of nodes that are connected by a directed path
of length k using the following CQ, which we call a path query: Pk(x1, xk+1) =
R(x1, x2) ∧R(x2, x3) ∧ · · · ∧R(xk, xk+1).

Output Size Bounds. Let φ(y) = R1(x1)∧R2(x2)∧ . . .∧Rn(xn) be a CQ. A
weight assignment u = (ui)i=1,...,n is called a fractional edge cover of S ⊆ vars(φ)
if (i) for every atom Ri, ui ≥ 0 and (ii) for every x ∈ S,

∑
i:x∈vars(Ri)

ui ≥ 1.
The fractional edge cover number of S, denoted by ρ∗(S) is the minimum of∑n

i=1 ui over all fractional edge covers of S. Whenever S = vars(φ), we call this
a fractional edge cover of φ and simply use ρ∗. In a celebrated result, Atserias,
Grohe and Marx [5] proved that for every fractional edge cover u of φ, the size of
the output is bounded by the AGM inequality: |φ(D)| ≤

∏n
i=1 |Ri|ui . The above

bound is constructive [22,23]: there exists an algorithm that computes the result
φ(D) in O(

∏
i |Ri|ui) time for every fractional edge cover u.

Tree Decompositions. Let φ(y) = R1(x1) ∧ R2(x2) ∧ . . . ∧ Rn(xn) be a CQ.
A tree decomposition of φ is a tuple (T , (Bt)t∈V (T )) where T is a tree, and every
Bt is a subset of vars(φ), called the bag of t, such that
– For every atom Ri, the set vars(Ri) is contained in some bag; and
– For each variable x ∈ vars(φ), the set of nodes {t | x ∈ Bt} form a connected

subtree of T .
The fractional hypertree width of a decomposition is defined as maxt∈V (T ) ρ

∗(Bt),
where ρ∗(Bt) is the minimum fractional edge cover of the vertices in Bt. The frac-
tional hypertree width of a query φ, denoted fhw(φ), is the minimum fractional
hypertree width among all tree decompositions. We say that a query is acyclic
if fhw(φ) = 1.
Computational Model. To measure the running time of our algorithms, we
will use the uniform-cost RAM model [15], where data values and pointers to
databases are of constant size. Throughout the paper, all complexity results are
with respect to data complexity, where the query is assumed fixed.
4 Here we extend the valuation to mean v((a1, . . . , an)) = (v(a1), . . . , v(an)).
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3 Framework

3.1 Adorned Queries

In order to model different access patterns, we will use the concept of adorned
queries introduced by [28]. Let φ(x1, . . . , xk) be the head of a CQ φ. In an
adorned query, each variable in the head is associated with a binding type, which
can be either bound (b) or free (f). We denote this as φη, where η ∈ {b, f}k is
called the access pattern. The access pattern tells us for which variables the
user must provide a value as input. Concretely, let x1, x2, . . . , xℓ be the bound
variables. An access request is sequence of constants a1, . . . , aℓ, and it asks to
return the result of the query φη[a1/x1, . . . , aℓ/xℓ] on the input database. We
next demonstrate how to capture several data structure problems in this way.

Example 2 (Set Disjointness and Set Intersection). In the set disjointness prob-
lem, we are given m sets S1, . . . , Sm drawn from the same universe U . Let
N =

∑m
i=1 |Si| be the total size of input sets. Each access request is a pair

of indexes (i, j), 1 ≤ i, j,≤ m, for which we need to decide whether Si ∩ Sj is
empty or not. To cast this problem as an adorned query, we encode the family of
sets as a binary relation R(x, y), such that element x belongs to set y. Note that
the relation will have size N . Then, the set disjointness problem corresponds to:
φbb(y, z) = R(x, y) ∧ R(x, z). An access request in this case specifies two sets
y = Si, z = Sj , and issues the (Boolean) query φ(Si, Sj) = R(x, Si)∧R(x, Sj). In
the related set intersection problem, given a pair of indexes (i, j) for 1 ≤ i, j,≤ m,
we instead want to enumerate the elements in the intersection Si∩Sj , which can
be captured by the following adorned query: φbbf(y, z, x) = R(x, y) ∧R(x, z).

Example 3 (k-Set Disjointness). The k-set disjointness problem is a generaliza-
tion of 2-set disjointness problem, where each request asks whether the intersec-
tion between k sets is empty or not. Again, we can cast this problem into the
following adorned query: φb...b(y1, . . . , yk) = R(x, y1) ∧R(x, y2) ∧ · · · ∧R(x, yk)

Example 4 (k-Reachability). Given a direct graph G , the k-reachability problem
asks, given a pair vertices (u, v), to check whether they are connected by a path of
length k. Representing the graph as a binary relation R(x, y) (which means that
there is an edge from x to y), we can model this problem through the following
adorned query: φbb(x1, xk+1) = R(x1, x2)∧R(x2, x3)∧· · ·∧R(xk, xk+1) Observe
that we can also check whether there is a path of length at most k by combining
the results of k such queries (one for each length 1, . . . , k).

Example 5 (Edge Triangles Detection). Given a graph G = (V,E), this problem
asks, given an edge (u, v) as the request, whether (u, v) participates in a triangle
or not. This task can be expressed as the following adorned query φbb

△(x, z) =
R(x, y) ∧R(y, z) ∧R(x, z) In the reporting version, the goal is to enumerate all
triangles participated by edge (x, z), which can also be expressed by the following
adorned query φbbf

△ (x, z, y) = R(x, y) ∧R(y, z) ∧R(x, z).

We say that an adorned query is Boolean if every head variable is bound. In
this case, the answer for every access request is also Boolean, i.e., true or false.
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3.2 Problem Statement

Given an adorned query φη and an input database D, our goal is to construct a
data structure, such that we can answer any access request that conforms to the
access pattern η as fast as possible. In other words, an algorithm can be split
into two phases:
– Preprocessing phase: we compute a data structure using space S.
– Answering phase: given an access request, we compute the answer using

the data structure built in the preprocessing phase, within time T .
In this work, our goal is to study the relationship between the space of the

data structure S and the answering time T for a given adorned query φη. We
will focus on Boolean adorned queries, where the output is just true or false.

4 Space-Time Tradeoffs via Worst-case Optimal
Algorithms

Let φη be an adorned query and Vb denote its bound variables. For any fractional
edge cover u, we define the slack of u [11] as:

α(u) := min
x∈vars(φ)\Vb

 ∑
i:x∈vars(Ri)

ui

 .

In other words, the slack is the maximum factor by which we can scale down
the fractional cover u so that it remains a valid edge cover of the non-bound
variables in the query5. Hence {ui/α(u)}i is a fractional edge cover of the nodes
in vars(φ) \ Vb. We always have α(u) ≥ 1.

Example 6. Consider φb...b(y1, . . . , yk) = R1(x, y1)∧R2(x, y2)∧. . . Rk(x, yk) with
the optimal fractional edge cover u, where ui = 1 for i ∈ {1, . . . , k}. The slack
is α(u) = k, since the fractional edge cover û, where ûi = ui/k = 1/k covers the
only non-bound variable x.

Theorem 1. Let φη be a Boolean adorned query. Let u be any fractional edge
cover of φ. Then, for any input database D, we can construct a data structure
that answers any access request in time O(T ) and takes space

S = O

(
|D|+

n∏
i=1

|Ri|ui/Tα

)

We should note that Theorem 1 applies even when the relation sizes are
different; this gives us sharper upper bounds compared to the case where each
relation is bounded by the total size of the input. Indeed, if using |D| as an

5 We will omit the parameter u from the notation of α whenever it is clear from the
context.
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upper bound on each relation, we obtain a space requirement of O(|D|ρ∗
/Tα)

for achieving answering time O(T ), where ρ∗ is the fractional edge cover number.
Since α ≥ 1, this gives us at worst a linear tradeoff between space and time, i.e.,
S · T = O(|D|ρ∗

). For cases where α ≥ 1, we can obtain better tradeoffs. The
full proofs for all results in this paper can be found in [10].

Example 7. Continuing the example in this section φb...b(y1, . . . , yk) = R1(x, y1)∧
R2(x, y2) ∧ · · · ∧Rk(x, yk). We obtain an improved tradeoff: S · T k = O(|D|k)6.
Note that this result matches the best-known space-time tradeoff for the k-Set
Disjointness problem [12]. (Note that all atoms use the same relation symbol R,
so |Ri| = |D| for every i = 1, . . . , k. )

Example 8 (Edge Triangles Detection). For the Boolean version, it was shown
in [12] that – conditioned on the strong set disjointness conjecture – any data
structure that achieves answering time T needs space S = Ω(|E|2/T 2). A match-
ing upper bound can be constructed by using a fractional edge cover u = (1, 1, 0)
with slack α = 2. Thus, Theorem 1 can be applied to achieve answering time
T using space S = O(|E|2/T 2). Careful inspection reveals that a different frac-
tional edge cover u = (1/2, 1/2, 1/2) with slack α = 1, achieves a better tradeoff.
Thus, Theorem 1 can be applied to obtain the following corollary.

Corollary 1. For a graph G = (V,E), there exists a data structure of size
S = O(|E|3/2/T ) that can answer the edge triangles detection problem in O(T ).

The data structure implied by Theorem 1 is always better when T ≤
√

|E|7,
thus refuting the conditional lower bound in [12]. We should note that this does
not imply that the strong set disjointness conjecture is false, as we have observed
an error in the reduction used by [12].

Example 9 (Square Detection). Beyond triangles, we consider the edge square
detection problem, which checks whether a given edge belongs in a square pattern
in a graph G = (V,E), φbb

□ (x1, x2) = R1(x1, x2) ∧ R2(x2, x3) ∧ R3(x3, x4) ∧
R4(x4, x1). Using the fractional edge cover u = (1/2, 1/2, 1/2, 1/2) with slack
α = 1, we obtain a tradeoff S = O(|E|2/T ).

5 Space-Time Tradeoffs via Tree Decompositions

Theorem 1 does not always give us the optimal tradeoff. For the k-reachability
problem with the adorned query φbb(x1, xk+1) = R1(x1, x2)∧· · ·∧Rk(xk, xk+1),
Theorem 1 gives a tradeoff S ·T = |D|⌈(k+1)/2⌉, by taking the optimal fractional
edge covering number ρ∗ = ⌈(k + 1)/2⌉ and slack α = 1, which is far from
6 For all results in this paper, S includes the space requirement of the input as well.

If we are interested in only the space requirement of the constructed data structure,
then the |D| term in the space requirement of Theorem 1 can be removed.

7 All answering times T >
√

|E| are trivial to achieve using linear space by using the
data structure for T ′ =

√
E and holding the result back until time T has passed.
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x1, x2

x2, x3

x3, x4

x4, x5

x5, x6

x1, x6 Bt1

x2, x5 | x1, x6 Bt2

x3, x4 | x2, x5 Bt3

Fig. 1: Two tree decompositions for the length-5 path query: the left is uncon-
strained, while the right is a C-connex decomposition with C = {x1, x6}. The
bound variables are colored red. The nodes in A are colored grey.

efficient. In this section, we will show how to leverage tree decompositions to
further improve the space-time tradeoff in Theorem 1.

Again, let φη be an adorned query. Given a set of nodes C ⊆ V, a C-connex
tree decomposition of φ is a pair (T , A), where (i) T is a tree decomposition of
φ, and (ii) A is a connected subset of the tree nodes such that the union of their
variables is exactly C. For our purposes, we choose C = Vb. Given a Vb-connex
tree decomposition, we orient the tree from some node in A. We then define the
bound variables for the bag t, Vt

b as the variables in Bt that also appear in the
bag of some ancestor of t. The free variables for the bag t are the remaining
variables in the bag, Vt

f = Bt \ Vt
b.

Example 10. Consider the 5-path query φbb(x1, x6) = R1(x1, x2)∧· · ·∧R5(x5, x6).
Here, x1 and x6 are the bound variables. Figure 1 shows the unconstrained
decomposition as well as the C-connex decomposition for φbb(x1, x6), where
C = {x1, x6}. The root bag contains the bound variables x1, x6. Bag Bt2 con-
tains x1, x6 as bound variables and x2, x5 as the free variables. Bag Bt3 contains
x2, x5 as bound variables for Bt3 and x3, x4 as free variables.

Next, we use a parameterized notion of width for the Vb-connex tree decom-
position that was introduced in [11]. The width is parameterized by a function δ
that maps each node t in the tree to a non-negative number, such that δ(t) = 0
whenever t ∈ A. The intuition here is that we will spend O(|D|δ(t)) in the node
t while answering the access request. The parameterized width of a bag Bt is
now defined as: ρt(δ) = minu (

∑
F uF − δ(t) · α) where u is a fractional edge

cover of the bag Bt, and α is the slack (on the bound variables of the bag). The
δ-width of the decomposition is then defined as maxt/∈A ρt(δ). Finally, we define
the δ-height as the maximum-weight path from the root to any leaf, where the
weight of a path P is

∑
t∈P δ(t). We now have all the necessary machinery to

state our second main theorem.

Theorem 2. Let φη be a Boolean adorned query. Consider any Vb-connex tree
decomposition of φ. For some parametrization δ of the decomposition, let f be its
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δ-width, and h be its δ-height. Then, for any input database D, we can construct
a data structure that answers any access request in time T = O(|D|h) with space
S = O(|D|+ |D|f ).

The function δ allows us to trade off between time and space. If we set δ(t) = 0
for every node t in the tree, then the δ-height becomes O(1), while the δ-width
equals to the fractional hypetree width of the decomposition. As we increase the
values of δ in each bag, the δ-height increases while the δ-width decreases, i.e., the
answer time T increases while the space decreases. Additionally, we note that the
tradeoff from Theorem 2 is at least as good as the one from Theorem 1. Indeed,
we can always construct a tree decomposition where all variables reside in a single
node of the tree. In this case, we recover exactly the tradeoff from Theorem 1.

Example 11. We continue with the 5-path query. Since Bt1 = {x1, x6} ∈ A, we
assign δ(t1) = 0. For Bt2 = {x1, x2, x5, x6}, the only valid fractional edge cover
assigns weight 1 to both R1, R5 and has slack 1. Hence, if we assign δ(t2) =
τ for some parameter τ , the width is 2 − τ . For Bt3 = {x2, x3, x4, x5}, the
only fractional cover also assigns weight 1 to both R2, R4, with slack 1 again.
Assigning δ(t3) = τ , the width becomes 2 − τ for t3 as well. Hence, the δ-
width of the tree decomposition is 2− τ , while the δ-height is 2τ . Plugging this
to Theorem 2, it gives us a tradeoff with answering time T = O(|E|2τ ) and space
usage S = O(|E|+ |E|2−τ ), which matches the state-of-the-art result in [12].

For the k-reachability problem, a general tradeoff S × T 2/(k−1) = O(|D|2)
was also shown by [12] using a careful recursive argument. The data structure
generated using Theorem 2 is able to recover the tradeoff. In particular, we obtain
the answering time as T = O(|E|(k−1)τ/2) using space S = O(|E|+ |E|2−τ ).

Example 12. Consider a variant of the square detection problem: given two ver-
tices, the goal is to decide whether they occur in two opposites corners of a
square, which can be captured by the following adorned query:

φbb(x1, x3) = R1(x1, x2) ∧R1(x2, x3) ∧R3(x3, x4) ∧R4(x4, x1).

Theorem 1 gives a tradeoff with answering time O(T ) and space O(|E|2/T ).
But we can obtain a better tradeoff using Theorem 2. Indeed, consider the tree
decomposition where we have a root bag t1 with Bt1 = {x1, x3}, and two children
of t1 with Boolean Bt2 = {x1, x2, x3} and Bt3 = {x1, x3, x4}. For Bt2 , we can see
that if assigning a weight of 1 to both hyperedges, we get a slack of 2. Hence, if
δ(t2) = τ , the δ-width is 2−2τ . Similarly for t3, we assign δ(t3) = τ , for a δ-width
with 2− 2τ . Applying Theorem 2, we obtain a tradeoff with time T = O(|E|τ )
(since both root-leaf paths have only one node), and space S = O(|E|+ |E|2−2τ ).
So the space usage can be improved from O(|E|2/T ) to O(|E|2/T 2).

6 CQs with Negation

In this section, we present a simple but powerful extension of our result to
adorned Boolean CQs with negation. A CQ with negation, denoted as CQ¬, is
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a CQ where some of the atoms can be negative, i.e., ¬Ri(xi) is allowed. For
φ ∈ CQ¬, we denote by φ+ the conjunction of the positive atoms in φ and φ−

the conjunction of all negated atoms. A CQ¬ is said to be safe if every variable
appears in at least some positive atom. In this paper, we restrict our scope to
the class of safe CQ¬, a standard assumption [21,29] ensuring that query results
are well-defined and do not depend on domains.

Given a query φ ∈ CQ¬, we build the data structure from Theorem 2 for φ+

but impose two constraints on the decomposition: (i) no leaf node(s) contains
any free variables, (ii) for every negated atom R−, all variables of R− must
appear together as bound variables in some leaf node(s). In other words, there
exists a leaf node such that vars(R−) is present in it. It is easy to see that such
a decomposition always exists. Indeed, we can fix the root bag to be C = Vb,
its child bag with free variables as vars(φ+) \ C and bound variables as C, and
the leaf bag, which is connected to the child of the root, with bound variables as
vars(φ−) without free variables. Observe that the bag containing vars(φ+) free
variables can be covered by only using the positive atoms since φ is safe. The
intuition is the following: during the query answering phase, we wish to find
the join result over all variables Vf before reaching the leaf nodes; and then, we
can check whether there the tuples satisfy the negated atoms or not, in O(1)
time. The next example shows the application of the algorithm to adorned path
queries containing negation.

Example 13. Consider the query Qbb(x1, x6) = R(x1, x2)∧¬S(x2, x3)∧T (x3, x4)∧
¬U(x4, x5)∧ V (x5, x6). Using the decomposition in Figure 2, we can now ap-
ply Theorem 2 to obtain the tradeoff S = O(|D|3/τ) and T = O(τ). Both leaf
nodes only require linear space since a single atom covers the variables. Given
an access request, we check whether the answer for this request has been ma-
terialized or not. If not, we proceed to the query answering phase and find at
most O(τ) answers after evaluating the join in the middle bag. For each of these
answers, we can now check in constant time whether the tuples formed by values
for x2, x3 and x4, x5 are not present in relations S and U respectively.

For adorned queries where Vb ⊆ vars(φ−), we can further simplify the al-
gorithm. In this case, we no longer need to create a constrained decomposition
since the check to see if the negated relations are satisfied or not can be done
in constant time at the root bag itself. Thus, we can directly build the data
structure from Theorem 2 using the query φ+.

Example 14 (Open Triangle Detection). Consider the query φbb(x2, x3) =R1(x1, x2)
∧¬R2(x2, x3) ∧ R3(x1, x3), where φ− is ¬R2(x2, x3) and φ+ is R1(x1, x2) ∧
R3(x1, x3) with the adorned view as φ+bb(x2, x3) = R1(x1, x2) ∧ R3(x1, x3).
Observe that {x2, x3} ⊆ vars(φ−). We apply Theorem 2 to obtain the tradeoff
S = O(|E|2/τ2) and T = O(τ) with root bag C = {x2, x3}, its child bag with
Vb = C and Vf = {x1}, and the leaf bag to be Vb = C and Vf = ∅. Given
an access request (a, b), we check whether the answer for this request has been
materialized or not. If not, we traverse the decomposition and evaluating the
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join to find if there exists a connecting value for x1. For the last bag, we simply
check whether (a, b) exists in R2 or not in O(1) time.

A note on optimality. It is easy to see that the algorithm obtained for Boolean
CQs with negation is conditionally optimal assuming the optimality of Theo-
rem 2. Indeed, if all negated relations are empty, the join query is equivalent to
φ+ and the algorithm now simply applies Theorem 2 to φ+. In Example 14,
assuming relation R2 is empty, the query is equivalent to set intersection whose
tradeoffs are conjectured to be optimal.

x1, x6

x2, x3, x4, x5 | x1, x6

| x2, x3 | x4, x5

Fig. 2: C-connex decomposition for Example 13.

7 Path Queries

In this section, we present an algorithm for the adorned query P bb
k (x1, xk+1) =

R1(x1, x2)∧· · ·∧Rk(xk, xk+1) that improves upon the conjectured optimal solu-
tion. Before diving into the details, we first state the upper bound on the tradeoff
between space and query time.

Theorem 3 (due to [12]). There exists a data structure for solving P bb
k (x1, xk+1)

with space S and answering time T such that S · T 2/(k−1) = O(|D|2).

Note that for k = 2, the problem is equivalent to SetDisjointness with the
space/time tradeoff as S · T 2 = O(N2). [12] also conjectured that the tradeoff is
essentially optimal.

Conjecture 1 (due to [12]). Any data structure for P bb
k (x1, xk+1) with answering

time T must use space S = Ω̃(|D|2/T 2/(k−1)).

Building upon Conjecture 1, [12] also showed a result on the optimality of
approximate distance oracles. Our result implies that Theorem 3 can be improved
further, thus refuting Conjecture 1. The first observation is that the tradeoff
in Theorem 3 is only useful when T ≤ |D|. Indeed, we can always answer any
Boolean path query in linear time using breadth-first search. Surprisingly, it is
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also possible to improve Theorem 3 for the regime of small answering time as
well. In what follows, we will show the improvement for paths of length 4; we
will generalize the algorithm for any length later.

7.1 Length-4 Path

Lemma 1. There exists a parameterized data structure for solving P bb
4 (x1, x5)

that uses space S and answering time T ≤
√

|D| that satisfies the tradeoff S ·T =
O(|D|2).

For k = 4, Theorem 3 gives us the tradeoff S ·T 2/3 = O(|D|2) which is always
worse than the tradeoff in Lemma 1. We next present our algorithm in detail.
Preprocessing Phase. Consider P bb

4 (x1, x5) = R(x1, x2)∧S(x2, x3)∧T (x3, x4)∧
U(x4, x5). Let ∆ be a degree threshold. We say that a constant a is heavy if its
frequency on attribute x3 is greater than ∆ in both relations S and T ; otherwise,
it is light. In other words, a is heavy if |σx3=a(S)| > ∆ and |σx3=a(T )| > ∆. We
distinguish two cases based on whether a constant for x3 is heavy or light. Let
Lheavy(x3) denote the unary relation that contains all heavy values, and Llight(x3)
the one that contains all light values. Observe that we can compute both of these
relations in time O(|D|) by simply iterating over the active domain of variable
x3 and checking the degree in relations S and T . We compute two views:

V1(x1, x3) = R(x1, x2) ∧ S(x2, x3) ∧ Lheavy(x3)

V2(x3, x5) = Lheavy(x3) ∧ T (x3, x4) ∧ U(x4, x5)

We store the views as a hash index that, given a value of x1 (or x5), returns
all matching values of x3. Both views take space O(|D|2/∆). Indeed, |Lheavy| ≤
|D|/∆. Since we can construct a fractional edge cover for V1 by assigning a
weight of 1 to R and Lheavy, this gives us an upper bound of |D| · (|D|/∆) for the
query output. The same argument holds for V2. We also compute the following
view for light values: V3(x2, x4) = S(x2, x3) ∧ Llight(x3) ∧ T (x3, x4). This view
requires space O(|D| · ∆), since the degree of the light constants is at most
∆ (i.e.

∑
x∈Llight(x3)

|S(x2, x) ∧ T (x, x4)| ≤
∑

x∈Llight(x3)
|S(x2, x)| · |T (x, x4)| ≤∑

x∈Llight(x3)
|S(x2, x)| ·∆ ≤ |D| ·∆). We can now rewrite the original query as

P bb
4 (x1, x5) = R(x1, x2) ∧ V3(x2, x4) ∧ U(x4, x5).

The rewritten query is a three path query. Hence, we can apply Theorem 1
to create a data structure with answering time T = O(|D|/∆) and space S =
O(|D|2/(|D|/∆)) = O(|D| ·∆).
Query Answering. Given an access request, we first check whether there exists
a 4-path that goes through some heavy value in Lheavy(x3). This can be done in
time O(|D|/∆) using the views V1 and V2. Indeed, we obtain at most O(|D|/∆)
values for x3 using the index for V1, and O(|D|/∆) values for x3 using the index
for V3. We then intersect the results in time O(|D|/∆) by iterating over the
O(|D|/∆) values for x3 and checking if the bound values for x1 and x5 from a
tuple in V1 and V2 respectively. If we find no such 4-path, we check for a 4-path
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that uses a light value for x3. From the data structure we have constructed in
the preprocessing phase, we can do this in time O(|D|/∆).
Tradeoff Analysis. From the above, we can compute the answer in time T =
O(|D|/∆). From the analysis in the preprocessing phase, the space needed is
S = O(|D|2/∆ + |D| ·∆). Thus, whenever ∆ ≥

√
|D|, the space becomes S =

O(|D| ·∆), completing our analysis.

7.2 General Path Queries

We can now use the algorithm for the 4-path query to improve the space-time
tradeoff for general path queries of length greater than four.

Theorem 4. Let D be an input instance. For k ≥ 4, there is a data structure
for P bb

k (x1, xk+1) with space S = O(|D| ·∆) and answer time T = O
(
( |D|

∆ )
k−2
2

)
for ∆ ≥

√
|D|.

The space-time tradeoff obtained from Theorem 4 is S ·T 2/(k−2) = O(|D|2),
but only for T ≤ |D|(k−2)/4. To compare it with the tradeoff of S · T 2/(k−1) =
O(|D|2) obtained from Theorem 3, it is instructive to look at Figures 3a and 3b,
which plot the space-time tradeoffs for k = 4 and k = 6 respectively. In general,
as k grows, the new tradeoff line (labeled as ρ1) becomes flatter and approaches
Theorem 3.

log|D|(S)

log|D|(T )

ρ1

ρ2

4/3

baseline

1
0 1

3/2

1/2

2

3/2

(a) 4-reachability CQAP.

1
0

log|D|(S)

log|D|(T )

ρ1

ρ2

1

3/2

baseline

2

5/2

(b) 6-reachability CQAP.

Fig. 3: Space/time tradeoffs for path query of length k ∈ {4, 6}. The line in
brown (baseline) shows the tradeoff obtained from Theorem 3. The red curve
(ρ1) is the new tradeoff obtained using Theorem 4 and ρ2 shows the transition
to when BFS takes over as the best algorithm.

8 Lower Bounds

In this section, we study the lower bounds for adorned star and path queries. We
first present conditional lower bounds for the k-Set Disjointness problem using
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the conditional optimality of ℓ-Set Disjointness where ℓ < k. First, we review the
known results from [12] starting with the conjecture for k-Set Disjointness .

Conjecture 2 (due to [12]). Any data structure for k-Set Disjointness problem
that answers queries in time T must use space S = Ω(|D|k/T k).

Conjecture 2 was shown to be conditionally optimal based on conjectured
lower bound for the (k+1)-Sum Indexing problem, however, it was subsequently
showed to be false [19], which implies that Conjecture 2 is still an open problem.
Conjecture 2 can be further generalized to the case when input relations are of
unequal sizes as follows.

Conjecture 3. Any data structure for φb...b
∗ (y1, . . . , yk) = R1(x, y1)∧· · ·∧Rk(x, yk)

that answers queries in time T must use space S = Ω(Πk
i=1|Ri|/T k).

We now state the main result for star queries.

Theorem 5. Suppose that any data structure for φb...b
∗ (y1, . . . , yk) with answer-

ing time T must use space S = Ω(Πk
i=1|Ri|/T k). Then, any data structure for

Qb...b
∗ (y1, . . . , yℓ) with answering time T must use space S = Ω(Πℓ

i=1|Ri|/T ℓ),
for 2 ≤ ℓ < k.

Theorem 5 creates a hierarchy for k-Set Disjointness , where the optimal-
ity of smaller set disjointness instances depends on larger set disjointness in-
stances. Next, we show conditional lower bounds on the space requirement of
path queries. We begin by proving a simple result for optimality of P bb

2 (equiv-
alent to 2-Set Disjointness) assuming the optimality of P bb

3 query.

Theorem 6. Suppose that any data structure for P bb
3 that answers queries in

time T , uses space S such that S · T = Ω(|D|2). Then, for P bb
2 , for any data

structure that uses space S = O(|D|2/T 2), the answering time is Ω(T ).

Using a similar argument, it can be shown that the conditional optimality
of Theorem 4 for k = 4 implies that S · T = Ω(|D|2) tradeoff for P bb

3 is also
optimal (but only for the range T ≤

√
|D| when the result is applicable).

9 Related Work

The study of fine-grained space/time tradeoffs for query answering is a relatively
recent effort in the algorithmic community. The study of distance oracles over
graphs was first initiated by [25] where lower bounds are shown on the size of a
distance oracle for sparse graphs based on a conjecture about the best possible
data structure for a set intersection problem. [9] also considered the problem
of set intersection and presented a data structure that can answer boolean set
intersection queries which is conditionally optimal [12]. There also exist another
line of work that looks at the problem of approximate distance oracles. Agar-
wal et al. [3, 4] showed that for stretch-2 and stretch-3 oracles, we can achieve
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S × T = O(|D|2) and S × T 2 = O(|D|2). They also showed that for any integer
k, a stretch-(1 + 1/k) oracle exhibits S × T 1/k = O(|D|2) tradeoff. Unfortu-
nately, no lower bounds are known for non-constant query time. The authors
in [12] conjectured that the tradeoff S × T 2/(k−1) = O(|D|2) for k-reachability
is optimal which would also imply that stretch-(1 + 1/k) oracle tradeoff is also
optimal. A different line of work has considered the problem of enumerating
query results [27] of a non-boolean query. [9] presented a data structure to enu-
merate the intersection of two sets with guarantees on the total answering time.
This result was generalized to incorporate full adorned views over CQs [11]. Our
work extends the results to the setting where the join variables are projected
away from the query result (i.e. the adorned views are non-full) and makes
the connection between several different algorithmic problems that have been
studied independently. Further, we also consider boolean CQs that may contain
negations. In the non-static setting, [6] initiated the study of answering con-
junctive query results under updates. More recently, [16] presented an algorithm
for counting the number of triangles under updates. There have also been some
exciting developments in the space of enumerating query results with delay for
a proper subset of CQs known as hierarchical queries. [17] presented a tradeoff
between preprocessing time and delay for enumerating the results of any (not
necessarily full) hierarchical queries under static and dynamic settings. It re-
mains an interesting problem to find improved algorithms for more restricted
set of CQs such as hierarchical queries.

10 Conclusion

In this paper, we investigated the tradeoffs between answering time and space
required by the data structure to answer boolean queries. Our main contribution
is a unified algorithm that recovers the best known results for several boolean
queries of practical interests. We then apply our main result to improve upon the
state-of-the-art algorithms to answer boolean queries over the four path query
which is subsequently used to improve the tradeoff for all path queries of length
greater than four and show conditional lower bounds. There are several questions
that remain open. We describe the problems that are particularly engaging.
Unconditional lower bounds. It remains an open problem to prove uncon-
ditional lower bounds on the space requirement for answering boolean star and
path queries in the RAM model. For instance, 2-Set Disjointness can be answered
in constant time by materializing all answers using Θ(|D|2) space but there is
no lower bound to rule out if this can be achieved using sub-quadratic space.
Improved approximate distance oracles. It would be interesting to inves-
tigate whether our ideas can be applied to existing algorithms for constructing
distance oracles to improve their space requirement. [12] conjectured that the
k-reachability tradeoff is optimal and used it to prove the conditional optimality
of distance oracles. We believe our framework can be used to improve upon the
bounds for k-reachability in conjunction with other techniques used to prove
bounds for join query processing in the database theory community.
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