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1 INTRODUCTION
Due to the rapid development of massively parallel data processing systems, such as MapRe-

duce [14] and Spark [33], there has been a huge interest in the theoretical community to study

algorithms [2–7, 15–19, 21, 22, 24, 24–26, 32] in massively parallel computation models, such as

BSP [31] and MPC [27] models. Algorithms in these models are based on the assumption of homo-

geneity: nodes have the same computational power, and links have the same bandwidth. However,

practical systems are much more complicated and display heterogeneous properties. For example,

computational capability varies dramatically across nodes due to their different generations of

CPUs and GPUs. Network parameters (e.g., bandwidth, latency) also differ among links depending

on the network architecture. To capture these critical issues in practice, Blanas et al. [10] recently

proposed a heterogeneous massively parallel data processing model. In their model, the underlying

communication network is a directed graph, where nodes in the network are identified as routers
and compute nodes depending on their computational capabilities. In addition, network links are

associated with a cost function for data transmission, which is also general enough to capture the

different computational capabilities of compute nodes.

In this model, Hu et al. [20] proved lower bounds and (almost) matching upper bounds for a

few data processing tasks over symmetric tree topologies, including set intersection, Cartesian
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product, and sorting. It is worth mentioning that their algorithms assume that the cardinality of

the initial data distributed across the nodes can be arbitrary and is known in advance as part of the

parameter, while previous works assumed worst-case distribution or uniform distribution. Hence,

this assumption leads to a more fine-grained notion of optimality, that is parameterized by the

cardinality of the initial data distribution. This more strict notion of optimality has introduced

significant challenges to algorithm design. As we discuss in Section 5, if only worst-case or uniform

distribution is considered, many problems become trivial including all these three tasks as well as

join to be investigated in this paper.

We take one further step for designing an (almost) optimal algorithm for the natural join between

two relations 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶). Our algorithm captures the set intersection and Cartesian product

on symmetric trees as special cases. However, constructing a general join algorithm requires new

techniques, ideas, and primitives.

Indeed, one can view the set intersection as a particular case of a natural join, where tuples in

one relation have distinct join keys. Applying a hashing protocol on the join keys works well, as

each join key is associated with at most two tuples (one from each relation). Hence, there will be

no load imbalance if the hashing works well. However, such a hash-based protocol does not work

when each join key can be associated with multiple tuples. In the extreme case, the join becomes a

Cartesian product (all tuples are associated with a single key), and all tuples are routed to the same

node, incurring an unbounded cost. In [20], this problem was solved using a packing-based protocol

that carefully load-balances each part of the Cartesian product to the compute nodes. However,

it is unclear how to combine these two protocols to handle the general case with multiple keys

associated with a different number of tuples, especially by targeting the fine-grained optimality

with respect to the cardinality of initial data distribution.

An additional challenge is that the protocol for the Cartesian product in [20] solves only the

case when two input relations have equal size. This turns out to be an essential restriction since

the symmetry of the two relations (along with the symmetry in the network links) allows for

a relatively simple optimal algorithm with a closed-form cost. When the symmetry breaks, no

closed-form solution exists even in the simplest case of a symmetric star topology. This means we

have to explore the behavior of an optimal protocol for Cartesian product, and further for join.

As the binary join is a critical primitive of more complex analytical queries, we finally discuss

two interesting implications of our topology-aware binary join algorithms – acyclic join and sparse-

matrix multiplication (a basic join-aggregate query). However, this is not a simple extension, as

in the homogeneous massively parallel model [1, 21, 23], since the downstream operators bring

new constraints to the initial data distribution, that would significantly affect the overall efficiency.

We leave as future work how to optimally apply our topology-aware binary join algorithm to

complicated analytical queries, to achieve fine-grained optimality with respect to the cardinality of

initial data distribution.

1.1 Computational Model
Following prior work [10], we model the network topology using a directed graph𝐺 = (𝑉 , 𝐸). Each
directed edge 𝑒 in 𝐸 represents a network link, where the direction follows the flow of data on the

link, and it is also associated with a bandwidth parameter𝑤𝑒 . Every node in 𝑉 has full knowledge

of the graph 𝐺 . We distinguish a subset of nodes in the network 𝑉𝐶 ⊆ 𝑉 , to be compute nodes.
Compute nodes are the only nodes that can store data and perform computation on their local data.

The remaining nodes perform only routing decisions. More specifically, if a compute node 𝑢 ∈ 𝑉𝐶
aims to send some amount of data to another compute node 𝑣 ∈ 𝑉𝐶 , 𝑢 just wraps all associated data

as a whole package and stamps it with the destination address 𝑣 as well as a routing path from 𝑢 to 𝑣 .
Once a non-compute node 𝑢 ′ ∈ 𝑉 −𝑉𝐶 receives a data package, it first retrieves the destination
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address 𝑣 as well as the routing path, and forwards this package to the next node on this path from

𝑢 ′ to 𝑣 . We only need 𝑂 (log |𝑉 |) bits to encode the destination information. Moreover, we will

focus on symmetric tree topologies1 such that𝐺 is a tree, where the links in 𝐸 are symmetric, i.e., for

two edges 𝑒 = (𝑢, 𝑣) and 𝑒 ′ = (𝑣,𝑢), we have𝑤𝑒 = 𝑤𝑒′ . In this case, 𝐺 is a strongly connected tree

where every pair of compute nodes is connected/communicated through a unique directed path.

For simplicity of algorithm design and presentation, we assume that the compute nodes 𝑉𝐶 are

the leaves of 𝐺 .2 In a tree topology, there is a unique path between every pair of compute nodes,

thus our algorithm does not need to specify the routing path explicitly. We only consider strongly

connected networks where every pair of compute nodes is connected through a directed path; in

other words, every compute node can send data to any other compute node.

A parallel algorithm A proceeds in sequential rounds. Initially, the input data is distributed

across the compute nodes 𝑉𝐶 . At every round, the compute nodes first perform computation on

their local data and then communicate by sending data to other compute nodes in the network.

After the algorithm finishes, every output result must be emitted by at least one compute node. We

confine ourselves to the tuple-based assumption that when a join result is emitted, all participating

tuples must reside on the same node.
3

The cost of such an algorithm A comes from synchronization and data transmission. The

synchronization cost is measured by the number of rounds, denoted as 𝑟 . The data transmission

cost denoted as 𝐶 (A), is defined as the sum of the costs over all rounds 𝑖 , 𝐶 (A) = ∑𝑟
𝑖=1𝐶𝑖 (A).

To model the cost of each round, we first assign to each link 𝑒 in the network a cost function

𝑓𝑒 : N→ R. The quantity 𝑓𝑒 (𝑥) = 𝑥/𝑤𝑒 is interpreted as the cost of transmitting 𝑥 bits through link

𝑒 . Let the quantity 𝑌𝑖 (𝑒) denote the total data (measured in bits) that is routed through link 𝑒 during

round 𝑖 . Then, we can express the cost as 𝐶𝑖 (A) := max

𝑒∈𝐸
𝑓𝑒 ( |𝑌𝑖 (𝑒) |), i.e., the cost of each round is

captured by the cost of transferring data through the most bottlenecked link in the network.

In this coarse-grained computational model, we do not consider the delay in routing, since the

congestion cost measured above will dominate the overall cost when data size is much larger

than network size (i.e., the number of compute nodes), which is a quite reasonable assumption

for practical systems dealing with big data.
4
In addition, we do not consider the network size as a

constant; otherwise, this model will lose the power of parallelism. In previous works on massively

parallel processing [6, 7, 21, 24–27, 32], the number of compute nodes is a commonly-used parameter

in complexity measurement. We compare it with other parallel/distributed model in Section 6.

Initial Data Distribution. Given a symmetric tree topology𝐺 = (𝑉 , 𝐸) with compute nodes 𝑉𝐶 ,

and an initial data distribution D for two input relations 𝑅(𝐴, 𝐵), 𝑆 (𝐵,𝐶) across 𝑉𝐶 , we denote by
𝑅D𝑣 , 𝑆D𝑣 the 𝑅-tuples and 𝑆-tuples respectively in node 𝑣 ∈ 𝑉𝐶 . Let 𝑁 D𝑣 = |𝑅D𝑣 | + |𝑆D𝑣 |. When the

1
The restriction to tree topologies is natural, since many practical network topologies can be captured as trees, such as star

and fat tree. There is also a technical reason that there is a unique routing path between any two nodes in a tree topology.

In a non-tree network, the presence of possibly multiple routing paths would complicates things. To extend from trees to

general topologies, one could consider embedding the general topology to a tree, and then use a tree-based algorithm.

2
If some compute node in𝑉𝐶 is an internal node in𝐺 , we can transform𝐺 to a new topology𝐺′ by adding a new compute

node 𝑣′, introducing two links (𝑣, 𝑣′) , (𝑣′, 𝑣) with bandwidth +∞, and making 𝑣 a non-compute node. Any initial data

stored at 𝑣 is shifted to 𝑣′, and any local computation performed by 𝑣 is simulated by 𝑣′.
3
While the tuple-based class of algorithms does not encompass all possible approaches, it does include all existing algorithms

that we are aware of [6, 7, 19–26, 32] on massive parallel query processing. Therefore, analyzing the optimal communication

complexity achievable by this class can provide valuable insights into the problem’s characteristics.

4
For example, if we have a network with link latency of 10 ms and bandwidth 10Gbps, then the cost of sending say 100G

over the link will be 10.01 sec dominated by the bandwidth cost (which is 10 sec). In addition, latencies over long paths do

not add up in this case, because of the effect of pipelining. For example, if we have a path of 100 links of the above type, then

the cost will still remain around 10 sec, since nodes do not wait to receive all the data before they move it to the next node.
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context is clear, we drop D from the notation. We note that an input instance 𝐼 consists of the

symmetric tree topology 𝐺 = (𝑉 , 𝐸) and the initial data distribution D.

Optimality. We introduce the notion of cardinality configuration of data distribution. A cardinality

configuration 𝜙 across the compute nodes 𝑉𝐶 is denoted as {(𝜙1

𝑣 , 𝜙
2

𝑣 ) : 𝜙1

𝑣 , 𝜙
2

𝑣 ∈ Z∗, 𝑣 ∈ 𝑉𝐶 }. A data

distribution D conforms to a cardinality configuration 𝜙 if |𝑅D𝑣 | = 𝜙1

𝑣 and |𝑆D𝑣 | = 𝜙2

𝑣 for every

compute node 𝑣 ∈ 𝑉𝐶 . We adopt the notion of parameterized analysis, i.e., we partition the whole

space of inputs into disjoint sub-spaces, where instances inside each sub-space share the same

symmetric tree topology, cardinality configuration, and output size. Let I(𝐺,𝜙,OUT) denote that
class of instances characterized by the three parameters 𝐺,𝜙,OUT. Then the cost of an algorithm

A is thus a function of 𝐺,𝜙,OUT, defined as 𝐿A (𝐺,𝜙,OUT) = max

𝐼 ∈I(𝐺,𝜙,OUT)
𝐿A (𝐼 ), where 𝐿A (𝐼 ) is

the cost of computing 𝐼 by A. An algorithm A is topology-aware-optimal if for every algorithm

A ′, 𝐿A (𝐺,𝜙,OUT) = 𝑂 (𝐿A′ (𝐺,𝜙,OUT)).

1.2 Roadmap
We next describe some high-level ideas behind our algorithm, which also serve as a roadmap. For

better understanding, we summarize commonly used notations in Table 1.

To construct a general join algorithm, we resort to sorting instead of hashing that has been used

for set intersection in [20]. The sort-based protocol follows the general idea of [24] for topology-

oblivious parallel joins. One first attempt would be to use the sorting protocol from [20] to sort the

union of the two relations, 𝑅 ∪ 𝑆 using the join key. However, this idea does not give an optimal

protocol. Indeed, consider the case where 𝑅 ≪ 𝑆 . In this case, the algorithm would have to sort

𝑅 ∪ 𝑆 , redistributing the tuples from the larger relation 𝑆 . However, if we were to broadcast 𝑅 to

every compute node and not move 𝑆 at all, we would obtain a much cheaper solution. In other

words, instead of sorting globally, we need to sort the largest relation in a topologically “local”

way. We achieve this by carefully grouping the compute nodes so that each group’s input data is

approximately balanced (Section 4.3 and 4.4).

The sorting step guarantees that we can locally compute the join results for join keys that are

fully contained within a compute node. However, it cannot deal with join keys that span multiple

compute nodes (we call these boundary keys, denoted as 𝐾 ). This case will happen when data skew

exists since a key will not fit in a single node without blowing up the algorithm cost. The main

technical contribution of this paper is how to handle the join computation for these boundary keys.

To solve this problem, we view it as the simultaneous computation of multiple Cartesian products

{𝑅𝑏 × 𝑆𝑏}𝑏∈𝐾 . Our solution uses two primitives that may be of independent interest. The first

primitive (Section 2) is an optimal protocol that redistributes the data of a relation from an input

distribution to the desired output distribution with minimal cost. The second primitive (Section 3)

designs an optimal protocol that allocates the computation of a set of Cartesian products from

the root to the leaves of a tree. To achieve the topology-aware-optimality, we further explore the

structural property of the underlying tree network with respect to the initial data distribution

(Section 4.1), such that the tree network is decomposed into multiple edge-disjoint subtrees (denoted

as 𝛼-tree) connected by a skeleton subtree (denoted as 𝛽-tree). The remaining challenging question

is to pack Cartesian products over 𝛽-tree such that each 𝛼-tree will compute the allocated Cartesian

products independently (Section 4.3 and 4.5).

2 DATA REDISTRIBUTION
In this section, we discuss a fundamental problem in topology-aware data processing, which will

serve as a building block of our general join algorithm and also can be of independent interest. All

missing proofs are given in Appendix A.
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Notations Definitions

𝐺 = (𝑉 , 𝐸) tree network 𝐺 with nodes 𝑉 and edges 𝐸

𝑉𝐶 the leaf nodes (also the compute nodes) of 𝐺

𝐺−𝑒 ,𝐺
+
𝑒 two subtrees after removing edge 𝑒 from 𝐺

𝐸𝛼 , 𝐸𝛽 𝛼-edges, 𝛽-edges

𝐺
𝑗
𝛼 ( ®𝐺 𝑗

𝛼 ) undirected (directed) 𝛼-trees induced on 𝐸𝛼
𝐺𝛽 𝛽-tree of 𝐺 induced on 𝐸𝛽
𝑉𝛽 nodes in 𝐺𝛽
L𝛽 leaf nodes of 𝐺𝛽
P a balanced partition of L𝛽
𝑃 a block of P (also a subset of L𝛽 )
𝑤𝑒 bandwidth of edge 𝑒 ∈ 𝐸
𝑤𝑣 bandwidth of edge between 𝑣 and its parent

𝑅, 𝑆 input relations

D initial data distribution

𝑅𝑣, 𝑆𝑣 𝑅-tuples, 𝑆-tuples distributed at 𝑣 initially

𝑁𝑣 total size of tuples distributed at 𝑣 initially

𝐾 boundary keys

𝑅𝑏, 𝑆𝑏 𝑅-tuples, 𝑆-tuples with key 𝑏

Table 1. Notations.

Data Redistribution Primitive. Consider a (not necessarily symmetric) tree topology𝐺 = (𝑉 , 𝐸)
with leaf nodes 𝑉𝐶 = {𝑣1, . . . , 𝑣ℓ }. Moreover, assume 𝑘 input relations 𝑅1, . . . , 𝑅𝑘 distributed over

leaf nodes according to a distributionD. We say thatD conforms to a matrix Λ of dimensions 𝑘 × ℓ
with positive integers if for every input relation 𝑅𝑖 and every leaf node 𝑣 𝑗 , there are Λ𝑖 𝑗 tuples
from 𝑅𝑖 distributed at 𝑣 𝑗 . We call such a matrix a size-constraint matrix. Given two size-constraint

matrices Λ,Λ′, our goal is to design an algorithm that transforms any input data distributionD that

conforms to Λ to a data distributionD ′ that conforms to Λ′. In other words, we want to redistribute

the data such that a new set of size constraints is satisfied at every leaf, and we also want to achieve

this with the minimum cost. Note that to properly define the task, we need to make sure that for

every relation 𝑅𝑖 ,
∑
𝑗 Λ𝑖 𝑗 =

∑
𝑗 Λ
′
𝑖 𝑗 = |𝑅𝑖 |.

Lower Bound. We next show a lower bound by relating the data redistribution to tuple differentials.

We introduce some terminologies. For an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸, removing 𝑒 splits𝐺 into two connected

subtrees, which are denoted as 𝐺−𝑒 (that contains 𝑢) and 𝐺+𝑒 (that contains 𝑣).

Definition 2.1 (Tuple Differential). For a tree network𝐺 = (𝑉 , 𝐸), and two size-constraint matrices

Λ,Λ′ of dimensions 𝑘 × ℓ , the tuple differential of an edge 𝑒 ∈ 𝐸 with respect to relation 𝑅𝑖 is

defined as Δ𝑖𝑒 := max

0,
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ′𝑖 𝑗 −
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ𝑖 𝑗

, and the tuple differential of 𝑒 ∈ 𝐸 is defined as

Δ𝑒 =
∑𝑘
𝑖=1 Δ

𝑖
𝑒 .

Consider an edge 𝑒 = (𝑢, 𝑣) ∈ 𝐸. Assume Δ𝑖𝑒 > 0 holds for some relation 𝑅𝑖 . Then, 𝐺
+
𝑒 needs

to obtain at least Δ𝑖𝑒 tuples from 𝐺−𝑒 . Thus, at least Δ
𝑖
𝑒 tuples must cross the edge, and incur a

transmission cost of Δ𝑖𝑒/𝑤𝑒 . Summing across all relations will yield the following lower bound:

Lemma 2.2. Any algorithm that solves the data redistribution problem has cost at leastmax𝑒∈𝐸{Δ𝑒/𝑤𝑒 }.
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Fig. 1. An instance of data redistribution with 𝑘 = 1, ℓ = 6. The left shows two size-constraint matrices
Λ = ⟨1, 5, 1, 1, 3, 1⟩, Λ′ = ⟨2, 3, 2, 2, 1, 3⟩. The right shows a multi-commodity flow.

We next mention the following lemma about tuple differentials.

Lemma 2.3. Let 𝑒 = (𝑢, 𝑣), 𝑒 ′ = (𝑣,𝑢) be two edges in𝐺 . Then: Δ𝑖𝑒 −Δ𝑖𝑒′ =
∑
𝑣𝑗 ∈𝐺+𝑒 Λ

′
𝑖 𝑗 −

∑
𝑣𝑗 ∈𝐺+𝑒 Λ𝑖 𝑗 .

Multi-commodity Flow. To construct an optimal algorithm for the data redistribution task, we

will use the framework of multi-commodity flow. First, we construct a flow network 𝐺𝐹 = (𝑉𝐹 , 𝐸𝐹 )
as follows. The set of nodes𝑉𝐹 consists of the nodes𝑉 , with the addition of 𝑘 source nodes 𝑠1, . . . , 𝑠𝑘
and 𝑘 target nodes 𝑡1, . . . , 𝑡𝑘 . The set of edges 𝐸𝐹 includes all the edges in 𝐸 with cost 1/𝑤𝑒 and
capacity +∞. In addition, for every 𝑖 ∈ [𝑘], 𝑗 ∈ [ℓ] we introduce two edges: (𝑠𝑖 , 𝑣 𝑗 ) with cost 0 and

capacity Λ𝑖 𝑗 , and (𝑣 𝑗 , 𝑡𝑖 ) with cost 0 and capacity Λ′𝑖 𝑗 . Second, we introduce 𝑘 commodities, one for

each relation 𝑅𝑖 , where commodity 𝑖 has source 𝑠𝑖 , target 𝑡𝑖 , and demand Λ𝑖 . A flow for 𝐺𝐹 is an

assignment {𝑓𝑖 (𝑒)}, where 𝑓𝑖 (𝑒) is a positive integer, such that the following hold:

• 𝑓𝑖 (𝑠𝑖 , 𝑣 𝑗 ) = Λ𝑖 𝑗 and 𝑓𝑖′ (𝑠𝑖 , 𝑣 𝑗 ) = 0 when 𝑖 ′ ≠ 𝑖 .
• 𝑓𝑖 (𝑣 𝑗 , 𝑡𝑖 ) = Λ′𝑖 𝑗 and 𝑓𝑖′ (𝑣 𝑗 , 𝑡𝑖 ) = 0 when 𝑖 ′ ≠ 𝑖 .
• For every node 𝑣 ∈ 𝑉 and 𝑖 ∈ [𝑘], ∑𝑢 𝑓𝑖 (𝑣,𝑢) =

∑
𝑢 𝑓𝑖 (𝑢, 𝑣).

Any flow corresponds to an algorithm for the data redistribution problem. Indeed, we can

interpret a unit of flow from commodity 𝑖 as a tuple from relation 𝑅𝑖 . We seek the flow with the

minimum cost, which is max𝑒∈𝐸
∑
𝑖 𝑓𝑖 (𝑒)/𝑤𝑒 . We can solve the multi-commodity flow problem via

a linear program in polynomial time, but the flow solution may be fractional. Instead, we provide a

more direct flow solution using tuple differentials, which simply assigns each flow 𝑓𝑖 (𝑒) to be the

tuple differential Δ𝑖𝑒 , incurring an optimal cost of max𝑒∈𝐸{Δ𝑖𝑒/𝑤𝑒 }. See an example in Figure 1.

Theorem 2.4. In a tree network, data redistribution problem can be optimally computed in 1 round.

3 CARTESIAN PRODUCT PACKING
In this section, we present a second fundamental primitive that we need for our join algorithm.

Consider a tree topology 𝐺 = (𝑉 , 𝐸) that we have rooted at some node 𝑟 . We are also given a finite

set of relation pairs (𝑅𝑏, 𝑆𝑏), where 𝑏 belongs in a finite set 𝐵. Initially, all tuples are sitting at the

root 𝑟 . The task is to find an algorithm that routes all tuples from the root to the leaf nodes such

that every pair of the Cartesian product 𝑅𝑏 × 𝑆𝑏 can be locally computed at some leaf node. We will

refer to this task as cartesian product packing.
For a tree 𝐺 = (𝑉 , 𝐸) rooted at 𝑟 , let L𝑣 be the set of leaf nodes contained in the subtree rooted

at node 𝑣 ∈ 𝑉 . If 𝑣 ∈ 𝑉𝐶 , L𝑣 = ∅. For any non-root node 𝑣 ∈ 𝑉 \ {𝑟 }, we use 𝑤𝑣 to denote the

bandwidth of the edge between node 𝑣 and its (unique) parent node.

3.1 A Lower Bound
We first provide a lower bound for the task. Consider any algorithmA that correctly computes the

task with cost 𝐿. Let □𝑏,𝑢 be the set of pairs from 𝑅𝑏 × 𝑆𝑏 that leaf node 𝑢 ∈ 𝑉𝐶 emits locally. We

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 97. Publication date: May 2024.



Topology-aware Parallel Joins 97:7

assume w.l.o.g. that the sets □𝑏,𝑢 are disjoint (indeed, if a pair is emitted by at least two leaf nodes,

we can simply modify A to emit only in one location; that can only decrease its cost).
5
For an

internal node 𝑣 ∈ 𝑉 , we define □𝑏,𝑣 =
⋃
𝑢∈L𝑣

□𝑏,𝑢 (recall that L𝑣 is the set of leaf nodes contained
in the subtree rooted at 𝑣). Intuitively, □𝑏,𝑣 are the tuple pairs that node 𝑣 is responsible for. Hence,
for the root we have □𝑏,𝑟 =

⋃
𝑢 □𝑏,𝑢 . Let 𝑔𝑏,𝑣 = |□𝑏,𝑣 |. Since A is a correct algorithm, we must have

□𝑏,𝑟 = 𝑅𝑏 × 𝑆𝑏 and thus 𝑔𝑏,𝑟 = |𝑅𝑏 | · |𝑆𝑏 |.
Now, for any 𝑏 ∈ 𝐵 and node 𝑣 ≠ 𝑟 , let 𝑥𝑏,𝑣 (𝑦𝑏,𝑣 resp.) be the number of tuples from 𝑅𝑏

(𝑆𝑏 resp.) routed through 𝑣 by A. We now have two observations. First, the cost of A is 𝐿 =

max𝑣

∑
𝑏 (𝑥𝑏,𝑣 + 𝑦𝑏,𝑣)/𝑤𝑣 . Second, since node 𝑣 is responsible for emitting 𝑔𝑏,𝑣 pairs from 𝑅𝑏 × 𝑆𝑏 ,

we must have that 𝑔𝑏,𝑣 ≤ 𝑥𝑏,𝑣 · 𝑦𝑏,𝑣 ; in other words, the tuples received must form enough area to

“cover” the set □𝑏,𝑣 . Putting all this together, the cost of any algorithm is at least the optimal cost 𝐿∗

of the following non-linear integer program:

min 𝐿

s.t. |𝑅𝑏 | · |𝑆𝑏 | = 𝑔𝑏,𝑟 ,∑︁
𝑢∈L𝑣

𝑔𝑏,𝑢 = 𝑔𝑏,𝑣, 𝑏 ∈ 𝐵, 𝑣 ∈ 𝑉 ,∑︁
𝑏∈𝐵
(𝑥𝑏,𝑣 + 𝑦𝑏,𝑣) ≤ 𝐿 ·𝑤𝑣, 𝑣 ∈ 𝑉 \ {𝑟 },

𝑥𝑏,𝑣 ≤ |𝑅𝑏 |, 𝑦𝑏,𝑣 ≤ |𝑆𝑏 |, 𝑥𝑏,𝑣 · 𝑦𝑏,𝑣 ≥ 𝑔𝑏,𝑣, 𝑏 ∈ 𝐵, 𝑣 ∈ 𝑉 \ {𝑟 },
𝑔𝑏,𝑣, 𝑥𝑏,𝑣, 𝑦𝑏,𝑣 ∈ Z∗, 𝑏 ∈ 𝐵, 𝑣 ∈ 𝑉 \ {𝑟 }

(1)

Note that here we have added additional constraints that say that 𝑥𝑏,𝑣 can never exceed |𝑅𝑏 | and
𝑦𝑏,𝑣 cannot exceed |𝑆𝑏 |. Later, we use 𝐿∗ (𝐺, {𝑅𝑏 × 𝑆𝑏 : 𝑏 ∈ 𝐵}) to denote the optimal cost of (1)

defined over network 𝐺 and a set of Cartesian products 𝑅𝑏 × 𝑆𝑏 for 𝑏 ∈ 𝐵.
Remark 1: Symmetry in input sizes of Cartesian products. Suppose |𝑅𝑏 | = |𝑆𝑏 | = 𝑁𝑏 for any
𝑏 ∈ 𝐵. We can find a rather clean characterization on a constant-approximation solution of (1). Let’s

start with two critical observations on the optimal solution of (1). Firstly, 𝑥𝑏,𝑣 = 𝑦𝑏,𝑣 ; otherwise,

we replace 𝑥𝑏,𝑣, 𝑦𝑏,𝑣 with
√
𝑥𝑏,𝑣 · 𝑦𝑏,𝑣 , satisfying all constraints with 2 · √𝑥𝑏,𝑣 · 𝑦𝑏,𝑣 ≤ 𝑥𝑏,𝑣 + 𝑦𝑏,𝑣 .

Secondly, 𝑥𝑏,𝑣 · 𝑦𝑏,𝑣 = 𝑔𝑏,𝑣 ; otherwise, we replace 𝑥𝑏,𝑣 = 𝑦𝑏,𝑣 =
√
𝑔𝑏,𝑣 , satisfying all constraints with

2

√
𝑔𝑏,𝑣 ≤ 𝑥𝑏,𝑣 + 𝑦𝑏,𝑣 . This way, we can transform (1) into the following integer program:

min 𝐿

s.t. 𝑁 2

𝑏
≤

∑︁
𝑣∈L

𝑧2
𝑏,𝑣
, 𝑏 ∈ 𝐾,∑︁

𝑏∈𝐾

√︄ ∑︁
𝑢∈L𝑣

𝑧2
𝑏,𝑢
≤ 𝐿

2

·𝑤𝑣, 𝑣 ∈ 𝑉 \ {𝑟 },

∑︁
𝑏∈𝐾

𝑧𝑏,𝑢 ≤
𝐿

2

·𝑤𝑣, 𝑣 ∈ L,

𝑧𝑏,𝑣 ≤ 𝑁𝑏, 𝑧𝑏,𝑣 ∈ Z∗, 𝑣 ∈ L

(2)

5
We can always strengthen the power of the algorithm for proving a lower bound. Suppose𝑉𝐶 = {𝑣1, 𝑣2, · · · , 𝑣ℓ }. If a pair
is emitted by both 𝑣𝑖 and 𝑣𝑗 , we always let the node with the smallest index to emit the pair. Consider a leaf node 𝑣𝑖 . If

there exists some tuple 𝑡𝑏 ∈ 𝑅𝑏 , such that all pairs from □𝑏,𝑣𝑖 in a form of (𝑡𝑏 , ∗) are emitted by other nodes, there is no

need to send 𝑡𝑏 to 𝑣𝑖 , hence the cost can only be decreased.
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Recall that L𝑣 is the set of leaf nodes included by the subtree rooted at 𝑣 , and𝑤𝑣 is the bandwidth

parameter of the edge between 𝑣 and its unique parent node. Here, L denotes the set of leaf nodes

in ®𝐺 . Note that 𝑧𝑏,𝑣 is defined as a variable for every leaf node 𝑣 ∈ L and key 𝑏 ∈ 𝐾 . Each solution

𝑧 : 𝐾 × L → Z∗ of (2) has a clean closed-form on its cost: C𝑧 = max

𝑣∈𝑉−𝑟

1

𝑤𝑣
·
∑︁
𝑏∈𝐾

√︄ ∑︁
𝑢∈L𝑣

𝑧2
𝑏,𝑢

.

Remark 2: One Cartesian product. Suppose there is only one Cartesian product, say 𝐵 = {𝑏}.
Let 𝑅 = 𝑅𝑏 and 𝑆 = 𝑆𝑏 . We can simplify (1) as the following integer program:

min 𝐿

s.t. |𝑅 | · |𝑆 | = 𝑔𝑟 ,∑︁
𝑢∈L𝑣

𝑔𝑢 = 𝑔𝑣, 𝑣 ∈ 𝑉 ,

𝑥𝑣 + 𝑦𝑣 ≤ 𝐿 ·𝑤𝑣, 𝑣 ∈ 𝑉 \ {𝑟 },
𝑥𝑣 ≤ |𝑅 |, 𝑦𝑣 ≤ |𝑆 |, 𝑥𝑣 · 𝑦𝑣 ≥ 𝑔𝑣, 𝑣 ∈ 𝑉 \ {𝑟 },

𝑔𝑣, 𝑥𝑣, 𝑦𝑣 ∈ Z∗ 𝑣 ∈ 𝑉 \ {𝑟 }

(3)

Let’s start with one critical observations on the optimal solution of (1). If max{𝑥𝑣, 𝑦𝑣} ≤ |𝑅 |, we have
𝑥𝑣 = 𝑦𝑣 . Suppose not, we replace 𝑥𝑣, 𝑦𝑣 with (𝑥𝑣 ·𝑦𝑣)1/2, satisfying all constraints with 2· (𝑥𝑣 ·𝑦𝑣)1/2 ≤
𝑥𝑣 + 𝑦𝑣 . We partition leaf nodes in L into two subsets L1 = {𝑣 ∈ L : max{𝑥𝑣, 𝑦𝑣} ≤ |𝑅 |} and
L2 = L − L1. The cost of 𝐿 can be explicitly represented as

max

𝑣∈𝑉 \{𝑟 }

1

𝑤𝑣

©­«max


∑︁

𝑢∈L𝑣∩L1

𝑥2𝑢

|𝑅 | ,
√︄ ∑︁
𝑢∈L𝑣∩L1

𝑥2𝑢

 +
∑︁

𝑢∈L𝑣∩L2

𝑦𝑢
ª®¬ .

3.2 An Algorithm
Given the optimization problem (1) that provides the lower bound, one can solve it to obtain the

optimal values of 𝑥𝑏,𝑣 , 𝑦𝑏,𝑣 and 𝑔𝑏,𝑣 . However, this does not directly imply an algorithm, since we

also need to specify which tuples are sent where (instead of how many of them). Below, we use (1)

to construct an almost-optimal algorithm.

Packing Squares. Consider the assignments 𝑥∗
𝑏,𝑣
, 𝑦∗
𝑏,𝑣
, 𝑔∗
𝑏,𝑣

for (1) that achieves the optimal solution

with cost 𝐿∗. For any𝑏 ∈ 𝐵, we define: 𝑖∗
𝑏
:= ⌈log

2
min{|𝑅𝑏 |, |𝑆𝑏 |}⌉ .Our algorithm recursively assigns

to each node 𝑣 a set of squares 𝑆𝑏,𝑣 in the form of

{(𝑖, 𝑐𝑖 ) : 𝑐𝑖 ∈ {0, 1, 2, 3}, 1 ≤ 𝑖 < 𝑖∗𝑏} ∪ {(𝑖
∗
𝑏
, 𝑐𝑖∗

𝑏
), 𝑐𝑖∗

𝑏
≥ 0}.

We interpret this as that there are 𝑐𝑖 squares of type 𝑖 , with dimensions 2
𝑖 × 2𝑖 . We are allowed to

have up to 3 squares of type 𝑖 when 𝑖 < 𝑖∗
𝑏
, but for type 𝑖∗

𝑏
the number is unlimited. The recursion

works in a bottom-up fashion starting from the leaf nodes. The square assignment will be done such

that the following property holds: their total area is exactly 8 ·𝑔∗
𝑏,𝑣

. In other words,

∑
𝑖 𝑐𝑖 · 4𝑖 = 8 ·𝑔∗

𝑏,𝑣
.

For the base case, we assign to compute node 𝑣 a set 𝑆𝑏,𝑣 such that

∑
𝑖 𝑐𝑖 · 4𝑖 = 8 · 𝑔∗

𝑏,𝑣
. This is

always possible, and moreover there is a unique way to achieve this decomposition. Next, consider

some internal node 𝑢. Each of its children 𝑣 is assigned a set of squares 𝑆𝑏,𝑣 from the recursion. We

start the following procedure in an increasing order of 𝑖 ≥ 0: for each type 𝑖 < 𝑖∗
𝑏
, if there are 4

squares of type 𝑖 in
⋃
𝑣 𝑆𝑏,𝑣 , we pack them into one larger square of type 𝑖 + 1. In this way, we can

transform the set

⋃
𝑣 𝑆𝑏,𝑣 into a new set of squares 𝑆𝑏,𝑢 , where for every 𝑖 < 𝑖

∗
𝑏
, 𝑐𝑖 ≤ 3. Note again

that for type 𝑖∗
𝑏
there is no limit on the number of squares. See Figure 2.
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Fig. 2. An example of packing squares.

Theorem 3.1. In a rooted tree topology 𝐺 , the Cartesian product packing problem can be computed
in a single round with cost 𝑂 (1) away from the optimal solution.

Proof of Theorem 3.1. We can show that this assignment fully covers every 𝑅𝑏 × 𝑆𝑏 grid, so
that every point in the grid (i.e., every pair in the Cartesian product) is assigned to some compute

node. In addition, it has cost 𝑂 (𝐿∗). We split the proof into two parts.

Covering: We will first show that the above process indeed fully covers every 𝑅𝑏 × 𝑆𝑏 grid, so that

every point in the grid (i.e., every pair in the Cartesian product) is assigned to some compute node.

W.l.o.g, assume that 𝑅𝑏 ≤ 𝑆𝑏 . Observe that the following property holds: all squares of type < 𝑖 can

fit into a single square of type 𝑖 (here, it is crucial that 𝑐𝑖 ≤ 3). We can now write |𝑅𝑏 | · |𝑆𝑏 | as:

𝑔∗
𝑏,𝑟

=
1

8

∑︁
(𝑖,𝑐𝑖 ) ∈𝑆𝑏,𝑟

𝑐𝑖 · 4𝑖 ≤
1

8

(𝑐𝑖∗
𝑏
+ 1) · 4𝑖∗𝑏 ≤ 1

2

(𝑐𝑖∗
𝑏
+ 1) · |𝑅𝑏 |2 .

Hence, we can conclude that 𝑐𝑖∗
𝑏
≥ 2|𝑆𝑏 |/|𝑅𝑏 | − 1 ≥ |𝑆𝑏 |/|𝑅𝑏 |.

Note that we have 𝑐𝑖∗
𝑏
fully packed squares of type 𝑖∗

𝑏
. Each such square has dimensions 2

𝑖∗
𝑏 × 2𝑖∗𝑏 ,

so at least |𝑅𝑏 | × |𝑅𝑏 |. Moreover, if we place the 𝑐𝑖∗
𝑏
squares next to each other along the horizontal

axis, we have a fully packed rectangle where the first dimension has size at least |𝑅𝑏 | and the second
dimension has size at least 𝑐𝑖∗

𝑏
· |𝑅𝑏 | ≥ |𝑆𝑏 |. Thus, we can indeed covered the desired grid.

Cost: Consider any node 𝑣 ≠ 𝑟 ; we will calculate the amount of data that goes through its parent

link with capacity𝑤𝑣 . Consider the largest 𝑖
∗
in 𝑆𝑏,𝑣 such that 𝑐𝑖∗ > 0. We can measure the amount

of data that goes through the link and is associated with 𝑏 as: 𝐴𝑏 = 2 ·
∑︁
𝑖

𝑐𝑖 · 2𝑖 ≤ 2(𝑐𝑖∗ + 3) · 2𝑖
∗
.

As before, assume w.l.o.g. that |𝑅𝑏 | ≤ |𝑆𝑏 |. We now distinguish two cases:

• 𝑖∗ < 𝑖∗
𝑏
. Then, we have 𝑐𝑖∗ ≤ 3. Also, note that 𝑐𝑖∗4

𝑖∗ ≤ 8 · 𝑔∗
𝑏,𝑣

, so 2
𝑖∗ ≤

√︃
8𝑔∗
𝑏,𝑣

. We can write:

𝐴𝑏 ≤ 12 · 2𝑖 ≤ 12

√︃
2𝑔∗
𝑏,𝑣
≤ 12

√︃
2𝑥∗
𝑏,𝑣
𝑦∗
𝑏,𝑣
≤ 6

√
2 · (𝑥∗

𝑏,𝑣
+ 𝑦∗

𝑏,𝑣
)

• 𝑖∗ = 𝑖∗
𝑏
. Then, we can write: 𝐴𝑏 ≤ 8 · 𝑐𝑖∗

𝑏
· 2𝑖∗𝑏 ≤ 8 · 𝑐𝑖∗

𝑏
· |𝑅𝑏 |. But we also have: 𝑐𝑖∗4

𝑖∗ ≤ 8 · 𝑔∗
𝑏,𝑣

,

so 𝑐𝑖∗
𝑏
· |𝑅𝑏 |2 ≤ 8 · 𝑔∗

𝑏,𝑣
. Thus: 𝐴𝑏 ≤ 64 ·

𝑔∗
𝑏,𝑣

|𝑅𝑏 |
≤ 64 ·

𝑥∗
𝑏,𝑣
𝑦∗
𝑏,𝑣

|𝑅𝑏 |
≤ 64 · 𝑦∗

𝑏,𝑣
.

Hence, the total size of data going through the link with capacity𝑤𝑣 is:
∑︁
𝑏

𝐴𝑏 ≤ 64

∑︁
𝑏

(𝑥∗
𝑏,𝑣
+ 𝑦∗

𝑏,𝑣
)

≤ 64 ·𝐿∗ ·𝑤𝑣 . We conclude that our algorithm has cost𝑂 (1) away from the optimal solution 𝐿∗. □

4 THE JOIN ALGORITHM
In this section, we present the general algorithm for computing the join 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶) over
a symmetric tree topology 𝐺 = (𝑉 , 𝐸). Throughout this section, we assume that |𝑅 | ≤ |𝑆 |. The
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Fig. 3. A symmetric tree𝐺 , with four directed 𝛼-trees {𝐺1

𝛼 ,𝐺
2

𝛼 ,𝐺
3

𝛼 ,𝐺
4

𝛼 } and a balanced partition {𝑉 1

𝐶
,𝑉 2

𝐶
,𝑉 3

𝐶
}.

algorithm consists of two basic steps, where each step computes a partial join result. In the first

step, we compute part of the result using a sort-based protocol. After sorting the tuples according

to the join key (attribute 𝐵), the compute nodes can compute locally the result for the join keys that

completely reside within a node. The join keys that cross different nodes (called boundary keys)
have to be handled by the second step. The boundary keys can be roughly viewed as the “heavy”

keys in the join computation.

Before we describe the steps of the algorithm, we need to introduce a few useful concepts over

the symmetric tree topology.

4.1 Edges and Trees
Recall that each edge 𝑒 = (𝑢, 𝑣) defines a partition of𝐺 as two connected subtrees: 𝐺−𝑒 and 𝐺+𝑒 . For
simplicity, we also use 𝐺−𝑒 ,𝐺

+
𝑒 to denote the set of leaf nodes in the corresponding subtree.

We note a lower bound𝐶int = max

𝑒∈𝐸

1

𝑤𝑒
·
 |𝑅 |,

∑︁
𝑣∈𝐺−𝑒

𝑁𝑣,
∑︁
𝑣∈𝐺+𝑒

𝑁𝑣

 for the cost of set intersection [20],

hence it also forms a lower bound for a general join protocol. Using 𝐶int as a guide, we classify the

edges in 𝐸 into two disjoint subsets:

𝐸𝛼 =

𝑒 ∈ 𝐸 : |𝑅 | > min{
∑︁
𝑣∈𝐺−𝑒

𝑁𝑣,
∑︁
𝑣∈𝐺+𝑒

𝑁𝑣}
 , 𝐸𝛽 = 𝐸 − 𝐸𝛼

An edge 𝑒 is an 𝛼-edge if 𝑒 ∈ 𝐸𝛼 and a 𝛽-edge otherwise. Let𝐺𝛽 be the subgraph of𝐺 edge-induced

by 𝐸𝛽 ; in [20], it has been shown that𝐺𝛽 always forms a connected tree, called the 𝛽-tree. We denote

the nodes of 𝐺𝛽 as 𝑉𝛽 and the leaf nodes of 𝐺𝛽 as L𝛽 . On the other hand, the graph edge-induced

by 𝐸𝛼 may not be connected; let

{
𝐺1

𝛼 ,𝐺
2

𝛼 , · · · ,𝐺 ℓ𝛼
}
be the connected subtrees (called 𝛼-trees). See

Figure 3. If 𝐸𝛽 = ∅, the network 𝐺 itself forms a single 𝛼-tree.

For each 𝛼-tree 𝐺
𝑗
𝛼 , we can define a directed version ®𝐺 𝑗

𝛼 as follows: (𝑖) ®𝐺 𝑗
𝛼 has the same vertex

set as 𝐺
𝑗
𝛼 , and (𝑖𝑖) for an edge 𝑒 = (𝑢, 𝑣) in 𝐺 𝑗

𝛼 , if
∑
𝑣′∈𝐺−𝑒 𝑁𝑣′ <

∑
𝑣′∈𝐺+𝑒 𝑁𝑣′

6
, ®𝐺 𝑗

𝛼 contains only an

edge from 𝑢 to 𝑣 , otherwise only an edge from 𝑣 to 𝑢. We say that a directed tree is rooted at the
node 𝑟 if every edge points towards 𝑟 . It turns out that the set of directed trees

{
®𝐺1

𝛼 , · · · , ®𝐺 ℓ𝛼
}
has a

very specific structure, as the next lemma shows.

Lemma 4.1. Every ®𝐺 𝑗
𝛼 is a directed rooted tree. Moreover, if 𝐸𝛽 ≠ ∅, the root of each ®𝐺 𝑗

𝛼 is the unique
node that is adjacent to a 𝛽-edge.
6
Here we can assume w.l.o.g. that equality will never occur.
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Proof of Lemma 4.1. The proof distinguishes two cases. First, consider the case where 𝐸𝛽 ≠ ∅.
Consider an edge 𝑒 = (𝑢, 𝑣) such that 𝐺+𝑒 contains the root. Then, 𝐺+𝑒 contains at least one 𝛽-edge,

so it must be that |𝑅 | ≤ ∑
𝑤∈𝐺+𝑒 𝑁𝑣 . But because 𝑒 is an 𝛼-edge, we also have |𝑅 | > ∑

𝑤∈𝐺−𝑒 𝑁𝑣 .
Hence,

∑
𝑤∈𝐺+𝑒 𝑁𝑣 >

∑
𝑤∈𝐺−𝑒 𝑁𝑣 and the edge is indeed directed towards the root. Second, consider

the case where 𝐸𝛽 = ∅. Since ®𝐺𝛼 is a directed tree, there must exist at least one node with no

outgoing edges; otherwise, there would be a cycle in the graph, a contradiction. Hence, it suffices

to show that there is at most one such a node. By contradiction, assume two nodes 𝑢, 𝑣 with

outdegree 0. Consider the unique path between 𝑢, 𝑣 : then, there must be a node𝑤 in the path with

out-degree at least two. In other words, we have edges 𝑒1 = (𝑤, 𝑣1) and 𝑒2 = (𝑤, 𝑣2). But then
𝑁 ≥ ∑

𝑥 ∈𝐺+𝑒
1

𝑁𝑥 +
∑
𝑥 ∈𝐺+𝑒

2

𝑁𝑥 > 𝑁 /2 + 𝑁 /2 = 𝑁 , a contradiction. □

An illustration of this structure when 𝐸𝛽 ≠ ∅ is given in Figure 3. An important consequence of

the lemma that will be of use later is that every compute node 𝑣 can send its local data (of size 𝑁𝑣)

to the root node of its corresponding 𝛼-tree (which will be a leaf node of the 𝛽-tree) with a cost

that does not exceed the lower bound 𝐶int.

4.2 Warm Up: A Single 𝛼-Tree
We start with an easy case when network𝐺 itself forms a single 𝛼-tree (i.e., 𝐸𝛽 = ∅), rooted at some

node 𝑟 . This case could happen on some simple inputs, such as when there is symmetry on the

input size (i.e., |𝑅 | = |𝑆 |), or when the initial data distribution is uniform (i.e., 𝑁𝑢 = 𝑁𝑣 for every

pair of compute nodes 𝑢, 𝑣 ∈ 𝑉𝐶 ) together with the input size constraint |𝑆 | < ( |𝑉𝐶 | − 1) · |𝑅 |. Our
algorithm is quite straightforward via three steps:

• Step 1.We first invoke the weighted TeraSort algorithm [20] to sort all tuples by their join values.
7

After the data is sorted, each node locally computes the join results with non-boundary keys,

where a key is boundary if it is the smallest or the largest one among its local tuples (and hence

it can possibly have tuples in other compute nodes as well). Let 𝐾 be the set of boundary keys.

• Step 2.We next compute the input sizes |𝑅𝑏 |, |𝑆𝑏 | for each𝑏 ∈ 𝐾 by invoking the multi-numbering

primitive (see Appendix D), and then broadcast |𝑅𝑏 |’s, |𝑆𝑏 |’s to all compute nodes in 𝑉𝐶 .

• Step 3. At last, we just send all tuples with 𝑏 ∈ 𝐾 to the root 𝑟 , and simply invoke the Cartesian

product packing primitive in Section 3 to handle the boundary keys.
8
The whole topology 𝐺

together with the data statistics of boundary keys are stored at the local memory of each compute

node, hence the program (1) can be solved locally by each node.

This protocol incurs a cost of 𝑂 (Cint + Cpack), where Cpack is the optimal solution of (1) parame-

terized by {|𝑅𝑏 |, |𝑆𝑏 | : 𝑏 ∈ 𝐾}.
In the remaining, we will deal with the general case where the network𝐺 has a 𝛽-tree as its core,

with a set of 𝛼-trees incident to the leaf nodes of 𝛽-tree, as shown in Section 4.1.

4.3 Tree Partitioning
A crucial idea in general our algorithm is to further group together the 𝛼-trees into disjoint

partitions, such that within each partition certain properties hold. Consider 𝐺𝛽 , a weight function

𝑤 that maps any subset of L𝛽 to a positive number, and a threshold 𝜏 ≥ 0.

7
Given an ordering of compute nodes 𝑉𝐶 , the goal is to redistribute the input elements such that elements on node 𝑣𝑖

are always no larger than those on node 𝑣𝑗 if 𝑖 < 𝑗 . In our context, we can pick an arbitrary node as the root, and any

left-to-right traversal of the tree is a valid ordering of𝑉𝐶 .

8
Here, we “conceptually” split the routing into two steps (from leaf nodes to root and then from root to leaf nodes) for easy

understanding. But this is actually done in a single round, since each leaf node can directly send data to other leaf nodes

(maybe even without going through the root), where the root is only responsible for routing.
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Definition 4.2. For𝐺𝛽 with leaf nodesL𝛽 , parameter 𝜏 ≥ 0 and function 𝜃 : 2
L𝛽 → Z∗, a partition

P of L𝛽 is balanced with respect to 𝜃 and 𝜏 if the following hold:

• The minimum Steiner trees of the sets in P are edge-disjoint;
9

• For every 𝑃 ∈ P, 𝜃 (𝑃) ≥ 𝜏 ;
• For every 𝛽-edge 𝑒 in the Steiner tree of 𝑃 ∈ P in 𝐺𝛽 , we have min{𝜃 (𝑃 ∩𝐺+𝑒 ), 𝜃 (𝑃 ∩𝐺−𝑒 )} ≤ 𝜏 ;
• For every 𝑃 ∈ P with |𝑃 | > 1, 𝜃 (𝑃) < 2𝜏 .

We should note here that the above definition generalizes the definition of a balanced partition

in [20]. It will be convenient to think about a balanced partition as a partition of the set of 𝛼-trees.

Figure 3 shows an example of a balanced partition {{𝐺1

𝛼 ,𝐺
2

𝛼 }, {𝐺3

𝛼 }, {𝐺4

𝛼 }}.
It turns out that we can obtain a balanced partition through a simple routine (Algorithm 1) that

runs in polynomial time in the size of the network. Our procedure initially creates a single group

for each leaf node of 𝐺𝛽 . Then, it starts merging the groups (starting from the leaves of the tree) as

long as the total “weight” (i.e., the value under function 𝜃 ) in the group is less than the threshold 𝜏 .

Lemma 4.3. If 𝜃 (L𝛽 ) ≥ 𝜏 , Algorithm 1 returns a balanced partition in polynomial time.

4.4 Step 1: Sort-based Join
The first step of the join algorithm performs a sort-based join. As we discussed in the introduction,

we do not sort 𝑅∪𝑆 globally. Instead, we construct a balanced partition P ofL𝛽 , and then separately
sort 𝑅 together with the local 𝑆-tuples in the nodes of each block of the partition P. As described
in Algorithm 2, it consists of three steps:

• (Step 1.1) We first construct a balanced partition P of L𝛽 by invoking Algorithm 1, where

𝜏 = |𝑅 | and function 𝜃 (𝑃) for a subset of leaf nodes 𝑃 ⊆ L𝛽 is defined as the sum of 𝑁𝑣 for every

compute node 𝑣 in the 𝛼-tree rooted at some 𝑢 ∈ 𝑃 , i.e.,

𝜃 (𝑃) =
∑︁
𝑢∈𝑃

∑︁
𝑣∈𝑉𝐶∩𝐺𝑖

𝛼 :
®𝐺𝑖
𝛼 is rooted at 𝑢

𝑁𝑣 .

As 𝜃 (L𝛽 ) = |𝑅 | + |𝑆 | ≥ |𝑅 | = 𝜏 , we can obtain a balanced partition in polynomial time using

Algorithm 1.

• (Step 1.2) Let P = {𝑃1, 𝑃2, . . . , 𝑃𝑘 } be the resulting partition. We now define a random hash

function ℎ𝑖 that maps independently each tuple 𝑡 to a leaf node 𝑣 in one of the 𝛼-trees in 𝑃𝑖 with

probability Pr[ℎ𝑖 (𝑡) = 𝑣] = 𝑁𝑣

𝜃 (𝑃𝑖 ) . As described in Algorithm 2, each 𝑅-tuple is hashed across all

blocks of the partition P.
• (Step 1.3) We then invoke the weighted TeraSort algorithm [20] to sort all 𝑅-tuples as well as

local 𝑆-tuples by their join keys inside each block 𝑃𝑖 of the partition P.10 Since each block defines

an edge-disjoint Steiner tree, we can perform sorting simultaneously for all blocks. After each

node locally computing the join results with non-boundary keys, it then remains to compute the

join results with boundary keys across all leaf nodes.

We note an easy case when the network 𝐺 itself is a 𝛽-Tree (i.e., 𝐸𝛼 = ∅). In (Step 1.1), every
compute node in 𝑉𝐶 forms an individual block in P. Our algorithm just degenerates to let all

compute nodes broadcast their 𝑅-tuples (even simpler than line 2-3 in Algorithm 2) and compute

local join results. This case could happen on some simple inputs, such as when the initial data

distribution is uniform (i.e., 𝑁𝑢 = 𝑁𝑣 for every pair of compute nodes 𝑢, 𝑣 ∈ 𝑉𝐶 ) together with the

9
For a tree𝐺 = (𝑉 , 𝐸) and a subset of nodes 𝑆 ⊆ 𝑉 , the minimum Steiner tree of 𝑆 is a subtree𝐺′ of𝐺 , that include all
nodes in 𝑆 and all leaf nodes of𝐺′ are from 𝑆 .
10
We can pick an arbitrary node in the minimum Steiner tree of 𝑃𝑖 as the root, and any left-to-right traversal of the

underlying tree is a valid ordering of 𝑃𝑖 .
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Algorithm 1: TreePartition(𝐺𝛽 , 𝜃, 𝜏)
1 foreach 𝑥 ∈ L𝛽 do Γ(𝑥) ← {𝑥};
2 foreach 𝑥 ∈ 𝑉𝛽 \ L𝛽 do Γ(𝑥) ← {};
3 P ← ∅;
4 while |𝑉𝛽 | > 0 do
5 Pick the leaf 𝑥 ∈ 𝑉𝛽 with the smallest 𝜃 (Γ(𝑥));
6 if 𝜃 (Γ(𝑥)) ≥ 𝜏 then Add Γ(𝑥) to P;
7 else
8 𝑦 ← unique neighbor of 𝑥 in 𝐺𝛽 ;

9 Γ(𝑦) ← Γ(𝑦) ∪ Γ(𝑥);
10 𝑉𝛽 ← 𝑉𝛽 \ {𝑥};
11 return P;

Algorithm 2: SortTree(𝐺,D)
1 P = {𝑃1, 𝑃2, . . . , 𝑃𝑘 } ← TreePartition(𝐺𝛽 , 𝜃, |𝑅 |);
2 foreach 𝑣 ∈ 𝑉𝐶 and 𝑖 ∈ 𝑘 do
3 Send every tuple 𝑡 ∈ 𝑅D𝑣 to ℎ𝑖 (𝑡);
4 foreach 𝑖 ∈ 𝑘 do
5 Sort tuples in 𝑅 ∪

(
∪𝑣∈𝑃𝑖𝑆D𝑣

)
by their join key over the minimum Steiner tree of 𝑃𝑖 ;

6 foreach 𝑣 ∈ 𝑉𝐶 do
7 Compute local join results for non-boundary keys;

8 return D;

input size constraint |𝑆 | > ( |𝑉𝐶 | − 1) · |𝑅 |. As the next lemma shows, the above algorithm for the

general case has cost that matches the lower bound for set intersection.

Lemma 4.4. Algorithm 2 has a cost of 𝑂 (𝐶int).

Let 𝐾 be the set of boundary keys. It must be that |𝐾 | = 𝑂 ( |𝑉𝐶 |). Define 𝑅𝑏 = 𝜎𝐵=𝑏 (𝑅) and
𝑆𝑏 = 𝜎𝐵=𝑏 (𝑆). We next will show how to compute the Cartesian products 𝑅𝑏 × 𝑆𝑏 for each 𝑏 ∈ 𝐾 .

4.5 Step 2: Handling the Boundary Keys
The second step of the join algorithm handles the join computation of the boundary keys with their

input tuples as in the initial data distribution. To simplify the exposition, we will assume w.l.o.g.

that for every 𝑏 ∈ 𝐾 , |𝑅𝑏 | ≤ |𝑆𝑏 |. The sizes |𝑅𝑏 |, |𝑆𝑏 | for each boundary key 𝑏 ∈ 𝐾 can be easily

computed by invoking the topology-aware multi-numbering primitive in Appendix D, and then

broadcast to all compute nodes in 𝑉𝐶 . Recall that 𝐺 has a 𝛽-tree as its core, with a set of 𝛼-trees

{𝐺1

𝛼 ,𝐺
2

𝛼 , · · · ,𝐺 ℓ𝛼 } incident to the leaf nodes of 𝛽-tree. As described in Algorithm 3, it consists of

three steps:

• (Step 2.1) For each 𝐺 𝑗
𝛼 , we let all compute nodes in 𝐺

𝑗
𝛼 send their 𝑆-tuples to the root of ®𝐺 𝑗

𝛼 .

• (Step 2.2) We redistribute 𝑆-tuples across 𝛽-tree by invoking the redistribution primitive in

Section 2. Let 𝑆
𝑓

𝑏,𝑗
be the set of 𝑆-tuples for key 𝑏 residing at the root of 𝐺

𝑗
𝛼 after this step.
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• (Step 2.3) Each 𝐺 𝑗
𝛼 is responsible for computing 𝑅

𝑓

𝑏,𝑗
× 𝑆 𝑓

𝑏,𝑗
for key 𝑏 ∈ 𝐾 , where 𝑅 𝑓

𝑏,𝑗
is a subset

of 𝑅-tuples with key 𝑏. We invoke the Cartesian product packing primitive in Section 3 inside ®𝐺 𝑗
𝛼 .

It remains to identify 𝑅
𝑓

𝑏,𝑗
and 𝑆

𝑓

𝑏,𝑗
for each 𝐺

𝑗
𝛼 and key 𝑏 ∈ 𝐾 . Our algorithm assigns to each 𝐺

𝑗
𝛼

tree a fractional value 𝑓𝑏,𝑗 ∈ [0, 1] such that

∑
𝑗 ∈[ℓ ] 𝑓𝑏,𝑗 = 1. We will discuss later how to compute

these fractions. Intuitively, each𝐺
𝑗
𝛼 will be responsible to compute 𝑓𝑏,𝑗 · |𝑅𝑏 | · |𝑆𝑏 | pairs for 𝑅𝑏 × 𝑆𝑏 .

More specifically, for 𝐺
𝑗
𝛼 :

• if 𝑓𝑏,𝑗 ≥ |𝑅𝑏 |/|𝑆𝑏 |, we assign the computation of a rectangle■𝑏,𝑗 with dimensions |𝑅𝑏 |×⌈2·𝑓𝑏,𝑗 · |𝑆𝑏 |⌉.
• otherwise, we assign the computation of a square ■𝑏,𝑗 with size (2 · 𝑓𝑏,𝑗 · |𝑅𝑏 | · |𝑆𝑏 |)1/2 rounded
up to the closest power of 2.

Now, suppose we are given such a fraction function 𝑓 , as well as the rectangles/squares ■𝑏,𝑗
for each 𝐺

𝑗
𝛼 and 𝑏 ∈ 𝐾 . We will show for each boundary key 𝑏 ∈ 𝐾 , how to organize/pack the

above squares/rectangles inside the Cartesian product 𝑅𝑏 × 𝑆𝑏 so that they fully cover every pair of

𝑅𝑏 × 𝑆𝑏 . This packing procedure is conceptually the reverse of assigning tuples for 𝑅𝑏,𝑗 and 𝑆
𝑓

𝑏,𝑗
.

Packing over the 𝛽-tree. To construct a packing for a boundary key 𝑏 ∈ 𝐾 , we will again deploy

the tree partition algorithm (Algorithm 1), where 𝜏 = |𝑅𝑏 |/|𝑆𝑏 | and the function 𝜃 for a subset leaf

nodes 𝑃 ⊆ L𝛽 is defined as sum of the fractions 𝑓𝑏,𝑗 such that the associated directed 𝛼-tree is

rooted at some node in 𝑃 , i.e.,

𝜃 (𝑃) =
∑︁

𝑢∈𝑃 : ®𝐺 𝑗
𝛼 is rooted at 𝑢

𝑓𝑏,𝑗 .

We slightly modify Algorithm 1 such that in the last possible step when we are left with two vertices

𝑢, 𝑣 , we do not merge 𝑢 with 𝜃 (Γ(𝑢)) < 𝜏 if its parent 𝑣 has 𝜃 (Γ(𝑣)) > 𝜏 . This modification means

that we could have a block 𝑃0 with 𝜃 (𝑃0) ≤ 𝜏 , but there can be at most one of such blocks. We refer

this modified version as TreePartition’. Let P be the resulting partition.

Now, we show how to pack these squares/rectangles over the 𝛽-tree based on P. Note that

a rectangle can appear in a block of P with a single 𝛼-tree (since it contributes more than 𝜏 to

the total weight). Hence, any block that has more than one tree contains only squares. Since by

construction the squares have dimensions that are powers of two, we can use the construction

in [20] (Lemma 10) to pack the squares of any block 𝑃 ∈ P \ {𝑃0} such that they fully cover a square

of size at least:
1

2

∑
𝑗 ∈𝑃 (2 · 𝑓𝑏,𝑗 · |𝑅𝑏 | · |𝑆𝑏 |) ≥ |𝑅𝑏 | · |𝑆𝑏 | · 𝜏 ≥ |𝑅𝑏 |2. Hence, any block 𝑃 ∈ P \ {𝑃0} can

fully pack a rectangle of dimensions |𝑅𝑏 | × 𝜅𝑃 , where 𝜅𝑃 ≥ |𝑅𝑏 |. We can now put these rectangles

horizontally next to each other. Let 𝜅 be the horizontal length covered by these rectangles. We do

not use the specific block 𝑃0 (if it exists) to cover any part of the 𝑅𝑏 × 𝑆𝑏 grid.
We will next argue that the rectangles will fully cover the 𝑅𝑏 × 𝑆𝑏 grid, or equivalently, 𝜅 ≥ |𝑆𝑏 |.

We can now rewrite |𝑅𝑏 | · |𝑆𝑏 | =
∑
𝑗 ∈[ℓ ] 𝑓𝑏,𝑗 · |𝑅𝑏 | · |𝑆𝑏 | as

∑
𝑗 ∈[ℓ ] 𝑓𝑏,𝑗 = 1. By further distinguishing

which block 𝑗 falls into, we can expand it as

|𝑅𝑏 | · |𝑆𝑏 | =
∑︁
𝑗 ∈𝑃0

𝑓𝑏,𝑗 · |𝑅𝑏 | · |𝑆𝑏 | +
∑︁

𝑃 ∈P\{𝑃0 }

∑︁
𝑗 ∈𝑃

𝑓𝑏,𝑗 · |𝑅𝑏 | · |𝑆𝑏 |.

Recall that 𝜃 (𝑃0) ≤ 𝜏 , so
∑
𝑗 ∈𝑃0 𝑓𝑏,𝑗 · |𝑅𝑏 | · |𝑆𝑏 | ≤ |𝑅𝑏 |2. We obtain: |𝑅𝑏 | · |𝑆𝑏 | ≤ |𝑅𝑏 |2 + 1

2
· |𝑅𝑏 | · 𝜅

Hence, 𝜅 ≥ 2|𝑆𝑏 | − |𝑅𝑏 | ≥ |𝑆𝑏 |.
Redistributing 𝑆-tuples over 𝛽-tree. It remains to specify how to send the necessary tuples for

each ■𝑏,𝑗 to the root of the corresponding 𝛼-tree 𝐺
𝑗
𝛼 . Observe that the root of each 𝐺

𝑗
𝛼 can receive

for each boundary key 𝑏 ∈ 𝐾 all tuples from 𝑅𝑏 with a cost that matches the lower bound 𝐶int.

Indeed, the total number of such tuples is

∑
𝑏∈𝐾 |𝑅𝑏 | ≤ |𝑅 |, so they can be routed over the 𝛽-edges

without additional cost. Hence, it suffices to determine how to (re)-distribute the tuples from 𝑆𝑏 .
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Algorithm 3: BoundaryKey(𝐺,D, 𝐾, 𝑓 )
1 Let {𝐺1

𝛼 ,𝐺
2

𝛼 , · · · ,𝐺 ℓ𝛼 } be the set of 𝛼-trees of 𝐺 ;
2 foreach 𝑗 ∈ [ℓ] do
3 Let nodes in 𝑉𝐶 ∩𝐺 𝑗

𝛼 send 𝑆-tuples to the root of ®𝐺 𝑗
𝛼 ;

4 foreach 𝑏 ∈ 𝐾 do
5 P ← TreePartition’(𝐺𝛽 , 𝜃, |𝑅𝑏 |/|𝑆𝑏 |);
6 Run data redistribution primitive on Λ (4) and Λ𝑓 (5);

7 foreach 𝑃 ∈ P do
8 Assign a rectangle ■𝑃 of 𝑅 and

∑
𝑗 ∈𝑃 Λ

𝑓

𝑏,𝑗
S-tuples;

9 if |𝑃 | > 1 then
10 foreach 𝑢 𝑗 ∈ 𝑃 do
11 Assign a square ■𝑏,𝑗 of Λ

𝑓

𝑏,𝑗
𝑅-tuples and 𝑆-tuples from ■𝑃 to ®𝐺 𝑗

𝛼 ;

12 else Assign ■𝑃 to 𝑢 𝑗 as ■𝑏,𝑗 for 𝑃 = {𝑢 𝑗 };

13 foreach 𝑗 ∈ [ℓ] do
14 Run Cartesian product packing primitive (Section 3) on ®𝐺 𝑗

𝛼 for computing the assigned

■𝑏,𝑗 for every 𝑏 ∈ 𝐾 ;

For this, we can first route the 𝑆-tuples from the compute nodes in 𝑉𝐶 ∩𝐺 𝑗
𝛼 to the root of the

directed version ®𝐺 𝑗
𝛼 with a cost at most 𝐶int; this is because all edges are directed towards the root.

Now, all 𝑆𝑏 tuples are sitting at L𝛽 , i.e., the leaf nodes of the 𝛽-tree, which are exactly the roots of

the directed 𝛼-trees.

We next use the routine (Section 2) to redistribute 𝑆𝑏-tuples across L𝛽 . For simplicity, let L𝛽 =

{𝑢1, . . . , 𝑢ℓ } where 𝑢𝑖 is the root of ®𝐺𝑖𝛼 . The input size-constraint matrix Λ is defined as:

Λ𝑏,𝑗 =
∑︁

𝑣∈𝑉𝐶∩𝐺 𝑗
𝛼

|𝑆𝑏,𝑣 | (4)

where 𝑏 ∈ 𝐾 ranges over all boundary keys and 𝑗 ∈ [ℓ] ranges over all root nodes of 𝛼-trees. Note
that

∑
𝑗 ∈[ℓ ] Λ𝑏,𝑗 = |𝑆𝑏 |. The new distribution Λ𝑓 under the fractional allocation 𝑓 is defined as

follows. Suppose 𝑢 𝑗 (the root node of ®𝐺 𝑗
𝛼 ) belongs to block 𝑃 ∈ P.

Λ
𝑓

𝑏,𝑗
=


⌈2 · 𝑓𝑏,𝑗 · |𝑆𝑏 |⌉, if |𝑃 | = 1√︄

2 · 𝑓𝑏,𝑗∑
𝑖:𝑢𝑖 ∈𝑃 𝑓𝑏,𝑖

· |𝑅𝑏 |, otherwise

(5)

Lemma 4.5. The following properties hold for Λ𝑓 :

•
√
2

2
· |■𝑏,𝑗 | ≤ Λ

𝑓

𝑏,𝑗
≤ |■𝑏,𝑗 | for every 𝑏 ∈ 𝐾 and 𝑗 ∈ [ℓ], where |■𝑏,𝑗 | is the number of 𝑆-tuples in the

square/rectangle ■𝑏,𝑗 ;
• |𝑆𝑏 | ≤

∑
𝑗 ∈[ℓ ] Λ

𝑓

𝑏,𝑗
≤ 𝑐 · |𝑆𝑏 | for some constant 𝑐 .

Proof of Lemma 4.5. For the first property, notice that the inequality holds with equality if ■𝑏,𝑗
is a rectangle. Otherwise, we observe that: 𝑅𝑏 |/|𝑆𝑏 | ≤

∑︁
𝑖:𝐺𝑖

𝛼 ∈𝑃
𝑓𝑏,𝑖 ≤ 2 · |𝑅𝑏 |/|𝑆𝑏 | from the property of

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 97. Publication date: May 2024.



97:16 Xiao Hu and Paraschos Koutris

a balanced distribution in Definition 4.2. Thus, we conclude that

(𝑓𝑏,𝑖 · |𝑅𝑏 | · |𝑆𝑏 |)1/2 ≤ Λ
𝑓

𝑏,𝑗
≤ (2 · 𝑓𝑏,𝑗 · |𝑅𝑏 | · |𝑆𝑏 |)1/2.

The second property holds since we have scaled down the fractional allocation of each 𝛼-tree in a

"square" block such that the sum of the 𝑆-tuples is within a constant factor of |𝑅𝑏 |. □

The second property implies that we can “pad” the initial distribution of data to match exactly∑
𝑗 ∈[ℓ ] Λ

𝑓

𝑏,𝑗
without losingmore than a constant factor. Nowwe can apply the redistribution protocol

as is. Finally, we note that Λ
𝑓

𝑏,𝑗
= |■𝑏,𝑗 | holds for a rectangle ■𝑏,𝑗 , hence the 𝛼-tree will receive all

the necessary tuples for the Cartesian product computation. However, if ■𝑏,𝑗 is a square then it

could be that Λ
𝑓

𝑏,𝑗
< |■𝑏,𝑗 |. Suppose 𝑢 𝑗 ∈ 𝑃 for some block 𝑃 ∈ P. But since the total number of

𝑆-tuples distributed over the 𝛼-trees rooted at some node in 𝑃 are𝑂 ( |𝑅𝑏 |) (this follows the property
of a balanced partition in Definition 4.2), we can afford to send this much data through a 𝛽-edge,

and thus we simply broadcast the necessary data in the minimum Steiner tree induced by 𝑃 .

Optimal Fractions. Finally, we show how to find the optimal fraction 𝑓 ∗ by iterating over all

possible sizes of the grid allocation in [1, |𝑅𝑏 | · |𝑆𝑏 |] in powers of two. Hence, we only need to

consider log( |𝑅𝑏 | · |𝑆𝑏 |) = 𝑂 (log𝑁 ) possible values for every fraction 𝑓𝑏,𝑗 , and only lose a constant

factor in optimality. The 𝑓 ∗ is computed locally in each compute node without incurring any data

transmission cost. Putting everything together, we obtain:

Theorem 4.6. Given a symmetric tree topology 𝐺 = (𝑉 , 𝐸), and any data distribution D for
𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶), their join results can be computed in 𝑂 (1) rounds with cost 𝑂

(
𝐶int +𝐶pack

)
, for

𝐶pack = min

𝑓

{
max

𝑒∈𝐸𝛽

Δ𝑒
𝑤𝑒
+ max

𝑗 ∈[ℓ ]
𝐿∗

(
®𝐺 𝑗
𝛼 , {■𝑏,𝑗 : 𝑏 ∈ 𝐾}

)}
,

where Δ𝑒 is the tuple differential defined over Λ in (4) and Λ𝑓 in (5), and 𝐿∗ ( ®𝐺 𝑗
𝛼 , {■𝑏,𝑗 : 𝑏 ∈ 𝐾}) is the

optimal solution of (1) defined on the directed tree ®𝐺 𝑗
𝛼 and a set of Cartesian products ■𝑏,𝑗 for 𝑏 ∈ 𝐾 .

4.6 Optimality
The topology-aware-optimality of Theorem 4.6 is established via the lower bound below, whose

proof is given in Appendix E. The high-level idea is to construct two sub-instancesD1 andD2 with

disjoint domains such that D1 ∪ D2 conforms to 𝜙 and OUT. We show the lower bound Ω(𝐶int)
for computing D1 via an reduction from the lopsided set disjointness problem. Conditioning on

Ω(𝐶int), we show the other lower bound Ω(maxD′ 𝐶pack) for computing D2.

Theorem 4.7. Given a symmetric tree topology 𝐺 = (𝑉 , 𝐸), a cardinality distribution 𝜙 and output
size OUT, there is a data distribution D for 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶) conforming to 𝜙 and OUT, that any

algorithm computing the join results incurs a cost of Ω
(
𝐶int +max

D′
𝐶pack

)
, where D ′ is over all data

distributions conforming to 𝜙 and OUT.

4.7 Simplification of the Algorithm on Easier Input
Below, we discuss some interesting cases when the underlying topology, the initial data distributions,

or the join instance displays simpler properties.

Uniform Data Distribution. Assume each compute node holds the same amount of data, which

is a common occurrence in practice. W.l.o.g., assume |𝑅 | ≤ |𝑆 |. Recall one of our lower bounds 𝐶int
for the cost of set intersection. We simply distinguish two cases:
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• If |𝑅 | + |𝑆 | ≤ |𝑅 | · |𝑉𝐶 |, we have 𝐸𝛼 = 𝐸 and 𝐸𝛽 = ∅. In this case, the network 𝐺 itself forms a

single 𝛼-tree, and our simplified algorithm in Section 4.2 directly applies. This case incurs a cost

of𝑂 (Cint +Cpack), where Cpack is the optimal solution of (1) parameterized by {|𝑅𝑏 |, |𝑆𝑏 | : 𝑏 ∈ 𝐵}.
• If |𝑅 | + |𝑆 | > |𝑅 | · |𝑉𝐶 |, we have 𝐸𝛼 = ∅ and 𝐸𝛽 = 𝐸. In this case, the network 𝐺 itself is the

𝛽-tree, and our algorithm just sends all 𝑅-tuples to every compute node. This case incurs a cost

of 𝑂

(
max𝑒∈𝐸

|𝑅 |
𝑤𝑒

)
.

Symmetric star topology. Assume the underlying topology is a symmetric star𝐺 = (𝑉 , 𝐸). Let
𝑜 ∈ 𝑉 be the router. W.l.o.g., assume |𝑅 | ≤ |𝑆 |. We partition compute nodes in 𝑉𝐶 into 𝑉𝛼 and 𝑉𝛽 :

𝑉𝛼 = {𝑣 ∈ 𝑉𝐶 : |𝑅 | > min{𝑁𝑣, 𝑁 − 𝑁𝑣}} ,𝑉𝛽 = 𝑉𝐶 −𝑉𝛼
Equivalently, 𝐸𝛼 (resp. 𝐸𝛽 ) is the set of edges incident to compute nodes in 𝑉𝛼 (resp. 𝑉𝛽 ). In the tree

partition P of 𝐺 , every node in 𝑉𝛽 forms an individual block, and all nodes in 𝑉𝛼 form one block.

Our algorithm can be simplified as follows:

(1) We let all compute nodes send 𝑅-tuples to 𝑉𝛽 and let nodes in 𝑉𝛽 compute local join results.

(2) We sort 𝑅 ∪
(
∪𝑣∈𝑉𝛼𝑆𝑣

)
over 𝑉𝛼 ∪ {𝑜}, and let each node in 𝑉𝛼 compute the local join results

with non-boundary keys.

(3) We let all compute nodes in 𝑉𝛼 send their 𝑆-tuples of boundary keys to the router 𝑜 .

(4) Consider an arbitrary boundary key 𝑏 ∈ 𝐾 and its Cartesian product 𝑅𝑏 × 𝑆𝑏 . Consider an
arbitrary 𝑓 . The router 𝑜 simply forwards Λ

𝑓

𝑏,𝑣
arbitrary 𝑆-tuples with key 𝑏 ∈ 𝐾 to every

𝑣 ∈ 𝑉𝛽 ; and a square ■𝑏,𝑣 of Λ
𝑓

𝑏,𝑣
𝑅-tuples and 𝑆-tuples with key 𝑏 ∈ 𝐾 to every 𝑣 ∈ 𝑉𝛼 . After

receiving the data, all nodes compute the local join results.

Cartesian product. Assume there is a single boundary key value in the join attribute. In this

case, the join 𝑅 Z 𝑆 degenerates to the Cartesian product 𝑅 × 𝑆 . Assume |𝑅 | ≤ |𝑆 | without loss of
generality. The algorithm can be simplified as follows:

(1) We first construct a balanced partition P = {𝑃1, 𝑃2, . . . , 𝑃𝑘 } by Algorithm 1. Recall that𝐺 has

a 𝛽-tree as its core, with a set of 𝛼-trees {𝐺1

𝛼 ,𝐺
2

𝛼 , · · · ,𝐺 ℓ𝛼 } incident to the leaf nodes of 𝛽-tree.
(2) For each𝐺

𝑗
𝛼 , we let all compute nodes send their 𝑆-tuple to the root of ®𝐺 𝑗

𝛼 , and their 𝑅-tuples

to every root node of subtrees.

(3) Consider an arbitrary 𝑓 . We redistribute 𝑆-tuples across 𝛽-tree by invoking the redistribution

primitive in Section 2. Assume 𝑆
𝑓

𝑗
is the set of 𝑆-tuples residing at the root of 𝐺

𝑗
𝛼 after this

step. Let 𝑅
𝑓

𝑗
be the set of 𝑅-tuples assigned to 𝐺

𝑗
𝛼 .

(4) Each𝐺
𝑗
𝛼 is responsible for computing 𝑅

𝑓

𝑗
× 𝑆 𝑓

𝑗
inside the subtree using the Cartesian product

packing primitive in Section 3.

5 DISCUSSIONS
Below, we discuss several interesting questions related to optimality.

Worst-case Data Distribution. If targeting optimality with respect to the worst-case data

distribution, things becomes easy. We next show a simple algorithm for computing 𝑅(𝐴, 𝐵) Z
𝑆 (𝐵,𝐶) over a symmetric tree topology𝐺 = (𝑉 , 𝐸). W.l.o.g., assume |𝑅 | ≤ |𝑆 |. If |𝑅 | = |𝑆 |, we simply

pick one arbitrary node, say 𝑣 and let all nodes send their data to 𝑣 . If |𝑅 | < |𝑆 |, we let every compute

node broadcast its 𝑅-tuples. The cost of this algorithm is bounded by 𝑂 (max𝑒∈𝐸
|𝑅 |
𝑤𝑒
). Meanwhile,

consider an arbitrary cardinality distribution 𝜙 such that

∑
𝑣∈𝐺−

𝑒∗
𝑁𝑣 =

∑
𝑣∈𝐺+

𝑒∗
𝑁𝑣 =

1

2
( |𝑅 | + |𝑆 |) for

𝑒∗ = argmax𝑒∈𝐸 𝑤𝑒 . Implied by Lemma E.1, there exists an instance conforming to 𝜙 such that any

algorithm must incur a cost of Ω(𝐶int) = Ω( |𝑅 |
𝑤𝑒∗
). Thus, this algorithm is already optimal.
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New challenges by Downstream Applications. For complicated analytical queries, such as

acyclic joins and join-aggregate query, we can apply the standard pairwise framework by incorpo-

rating binary join as a primitive, but achieving the optimality with respect to the cardinality of

initial data distribution becomes quite challenging.

Consider a join-aggregate query

∑
𝐵 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶). A basic solution is to materialize the

result of binary join and then aggregate the join results over 𝐵 by invoking the topology-aware

reduce-by-key primitive (in Appendix D). However, the distribution of binary join results will serve

as the input distribution of the subsequent aggregation. If incorporating our join algorithm without

considering subsequent aggregation, it may not be an overall optimal algorithm.

Consider an acyclic join. A basic solution is to remove all dangling tuples (i.e., those won’t

participate in any join results) by topology-aware semi-joins (in Appendix D) and then perform

pairwise join. In the sequential RAM model as well as the homogeneous MPC model, the pairwise

join ordering does not matter, as long as the size of intermediate join result can be bounded by that

of final join result. However, this ordering makes a big difference in our topology-aware model,

since the distribution of intermediate join results will serve as the initial distribution of an input

relation in the subsequent join. Incorporating our binary join algorithm blindly to subsequent

joins may not be optimal. Moreover, it would be very costly to pre-compute the best pairwise join

ordering locally, since the distribution of intermediate join results could require full information of

input data to compute.

6 RELATEDWORK
Topology-aware models have been widely studied in parallel and distributed computations, such

as the classical LOCAL/ CONGEST model [29, 30] and their variants [11, 28]. These models are

different from ours in the following aspects: (i) all these models take both delay and congestion

cost into account, such that limited size of data can only be exchanged between neighbor nodes,

while our model only consider the congestion cost, such that any pair of nodes can exchange data

in a single round as long as there exists a valid routing path; (ii) LOCAL/CONGEST model does

not assume the knowledge of network topology, while our model as well as [11, 28] assume that

the algorithm has complete knowledge of network topology; (iii) [28] assumes that one relation

completely resides within one node while our model considers the case where relations are split or

distributed across compute nodes; (iv) [11, 28] consider the worst-case distribution of input data

while we consider the cardinality of initial data distribution as input parameters, thus being able to

prove more fine-grained optimality. A hierarchical version of the BSP model has also been studied

as D-BSP model [8, 9, 13]. In D-BSP model, nodes are the leaves of a complete binary tree, on

which “clusters” are defined. In the 𝑖-th round, nodes can only communicate within the same 𝑖-level

cluster. But, no such hierarchy exists in our topology-aware model since any pair of nodes with a

routing path can communicate in a single round. In addition, nodes communicating within some

specific cluster in D-BSP have the same transmission cost, while links in our topology-aware model

can have arbitrary bandwidth cost, regardless of the topology structure. Later, Chattopadhyay et

al. [11, 12] studied topology-dependent round complexity for k-party functions (e.g., set-disjointness

and element distinctness) in a similar model as CONGEST. Langberg et al. [28] further improved

the round complexity for functional aggregate queries. Topology-aware aggregation has been

considered in other systematic works, but without theoretical guarantees. We refer interested

readers to [10, 20] for more details.
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A MISSING PROOF IN SECTION 2
Proof of Lemma 2.3. Indeed, we can write:

Δ𝑖𝑒 − Δ𝑖𝑒′ = max{0,
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ′𝑖 𝑗 −
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ𝑖 𝑗 } −max{0,
∑︁
𝑣𝑗 ∈𝐺+𝑒′

Λ′𝑖 𝑗 −
∑︁
𝑣𝑗 ∈𝐺+𝑒′

Λ𝑖 𝑗 }

= max{0,
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ′𝑖 𝑗 −
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ𝑖 𝑗 } −max{0, (Λ𝑖 −
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ′𝑖 𝑗 ) − (Λ𝑖 −
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ𝑖 𝑗 )}

= max{0,
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ′𝑖 𝑗 −
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ𝑖 𝑗 } −max{0,
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ𝑖 𝑗 −
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ′𝑖 𝑗 } =
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ′𝑖 𝑗 −
∑︁
𝑣𝑗 ∈𝐺+𝑒

Λ𝑖 𝑗

This completes the proof. □

Lemma A.1. The assignment 𝑓𝑖 (𝑒) = Δ𝑖𝑒 is a flow with an optimal cost of max𝑒 Δ
𝑖
𝑒/𝑤𝑒 .

Proof of Lemma A.1. The cost calculation is straightforward, so we will provide a proof that

𝑓𝑖 (𝑒) = Δ𝑖𝑒 is indeed a flow. Let 𝑣 be a node in 𝑉 . We will consider two cases. First, let 𝑣 be a

leaf node (say 𝑣 𝑗 ) and let 𝑢 be the unique node incident to 𝑣 in 𝐺 . Take any relation 𝑅𝑖 . The total

incoming flow to 𝑣 𝑗 is Λ𝑖 𝑗 + Δ𝑖(𝑢,𝑣) = Λ𝑖 𝑗 + max{0,Λ′𝑖 𝑗 − Λ𝑖 𝑗 }. The total outgoing flow from 𝑣 𝑗 is

Λ′𝑖 𝑗 + Δ𝑖(𝑣,𝑢) = Λ′𝑖 𝑗 +max{0,Λ𝑖 𝑗 − Λ′𝑖 𝑗 }. One can check that these quantities are always equal. Now,

let 𝑣 be an internal node. Let𝑈 the set of nodes incident to 𝑣 . Then, we can write:∑︁
𝑢∈𝑈

𝑓𝑖 (𝑣,𝑢) −
∑︁
𝑢∈𝑈

𝑓𝑖 (𝑢, 𝑣) =
∑︁
𝑢∈𝑈

(
Δ𝑖(𝑣,𝑢) − Δ

𝑖
(𝑢,𝑣)

)
=
∑︁
𝑢∈𝑈

©­­«
∑︁

𝑣𝑗 ∈𝐺+(𝑣,𝑢)

Λ′𝑖 𝑗 −
∑︁

𝑣𝑗 ∈𝐺+(𝑣,𝑢)

Λ𝑖 𝑗
ª®®¬

=
∑︁
𝑢∈𝑈

∑︁
𝑣𝑗 ∈𝐺+(𝑣,𝑢)

Λ′𝑖 𝑗 −
∑︁
𝑢∈𝑈

∑︁
𝑣𝑗 ∈𝐺+(𝑣,𝑢)

Λ𝑖 𝑗 = Λ𝑖 − Λ𝑖 = 0

where the second-to-last equality is implied by the fact that {𝐺+(𝑣,𝑢) }𝑢 are disjoint trees and cover

all leaf nodes in 𝐺 . □

B MISSING PROOFS IN SECTION 4
Proof of Lemma 4.3. Let P be the set returned by the algorithm. It is easy to see that the sets

in P are disjoint. To prove that P is partition, we need to show that every leaf node in L𝛽 will
end up in some set of P. The only issue may occur when we are left with a single vertex 𝑥 : we

claim that in this case we always have 𝜃 (Γ(𝑥)) ≥ 𝜏 . Indeed, if Γ(𝑥) = L𝛽 , then this follows from

our lemma assumption. Otherwise, suppose 𝜃 (Γ(𝑥)) < 𝜏 , and consider the last vertex 𝑢 for which

Γ(𝑢) was added in P. But then, the algorithm could not have picked 𝑢 at this point, a contradiction.

To prove the first property, assume that there is an edge 𝑒 = (𝑢, 𝑣) that appears in minimum

Steiner trees of 𝑃1, 𝑃2. Then, there exist 𝑥,𝑦 ∈ 𝑃1, 𝑥 ′, 𝑦 ′ ∈ 𝑃2 such that 𝑥, 𝑥 ′ ∈ 𝐺−𝑒 and 𝑦,𝑦 ′ ∈ 𝐺+𝑒 .
W.l.o.g., assume that 𝑢 is visited before 𝑣 . Then, since 𝑥, 𝑥 ′ are placed in different blocks of the

partition, Γ(𝑢) contains only one of 𝑥, 𝑥 ′, say 𝑥 . But then 𝑥 ′ must be already put in some block with

vertices of 𝐺−𝑒 . But then 𝑥
′, 𝑦 ′ cannot be placed in the same block, a contradiction.

The second property is straightforward, since the algorithm adds a new set in P only if its total

weight exceeds 𝜏 .

For the third property, we consider a set 𝑃 ∈ P and a 𝛽-edge 𝑒 = (𝑢, 𝑣) in its Steiner tree. W.l.o.g.,

assume that 𝑢 is visited before 𝑣 . At this point, it must be that 𝜃 (Γ(𝑢)) < 𝜏 , since Γ(𝑢) was merged

with Γ(𝑣). We also have that Γ(𝑢) = 𝑃 ∩𝐺−𝑒 , since no other leaf nodes will be added to the “left” of

𝑢. Hence, min{𝜃 (𝑃 ∩𝐺+𝑒 ), 𝜃 (𝑃 ∩𝐺−𝑒 )} ≤ 𝜃 (𝑃 ∩𝐺−𝑒 ) < 𝜏 .
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To prove the last property, consider a block 𝑃 ∈ P. When 𝑃 is added to P, it must be chosen by

line 5. We consider the last iteration when 𝑦 is chosen in line 9 and Γ(𝑦) is updated to 𝑃 by merging

with Γ(𝑥). In that case, 𝜃 (Γ(𝑦)) < 𝜏 must hold; otherwise, Γ(𝑦) must be added to P as a separate

block. Similar argument applies to Γ(𝑥). So, 𝜃 (𝑃) = 𝜃 (Γ(𝑥)) + 𝜃 (Γ(𝑦)) < 2𝜏 . □

C SORTING-BASED SET INTERSECTION
We can borrow the analysis in [20] to prove Lemma 4.4. Equivalently, it suffices to show the cost of

Algorithm 2 as:

𝐶int = max

max

𝑒∈𝐸𝛼

1

𝑤𝑒
·min


∑︁
𝑣∈𝐺−𝑒

𝑁𝑣,
∑︁
𝑣∈𝐺+𝑒

𝑁𝑣

 ,max

𝑒∈𝐸𝛽

|𝑅 |
𝑤𝑒


Let P = {𝑃1, . . . , 𝑃𝑘 } be the balanced partition of the leaf nodes of 𝐺𝛽 . We define 𝑉 𝑖

𝐶
for 𝑖 ∈ [𝑘] to

be the set of compute nodes in the 𝛼-trees rooted at some node of 𝑃𝑖 . In the hashing phase, the

number of 𝑅-tuples that go through 𝑒 ∈ 𝐸𝛽 is at most |𝑅 |, so it suffices to bound the number of

𝑅-tuples that go through 𝑒 ∈ 𝐸𝛼 .
• if none of𝐺−𝑒 ,𝐺

+
𝑒 contain 𝛽-edges. Then, the partition consists of a single block, and the number

of 𝑅-tuples is bounded as:

1∑
𝑣∈𝑉𝐶 𝑁𝑣

· (
∑︁
𝑣∈𝐺−𝑒

𝑁𝑣) · (
∑︁
𝑣∈𝐺+𝑒

𝑁𝑣) ≤ min{
∑︁
𝑣∈𝐺−𝑒

𝑁𝑣,
∑︁
𝑣∈𝐺+𝑒

𝑁𝑣}

• 𝐺+𝑒 contains 𝛽-edges but 𝐺−𝑒 not. All vertices in 𝐺𝛽 are in 𝐺
+
𝑒 . The 𝑅-data that goes through 𝑒

is sent by nodes in 𝐺−𝑒 , so its size is bounded by

∑︁
𝑣∈𝐺−𝑒

|𝑅𝑣 | ≤
∑︁
𝑣∈𝐺−𝑒

𝑁𝑣 = min


∑︁
𝑣∈𝐺−𝑒

𝑁𝑣,
∑︁
𝑣∈𝐺+𝑒

𝑁𝑣

.
Here, the last equality follows from the fact that 𝐺+𝑒 contains at least one 𝛽-edge, which implies∑
𝑣∈𝐺+𝑒 𝑁𝑣 ≥ |𝑅 | >

∑
𝑣∈𝐺−𝑒 𝑁𝑣 .

• 𝐺−𝑒 contains 𝛽-edges but 𝐺+𝑒 not. Then, all nodes in 𝐺+𝑒 belong in the same block 𝑉 𝑖
𝐶
. We can

abound the expected amount of 𝑅-tuples with:

1∑
𝑣∈𝑉 𝑖

𝐶
𝑁𝑣
· (

∑︁
𝑣∈𝐺−𝑒

|𝑅𝑣 |) · (
∑︁

𝑣∈𝑉 𝑖
𝐶
∩𝐺+𝑒

𝑁𝑣) ≤
∑
𝑣∈𝐺−𝑒 |𝑅𝑣 | +

∑
𝑣∈𝑉 𝑖

𝐶
∩𝐺+𝑒 𝑁𝑣∑

𝑣∈𝑉 𝑖
𝐶
𝑁𝑣

min{
∑︁
𝑣∈𝐺−𝑒

|𝑅𝑣 |,
∑︁

𝑣∈𝑉 𝑖
𝐶
∩𝐺+𝑒

𝑁𝑣}

≤
|𝑅 | +∑𝑣∈𝑉 𝑖

𝐶
𝑁𝑣∑

𝑣∈𝑉 𝑖
𝐶
𝑁𝑣

min{
∑︁
𝑣∈𝐺−𝑒

𝑁𝑣,
∑︁
𝑣∈𝐺+𝑒

𝑁𝑣}

≤2min{
∑︁
𝑣∈𝐺−𝑒

𝑁𝑣,
∑︁
𝑣∈𝐺+𝑒

𝑁𝑣}

where the last inequality is from the definition of a balanced partition.

We next focus on the cost of local sorting inside each block. For each compute node 𝑣 ∈ 𝑉𝐶 , let
𝑒𝑣 be the unique edge incident to 𝑣 . Note that if 𝑒𝑣 ∈ 𝐸𝛽 , then the number of 𝑅-tuples received

from the hashing phase is |𝑅 | ≤ 𝑁𝑣 implied by the definition of 𝛽-edge. If 𝑒𝑣 ∈ 𝐸𝛼 , the number

of 𝑅-tuples received from the hashing phase is min {𝑁𝑣, 𝑁 − 𝑁𝑣} ≤ 𝑁𝑣 . Hence, each node 𝑣 has

received 𝑂 (𝑁𝑣) tuples after hashing. In the local sorting over the Steiner tree of 𝑉 𝑖
𝐶
, implied by the

result in [20] (Theorem 17), the number of tuples goes through edge 𝑒 is

𝑀 = min


∑︁

𝑣∈𝐺−𝑒 ∩𝑉 𝑖
𝐶

𝑁𝑣,
∑︁

𝑣∈𝐺+𝑒∩𝑉 𝑖
𝐶

𝑁𝑣

 (6)
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Similarly, (6) is bounded by |𝑅 | for 𝑒 ∈ 𝐸𝛽 , which is implied by the definition of a balanced partition.

Also, the inequality𝑀 ≤ min{∑𝑣∈𝐺−𝑒 𝑁𝑣,
∑
𝑣∈𝐺+𝑒 𝑁𝑣} for 𝑒 ∈ 𝐸𝛼 follows directly.

D TOPOLOGY-AWARE PRIMITIVES

All Prefix-Sums. Given an array 𝐴 of elements 𝐴[1], 𝐴[2], · · · , 𝐴[𝑁 ] which are distributed

according to the ordering 𝜋 , the goal is to compute 𝑆 [𝑖] = 𝐴[1] ⊕ 𝐴[2] ⊕ · · · ⊕ 𝐴[𝑖] for all
𝑖 = 1, 2, · · · , 𝑁 , where ⊕ is any associative operator. Assume there exists some compute node with its

initial data size larger than |𝑉𝐶 |, say𝑢.11 Let𝐴[𝑠𝑖 : 𝑡𝑖 ] be the sub-array located at node 𝑣𝑖 after sorting.
Each node 𝑣𝑖 first computes 𝐵 [𝑖] = 𝐴[𝑠𝑖 ] ⊕𝐴[𝑠𝑖 +1] ⊕ · · · ⊕𝐴[𝑡𝑖 ] and send it to 𝑢. After receiving all
𝐵 [𝑖], 𝑢 performs local computation and sends back to 𝑣𝑖 the result of 𝐵 [1] ⊕𝐵 [2] ⊕ · · · ⊕𝐵 [𝑖], for all
𝑖 ∈ [|𝑉𝐶 |]. After receiving 𝐵 [𝑖 − 1], node 𝑣𝑖 computes 𝑆 [ 𝑗] = 𝐵 [𝑖 − 1] +𝐴[𝑠𝑖 ] +𝐴[𝑠𝑖 + 1] + · · · +𝐴[ 𝑗]
for each 𝑗 ∈ [𝑠𝑖 , 𝑡𝑖 ].
Reduce-By-Key. Given a set of (key, value) pairs and an associate operator ⊕, the goal is to for

each key 𝑘 compute the “sum” of corresponding values under ⊕. We adapt the algorithm [24] for

solving reduce-by-key over MPC model based on prefix-sum. We first sort the pairs by their keys by

invoking the algorithm in [20]. The 𝑖-th tuple in the sorted order will produce a pair (𝑥,𝑦), which
will act as 𝐴[𝑖]. For each tuple that is the first of its key in the sorted order, we produce the pair

(0, value); otherwise, we produce (1, value). Note that we need another round of communication to

determine whether each tuple is the first of its key, in case that its predecessor resides on another

server. Then we define the operator ⊕ as (𝑥1, 𝑦1) ⊕ (𝑥2, 𝑦2) = (𝑥1 · 𝑥2, 𝑦), where 𝑦 = 𝑦1 ⊕𝑦2 if 𝑥2 = 1

and otherwise 𝑦 = 𝑦2. After solving the all prefix-sums problem on the derived array 𝐴, the last

tuple for each key is exactly the “sum” of the associated key.

Multi-number. Given a set of (key, value) pairs, the goal is to for each key 𝑘 , assign consecutive

numbers 1, 2, · · · , 𝑛𝑘 to elements with key 𝑘 , respectively, where 𝑛𝑘 is the total number of elements

with key 𝑘 . The multi-number can be solved by the reduce-by-key primitive. Each tuple will be

associated with value 1, and the operator ⊕ is simply set as +. After solving the all prefix-sums

problem on the derived array 𝐴, 𝑆 [𝑖] is exactly the number that should be attached to 𝑖-th tuple.

Multi-Search. Given 𝑁1 distinct keys and 𝑁2 queries, where 𝑁 = 𝑁1 + 𝑁2, for each query, find its

predecessor, i.e., the largest key that is no larger than the query. The multi-search can be solved

by the prefix-sum primitive. We first sort all the keys and queries together. Then for each key 𝑘 ,

define its corresponding 𝐴[𝑖] as itself; for each query, define its 𝐴[𝑖] = −∞; define ⊕ = max. Then

it should be obvious that 𝑆 [𝑖] is the predecessor of the corresponding query.

Semi-join. Given two relations 𝑅1 (𝐴, 𝐵) and 𝑅2 (𝐵,𝐶), the target is to find tuples in 𝑅1 that can be

joined with at least one tuple in 𝑅2. The semi-join can be solved by the multi-search primitive. We

treat tuples in 𝑅1 as queries and tuples in 𝑅2 as keys. We sort 𝑅1 ∪ 𝑅2 by attribute 𝐵. After running

the multi-search algorithm, we check for each tuple 𝑡 ∈ 𝑅1 with the attached 𝐴[𝑖]. We keep 𝑡 if and

only if 𝜋𝐵𝑡 = 𝐴[𝑖].

E PROOF OF OPTIMALITY
Our optimality is parameterized by the symmetric tree topology 𝐺 , the cardinality 𝜙 = {(𝜙𝑟 𝑣, 𝜙𝑠𝑣) :
𝑣 ∈ 𝑉𝐶 } of initial data distribution, and the join size 0 ≤ OUT ≤

(∑
𝑣∈𝑉𝐶 𝜙𝑟 𝑣

)
·
(∑

𝑣∈𝑉𝐶 𝜙𝑠𝑣
)
.

Lemma E.1. Given a symmetric tree topology 𝐺 = (𝑉 , 𝐸) with compute nodes 𝑉𝐶 , for any valid
cardinality distribution 𝜙 ′ = {( 𝜙𝑟𝑣

2
,
𝜙𝑠𝑣
2
) : 𝑣 ∈ 𝑉𝐶 } and output size parameter OUT′ = 3

4
OUT > 0,

11
Wemake this assumption based on three reasons: (i) the scenario when this primitive is used indeed satisfies this condition;

(ii) this is necessary for completing this primitive in 2 rounds; (iii) any algorithm requires Ω (log |𝑉𝐶 |) rounds in the worst

case when every node contains a single element, which is too costly.
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there exists a data distribution D for 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶) asymptotically conforming to 𝜙 ′ and OUT′,
such that any algorithm computing their join results incurs a cost of Ω (𝐶int).

Proof of Lemma E.1. Consider an arbitrary edge 𝑒 ∈ 𝐸. For 𝜙 ′ = {( 𝜙𝑟𝑣
2
,
𝜙𝑠𝑣
2
) : 𝑣 ∈ 𝑉𝐶 }, let

𝑚1 =
1

4
·∑𝑣∈𝐺−𝑒 𝜙𝑟 𝑣 , 𝑛1 =

1

4
·∑𝑣∈𝐺−𝑒 𝜙𝑠𝑣 ,𝑚2 =

1

4
·∑𝑣∈𝐺+𝑒 𝜙𝑟 𝑣 and 𝑛2 =

1

4
·∑𝑣∈𝐺+𝑒 𝜙𝑠𝑣 . W.l.o.g., assume

min{𝑚1, 𝑛2} ≥ min{𝑚2, 𝑛1}. We will prove a lower bound of Ω(min{𝑚1 +𝑚2,𝑚1 +𝑛1,𝑚2 +𝑛2, 𝑛1 +
𝑛2} = Ω(min{𝑚1, 𝑛2}) for computing any join instance that conforms to 𝜙 ′ and OUT

′
.

Consider a common domain D1 and an instance 𝐼 = (𝐼1, 𝐼2) by choosing𝑚1 distinct elements

from D1 and 𝑛2 distinct elements from D2, such that |𝐼1 ∩ 𝐼2 | ≤ min{OUT′,𝑚1, 𝑛2}. Below, we will
construct an instance of 𝑅(𝐴, 𝐵) Z 𝑆 (𝐵,𝐶) based on 𝐼 correspondingly.

Step (1):We construct a sub-relation 𝑅1 (𝐴, 𝐵) by including a pair (𝑏, 𝑏) for every 𝑏 ∈ 𝐼1. Similarly,

we construct a sub-relation 𝑆1 (𝐵,𝐶) by including a pair (𝑏 ′, 𝑏 ′) for every 𝑏 ′ ∈ 𝐼2. Note that 𝑅1 will
be distributed across compute nodes in𝐺−𝑒 such that each node 𝑣 receives 1

4
𝜙𝑟 𝑣 pairs, and 𝑆1 will be

distributed across compute nodes in 𝐺+𝑒 such that each node 𝑣 receives 1

4
𝜙𝑠𝑣 pairs.

Step (2):We further construct four sub-relations - 𝑅2 (𝐴, 𝐵) of size𝑚1, 𝑆2 (𝐵,𝐶) of size 𝑛2, 𝑅3 (𝐴, 𝐵)
of size 2𝑚2 and 𝑆3 (𝐵,𝐶) of size 2𝑛1. Moreover, 𝑅2 will be distributed across compute nodes in𝐺−𝑒
such that each node 𝑣 receives 1

4
𝜙𝑟 𝑣 pairs, 𝑆2 will be distributed across compute nodes in 𝐺+𝑒 such

that each node 𝑣 receives 1

4
𝜙𝑠𝑣 pairs, 𝑅3 will be distributed across compute nodes in 𝐺+𝑒 such that

each node 𝑣 receives 1

2
𝜙𝑟 𝑣 pairs, and 𝑆1 will be distributed across compute nodes in𝐺−𝑒 such that

each node 𝑣 receives 1

2
𝜙𝑠𝑣 pairs. It can be easily checked that each compute node 𝑣 receives 1

2
𝜙𝑟 𝑣

pairs from 𝑅1 ∪ 𝑅2 ∪ 𝑅3 and 1

2
𝜙𝑠𝑣 pairs from 𝑆1 ∪ 𝑆2 ∪ 𝑆3.

We next show how to set the 𝐵-values for these four sub-relations. We first set four more disjoint

domains D2,D3,D4,D5 such that D𝑖 ∩ D𝑗 = ∅ for any 𝑖, 𝑗 ∈ [5]. Moreover, we set a special value

𝑏∗ ∉ D1 ∪ D2 ∪ D3 ∪ D4 ∪ D5. We distinguish two more cases:

• If OUT
′ ≤ min{𝑚1, 𝑛2}, we set 𝜋𝐵𝑅2 ⊆ D2, 𝜋𝐵𝑆2 ⊆ D3, 𝜋𝐵𝑅3 ⊆ D4, and 𝜋𝐵𝑆3 ⊆ D5.

• If OUT
′ > min{𝑚1, 𝑛2}, then we choose two integers 𝑘1, 𝑘2 such that 1 ≤ 𝑘1 ≤ 𝑚1 + 2𝑚2,

1 ≤ 𝑘2 ≤ 𝑛2 + 2𝑛1, and 𝑘1 · 𝑘2 ≤ OUT
′ − min{𝑚1, 𝑛2} ≤ 4𝑘1𝑘2. This is always feasible since

4(𝑚1 +𝑚2) · (𝑛1 + 𝑛2) ≥ OUT
′
.

– If 𝑘1 < 𝑚1, we set 𝑘1 tuples from 𝑅2 with the same value 𝑏∗, and the remaining tuples with

𝐵-value chosen from D2. If 𝑘1 > 𝑚1, we set all tuples from 𝑅2 with the same value 𝑏∗, 𝑘1 −𝑚1

tuples from 𝑅3 with the same value 𝑏∗, and remaining 2𝑚2 +𝑚1 − 𝑘1 tuples from 𝑅3 with

𝐵-value chosen from D3.

– If 𝑘2 < 𝑛2, we set 𝑘2 tuples from 𝑆2 with the same value 𝑏∗, and the remaining 𝑛2 − 𝑘2 tuples
from 𝑆2 with 𝐵-value chosen from D2. If 𝑘2 > 𝑛2, we set all tuples from 𝑆2 with the same value

𝑏∗, 𝑘2 − 𝑛2 tuples from 𝑅3 with the same value 𝑏∗, and remaining 2𝑛1 + 𝑛2 − 𝑘2 tuples from 𝑆3
with 𝐵-value chosen from D5.

The join instance will be 𝑅 = 𝑅1 ∪ 𝑅2 ∪ 𝑅3 and 𝑆 = 𝑆1 ∪ 𝑆2 ∪ 𝑆3. It can be easily checked that

|𝑅 Z 𝑆 | = OUT
′
. Moreover, any algorithm for computing the join instance 𝑅 Z 𝑆 must also solve

the set intersection problem 𝐼 . Thus, the lower bound Ω(min{𝑚1, 𝑛2}) of solving 𝐼 will be applied
to computing any instance 𝑅 Z 𝑆 that conforms to 𝜙 ′ and OUT

′
. □

Let the data distribution constructed in Lemma E.1 beD∗
1
. Let the data distribution in D(𝜙,OUT)

that achieves the largest 𝐶pack to be D∗
2
. Let 𝐾 be the set of boundary keys in D∗

2
. We construct

another data distribution D∗
3
with initial cardinality distribution 𝜙 ′. More specifically, we simply

halve the number of tuples for each key distributed at every compute node. It can be easily checked

that 𝜙 ′𝑟 𝑣 = 1

2
𝜙𝑟 𝑣 and 𝜙

′
𝑠𝑣 = 1

2
𝜙𝑠𝑣 for every 𝑣 ∈ 𝑉𝐶 . Moreover, the output size of this new data

distribution is
1

4
OUT. For simplicity, we assume that D∗

1
and D∗

2
have disjoint domain of join keys.
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Let D∗ be the data distribution if putting D∗
1
and D∗

3
together. It can be easily checked that D∗

conforms to 𝜙 and OUT.

Lemma E.2. Any algorithm needs to incur a cost of Ω
(
𝐶int + max

D∈D(𝜙,OUT)
𝐶pack

)
for computing the

join results of D∗.

Proof. First, we point out that the computation for D∗
1
and D∗

3
are independent, since they

have disjoint domain of join keys. Then, any algorithm for computing D∗ needs to incur a cost of

Ω(𝐶int), implied by the fact that any algorithm for computing D∗
1
needs to incur such a cost. In

the remaining, we only consider the task of computing the Cartesian products for boundary keys

{𝑅𝑏 × 𝑆𝑏}𝑏∈𝐾 , where 𝐾 is defined by D∗
2
. It suffices to show that any algorithm for this task needs

to incur a cost of Ω
(
𝐶∗
pack

)
, where 𝐶∗

pack
= max

D∈D(𝜙,OUT)
𝐶pack.

Consider an optimal algorithm A for this task, and fix some 𝑏 ∈ 𝐾 . Since this algorithm correctly

computes 𝑅𝑏 × 𝑆𝑏 , each compute node in 𝑉𝐶 must be responsible to produce some pair from

the Cartesian product. W.l.o.g., we can assume that these are disjoint (otherwise we can tweak

the algorithm to produce disjoint results without increasing the cost). Now, for a 𝐺
𝑗
𝛼 tree, let

𝑔𝑏,𝑗 (A) be the set of tuple pairs assigned to the compute nodes in 𝐺
𝑗
𝛼 . Note that in this case, the

tree is responsible to compute a fraction
ˆ𝑓𝑏,𝑗 (A) =

|𝑔𝑏,𝑗 (A) |
|𝑅𝑏 | · |𝑆𝑏 |

of the Cartesian product. Since our

protocol iterates over all possible fractional allocations, it will also consider the solution for which

𝑓𝑏,𝑗 =
ˆ𝑓𝑏,𝑗 (A).

Conditioning on the lower bound from set intersection, we first argue one important property:

• The input data already sitting at the compute nodes does not help the computation.

• For ®𝐺 𝑗
𝛼 , it is always more load-efficient for computing 𝑔𝑏,𝑗 (A) as a contiguous rectangle such

that the dimensions are as close as possible (without exceeding the smaller |𝑅𝑏 |).
Consider an arbitrary directed 𝛼-tree ®𝐺 𝑗

𝛼 rooted at 𝑟 . Let 𝑔𝑏,𝑟 = 𝑔𝑏,𝑗 , and 𝑔𝑏,𝑣 be the number of

pairs emitted by 𝑣 for key 𝑏. Let 𝑥𝑏,𝑣, 𝑦𝑏,𝑣 be the number of 𝑅-tuples, 𝑆-tuples received by node 𝑣

under A. Let 𝑅𝑏,𝑣, 𝑆𝑏,𝑣 be the number of 𝑅-tuples, 𝑆-tuples with key 𝑏, distributed over the subtree

rooted at 𝑣 . We consider the following non-linear integer program:

min 𝐿

s.t. |𝑅𝑏 | · |𝑆𝑏 | = 𝑔𝑏,𝑟 , 𝑏 ∈ 𝐾,∑︁
𝑢∈L𝑣

𝑔𝑏,𝑢 = 𝑔𝑏,𝑣, 𝑏 ∈ 𝐾, 𝑣 ∈ 𝑉 ,∑︁
𝑏∈𝐾
(𝑥𝑏,𝑣 + 𝑦𝑏,𝑣) ≤ 𝐿 ·𝑤𝑣, 𝑣 ∈ 𝑉 \ {𝑟 },(

|𝑅𝑏,𝑣 | + 𝑥𝑏,𝑣
) (
|𝑆𝑏,𝑣 | + 𝑦𝑏,𝑣

)
≥ 𝑔𝑏,𝑣, 𝑏 ∈ 𝐾, 𝑣 ∈ 𝑉 \ {𝑟 },

|𝑅𝑏,𝑣 | + 𝑥𝑏,𝑣 ≤ |𝑅𝑏 |, 𝑏 ∈ 𝐾, 𝑣 ∈ 𝑉 \ {𝑟 },
|𝑆𝑏,𝑣 | + 𝑦𝑏,𝑣 ≤ |𝑆𝑏 |, 𝑏 ∈ 𝐾, 𝑣 ∈ 𝑉 \ {𝑟 },∑︁

𝑏∈𝐵

(
|𝑅𝑏,𝑣 | + |𝑆𝑏,𝑣 |

)
≤ 𝐿 ·𝑤𝑣, 𝑣 ∈ 𝑉 \ {𝑟 },

𝑔𝑏,𝑣, 𝑥𝑏,𝑣, 𝑦𝑏,𝑣 ∈ Z∗, 𝑣 ∈ 𝑉 \ {𝑟 }

(7)

The optimal solution of the above program provides a lower bound for the cost of computing the

Cartesian pairs inside the 𝛼-tree. We relate it to (1) as follows: every solution of (1) with cost 𝐿
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can be transformed into a solution of (7) with cost at most 2𝐿. From 𝑥𝑏,𝑣, 𝑦𝑏,𝑣 , we can simply set

𝑥 ′
𝑏,𝑣

= |𝑅𝑏,𝑣 | + 𝑥𝑏,𝑣 and 𝑦 ′𝑏,𝑣 = |𝑆𝑏,𝑣 | + 𝑦𝑏,𝑣 satisfying all constraints. Hence, it suffices to find the

optimal solution of (1), which is a constant-approximation of the optimal solution of (7). This means

that we can w.l.o.g. consider protocols that ignore the local input data, as our protocol class does.

Next, we will reason about the optimal shape of the 𝑔𝑏,𝑗 area. It is easy to see that an optimal

algorithm will always organize 𝑔𝑏,𝑗 such that it forms a contiguous rectangle. Hence, we need to

show that the optimal strategy will attempt to make the rectangle as close to a square as possible

(will keeping the same area). Indeed, consider a slightly different non-linear integer program of (1),

such that |𝑅𝑏 | < |𝑅′𝑏 | ≤ |𝑆
′
𝑏
| < |𝑆𝑏 | with |𝑅′𝑏 | · |𝑆

′
𝑏
| = |𝑅𝑏 | · |𝑆𝑏 |.

min 𝐿

s.t. |𝑅′
𝑏
| · |𝑆 ′

𝑏
| = 𝑔𝑏,𝑟 , 𝑏 ∈ 𝐾,∑︁

𝑢∈L𝑣

𝑔𝑏,𝑢 = 𝑔𝑏,𝑣, 𝑏 ∈ 𝐾, 𝑣 ∈ 𝑉 ,∑︁
𝑏∈𝐾
(𝑥𝑏,𝑣 + 𝑦𝑏,𝑣) ≤ 𝐿 ·𝑤𝑣, 𝑣 ∈ 𝑉 \ {𝑟 },

𝑥𝑏,𝑣 · 𝑦𝑏,𝑣 ≥ 𝑔𝑏,𝑣, 𝑏 ∈ 𝐾, 𝑣 ∈ 𝑉 \ {𝑟 },
𝑥𝑏,𝑣 ≤ |𝑅′𝑏 |, 𝑦𝑏,𝑣 ≤ |𝑆

′
𝑏
|, 𝑏 ∈ 𝐾, 𝑣 ∈ 𝑉 \ {𝑟 },

𝑔𝑏,𝑣, 𝑥𝑏,𝑣, 𝑦𝑏,𝑣 ∈ Z∗, 𝑏 ∈ 𝐾, 𝑣 ∈ 𝑉 \ {𝑟 }

(8)

Any solution of (1) with cost 𝐿 can be transformed into another solution of (8) with cost at most

𝐿. Consider an arbitrary pair of (𝑏, 𝑣). First, 𝑥𝑏,𝑣 ≤ |𝑅𝑏 | ≤ |𝑅′𝑏 | always holds. If 𝑦𝑏,𝑣 ≤ |𝑆
′
𝑏
|, we

just set 𝑥 ′
𝑏,𝑣

= 𝑥𝑏,𝑣 and 𝑦
′
𝑏,𝑣

= 𝑦𝑏,𝑣 . Otherwise, we set 𝑥
′
𝑏,𝑣

=
𝑥𝑏,𝑣 ·𝑦𝑏,𝑣
|𝑆′
𝑏
| and 𝑦 ′

𝑏,𝑣
= |𝑆 ′

𝑏
|. It is obvious

that 𝑥 ′
𝑏,𝑣

< |𝑅′
𝑏
| since 𝑥𝑏,𝑣 · 𝑦𝑏,𝑣 ≤ |𝑅𝑏 | · |𝑆𝑏 | = |𝑅′𝑏 | · |𝑆

′
𝑏
|. Moreover, 𝑥𝑏,𝑣 + 𝑦𝑏,𝑣 ≥ 𝑥 ′𝑏,𝑣 + 𝑦

′
𝑏,𝑣
, since

𝑥𝑏,𝑣 · 𝑦𝑏,𝑣 = 𝑥 ′𝑏,𝑣 · 𝑦
′
𝑏,𝑣

and 𝑥𝑏,𝑣 ≤ |𝑅𝑏 | < |𝑅′𝑏 | ≤ |𝑆
′
𝑏
| < 𝑦𝑏,𝑣 ≤ |𝑆𝑏 |. Thus, the optimal solution of (8)

always has a smaller cost than that of (1).

Conditioning on the lower bound from set intersection, it is safe to assume that for each directed

𝛼-tree ®𝐺 𝑗
𝛼 , the whole set of 𝑅 set as well as the 𝑆-tuples initially distributed at the compute nodes

residing at ®𝐺 𝑗
𝛼 . Now, we need to argue the last important property:

• it is also efficient for redistributing the 𝑆-tuples across the leaf nodes of 𝛽-tree, i.e., the root nodes

of directed 𝛼-trees, when 𝑔𝑏,𝑗 (A) is a contiguous rectangles with the two dimensions as close as

possible.

Consider any edge 𝑒 ∈ 𝐺𝛽 . Recall that L𝛽 is the set of leaf nodes of 𝐺𝛽 . Assume some 𝑆-tuples

need to be transferred from𝐺+𝑒 ∩ L𝛽 to 𝐺−𝑒 ∩ L𝛽 . It can be easily checked that the total number of

𝑆-tuples redistributed over𝐺−𝑒 ∩L𝛽 is minimized when 𝑔𝑏,𝑗 is a contiguous rectangles with the two

dimensions as close as possible, thus the tuple differential Δ𝑒 is also minimized correspondingly. □
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