
On Reporting Durable Patterns in Temporal Proximity
Graphs∗

PANKAJ K. AGARWAL, Department of Computer Science, Duke University, USA

XIAO HU†, Cheriton School of Computer Science, University of Waterloo, Canada

STAVROS SINTOS, Department of Computer Science, University of Illinois at Chicago, USA

JUN YANG, Department of Computer Science, Duke University, USA

Finding patterns in graphs is a fundamental problem in databases and data mining. In many applications,

graphs are temporal and evolve over time, so we are interested in finding durable patterns, such as triangles

and paths, which persist over a long time. While there has been work on finding durable simple patterns,

existing algorithms do not have provable guarantees and run in strictly super-linear time. The paper leverages

the observation that many graphs arising in practice are naturally proximity graphs or can be approximated as

such, where nodes are embedded as points in some high-dimensional space, and two nodes are connected

by an edge if they are close to each other. We work with an implicit representation of the proximity graph,

where nodes are additionally annotated by time intervals, and design near-linear-time algorithms for finding

(approximately) durable patterns above a given durability threshold. We also consider an interactive setting

where a client experiments with different durability thresholds in a sequence of queries; we show how to

compute incremental changes to result patterns efficiently in time near-linear to the size of the changes.

CCS Concepts: • Theory of computation→ Data structures and algorithms for data management.

Additional Key Words and Phrases: temporal graph, proximity graph, durability, durable pattern, doubling

dimension, cover tree

ACM Reference Format:
Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang. 2024. On Reporting Durable Patterns in Temporal

Proximity Graphs. Proc. ACM Manag. Data 2, 2 (PODS), Article 81 (May 2024), 26 pages. https://doi.org/10.

1145/3651144

1 INTRODUCTION
Finding patterns in large graphs is a fundamental problem in databases and data mining. In many

practical applications, graphs evolve over time, and we are often more interested in patterns that

are “durable,” i.e., persisting over a long time. Here are two examples of finding durable patterns in

temporal graphs.

∗
This work was partially supported by NSF grants CCF-20-07556, CCF-22-23870, IIS-1814493, IIS-2008107, and by US-Israel

BSF grant 2022131.

†
This work was partially done while the author was visiting Simons Institute for the Theory of Computing.

Authors’ addresses: Pankaj K. Agarwal, Department of Computer Science, Duke University, Durham, USA, pankaj@cs.duke.

edu; Xiao Hu, Cheriton School of Computer Science, University of Waterloo, Waterloo, Canada, xiaohu@uwaterloo.ca;

Stavros Sintos, Department of Computer Science, University of Illinois at Chicago, Chicago, USA, stavros@uic.edu; Jun

Yang, Department of Computer Science, Duke University, Durham, USA, junyang@cs.duke.edu.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee

provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the

full citation on the first page. Copyrights for components of this work owned by others than the author(s) must be honored.

Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires

prior specific permission and/or a fee. Request permissions from permissions@acm.org.

© 2024 Copyright held by the owner/author(s). Publication rights licensed to ACM.

ACM 2836-6573/2024/5-ART81

https://doi.org/10.1145/3651144

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

https://doi.org/10.1145/3651144
https://doi.org/10.1145/3651144
https://doi.org/10.1145/3651144

81:2 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Example 1.1. Consider an online forum with social networking features, where users with similar

profiles are connected as friends. Each user may be active on the forum only for a period of time

during the day. We are interested in finding cliques of connected users who are simultaneously

active for a sufficiently long time period. Such queries are useful to forum administrators who want

to understand how the social network influences user interactions and leverage this knowledge to

promote more interactions.

Example 1.2. Consider a co-authorship graph where two researchers are connected if they have

written at least one paper together. Further suppose that researchers are each associated with a

time period when they remain active in research. Besides researchers with direct co-authorship, we

might be interested in pairs who co-authored with a set of common researchers over a long period

of time. We would not be interested in researchers with a common co-author if the respective

collaborations happened at distant times.

The problem of finding (durable) patterns, such as triangles, in general graphs is challenging:

known (conditional) lower bounds suggest that it is unlikely to have near-linear algorithms [2, 5, 46].

However, many graphs that arise in practice are naturally proximity graphs, or can be approximated

as such. In proximity graphs, nodes are embedded as points in some high-dimensional space, and

two nodes are connected by an edge if they are close to each other (i.e., their distance is within some

threshold). For example, social networks such as Example 1.1 can be embedded (with small error) in

the space of user profiles with a low intrinsic dimension [51]. Similarly, in the co-authorship graph,

where two authors nodes are connected if they have written at least𝑚 papers together for some

𝑚 ≥ 1, the nodes can also be embedded in a space with low intrinsic dimension [52]. Generally, for

many graphs arising in a wide range of applications (e.g. social network, transportation network,

Internet), there exist appropriate node embeddings that preserve the structures and shortest paths in

the original graphs [51, 55, 56]. This observation enables us to leverage the properties of proximity

graphs to develop efficient algorithms for finding patterns in such graphs, which overcome the

hardness of the problem on arbitrary graphs.

This paper hence tackles the problem of finding durable patterns in temporal proximity graphs,

for which we are not aware of efficient algorithms. For simplicity, we assume in this paper that

the embedding of the graph is given – there are efficient algorithms for computing graph embed-

dings [12, 16, 38, 51, 54]. We work with an implicit representation of the proximity graphs – nodes

represented as points and edges defined between pairs of points within a threshold distance in the

embedding space. We never construct the graph itself explicitly. We design efficient algorithms

whose running time depend on the number of nodes and the intrinsic dimension (doubling di-
mension) of the data. Our approach extends naturally to other classes of graphs including interval

graphs, permutation graphs, and grid graphs. Next, we formally define the problems we study. Our

notation is summarized in Table 1.

1.1 Problem Definitions
Let (𝑃, 𝜙) be a metric space over a set of 𝑛 points 𝑃 ⊂ R𝑑 , for some 𝑑 ≥ 1, and a metric 𝜙 . For

a parameter 𝑟 > 0, let 𝐺𝜙 (𝑃, 𝑟) = (𝑃, 𝐸) where 𝐸 = {(𝑝, 𝑞) | 𝜙 (𝑝, 𝑞) ≤ 𝑟 } be a proximity graph,
also called a unit disk graph. For simplicity, we assume 𝑟 = 1 and let 𝐺𝜙 (𝑃) = 𝐺𝜙 (𝑃, 1). Suppose
a function 𝐼 assigns each point 𝑝 ∈ 𝑃 to a time interval called its lifespan, denoted 𝐼𝑝 = [𝐼−𝑝 , 𝐼+𝑝].
We can interpret the lifespan of 𝑝 as inserting 𝑝 at time-stamp 𝐼−𝑝 and deleting it at time-stamp

𝐼+𝑝 . We use (𝑃, 𝜙, 𝐼) to refer to the temporal proximity graph, or the underlying metric space with

points annotated with interval lifespans. For simplicity, all defined problems assume that the query

pattern is triangle. As we point out in Section 1.2, all techniques are extended to more general

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:3

𝑃 point set

𝑛 |𝑃 |
𝜙 distance function

𝜌 doubling dimension

Y distance approximation

𝜏 durability parameter

𝐼𝑝 = [𝐼−𝑝 , 𝐼+𝑝] lifespan (interval) of point 𝑝

𝑇𝜏 𝜏-durable triangles

𝑇 Y𝜏 𝜏-durable Y-triangles

𝐾Y𝜏 𝜏-SUM durable Y-pairs

𝐾Y𝜏,^ (𝜏, ^)-UNION durable Y-pairs

OUT Output size

Table 1. Table of Notations.

patterns. For an interval 𝐼 , we define |𝐼 | as the length of 𝐼 . If 𝐼 is a set of intervals then |𝐼 | is defined
as the length of the union of intervals in 𝐼 .

Durable triangles. A triplet (𝑝1, 𝑝2, 𝑝3) ∈ 𝑃 × 𝑃 × 𝑃 forms a triangle in 𝐺𝜙 (𝑃) if 𝜙 (𝑝1, 𝑝2),
𝜙 (𝑝2, 𝑝3), 𝜙 (𝑝1, 𝑝3) ≤ 1. We also introduce an approximate notion of triangles: for a parameter

Y > 0, a triplet (𝑝1, 𝑝2, 𝑝3) forms an (1+Y)-approximate triangle, or Y-triangle for brevity, if 𝜙 (𝑝1, 𝑝2),
𝜙 (𝑝2, 𝑝3), 𝜙 (𝑝1, 𝑝3) ≤ 1 + Y. The lifespan of (𝑝1, 𝑝2, 𝑝3) is defined as 𝐼 (𝑝1, 𝑝2, 𝑝3) = 𝐼𝑝1

∩ 𝐼𝑝2
∩ 𝐼𝑝3

. For

a durability parameter 𝜏 > 0, (𝑝1, 𝑝2, 𝑝3) is 𝜏-durable if |𝐼 (𝑝1, 𝑝2, 𝑝3) | ≥ 𝜏 . Let 𝑇𝜏 ,𝑇 Y𝜏 be the set of

𝜏-durable triangles, and 𝜏-durable Y-triangles respectively. Note that 𝑇𝜏 ⊆ 𝑇 Y𝜏 . Given a 𝜏-durable

triangle with three points, the point that anchors the triangle is the one whose lifespan starts the

latest among the three. By convention, we will list the anchor first in the triplet; i.e., in a 𝜏-durable

triangle (𝑝, 𝑞, 𝑠), we have 𝐼−𝑝 ≥ max{𝐼−𝑞 , 𝐼 𝑖𝑠 }.

Definition 1.3 (DurableTriangle). Given (𝑃, 𝜙, 𝐼) and 𝜏 ≥ 0, it asks to report all 𝜏-durable

triangles (or Y-triangles).

Suppose we have embedded the social network in Example 1.1 as a proximity graph where nodes

represent users. The goal is to find triplets (or generally cliques) of users who are simultaneously

active on the forum.
1

In some use cases, we do not have a clear choice of the durability parameter 𝜏 in mind, and

we may want to explore with different settings. Supporting this mode of querying motivates the

problem of incrementally reporting 𝜏-durable triangles. Here, queries arrive in an online fashion,

each specifying a different durability parameter 𝜏1, 𝜏2, Instead of computing each query 𝜏𝑖+1
from scratch, we want to leverage the previous query result 𝑇𝜏𝑖 and only incrementally compute

what is new. Note that every 𝜏-durable triangle must also be 𝜏 ′-durable for every 𝜏 ′ ≤ 𝜏 . Therefore,
if 𝜏𝑖+1 ≥ 𝜏𝑖 , we have 𝑇𝜏𝑖+1 ⊆ 𝑇𝜏𝑖 so we simply need to filter the old results to obtain new ones

(assuming we remember results together with their lifespans). The more interesting case is when

𝜏𝑖+1 < 𝜏𝑖 , so 𝑇𝜏𝑖+1 ⊇ 𝑇𝜏𝑖 , and we need to incrementally report new results.

Definition 1.4 (IncrDurableTriangle). Given (𝑃, 𝜙, 𝐼) and 𝜏≺ > 𝜏 > 0, it asks to report all

𝜏-durable triangles (or Y-triangles) that are not 𝜏≺-durable, along with their lifespans.

1
While for simplicity of exposition we assume that each node has a single-interval lifespan, it is straightforward to extend

our temporal model consider multiple-interval lifespans, with the complexities of our solutions in the following sections

increased by a factor equal to the maximum number of intervals per lifespan.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:4 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Problem Time complexity in �̃� (·)
DurableTriangle 𝑛Y−𝑂 (𝜌) +OUT

IncrDurableTriangle Y−𝑂 (𝜌) · OUT
AggDurablePair–SUM Y−𝑂 (𝜌) · (𝑛 +OUT)

AggDurablePair–UNION ^Y−𝑂 (𝜌) · (𝑛 +OUT)

Table 2. Summary of our main results. Here, 𝑛 is the input size, i.e., the number of points in 𝑃 ; 𝜌 is the
doubling dimension of (𝑃, 𝜙); 𝜏 is the durability parameter; OUT is the output size for the respective problem
(different for each problem); Y is the approximation ratio; and 𝑘 is the parameter used for (𝜏, ^)-UNION
durability. In the complexities reported above, �̃� (·) hides a polylog𝑛 factor, and the hidden constants in 𝑂 (·)
and �̃� (·) may depend on 𝜌 , which is assumed to be a constant.

Aggregate-durable pairs. Given a pair (𝑝1, 𝑝2) ∈ 𝑃 × 𝑃 , we consider the set𝑈 of nodes incident

to both 𝑝1 and 𝑝2 and aggregate the lifespans of triplets (𝑢, 𝑝1, 𝑝2). We call𝑈 the witness of (𝑝1, 𝑝2).
There are two natural ways of aggregating over 𝑈 : SUM and UNION. For SUM, we aggregate

by summing up the durabilities of triplet lifespans, i.e., AGG(𝑝1, 𝑝2,𝑈) =
∑
𝑢∈𝑈 |𝐼 (𝑢, 𝑝1, 𝑝2) |. For

UNION, we aggregate by first taking the union of the triplet lifespans and then considering its

length, i.e., AGG(𝑝1, 𝑝2,𝑈) = |
⋃
𝑢∈𝑈 𝐼 (𝑢, 𝑝1, 𝑝2) |. Intuitively, SUM gives higher weights to time

periods when multiple simultaneous connections exist, while UNION only cares about whether a

period is covered at all by any connection. Given durability parameter 𝜏 > 0, a pair (𝑝1, 𝑝2) ∈ 𝑃×𝑃 is

𝜏-aggregate-durable if𝜙 (𝑝1, 𝑝2) ≤ 1 andAGG(𝑝1, 𝑝2,𝑈) ≥ 𝜏 for𝑈 = {𝑢 ∈ 𝑃 | 𝜙 (𝑝1, 𝑢), 𝜙 (𝑝2, 𝑢) ≤ 1}.
We also define 𝜏-aggregate-durable Y-pairs by relaxing the distance thresholds for 𝜙 (𝑝1, 𝑝2), 𝜙 (𝑝1, 𝑢),
and 𝜙 (𝑝2, 𝑢) from 1 to 1+Y. Let𝐾𝜏 , 𝐾Y𝜏 be the set of all 𝜏-aggregate-durable pairs, Y-pairs respectively.
Notice that 𝐾𝜏 ⊆ 𝐾Y𝜏 .

Definition 1.5 (AggDurablePair). Given (𝑃, 𝜙, 𝐼) and 𝜏 ≥ 0, it asks to report all 𝜏-aggregate-

durable pairs (or Y-pairs).

Suppose we have embedded the co-authorship graph in Example 1.2 as a proximity graph

where nodes represent authors. The goal is to find pairs of coauthors 𝑝𝑖 , 𝑝 𝑗 who have collaborated

sufficiently with various others, either in terms of total time over all collaborators (SUM), or over a

large portion of 𝑝𝑖 and 𝑝 𝑗 ’s shared active lifespan (UNION).

1.2 Our Results and Approach
We present algorithms for Y-approximate versions of all three problems, whose time complexity

are summarized in Table 2. In all cases, we report all durable triangles along with some durable

Y-triangles. The running time is always near-linear in terms of the input and output size, which is

almost the best one could hope for. Our solutions leverage the observation that proximity graphs in

practice often have bounded spread Δ and doubling dimension 𝜌 — Section 2 further reviews these

concepts and the associated assumptions. The complexities in Table 2 assume spread to be 𝑛𝑂 (1)

(hence Δ is omitted) and doubling dimension to be constant, but our algorithms also work for more

general cases.

For DurableTriangle (Section 3), our main approach is to construct a hierarchical space

decomposition consisting of a canonical set of balls, via a cover tree. We use the canonical set of balls

to obtain a compact, implicit representation of points within unit distance from each point, and then

use an interval tree along with auxiliary data structures to report durable triangles in linear time.

The algorithm runs in �̃� (𝑛Y−𝑂 (𝜌) +OUT) time, whereOUT ∈ [|𝑇𝜏 |, |𝑇 Y𝜏 |] is the result size. (The �̃� (·)
notation hides polylogarithmic factors). For the ℓ∞ metric, this result can be improved to �̃� (𝑛 + |𝑇𝜏 |).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:5

Moreover, our data structures can be extended to support delay-guaranteed enumeration as well as

dynamic settings where nodes are inserted or deleted according to their lifespan.

For IncrDurableTriangle (Section 4), to support incremental computation of queries arriving

in an online setting, we additionally maintain an activation threshold for each point with respect

to different durability parameters. In more detail, for each durability parameter 𝜏 , we design an

oracle that can efficiently find the largest value 𝛽 < 𝜏 such that 𝑝 participates in a 𝛽-durable

triangle that is not 𝜏-durable, which is key to achieve near-linear time complexity. Our algorithm

constructs an �̃� (𝑛)-size data structure in �̃� (𝑛Y−𝑂 (𝜌)) time, such that given the previous query

parameter 𝜏≺ and current query parameter 𝜏 < 𝜏≺, it can report the delta results in �̃� (Y−𝑂 (𝜌) ·OUT)
time, where OUT ∈

[
|𝑇𝜏 −𝑇𝜏≺ |, |𝑇 Y𝜏 −𝑇 Y𝜏≺ |

]
is the delta result size. Specifically, for the ℓ∞ metric,

IncrDurableTriangle can be solved exactly in �̃� (|𝑇𝜏𝑖+1 \𝑇𝜏𝑖 |) time.

For AggDurablePair (Section 5), recall that the problem requires aggregating lifespans

over witness set 𝑈 . We build auxiliary data structures to compute the sum or union of intervals

intersecting any given interval. Additionally, we identify a special ordering of 𝑃 such that only a

bounded number of pairs that are not aggregate-durable will be visited, so the linear-time complexity

can be guaranteed. For the SUM version of the problem, we present an �̃� ((𝑛 +OUT) · Y−𝑂 (𝜌))-time

algorithm, where OUT ∈
[
𝐾𝜏 , 𝐾

Y
𝜏

]
is the output size. The UNION version is more challenging

because of the inherent hardness of computing the union of intervals that intersect a query interval.

However, as shown in Section 5.2, we can still get an near-linear-time and output-sensitive algorithm

that reports all 𝜏-UNION-durable pairs along with some (1 − 1/𝑒)𝜏-UNION-durable Y-pairs.
Extensions. Our algorithms also work for every ℓ𝛼 -metric

2
or metric with bounded expansion

constant
3
. Moreover, all our results for reporting triangles can be extended to reporting cliques,

paths, and star patterns of constant size. See details in Appendix C.

Connection with triangle listing algorithms in general graphs. Consider simple directed

or undirected graphs with 𝑛 vertices and𝑚 edges. The trivial algorithm by listing all triples of

vertices runs in 𝑂 (𝑛3) time. This is worst-case optimal in terms of 𝑛, since a dense graph may

contain Θ(𝑛3) triangles. A graph with 𝑚 edges contains Θ(𝑚3/2) triangles. It has been shown

that all triangles in a graph of𝑚 edges can be enumerated in �̃� (𝑚3/2) time [35, 43, 50]. This is

also worst-case optimal, since a graph of𝑚 edges may contain Θ(𝑚3/2) triangles. Later, output-
sensitive algorithms for listing triangles were developed using fast matrix multiplication, which run

in �̃�

(
𝑛𝜔 + 𝑛

3(𝜔−1)
5−𝜔 · OUT

2(3−𝜔)
5−𝜔

)
or �̃�

(
𝑚

2𝜔
𝜔+1 +𝑚

3(𝜔−1)
𝜔+1 · OUT 3−𝜔

𝜔+1

)
time, where 𝑂 (𝑛𝜔) is the running

time of 𝑛 ×𝑛 matrix multiplication and OUT is the number of triangles in the graph [9]. In contrast,

it has been shown [46] that listing 𝑚 triangles in a graph of 𝑚 edges requires 𝑚4/3−𝑜 (1)
time,

assuming the 3SUM conjecture
4
. A careful inspection of this lower bound construction reveals that

listing 𝑛3/2
triangles in a graph of 𝑛 vertices requires 𝑛2−𝑜 (1)

time, assuming the 3SUM conjecture.

These lower bounds together rule out the possibility of listing triangles in general graphs within

𝑂 (𝑚 + 𝑛 +OUT) time, unless the 3SUM conjecture is refuted.

Existing techniques for listing triangles in general graphs do not yield efficient algorithms

for our setting and several new ideas are needed to obtain the results of this paper. First, most

traditional techniques for listing triangles do not handle temporal constraints on vertices or edges.

2
If 𝜙 is the ℓ𝛼 -metric then 𝜙 (𝑝,𝑞) =

(∑𝑑
𝑗=1
|𝑝 𝑗 − 𝑞 𝑗 |𝛼

)
1/𝛼

, where 𝑝 𝑗 , 𝑞 𝑗 are the 𝑗-th coordinates of points 𝑝 and 𝑞,

respectively.

3
Ametric space (𝑃,𝜙) has expansion constant𝐷 if𝐷 is the smallest value such that for every𝑝 ∈ 𝑃 and 𝑟 > 0 |𝑃∩B(𝑝, 2𝑟) | ≤
𝐷 · |𝑃 ∩ B(𝑝, 𝑟) |, where B(𝑝, 𝑟) is the ball with center 𝑝 and radius 𝑟 .
4
The 3SUM conjecture states that: Given three sets 𝐴, 𝐵,𝐶 of 𝑛 elements, any algorithm requires 𝑛2−𝑜 (1)

time to determine

whether there exists a triple (𝑎,𝑏, 𝑐) ∈ 𝐴 × 𝐵 ×𝐶 such that 𝑎 + 𝑏 + 𝑐 = 0.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:6 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Recently, efficient algorithms for durable–join with temporal constraints on edges are proposed

in [33]. However, their algorithm requires Ω(𝑚3/2) time for listing durable triangles, even if the

number of durable triangles is much smaller. Even without temporal constraints, all the worst-case

optimal join algorithms run in super-linear time, in terms of 𝑛 and OUT, for listing triangles in

proximity graphs. Furthermore, in our setting, the input is an implicit representation of a proximity

graph (𝑃, 𝜙). To feed (𝑃, 𝜙) as input to these algorithm, the number of edges𝑚 can be quadratic

in terms of |𝑃 |, which already requires Ω(𝑛2) time for processing the input, not to mention the

time for identifying triangles. Our algorithms use novel geometric data structures to identify all

triangles that a point belongs to in time which is linear (ignoring log𝑛 factors) to both input size 𝑛

and output size OUT. Finally, the known algorithms do not handle the incremental or the aggregate

versions of our problem, and we need completely new techniques to further exploit the structure

of proximity graphs.

2 PRELIMINARIES
We start by reviewing some basic concepts and data structures. Building on the basic data structures,

we introduce an oracle that will be frequently used by our algorithms in the ensuing sections.

2.1 Basic concepts and data structures
Spread. The spread of a set 𝑃 under distance metric 𝜙 is the ratio of the maximum and minimum

pairwise distance in 𝑃 . For many data sets that arise in practice, the spread is polynomially bounded

in 𝑛, and this assumption is commonly made in machine learning and data analysis [8, 10, 17, 37].

Doubling dimension. For 𝑥 ∈ R𝑑 and 𝑟 ≥ 0, let B(𝑥, 𝑟) = {𝑦 ∈ R𝑑 | 𝜙 (𝑥,𝑦) ≤ 𝑟 } denote the ball
(under the metric 𝜙) centered at point 𝑥 with radius 𝑟 . A metric space (𝑃, 𝜙) has doubling dimension
𝜌 if for every 𝑝 ∈ 𝑃 and 𝑟 > 0, B(𝑝, 𝑟) ∩ 𝑃 can be covered by the union of at most 2

𝜌
balls of radius

𝑟/2. For every 𝛼 > 0, let ℓ𝛼 be the 𝛼 norm. The metric space (𝑃, ℓ𝛼) has doubling dimension 𝑑 for

every 𝑃 ⊂ R𝑑 , but for specific 𝑃 ⊂ R𝑑 , the doubling dimension can be much smaller—e.g., points in

3d lying on a 2-dimensional plane or sphere has doubling dimension 2. Doubling dimensions and

their variants are popular approaches for measuring the intrinsic dimension of a data set in high

dimension; see, e.g., [11, 24, 47, 47]. It has been widely shown that graphs arising in practice have

low doubling dimension [18, 25, 42, 49, 51]. Empirical studies in these papers and other sources (e.g.,

[1]) show that the doubling dimension of router graphs, internet latency graphs, citation graphs,

and movie database graphs are less than 15.

Interval tree. Let I be a set of intervals. An interval tree [41] is a tree-based data structure that

can find intersections of a query interval 𝐼 with the set of intervals I stored in the interval tree. For

example, it can report or count the number of intervals in I intersected by 𝐼 visiting only 𝑂 (log𝑛)
nodes. It has 𝑂 (𝑛) space and it can be constructed in 𝑂 (𝑛 log𝑛) time.

Cover tree. A cover tree T is a tree-based data structure where each node 𝑢 of T is associated

with a representative point Rep𝑢 ∈ 𝑃 and a ball B𝑢 . Each node belongs to an integer-numbered

level; if a node 𝑢 is at level 𝑖 then its children are at level 𝑖 − 1. Let 𝐶𝑖 be the set of balls associated

with nodes at level 𝑖 . The radius of each ball B𝑢 at level 𝑖 is 2
𝑖
(notice that our definition allows

level numbers to be positive or negative). Each point 𝑝 ∈ 𝑃 is stored in one of the leaf nodes. The

root consists of a ball that covers the entire data set and its representative point is any point in 𝑃 . A

cover tree satisfies the following constraints:

• (Nesting) If there is a node 𝑢 at level 𝑖 with a representative point Rep𝑢 ∈ 𝑃 , then Rep𝑢 is also a

representative point in a node at level 𝑖 − 1.

• (Covering) For every representative point Rep𝑢 at level 𝑖 − 1, there exists at least one represen-

tative Rep𝑣 at level 𝑖 such that 𝜙 (Rep𝑣,Rep𝑢) < 2
𝑖
. We designate 𝑣 as the parent of 𝑢.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:7

• (Separation) For every 𝑢, 𝑣 at level 𝑖 , 𝜙 (Rep𝑢,Rep𝑣) > 2
𝑖
.

Traditionally, a cover tree is used mostly for approximate nearest-neighbor queries [8, 31]. We

modify the construction of the cover tree to use it for ball-reporting queries in bounded doubling

spaces. Given a point 𝑝 , let B(𝑝, 𝑟) = {𝑥 ∈ R𝑑 | 𝜙 (𝑥, 𝑝) ≤ 𝑟 } be a ball with radius 𝑟 centered at 𝑝 ,

and let B(𝑝) := B(𝑝, 1). Given a query point 𝑝 , the goal is to report 𝐵(𝑝) ∩ 𝑃 efficiently. We modify

the cover tree to answer ball-reporting queries approximately. In each node 𝑢 of the cover tree, we

(implicitly) store 𝑃𝑢 , i.e., the points that lie in the leaf nodes of the subtree rooted at 𝑢. Let 𝑝 be a

query point. We find a set of nodes in the cover tree whose associated balls entirely cover B(𝑝)
and might cover some region outside B(𝑝) within distance (1 + Y) from the center of B. The set of
nodes we find in the query procedure are called canonical nodes, their corresponding balls are called
canonical balls, and the subsets of points stored in the canonical balls are called canonical subsets.
In the end, we report all points stored in the canonical nodes. More formally, in Appendix A, we

show how to construct a data structure with space 𝑂 (𝑛) in 𝑂 (𝑛 log𝑛) time, while achieving the

following guarantees when the spread is bounded. For a query point 𝑞 ∈ R𝑑 , in 𝑂 (log𝑛 + Y−𝑂 (𝜌))
time, it returns a set of 𝑂 (Y−𝑂 (𝜌)) canonical balls (corresponding to nodes in the modified cover

tree) of diameter no more than Y, possibly intersecting, such that each point of B(𝑞) ∩ 𝑃 belongs to

a unique canonical ball. Each canonical ball may contain some points of B(𝑞, 1 + Y) ∩ 𝑃 .

2.2 Durable ball query
In this subscection, we describe an extension of the ball-reporting query that will be frequently

used by our algorithms. Given (𝑃, 𝜙, 𝐼), 𝜏 > 0, and a point 𝑝 with interval 𝐼𝑝 , a 𝜏-durable ball query
finds all points 𝑞 ∈ 𝑃 such that 𝜙 (𝑝, 𝑞) ≤ 1, |𝐼𝑝 ∩ 𝐼𝑞 | ≥ 𝜏 , and 𝐼−𝑝 ∈ 𝐼𝑞 . Answering such a query

exactly is inherently expensive even in the Euclidean space, since a near-linear space data structure

has Ω(𝑛1−1/𝑑 +OUT) query time [13], where OUT is the output size. If we use such a data structure

for our problem in metrics with bounded doubling dimension, it would lead to a near-quadratic

time algorithm for the DurableTriangleproblem. Instead, we consider the following relaxed version:

Definition 2.1 (Y-approximate 𝜏-durable ball query). Given (𝑃, 𝜙, 𝐼), 𝜏 ≥ 0, Y ∈ (0, 1), and a point

𝑝 with interval 𝐼𝑝 , find a subset 𝑄 ⊆ 𝑃 of points such that B(𝑝) ∩ 𝑃 ⊆ 𝑄 ⊆ B(𝑝, 1 + Y) ∩ 𝑃 , and for

every 𝑞 ∈ 𝑄 , |𝐼𝑝 ∩ 𝐼𝑞 | ≥ 𝜏 and 𝐼−𝑝 ∈ 𝐼𝑞 .
We note that the condition 𝐼−𝑝 ∈ 𝐼𝑞 is needed to avoid reporting duplicate results, as we will see

in the next sections.

Data structure. Intuitively, we use a multi-level data structure D to handle this query. At the first

level, we construct a cover tree CT on 𝑃 to find a small number of canonical nodes that contain

the points of B(𝑝) ∩ 𝑃 (but may also contain some point of B(𝑝, 1 + Y) ∩ 𝑃). At each node 𝑢 of

the cover tree, we construct an interval tree IT𝑢 over the temporal intervals of 𝑃𝑢 . Using the cover

tree along with interval trees, we can find a set of 𝑂 (Y−𝑑) canonical nodes that contain all points 𝑞

within distance 1 from 𝑝 and 𝐼−𝑝 ∈ 𝐼𝑞 , but they may also contain points within distance 1 + Y from 𝑝 .

D uses 𝑂 (𝑛 log𝑛) space and can be constructed in 𝑂 (𝑛 log
2 𝑛) time.

Let durableBallQ (𝑝, 𝜏, Y) denote the query procedure of D with parameters 𝑝, 𝜏, Y. It answers

the query as follows:

• (step 1) We query CT with point 𝑝 and radius 1, and obtain a set of canonical nodes C =

{𝑢1, 𝑢2, . . . , 𝑢𝑘 } for 𝑘 = 𝑂 (Y−𝑂 (𝜌)). From Appendix A, each node in C corresponds to a ball with

diameter no more than Y. For each 𝑢 𝑗 ∈ C, 𝜙 (𝑝,Rep𝑗) ≤ 1 + Y/2.5
• (step 2) For each canonical node 𝑢 𝑗 ∈ C, we query IT𝑢 𝑗

with 𝐼−𝑝 , and obtain all 𝑞 ∈ IT𝑢 such that

𝐼−𝑞 + 𝜏 ≤ 𝐼−𝑝 + 𝜏 ≤ 𝐼+𝑞 .
5
For simplicity, we denote the representative point of a node 𝑢𝑖 by Rep𝑖 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:8 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Algorithm 1: ReportTriangle(D, 𝑝, 𝜏, Y)
1 C𝑝 : {C𝑝,1, C𝑝,2, · · · , C𝑝,𝑘 } ← durableBallQ (𝑝, 𝜏, Y/2), with Rep𝑖 denoting the representative

point of the ball for C𝑝,𝑖 ;
2 foreach 𝑗 ∈ [𝑘] do
3 foreach 𝑞, 𝑠 ∈ C𝑝,𝑗 where 𝑞 precedes 𝑠 do
4 report (𝑝, 𝑞, 𝑠);

5 foreach 𝑖, 𝑗 ∈ [𝑘] where 𝑖 < 𝑗 do
6 if 𝜙 (Rep𝑖 , Rep𝑗) ≤ 1 + Y

2
then

7 foreach (𝑞, 𝑠) ∈ C𝑝,𝑖 × C𝑝,𝑗 do
8 report (𝑝, 𝑞, 𝑠);

In the end, durableBallQ returns 𝑂 (𝑘) disjoint result point sets, whose union is the answer to the

Y-approximate 𝜏-durable ball query. The grouping of result points into subsets and the implicit

representation of these subsets is an important feature of durableBallQ that we shall exploit in later

sections. Note that durableBallQ might return a point 𝑞 such that 𝜙 (𝑝, 𝑞) > 1, but 𝜙 (𝑝, 𝑞) ≤ 1 + Y
always holds. Together, we obtain:

Lemma 2.2. Given a set 𝑃 of 𝑛 points, a data structure can be built in 𝑂 (𝑛 log
2 𝑛) time with

𝑂 (𝑛 log𝑛) space, that supports an Y-approximate 𝜏-durable ball query, computing a family of 𝑂 (Y−𝑑)
canonical subsets in 𝑂 (Y−𝑑 log𝑛) time.

Extended data structure with refined result partitioning. We define the more involved query

procedure durableBallQ ′(𝑝, 𝜏, 𝜏 ′, Y), which will be used by our algorithms for IncrDurableTriangle
in Section 4. The goal is to return a subset 𝑄 ⊆ 𝑃 such that B(𝑞) ∩ 𝑃 ⊆ 𝑄 ⊆ B(𝑞, 1 + Y) ∩ 𝑃 , and
for every 𝑞 ∈ 𝑄 , 𝐼−𝑞 + 𝜏 ≤ 𝐼−𝑝 + 𝜏 ≤ 𝐼+𝑞 (just as for durableBallQ), with the additional constraint that

𝐼+𝑞 ≥ 𝐼−𝑝 + 𝜏 ′. Let D ′ be the extended version of D to answer durableBallQ ′. It consists of a cover
tree along with two levels of interval trees, one to handle the first linear constraint, and the second

to handle the additional linear constraint. The space, construction time and query time of D ′ are
increased only by a log𝑛 factor compared with D.

3 REPORTING DURABLE TRIANGLES
This section describes our near-linear time algorithm for the Y-approximate DurableTriangle
problem. As mentioned, our algorithm works for every general metric with constant doubling

dimension. In the full version of the paper [4] we show how to solve the problem exactly for ℓ∞
metric.

High-level Idea. We visit each point 𝑝 ∈ 𝑃 with |𝐼𝑝 | ≥ 𝜏 (a prerequisite for 𝑝 to be in a 𝜏-durable

triangle), and report all 𝜏-durable triangles that 𝑝 anchors. To find all 𝜏-durable triangles anchored

by 𝑝 , we run a 𝜏-durable ball query around 𝑝 on D (Section 2.2) to get an implicit representation

(as a bounded number of canonical subsets) of all points within distance 1 from 𝑝 , where 𝐼−𝑝 is the

largest left endpoint among their lifespans (𝑝 should be the newest point among the three points

of each triangle we report). Recall that each canonical subset returned consists of points within a

ball of a small diameter, so we can approximate inter-ball distances among points by the distances

among the ball centers. For every pair of balls, if their centers are within distance 1 (plus some

slack), we report all 𝜏-durable triangles consisting of 𝑝 and the Cartesian product of points in the

two balls.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:9

Fig. 1. Illustration of Algorithm 1: 𝑝 is visited. The small (possibly overlapping) balls represent the canonical
nodes returned from D. Each point within distance 1 from 𝑝 lies in exactly one such ball. We report the
triangles formed by 𝑝 and the points in red and blue balls that satisfy the durability constraint. We do not
report triangles formed by 𝑝 and the points in blue and green balls because they are well separated.

Algorithm. As a preprocessing step, we construct the data structure D as described in Section 2.2

over 𝑃 . Our algorithm invokes ReportTriangle (Algorithm 1) for each point 𝑝 ∈ 𝑃 . ReportTri-
angle runs a 𝜏-durable ball query durableBallQ (𝑝, 𝜏, Y/2)—note the use of Y/2 here for technical

reasons—and obtains a family of disjoint result point sets C𝑝 = {C𝑝,1, C𝑝,2, . . . , C𝑝,𝑘 } for some

𝑘 = 𝑂 (Y−𝜌) (see also Figure 1). Each C𝑝,𝑗 is covered by a cover tree ball in D with diameter of no

more than Y/2, and contains all points therein whose intervals “sufficiently intersect” 𝐼𝑝 , i.e., any 𝑞

in the ball satisfying 𝐼−𝑞 + 𝜏 ≤ 𝐼−𝑝 + 𝜏 ≤ 𝐼+𝑞 , as explained in Section 2.2.

Given 𝑝 , all 𝜏-durable triangles (𝑝, 𝑞, 𝑠) anchored by 𝑝 can be classified into two types: (1) 𝑞 and

𝑠 belong to the same result point set C𝑝,𝑗 for some 𝑗 ; and (2) 𝑞 and 𝑠 belong to different sets C𝑝,𝑖
and C𝑝,𝑗 (where 𝑖 ≠ 𝑗) that are sufficiently close. To report triangles of the first type, we simply

enumerate all pairs of 𝑞 and 𝑠 within C𝑝,𝑗 , for each 𝑗 . We avoid duplicate reporting of (𝑝, 𝑞, 𝑠) and
(𝑝, 𝑠, 𝑞) by always picking 𝑞 as the point with the smaller index in C𝑝,𝑗 . To report triangles of the

second type, we consider (𝑖, 𝑗) pairs where Rep𝑖 and Rep𝑗 , the representative points of the balls
containing C𝑝,𝑖 and C𝑝,𝑗 , are within distance 1 + Y/2. We simply enumerate the Cartesian product

of C𝑝,𝑖 and C𝑝,𝑗 . We avoid duplicate reporting of (𝑝, 𝑞, 𝑠) and (𝑝, 𝑠, 𝑞) by imposing the order 𝑖 < 𝑗 .

Correctness. Let (𝑝, 𝑞, 𝑠) be a triangle reported by our algorithm. We show that (𝑝, 𝑞, 𝑠) is a
𝜏-durable Y-triangle. From Section 2.2, we know that 𝜙 (𝑝, 𝑞) ≤ 1 + Y/2 and 𝜙 (𝑝, 𝑠) ≤ 1 + Y/2,
because 𝑞 and 𝑠 belong in one or two canonical subsets in C𝑝 . If 𝑞 and 𝑠 belong to the same

canonical subset C𝑝,𝑖 then by definition 𝜙 (𝑞, 𝑠) ≤ Y/2. If 𝑞 ∈ C𝑝,𝑖 and 𝑠 ∈ C𝑝,𝑗 for 𝑖 ≠ 𝑗 , then

𝜙 (𝑞, 𝑠) ≤ 𝜙 (𝑞,Rep𝑖)+𝜙 (𝑠,Rep𝑗)+𝜙 (Rep𝑖 ,Rep𝑗) ≤ Y/4+Y/4+(1+Y/2) ≤ 1+Y. In every case, it is true
that𝜙 (𝑝, 𝑞), 𝜙 (𝑝, 𝑠), 𝜙 (𝑠, 𝑞) ≤ 1+Y. Hence, (𝑝, 𝑞, 𝑠) is an Y-triangle. Next, we show that |𝐼𝑝∩𝐼𝑞∩𝐼𝑠 | ≥ 𝜏 .
Recall that by definition, |𝐼𝑝 | ≥ 𝜏 . Using the 𝜏-durable ball query durableBallQ (𝑝, 𝜏, Y/2), we have
that |𝐼𝑝 ∩ 𝐼𝑞 | ≥ 𝜏 , |𝐼𝑝 ∩ 𝐼𝑠 | ≥ 𝜏 , 𝐼−𝑝 ∈ 𝐼𝑞 , and 𝐼−𝑝 ∈ 𝐼𝑠 (see also Definition 2.1). We can rewrite these

inequalities as 𝐼−𝑞 +𝜏 ≤ 𝐼−𝑝 +𝜏 ≤ 𝐼+𝑞 and 𝐼−𝑠 +𝜏 ≤ 𝐼−𝑝 +𝜏 ≤ 𝐼+𝑠 . Hence, 𝐼−𝑝 +𝜏 ≤ min{𝐼+𝑞 , 𝐼+𝑠 }, concluding
that |𝐼𝑝 ∩ 𝐼𝑞 ∩ 𝐼𝑠 | ≥ 𝜏 . Each triangle (𝑝, 𝑞, 𝑠) is reported only once, in a specific vertex order: the

temporal conditions ensure that 𝑝 anchors the triangle, and the ordering of 𝑞 and 𝑠 is consistently

enforced by ReportTriangle. Overall, we showed that if (𝑝, 𝑞, 𝑠) is reported, then it is a 𝜏-durable

Y-triangle and it is reported exactly once.

Next, we prove that we do not miss any 𝜏-durable triangle. Let (𝑝, 𝑞, 𝑠) be a 𝜏-durable tri-

angle. Without loss of generality, assume that 𝐼−𝑝 ≥ max{𝐼−𝑞 , 𝐼−𝑠 }. By definition, 𝜙 (𝑝, 𝑞) ≤ 1,

𝜙 (𝑝, 𝑠) ≤ 1, and 𝜙 (𝑞, 𝑠) ≤ 1. Hence, after visiting 𝑝 , by the definition of the 𝜏-durable ball

query durableBallQ (𝑝, 𝜏, Y/2), there exist indexes 𝑖, 𝑗 such that 𝑞 ∈ C𝑝,𝑖 and 𝑠 ∈ C𝑝,𝑗 . If 𝑖 = 𝑗 ,

then (𝑝, 𝑞, 𝑠) must be reported by Line 4 of ReportTriangle. If 𝑖 ≠ 𝑗 , note that 𝜙 (Rep𝑖 ,Rep𝑗) ≤

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:10 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

𝜙 (Rep𝑖 , 𝑞) + 𝜙 (𝑞, 𝑠) + 𝜙 (𝑠,Rep𝑗) ≤ Y/4 + 1 + Y/4 ≤ 1 + Y/2; therefore (𝑝, 𝑞, 𝑠) must be reported by

Line 8. Overall, we showed that every 𝜏-durable triangle is reported by Algorithm 1.

Time complexity. By Lemma 2.2, we can construct D in time 𝑂 (𝑛 log
2 𝑛). For each 𝑝 ∈ 𝑃 , we

run a 𝜏-durable ball query on D in 𝑂 (Y−𝑂 (𝜌) log𝑛) time. Moreover, |C𝑝 | = 𝑂 (Y−𝑂 (𝜌)). Checking
pairs in C in which to search for triangles of Type (2) takes additional 𝑂 (Y−2·𝑂 (𝜌)) time. All pairs

of points examined by ReportTriangle are indeed returned, and together they correspond to all

𝜏-durable triangles plus some Y-triangles involving 𝑝 . Hence, the overall additional time incurred is

𝑂 (OUT) where |𝑇𝜏 | ≤ OUT ≤ |𝑇 Y𝜏 |.
Theorem 3.1. Given (𝑃, 𝜙, 𝐼), 𝜏 > 0, and Y > 0, Y-approximate DurableTriangle can be solved in

𝑂
(
𝑛(Y−𝑂 (𝜌) log𝑛 + log

2 𝑛) + OUT
)
time, where 𝑛 = |𝑃 |, 𝜌 is the doubling dimension of 𝑃 , and OUT is

the number of triangles reported.

Remark 1. For every ℓ𝛼 norm in R𝑑 , we can simplify the data structureD using a quadtree instead

of a cover tree. The running time and approximation with respect to the overall number of reported

triangles remain the same.

Remark 2. Our algorithm can be extended to support delay-guaran-teed enumeration [3, 7, 34]

of durable patterns, i.e., the time between reporting two consecutive patterns is bounded. After

spending 𝑂 (𝑛(Y−𝑂 (𝜌) log𝑛 + log
2 𝑛)) preprocessing time, we can support 𝑂 (Y−𝑂 (𝜌) log𝑛)-delay

enumeration for Y-approximate DurableTriangle.
Remark 3. Using a dynamic cover tree, we can extend our algorithm to the dynamic setting where

we do not have all points upfront. If points are inserted or deleted according to their lifespans,

we support 𝑂 (log
3 𝑛) amortized update time. After inserting a point 𝑝 , we can report the new (if

any) triangles that 𝑝 participates in using Algorithm 1) in time near linear to the number of new

triangles reported. We show the details in Appendix B.

4 INCREMENTAL REPORTINGWHEN VARYING 𝜏𝜏𝜏
We next consider reporting durable triangles when queries with different durability parameters

arrive in an online fashion. As discussed in Section 1.1, the problem, IncrDurableTriangle, boils
down to reporting any new result triangles in 𝑇𝜏 \𝑇𝜏≺ , where 𝜏≺ > 𝜏 are the previous and current

durability parameters, respectively.

As a starter, we can proceed similarly as in Section 3, reporting durable triangles for each

anchor point 𝑝 , but taking care to ensure that we report only 𝜏-durable triangles that are not 𝜏≺-
durable. Doing so entails retrieving candidate pairs (𝑞, 𝑠) as in ReportTriangle, but additionally

guaranteeing that at least one of 𝑞 and 𝑠 ends between 𝐼−𝑝 + 𝜏 and 𝐼−𝑝 + 𝜏≺, which leads to 𝐼 (𝑝, 𝑞, 𝑠)
having durability between 𝜏 and 𝜏≺. This additional search condition necessitates the modified data

structure D ′ discussed in Section 2.

However, the naive approach above has the following problem. It is possible that we carry out

the search on D ′ for 𝑝 , only to realize that in the end no new result triangle needs to be reported.

Ideally, we instead want an output-sensitive algorithm whose running time depends only on the

output size. To this end, we need an efficient way to test whether 𝑝 should be activated for output;

i.e., there is at least one triangle in𝑇𝜏 \𝑇𝜏≺ anchored by 𝑝 . This test motivates the idea of activation

thresholds below.

Definition 4.1 (Activation threshold). Given (𝑃, 𝜙, 𝐼) and 𝜏 > 0, the activation threshold of 𝑝 ∈ 𝑃
with respect to 𝜏 is defined as:

𝛽𝜏𝑝 = max{𝜏 ′ <𝜏 | ∃𝑞, 𝑠 ∈ 𝑃 : 𝐼−𝑞 ≤ 𝐼−𝑝 , 𝐼−𝑠 ≤ 𝐼−𝑝 , and(𝑝, 𝑞, 𝑠) is 𝜏 ′-durable but not 𝜏-durable}.
We set 𝛽𝜏𝑝 = −∞ if no such 𝜏 ′ exists. We call 𝛽+∞𝑝 the maximum activation threshold of 𝑝 .

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:11

Algorithm 2: ReportDeltaTriangle(D ′, 𝑝, 𝜏, 𝜏≺, Y)
1 C𝑝 : {C𝑝,1, C𝑝,2, · · · , C𝑝,𝑘 } ← durableBallQ ′(𝑝, 𝜏, 𝜏≺, Y/2), with Rep𝑖 as the representative

point of the ball for C𝑝,𝑖 and C𝑝,𝑖 = Λ𝑝,𝑖 ∪ Λ𝑝,𝑖 ;
2 foreach 𝑗 ∈ [𝑘] do
3 foreach 𝑞, 𝑠 ∈ Λ𝑝,𝑗 where 𝑞 precedes 𝑠 do
4 report (𝑝, 𝑞, 𝑠);
5 foreach (𝑞, 𝑠) ∈ Λ𝑝,𝑗 × Λ𝑝,𝑗 do report (𝑝, 𝑞, 𝑠) ;
6 foreach 𝑖, 𝑗 ∈ [𝑘] where 𝑖 < 𝑗 do
7 if 𝜙 (Rep𝑖 , Rep𝑗) ≤ 1 + Y

2
then

8 foreach (𝑞, 𝑠) ∈ Λ𝑝,𝑖 × Λ𝑝,𝑗 do report (𝑝, 𝑞, 𝑠) ;
9 foreach (𝑞, 𝑠) ∈ Λ𝑝,𝑖 × Λ𝑝,𝑗 do report (𝑝, 𝑞, 𝑠) ;

10 foreach (𝑞, 𝑠) ∈ Λ𝑝,𝑖 × Λ𝑝,𝑗 do report (𝑝, 𝑞, 𝑠) ;

With activation thresholds, we can easily determine whether to activate 𝑝: the condition is

precisely 𝛽
𝜏≺
𝑝 ≥ 𝜏 . If 𝛽𝜏≺𝑝 < 𝜏 , by definition of 𝛽𝜏≺ , any 𝜏-durable triangle anchored by 𝑝 is already

𝜏≺-durable and hence does not need to be reported; otherwise, we need to at least report 𝛽𝜏≺ -durable
triangles anchored by 𝑝 .

In the following subsections, we first describe the algorithm for processing each activated

point (Section 4.1), and then address the problem of computing activation thresholds efficiently

(Section 4.2), which requires maintaining additional data structures across queries to help future

queries. Finally, we summarize our solution and discuss its complexity (Section 4.3). In [4], we

describe the specialized solution for the ℓ∞-metric.

4.1 Reporting for each activated point
Given an activated point 𝑝 ∈ 𝑃 , for which we have already determined that 𝛽

𝜏≺
𝑝 ≥ 𝜏 , we report all 𝜏-

durable triangles anchored by 𝑝 that are not 𝜏≺-durable, using ReportDeltaTriangle (Algorithm 2)

explained further below.

As discussed at the beginning of this section, reporting triangles (𝑝, 𝑞, 𝑠) that are 𝜏-durable
but not 𝜏≺-durable entails ensuring that at least one of 𝑞 and 𝑠 ends between 𝐼−𝑝 + 𝜏 and 𝐼−𝑝 + 𝜏≺.
To this end, we use the modified data structure D ′ discussed in Section 2. We query D ′ using
durableBallQ ′(𝑝, 𝜏, 𝜏≺, Y/2) to get 𝑘 = 𝑂 (Y−𝑂 (𝜌)) canonical balls of the cover tree in D ′ with
representative points Rep

1
,Rep

2
, . . . ,Rep𝑘 ; durableBallQ

′
further partitions the result point set

C𝑝,𝑗 associated with each ball centered at Rep𝑗 into two subsets

Λ𝑝,𝑗 =
{
𝑞 ∈ C𝑝,𝑗 | 𝐼+𝑞 < 𝐼−𝑝 + 𝜏≺

}
, Λ𝑝,𝑗 =

{
𝑞 ∈ C𝑝,𝑗 | 𝐼+𝑞 ≥ 𝐼−𝑝 + 𝜏≺

}
.

By definition, if 𝑞 ∈ Λ𝑝,𝑗 , then 𝐼−𝑞 ≤ 𝐼−𝑝 and 𝐼−𝑝 + 𝜏 ≤ 𝐼+𝑞 < 𝐼+𝑝 + 𝜏≺, while if 𝑞 ∈ Λ𝑝,𝑗 then 𝐼−𝑞 ≤ 𝐼−𝑝 and

𝐼+𝑞 ≥ 𝐼−𝑝 +𝜏≺. See Figure 2 for an illustration. Recall that durableBallQ ′ does not explicitly construct
Λ𝑝,𝑗 and Λ𝑝,𝑗 ; instead, these subsets correspond to canonical subsets of nodes in the interval trees

within D ′.
For (𝑝, 𝑞, 𝑠) to be not 𝜏≺-durable, at least one of 𝑞 and 𝑠 must belong to some Λ𝑝,𝑗 instead of

Λ𝑝,𝑗 . Therefore, we can divide all triangles (𝑝, 𝑞, 𝑠) that are 𝜏-durable but not 𝜏≺-durable into four

types, which can be computed with the help of the above partitioning: (1) 𝑞, 𝑠 ∈ Λ𝑝,𝑗 for some 𝑗 ;

(2) 𝑞 ∈ Λ𝑝,𝑗 and 𝑠 ∈ Λ𝑝,𝑗 for some 𝑗 ; (3) 𝑞 ∈ Λ𝑝𝑖 and 𝑠 ∈ Λ𝑝,𝑗 for some 𝑖 ≠ 𝑗 where Rep𝑖 and Rep𝑗
are sufficiently close; (4) 𝑞 ∈ Λ𝑝𝑖 and 𝑠 ∈ Λ𝑝,𝑗 for some 𝑖 ≠ 𝑗 where Rep𝑖 and Rep𝑗 are sufficiently

close. ReportDeltaTriangle (Algorithm 2) covers all these cases. As with ReportTriangle in

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:12 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

I−p I+p

I−q1 I+q1

I−q2
I+q2

τ

τ≺

Fig. 2. An illustration of C𝑝,𝑗 = Λ𝑝,𝑗 ∪ Λ𝑝,𝑗 . Here 𝑞1 ∈ Λ𝑝,𝑗 and 𝑞2 ∈ Λ𝑝,𝑗 .

Section 3, we enforce an ordering between 𝑞 and 𝑠 to ensure that only one of (𝑝, 𝑞, 𝑠) and (𝑝, 𝑠, 𝑞) is
reported. Thanks to the implicit representation of Λ𝑝,𝑗 ’s and Λ𝑝,𝑗 ’s, ReportDeltaTriangle avoids
enumerating points in a subset if they do not contribute to any result triangle. For example, if

Λ𝑝,𝑖 = ∅ (line 10 of Algorithm 2), we short-circuit the computation and avoid enumerating Λ𝑝,𝑗 .

Remark. Note that ReportTriangle (Section 3) can be seen as as special case of ReportDelta-

Triangle whenever 𝜏≺ > max𝑝∈𝑃 𝛽+∞𝑝 .

4.2 Computing activation thresholds
We turn to the question of how to compute the activation threshold 𝛽𝜏≺ given 𝑝 and 𝜏≺, required
for determining whether to activate 𝑝 . Naively, we can find all triangles anchored by 𝑝 (regardless

of durability) and build a map of all activation thresholds for 𝑝 . However, we have a more efficient

solution that builds on two ideas. First, consider a sequence of queries with durability parameters

𝜏1, 𝜏2, After answering the current query, say 𝜏𝑖 , we compute and remember 𝛽
𝜏𝑖
𝑝 for each (relevant)

𝑝 , so they are available to help the next query 𝜏𝑖+1. Second, we use a binary search procedure to

look for activation thresholds within a desired range, by exploiting the extended data structure D ′
to quickly test existence of thresholds in a range without enumerating result triangles therein. The

second idea is implemented by ComputeActivation (Algorithm 3). It runs a binary search making

guesses for the value of 𝛽𝜏𝑝 . For each guess 𝜏 ′ of 𝛽𝜏𝑝 , we use a primitive called DetectTriangle

to test whether there exists any triangle anchored by 𝑝 that is 𝜏 ′-durable but not 𝜏-durable—in
other words, whether 𝛽𝜏𝑝 ∈ [𝜏 ′, 𝜏). DetectTriangle mirrors Algorithm 2, except that it merely

checks the existence of triangles for each type returning true or false instead of reporting them.

Using durableBallQ ′ for returning implicit representations for Λ𝑝,𝑗 ’s and Λ𝑝,𝑗 ’s, it is quick to check

whether their combinations yield a non-empty result set. Given 𝑝 , the search space of activation

thresholds has only 𝑂 (𝑛) possibilities: The lifespan of every triangle (𝑝, 𝑞, 𝑠) anchored by 𝑝 is

either in [𝐼−𝑝 , 𝐼+𝑞] or [𝐼−𝑝 , 𝐼+𝑠], thus the durability of any triangle anchored by 𝑝 falls into the set

{𝐼+𝑞 − 𝐼−𝑝 | 𝑞 ∈ 𝑃, 𝐼+𝑞 ≥ 𝐼−𝑝 }. The number of steps in the binary search and the number of invocations

of DetectTriangle is 𝑂 (log𝑛).
We are now ready to put together the data structures and procedure for computing and main-

taining activation thresholds. We use two simple binary search trees S𝛼 and S𝛽 . S𝛼 indexes all

points 𝑝 ∈ 𝑃 by their maximum activation thresholds 𝛽+∞𝑝 . We precompute S𝛼 by calling Compute-

Activation for each 𝑝 ∈ 𝑃 . Once constructed, S𝛼 remains unchanged across queries.

S𝛽 indexes points by their activation thresholds with respect to the durability parameter.

Suppose the current query parameter is 𝜏 and the previous one is 𝜏≺. Before executing the current

query, S𝛽 indexes each point 𝑝 by 𝛽
𝜏≺
𝑝 , so the current query can use S𝛽 to find 𝑝’s with 𝛽

𝜏≺
𝑝 ≥ 𝜏 to

activate. After completing the current query, we update S𝛽 for the next round: as long as there

exists a 𝜏-durable triangle anchored by 𝑝 , S𝛽 indexes 𝑝 by the value of 𝛽𝜏𝑝 . Initially, S𝛽 starts out
as an empty tree, which can be interpreted as having completed an initial query with durability

parameter +∞.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:13

Algorithm 3: ComputeActivation(D ′, 𝑝, 𝜏, Y)
1 𝐼+ ← {𝐼+𝑞 | 𝑞 ∈ 𝑃}, 𝑅 ← 𝑛 − 1, 𝐿 ← 0, 𝜏ret ← −∞;
2 while 𝐿 ≤ 𝑅 do
3 𝑚 ← ⌊(𝐿 + 𝑅)/2⌋;
4 if 𝐼+ [𝑚] > 𝐼−𝑝 + 𝜏 then 𝑅 ←𝑚 − 1;

5 else if 𝐼+ [𝑚] < 𝐼−𝑝 then 𝐿 ←𝑚 + 1;

6 𝜏 ′← 𝐼+ [𝑚] − 𝐼−𝑝 ;
7 𝐵 ← DetectTriangle(𝜏 ′, 𝜏);
8 if 𝐵 = true then 𝜏ret ← 𝜏 ′, 𝐿 ←𝑚 + 1;

9 else 𝑅 ←𝑚 − 1;

10 return 𝜏ret;
11 Subroutine DetectTriangle(𝜏1, 𝜏2) begin
12 C𝑝 : {C𝑝,1, C𝑝,2, · · · , C𝑝,𝑘 } ← durableBallQ ′(𝑝, 𝜏1, 𝜏2, Y/2), with Rep𝑖 denoting the

representative point of the ball for C𝑝,𝑖 and C𝑝,𝑖 = Λ𝑝,𝑖 ∪ Λ𝑝,𝑖 ;
13 foreach 𝑗 ∈ [𝑘] do
14 if |Λ𝑝,𝑗 | ≥ 2 then return true;
15 if |Λ𝑝,𝑗 | ≥ 1 and |Λ𝑝,𝑗 | ≥ 1 then return true;

16 foreach 𝑖, 𝑗 ∈ [𝑘] where 𝑖 < 𝑗 do
17 if 𝜙 (Rep𝑖 , Rep𝑗) ≤ 1 + Y

2
then

18 if |Λ𝑝,𝑖 | ≥ 1 and |Λ𝑝,𝑗 | ≥ 1 then return true;
19 if |Λ𝑝,𝑖 | ≥ 1 and |Λ𝑝,𝑗 | ≥ 1 then return true;
20 if |Λ𝑝,𝑖 | ≥ 1 and |Λ𝑝,𝑗 | ≥ 1 then return true;

21 return false;

Maintenance of S𝛽 has two cases depending on the current query. First, consider the more

interesting case of 𝜏≺ > 𝜏 , where we need to potentially report new result triangles. For each 𝑝

activated, i.e., 𝛽𝜏≺ ≥ 𝜏 , we call ComputeActivation(D ′, 𝑝, 𝜏, Y) to obtain 𝛽𝜏𝑝 and update 𝑝’s entry

in S𝛽 . This is all we need to do to maintain S𝛽 because, if 𝑝 were not activated for the current

query, we would have 𝛽𝜏≺ < 𝜏 , and therefore 𝛽𝜏𝑝 = 𝛽
𝜏≺
𝑝 .

In the less interesting case of 𝜏 ≥ 𝜏≺, there are no new result triangles to report, but some

old ones may need to be invalidated. Strategies for maintaining S𝛽 differ depending on the usage

scenario. In the first scenario, suppose that the client issuing the query sequence incrementally

maintains the query result as lists of triangles grouped by anchor points, and triangles within each

list are sorted by durability. When 𝜏 ≥ 𝜏≺, the client can simply trim its lists according to 𝜏 . During

this process, it can easy obtain and pass information to the server for updating S𝛽 : for each anchor

𝑝 , 𝛽𝜏𝑝 simply takes on the highest durability value removed from 𝑝’s list, or it remains unchanged

if no triangle is removed. In the alternative (and less likely) scenario where the client does not

remember anything, the server can simply rebuild S𝛽 by running ComputeActivation for each

𝑝 ∈ S𝛼 with maximum activation threshold no less than 𝜏 .

Correctness. We first show that the values 𝛽𝜏𝑝 are updated correctly in Algorithm 3. Let 𝜏 ′ be the
parameter in the binary search that we checked in Algorithm 3. Point 𝑝 can only form a 𝜏 ′-durable
Y-triangle with points 𝑞 whose intervals 𝐼𝑞 intersect 𝐼

−
𝑝 and either 𝐼+𝑞 < 𝐼−𝑝 +𝜏 or 𝐼+𝑞 ≥ 𝐼−𝑝 +𝜏 .

⋃
𝑗 Λ𝑝,𝑗 is

the set of points satisfying the first inequality, and

⋃
𝑗 Λ𝑝,𝑗 the set of points in the second inequality.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:14 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

For every pair 𝑞, 𝑠 ∈ Λ𝑝,𝑗 , we do not activate point 𝑝 with durability 𝜏 ′. If indeed 𝜙 (𝑞, 𝑠) ≤ 1

and 𝑞, 𝑠 ∈ Λ𝑝,𝑗 , then (𝑝, 𝑞, 𝑠) is a 𝜏-durable triangle. So our algorithm does not activate a point

𝑝 because of a previously reported 𝜏-durable triangle. By definition, it is also straightforward to

see that 𝑝 should be activated at durability 𝜏 ′ if there is a pair of points 𝑞, 𝑠 ∈ Λ𝑝,𝑗 ∪ Λ𝑝,𝑗 such
as either 𝑞 or 𝑠 belongs in Λ𝑝,𝑗 . This is because either 𝐼𝑞 or 𝐼𝑠 does not overlap with 𝐼𝑝 for more

than 𝜏 and overlaps more than 𝜏 ′, so (𝑝, 𝑞, 𝑠) was not a 𝜏-durable Y ′-triangle for every Y ′ > 0.

Next, let 𝑝 be a point that is activated because of a triangle (𝑝, 𝑞, 𝑠). We show that any (𝑝, 𝑞, 𝑠)
is a 𝜏 ′-durable Y-triangle. As we mentioned, either 𝐼𝑞 or 𝐼𝑠 does not intersect 𝐼𝑝 for more than 𝜏

but intersects 𝐼𝑝 for more than 𝜏 ′ so it remains to show that 𝜙 (𝑝, 𝑞), 𝜙 (𝑝, 𝑠), 𝜙 (𝑞, 𝑠) ≤ 1 + Y. By the

definition of D ′ we have that 𝜙 (𝑝, 𝑞) ≤ 1 + Y/2 and 𝜙 (𝑝, 𝑠) ≤ 1 + Y/2. If 𝑞, 𝑠 belong in the same

subset C𝑝,𝑗 then it also follows that 𝜙 (𝑞, 𝑠) ≤ Y/4 ≤ 1 + Y. If 𝑞 ∈ C𝑝,𝑗 and 𝑠 ∈ C𝑝,𝑖 for 𝑖 < 𝑗 then

in Algorithm 3 we only consider this triangle if and only if 𝜙 (Rep𝑗 ,Rep𝑖) ≤ 1 + Y/2. We have

𝜙 (𝑞, 𝑠) ≤ 𝜙 (𝑞,Rep𝑗) + 𝜙 (Rep𝑗 ,Rep𝑖) + 𝜙 (Rep𝑖 , 𝑠) ≤ 1 + Y/2 + Y/4 + Y/4 = 1 + Y. So (𝑝, 𝑞, 𝑠) is a
𝜏 ′-durable Y-triangle that is not 𝜏-durable.

The correctness of Algorithm 2 follows from the same arguments we used to prove the cor-

rectness of Algorithm 3. Overall, Algorithm 2 reports all 𝜏𝑖+1-durable triangles along with some

𝜏𝑖+1-durable Y-triangles, that are not 𝜏𝑖 -durable Y-triangles. Hence, |𝑇𝜏𝑖+1 \𝑇𝜏𝑖 | ≤ OUT ≤ |𝑇 Y𝜏𝑖+1 \𝑇
Y
𝜏𝑖
|.

4.3 Solution summary and complexity
In summary, we build the data structure D ′ as described in Section 2.2; its size is 𝑂 (𝑛 log

2 𝑛),
and it can be constructed in 𝑂 (𝑛 log

3 𝑛) time. We also build the index S𝛼 of maximum activation

thresholds, which has size𝑂 (𝑛). To constructS𝛼 , asmentioned, we perform atmost𝑂 (log𝑛) guesses
for each point, and each guess invokes DetectTriangle once, which takes 𝑂 (Y−𝑂 (𝜌) log

2 𝑛) time;

therefore, the total construction time for S𝛼 is𝑂 (𝑛Y−𝑂 (𝜌) log
3 𝑛). Finally, we maintain the index S𝛽

of activation thresholds for the current durability parameter; its size is𝑂 (𝑛), its initial construction
time is 𝑂 (1), and its maintenance time will be further discussed below.

To report new result triangles when the durability parameter changes from 𝜏≺ to 𝜏 , we use
S𝛽 to search for points 𝑝 with 𝛽

𝜏≺
𝑝 ≥ 𝜏 to activate. Each activated point 𝑝 requires 𝑂 (OUT𝑝 +

Y−𝑂 (𝜌) log
2 𝑛) time for ReportDeltaTriangle to report all new durable triangles anchored by 𝑝 ,

where OUT𝑝 denotes the number of them. Then, to maintain S𝛽 , we need𝑂 (Y−𝑂 (𝜌) log
3 𝑛) time for

ComputeActivation, and𝑂 (log𝑛) time to update S𝛽 for each point 𝑝 activated. For each activated

𝑝 , at least one new durable triangle is reported, so the number of calls to ComputeActivation

is bounded by the output size. Overall, we spend 𝑂
(
OUT + Y−𝑂 (𝜌) log

2 𝑛
)
time for reporting and

𝑂 (OUT · Y−𝑂 (𝜌) log
3 𝑛) time for maintenance, where OUT is the number of results reported.

Theorem 4.2. Given (𝑃, 𝜙, 𝐼), and Y > 0, a data structure of size𝑂 (𝑛 log
2 𝑛) can be constructed in

𝑂 (𝑛Y−𝑂 (𝜌) log
3 𝑛) time such that, the Y-approximate IncrDurableTriangle problem can be solved in

𝑂
(
OUT · Y−𝑂 (𝜌) log

3 𝑛
)
time, where 𝑛 = |𝑃 |, 𝜌 is the doubling dimension of 𝑃 , and OUT is the number

of results reported.

5 REPORTING AGGREGATE-DURABLE PAIRS
5.1 SUM
We start by describing a data structure that allows us to efficiently compute the total length of

all intersections between a query interval with a given set of intervals. Then we show how to

use this primitive to report all 𝜏-SUM-durable pairs for AggDurablePair-SUM, along with some

𝜏-SUM-durable Y-pairs (but no other pairs).

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:15

Interval-SUM-durability. Given a set of intervals I, we want a primitive that can efficiently

decide, given any query interval 𝐽 and 𝜏 > 0, whether

∑
𝐼 ∈I |𝐼 ∩ 𝐽 | ≥ 𝜏 . To this end, we construct a

data structure ITΣ over I, which is a variant of an interval tree where each tree node 𝑣 is annotated

with the following information:

• |𝑣 |, the total number of intervals stored at 𝑣 ;

• ∑
𝐼 ∈𝑣 |𝐼 |, the total length of intervals stored at 𝑣 ;

• ∑
𝐼 ∈𝑣 𝐼

+
, the sum of right endpoints of intervals stored at 𝑣 ;

• ∑
𝐼 ∈𝑣 𝐼

−
, the sum of left endpoints of intervals stored at 𝑣 .

Given a query interval 𝐽 , we obtain 𝑂 (log
2 𝑛) canonical set of nodes in ITΣ, where each node 𝑣

falls into: (1) every 𝐼 ∈ 𝑣 completely covers 𝐽 ; (2) 𝐽 completely covers every 𝐼 ∈ 𝑣 ; (3) every 𝐼 ∈ 𝑣
partially intersects 𝐽 with 𝐼+ ∈ 𝐽 ; (4) every 𝐼 ∈ 𝑣 partially intersects 𝐽 with 𝐼− ∈ 𝐽 . Then, we can
rewrite the SUM-durability of intervals with respect to 𝐽 as follows:

∑︁
𝐼 ∈I
|𝐼 ∩ 𝐽 | =

∑︁
𝑣

∑︁
𝐼 ∈𝑣
|𝐼 ∩ 𝐽 | =

∑︁
𝑣

|𝑣 | · |𝐽 | if (1);∑
𝐼 ∈𝑣 |𝐼 | if (2);∑
𝐼 ∈𝑣 𝐼

+ − |𝑣 | · 𝐽− if (3);

|𝑣 | · 𝐽 + −∑𝐼 ∈𝑣 𝐼
−

if (4).

Note that ITΣ can be constructed in 𝑂 (𝑛 log
2 𝑛) time and uses 𝑂 (𝑛 log𝑛) space. This way, we have

a procedure ComputeSumD which, given ITΣ and 𝐽 , returns
∑
𝐼 ∈I |𝐼 ∩ 𝐽 | in 𝑂 (log

2 𝑛) time. The

interval tree ITΣ can also be used to find C𝑝 .
Data structure. While ITΣ makes it efficient to sum durabilities over a set of intervals given

𝐼𝑝 ∩ 𝐼𝑞 for a candidate pair (𝑝, 𝑞), we cannot afford to check all possible pairs, and we have not

yet addressed the challenge of obtaining the intervals of interest (which must come from witness

points incident to both 𝑝 and 𝑞) in the first place. The high-level idea is to leverage the same space

decomposition from the previous sections to efficiently obtain canonical subsets of witness points,

in their implicit representation. These canonical subsets of intervals serve as the basis for building

ITΣ structures. In more detail, we construct DΣ
in a similar way as D in Section 2.2. Like D, DΣ

is

a two-level data structure consisting of a cover tree and an interval tree variant (as described above)

for every node of the cover tree. For each cover tree node 𝑢, let C𝑢 denote the subset of points in 𝑃

within the ball of 𝑢 centered at Rep𝑢 . We build ITΣ𝑢 over C𝑢 with SUM annotations, and for each

node in ITΣ𝑢 , we also store points in decreasing order of their right interval endpoints. Overall, we

can construct DΣ
in 𝑂 (𝑛 log

3 𝑛) time having 𝑂 (𝑛 log
2 𝑛) space.

Algorithm.We report all 𝜏-SUM-durable pairs (𝑝, 𝑞) where 𝐼−𝑝 ≥ 𝐼−𝑞 (to avoid duplicates); we say

𝑝 anchors the pair. For each 𝑝 ∈ 𝑃 , we invoke ReportSUMPair (Algorithm 4) to report 𝜏-SUM-

durable Y-pairs (𝑝, 𝑞) anchored by 𝑝 . To this end, ReportSUMPair runs the 𝜏-durable ball query

durableBallQ (𝑝, 𝜏, Y/2) overDΣ
, and obtain a family of result point sets C𝑝,1, C𝑝,2, . . . , C𝑝,𝑘 for some

𝑘 = 𝑂 (Y−𝜌). Each C𝑝,𝑗 is covered by a cover tree ball in DΣ
with diameter of no more than Y/2,

and contains all points 𝑞 within the ball where 𝐼−𝑞 + 𝜏 ≤ 𝐼−𝑝 + 𝜏 ≤ 𝐼+𝑞 , as explained in Section 2.2,

sorted with respect to 𝐼+𝑞 . Let IT
Σ
𝑝,𝑗 denote the interval tree for the cover tree node corresponding

to C𝑝,𝑗 . For each 𝑗 , we go through each point 𝑞 ∈ C𝑝,𝑗 in decreasing order of right endpoints to

check whether (𝑝, 𝑞) is 𝜏-SUM-durable. To do this check, we consider witnesses from point sets

C𝑝,1, C𝑝,2, . . . , C𝑝,𝑘 . We can skip an entire set C𝑝,𝑖 if its ball center Rep𝑖 is too far from Rep𝑗 , because
all points in C𝑝,𝑖 would be too far from 𝑞. Otherwise, we query ITΣ𝑝,𝑖 using interval 𝐼𝑝 ∩ 𝐼𝑞 to obtain

the sum of durabilities over all witnesses in C𝑝,𝑖 . We compute these partial sums together and

compare the total with 𝜏 + 2 · |𝐼𝑝 ∩ 𝐼𝑞 | (note that the second term accounts for the fact that the

partial sums include the contributions of 𝑝 and 𝑞 themselves, which should be discounted). If the

total passes the threshold, we report (𝑝, 𝑞). If not, we stop consider any remaining point 𝑞′ ∈ C𝑝,𝑗

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:16 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Algorithm 4: ReportSUMPair(DΣ, 𝑝, 𝜏, Y)
1 C𝑝 : {C𝑝,1, C𝑝,2, · · · , C𝑝,𝑘 } ← durableBallQ (𝑝, 𝜏, Y/2), with Rep𝑖 as the representative point

of the cover tree node for C𝑝,𝑖 , and ITΣ𝑝,𝑖 as the annotated interval tree for the cover tree

node;

2 foreach 𝑗 ∈ [𝑘] do
3 foreach 𝑞 ∈ C𝑝,𝑗 in descending order of 𝐼+𝑞 do
4 𝑡 ← 0;

5 foreach 𝑖 ∈ [𝑘] do
6 if 𝜙 (Rep𝑖 , Rep𝑗) ≤ 1 + Y

2
then

7 𝑡 ← 𝑡 + ComputeSumD(ITΣ𝑝,𝑖 , 𝐼𝑝 ∩ 𝐼𝑞);

8 if 𝑡 ≥ 𝜏 + 2 · |𝐼𝑝 ∩ 𝐼𝑞 | then report (𝑝, 𝑞) ;
9 else break;

(which has 𝐼+
𝑞′ < 𝐼

+
𝑞), since 𝐼𝑝 ∩ 𝐼𝑞′ ⊂ 𝐼𝑝 ∩ 𝐼𝑞 and will surely yield a lower total durability. This is the

key for output-sensitive time.

Correctness. First, each pair (𝑝, 𝑞) is reported at most once, as (𝑝, 𝑞) is reported if 𝐼−𝑝 ≥ 𝐼−𝑞 . Next,
we show that every pair reported must be a 𝜏-SUM-durable Y-triangle. Consider a pair (𝑝, 𝑞) that
is reported. Note that our algorithm considers a node 𝑢𝑖 from DΣ

with radius Y/4 if and only if

𝜙 (𝑝,Rep𝑖) ≤ 1 + Y/4. If 𝑞 ∈ 𝑢𝑖 , we have 𝜙 (𝑝, 𝑞) ≤ 𝜙 (𝑝,Rep𝑖) + 𝜙 (Rep𝑖 , 𝑞) ≤ 1 + Y/2. Hence, in any

pair (𝑝, 𝑞) we return it holds that 𝜙 (𝑝, 𝑞) ≤ 1+ Y. Then we only consider points within distance 1+ Y
from both 𝑝, 𝑞 to find the sum of their corresponding intervals. Indeed, we only consider the pairs

C𝑝,𝑖 , C𝑝,𝑗 with 𝜙 (Rep𝑖 ,Rep𝑗) ≤ 1 + Y/2. Let 𝑞′ be any point from C𝑝,𝑖 . We have 𝜙 (𝑝, 𝑞′) ≤ 1 + Y/2,
and 𝜙 (𝑞, 𝑞′) ≤ 𝜙 (Rep𝑖 , 𝑞) + 𝜙 (Rep𝑖 ,Rep𝑗) + 𝜙 (Rep𝑗 , 𝑞′) ≤ 1 + Y. Overall, by showing i) 𝜙 (𝑝, 𝑞) ≤ 1,

ii) that we only take the sum of intervals in 𝐼𝑝 ∩ 𝐼𝑞 among points (witness points) within distance

1+ Y from both 𝑝, 𝑞, and iii) the correctness of the ITΣ data structure, we conclude that the reporting
pair (𝑝, 𝑞) is a 𝜏-durable Y-pair.

Finally, we show that every 𝜏-SUM-durable pair will be reported. Let (𝑝, 𝑞) be an arbitrary

𝜏-SUM-durable pair. Suppose 𝑞 ∈ 𝑢 𝑗 , where 𝑢 𝑗 is a node of DΣ
of radius at most Y/4, with

representative point Rep𝑗 . Since 𝜙 (𝑝,Rep𝑗) ≤ 𝜙 (𝑝, 𝑞) + 𝜙 (𝑞,Rep𝑗) ≤ 1 + Y/4, we have that

𝑢 𝑗 ∈ C𝑝 . Without loss of generality, assume that 𝑞 ∈ C𝑝,𝑗 . Next, we show that for point 𝑞′ ∈ 𝑃 ,
if 𝜙 (𝑝, 𝑞′) ≤ 1 and 𝜙 (𝑞, 𝑞′) ≤ 1, we always consider 𝑞′ in the witness set. Since 𝜙 (𝑝, 𝑞′) ≤ 1 we

have that 𝑞′ ∈ C𝑝 . Without loss of generality, assume that 𝑞′ ∈ C𝑝,𝑖 . In this case, 𝜙 (Rep𝑗 ,Rep𝑖) ≤
𝜙 (Rep𝑗 , 𝑞) + 𝜙 (𝑞, 𝑞′) + 𝜙 (𝑞′,Rep𝑖) ≤ 1 + Y/2, so 𝑞′ is included in ITΣ𝑝,𝑖 considered in line 7 of Algo-

rithm 4. It remains to show that if (𝑝, 𝑞) is a 𝜏-durable pair, 𝑞 must be visited during the traversal

of points in C𝑝,𝑗 . We prove it by contradiction. Let𝑤 ∈ C𝑝,𝑗 be a point such that 𝐼−𝑤 ≤ 𝐼−𝑝 ≤ 𝐼+𝑞 ≤ 𝐼+𝑤 .
Suppose after visiting 𝑤 , the traversal of points in C𝑝,𝑗 stops. Implied by the stopping condi-

tion, (𝑝,𝑤) is not a 𝜏-SUM-durable pair. Meanwhile, as (𝑝, 𝑞) is a 𝜏-SUM-durable pair, (𝑝,𝑤)
must also be a 𝜏-SUM-durable pair, implied by 𝐼𝑞 ∩ 𝐼𝑝 ⊆ 𝐼𝑤 ∩ 𝐼𝑝 , and the fact that we run the

ComputeSumD(ITΣ𝑝,𝑖 , 𝐼𝑝 ∩ 𝐼𝑞) query on the same sets C𝑝,𝑖 , coming to a contradiction. Thus, every

𝜏-SUM-durable pair must be reported.

Time Complexity. The construction time of ITΣ is 𝑂 (𝑛 log
2 𝑛), so it takes 𝑂 (𝑛 log

3 𝑛) time to

constructDΣ
. For each 𝑝 , it takes𝑂 (Y−𝑂 (𝜌) + log𝑛) time to derive the canonical set of nodes C𝑝 and

𝑂 (Y−𝑂 (𝜌) log𝑛) time to derive the sorted intervals in every node of C𝑝 . For each (sorted) interval

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:17

𝐼𝑞 in C𝑝,𝑖 we visit 𝑂 (Y−𝑂 (𝜌)) other nodes C𝑝,𝑗 and we run a 𝑂 (log
2 𝑛) time query to find the sum

using ITΣ. When we find out that 𝑞 does not form a 𝜏-SUM-durable pair with 𝑝 we skip the rest

points in C𝑝,𝑖 so the running time is output-sensitive. Overall, the running time is bounded by

𝑂 (𝑛 log
3 𝑛 + (𝑛 +OUT) · Y−𝑂 (𝜌) log

2 𝑛), where 𝐾𝜏 ≤ OUT ≤ 𝐾Y𝜏 .

Theorem 5.1. Given (𝑃, 𝜙, 𝐼), 𝜏 > 0 and Y > 0, the Y-approximate AggDurablePair-SUM problem
can be solved in𝑂 (𝑛 log

3 𝑛+ (𝑛+OUT) ·Y−𝑂 (𝜌) log
2 𝑛) time, where 𝑛 = |𝑃 |, 𝜌 is the doubling dimension

of 𝑃 , and OUT is the number of pairs reported.

5.2 UNION
Solving the general AggDurablePair-UNION problem is challenging because of the inherent hard-

ness of computing the union of intervals that intersect a query interval, i.e., we cannot design an

efficient primitive for UNION as the ComputeSumD primitive for SUM. In practice, even if the size

of the witness set 𝑈 is large, a smaller subset of𝑈 may be all that is required for its union to reach

the durability parameter. With this observation, we approach the problem by designing an algo-

rithm whose performance depends on ^ , a constraint on the size of the witness set. More precisely,

given a durability parameter 𝜏 > 0 and a positive integer ^ ∈ Z+, we say a pair (𝑝1, 𝑝2) ∈ 𝑃 × 𝑃
is (𝜏, ^)-UNION-durable if 𝜙 (𝑝1, 𝑝2) ≤ 1 and there exists 𝑈 ⊆ {𝑢 ∈ 𝑃 | 𝜙 (𝑝1, 𝑢), 𝜙 (𝑝2, 𝑢) ≤ 1}
such that |𝑈 | ≤ ^ and |⋃𝑢∈𝑈 𝐼 (𝑢, 𝑝1, 𝑝2) | ≥ 𝜏 . An approximate version is defined by replacing

the distance constraint ≤ 1 with ≤ 1 + Y. We present an �̃� ((𝑛 + OUT) · ^Y−𝑂 (𝜌))-time algorithm

for OUT ∈
[
|𝐾𝜏,𝑘 |,

��𝐾Y(1−1/𝑒)𝜏,^
��]
, with 𝐾𝜏,^ denoting the set of (𝜏, ^)-UNION durable pairs and

𝐾Y(1−1/𝑒)𝜏,^ denoting the set of ((1 − 1/𝑒)𝜏, ^)-UNION durable Y-pairs.

(𝜏, ^)-UNION-durable pair. Next, we focus on finding (𝜏, ^)-UNION-durable pairs for some

known ^, which should work well in practical cases where a handful of witness points are able to

provide sufficient coverage for the pair. The overall algorithm has the high-level idea of leveraging

the space decomposition as the AggDurablePair-SUM case in Section 5.1, but it requires a primitive

different from ComputeSumD and a different way of invoking this primitive across witness subsets.

High-level Idea. Given a set of intervals I and a target interval 𝐽 , our approach is to find a

subset of intervals 𝑋 ⊆ I of size ^ that maximizes the UNION-durability with respect to 𝐽 , namely�� ⋃
𝐼 ∈𝑋 (𝐼 ∩ 𝐽)

��
(to compare with 𝜏). There is an apparent connection to the maximum ^-coverage

problem, where given a family of sets over a set of elements, we want to choose ^ sets to cover the

maximum number of elements. Here, we can regard each set as 𝐼 ∩ 𝐽 for each 𝐼 ∈ I, and the goal is

to choose ^ such sets to cover as much of 𝐽 as possible. The standard greedy algorithm gives an

(1 − 1/𝑒)-approximation for this problem [32], which inspires us to follow a similar approach. We

leave details on data structures, pseudocode, correctness and complexity analysis to Appendix D.

Our greedy approach chooses one interval at time to cover 𝐽 , and the choice is always the one that

maximizes the resulting increase in coverage. In more detail, let 𝑋 ⊆ I denote the set of intervals

already chosen, which leaves 𝐽 \⋃𝐼 ∈𝑋 𝐼 , the uncovered parts of 𝐽 , as a set 𝑌 of intervals. Consider

the pair (𝐼𝑥 , 𝐼𝑦), where 𝐼𝑥 ∈ I \ 𝑋 , and 𝐼𝑦 ∈ 𝑌 , with the largest overlap, i.e., 𝐼𝑥 ∩ 𝐼𝑦 ; we greedily
choose 𝐼𝑥 as the next interval to cover 𝐽 .

To implement this greedy approach efficiently, we build a data structure D∪ similarly as DΣ
in

Section 5.1.D∪ uses a different variant of the interval tree IT∪, which, given a query interval 𝐽 , finds
the indexed interval with the largest overlap with 𝐽 . The overall algorithm reports all (𝜏, ^)-UNION
durable pairs for each anchor point 𝑝 by querying D∪, and for each candidate (𝑝, 𝑞), performs the

greedy choice 𝑘 times to compute the UNION-durability of (𝑝, 𝑞). Each greedy choice involves

querying the IT∪ structures for the 𝑂 (Y−𝑂 (𝜌) log
2 𝑛) canonical subsets of witness points; some

additional elementary data structures help ensure that the greedy algorithm takes𝑂
(
^Y−𝑂 (𝜌) log

2 𝑛
)

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:18 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

time. In Appendix D, we show that the overall time is 𝑂
(
𝑛 log

3 𝑛 + (𝑛 +OUT) · Y−𝑂 (𝜌)^ log
2 𝑛

)
,

where |𝐾𝜏,^ | ≤ OUT ≤
���𝐾Y(1−1/𝑒)𝜏,^

���. Putting everything together, we obtain:

Theorem 5.2. Given (𝑃, 𝜙, 𝐼), 𝜏 > 0, Y > 0, and integer^ ∈ Z+, the Y-approximateAggDurablePair-
UNION problem can be solved in 𝑂 (𝑛 log

3 𝑛 + (𝑛 + OUT) · Y−𝑂 (𝜌)^ log
2 𝑛) time, where 𝑛 = |𝑃 |, 𝜌 is

the doubling dimension of 𝑃 , and OUT is the number of pairs reported.

6 RELATEDWORK
In database and data mining, there is a large body of literature on finding patterns in temporal

graphs [6, 26, 30, 39, 40, 48, 53]. Hu et al. [33] studied the problem of computing temporal join

queries efficiently; the problem of finding durable triangles is a special case of the problem they

studied with self-joins. While [33, 53] have provable guarantees, the algorithms are expensive,

requiring time super-linear in the number of edges to report all durable triangles. Recently, Deng

et al. [19] proposed algorithms to report or count triangles (and other simple patterns) in time

super-linear in the graph size. In contrast, we work with an implicit representation of the proximity

graph and design algorithms that run in time near-linear in the number of nodes and output size.

There is another line of work in computational geometry on detecting triangles and other

simple patterns in intersection graphs. Eppstein and Erickson [22] gave an 𝑂 (𝑛 log𝑛) algorithm
to detect if an intersection graph consisting of unit balls in R𝑑 has a constant clique. Kaplan et

al. [36] can detect a triangle in a unit-disk graph in R2
in 𝑂 (𝑛 log𝑛) time where edges can be

weighted. The approach in [14] can detect in �̃� (𝑛𝑑/2) time if a clique of constant size exists in an

intersection graph of general boxes in R𝑑 . Chan [15] recently improved the results on detecting

cliques, cycles, and other simple patterns in intersection graphs, where the nodes are boxes, general

fat objects in R𝑑 , or segments in R2
, and two nodes are connected if the corresponding objects

intersect. For example, if nodes are fat objects, their algorithm can detect a constant cycle or clique

in 𝑂 (𝑛 log𝑛) time. The problems we focus on in this paper have major differences with this line of

work: (i) previous methods only worked for detecting whether a pattern exists, while our goal is to

report all patterns; (ii) all previous works focused on non-temporal graphs, while we consider the

more challenging temporal graphs, where nodes have lifespans; (iii) we additionally considered an

incremental reporting setting to support queries with different parameters.

The notion of durability has been studied in other queries, such as durable top-𝑘 queries [27, 28]

and durability prediction [29]. It also has been studied in computational topology, where the goal

is to compute “persistent” (durable) topological features; see [20, 21].

7 CONCLUSION
In this paper, we have studied the problem of reporting durable patterns in proximity graphs. We

work with an implicit representation of the input graph, and propose efficient algorithms that

run in near-linear time in the number of nodes, under any general metric with bounded doubling

dimension. For future work, we believe that some of our algorithms and data structures can also

be used for counting durable patterns in near-linear time (instead of reporting them). Second,

while we have focused on simple patterns such as triangles and paths, it would be interesting

to explore near-linear time algorithms for more general and complex patterns. Third, we have

considered only the case when nodes have lifespans but otherwise remain stationary; one could

further consider the case when their positions change over time (hence inducing also lifespans on

edges). A possible direction is to use kinetic data structures to maintain the evolving graph topology.

Finally, a challenging question is whether we can extend our approach to a general graph already

with an explicit representation, but without first computing an embedding.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:19

REFERENCES
[1] Doubling dimension in real-world graphs. https://slideplayer.com/slide/5331329/. Accessed: 2023-04-24.

[2] A. Abboud and V. V. Williams. Popular conjectures imply strong lower bounds for dynamic problems. In FOCS, pages
434–443. IEEE, 2014.

[3] P. K. Agarwal, X. Hu, S. Sintos, and J. Yang. Dynamic enumeration of similarity joins. In 48th International Colloquium
on Automata, Languages, and Programming (ICALP 2021), 2021.

[4] P. K. Agarwal, X. Hu, S. Sintos, and J. Yang. On reporting durable patterns in temporal proximity graphs. https:

//arxiv.org/abs/2403.16312, 2024.

[5] N. Alon, T. Kaufman, M. Krivelevich, and D. Ron. Testing triangle-freeness in general graphs. SIAM Journal on Discrete
Mathematics, 22(2):786–819, 2008.

[6] M. Araujo, S. Günnemann, S. Papadimitriou, C. Faloutsos, P. Basu, A. Swami, E. E. Papalexakis, and D. Koutra. Discovery

of “comet” communities in temporal and labeled graphs com2. Knowledge and Information Systems, 46(3):657–677,
2016.

[7] C. Berkholz, J. Keppeler, and N. Schweikardt. Answering conjunctive queries under updates. In proceedings of the 36th
ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database systems, pages 303–318, 2017.

[8] A. Beygelzimer, S. Kakade, and J. Langford. Cover trees for nearest neighbor. In Proceedings of the 23rd international
conference on Machine learning, pages 97–104, 2006.

[9] A. Björklund, R. Pagh, V. V. Williams, and U. Zwick. Listing triangles. In International Colloquium on Automata,
Languages, and Programming, pages 223–234. Springer, 2014.

[10] M. Borassi, A. Epasto, S. Lattanzi, S. Vassilvitskii, and M. Zadimoghaddam. Better sliding window algorithms to

maximize subadditive and diversity objectives. In Proceedings of the 38th ACM SIGMOD-SIGACT-SIGAI Symposium on
Principles of Database Systems, pages 254–268, 2019.

[11] N. H. Bshouty, Y. Li, and P. M. Long. Using the doubling dimension to analyze the generalization of learning algorithms.

Journal of Computer and System Sciences, 75(6):323–335, 2009.
[12] H. Cai, V. W. Zheng, and K. C.-C. Chang. A comprehensive survey of graph embedding: Problems, techniques, and

applications. IEEE transactions on knowledge and data engineering, 30(9):1616–1637, 2018.
[13] T. M. Chan. Optimal partition trees. Discrete & Computational Geometry, 47(4):661–690, 2012.
[14] T. M. Chan. Klee’s measure problem made easy. In 2013 IEEE 54th annual symposium on foundations of computer

science, pages 410–419. IEEE, 2013.
[15] T. M. Chan. Finding triangles and other small subgraphs in geometric intersection graphs. In Proceedings of the 2023

Annual ACM-SIAM Symposium on Discrete Algorithms (SODA), pages 1777–1805. SIAM, 2023.

[16] J. Chen. Algorithmic graph embeddings. Theoretical Computer Science, 181(2):247–266, 1997.
[17] P. Cunningham and S. J. Delany. k-nearest neighbour classifiers-a tutorial. ACM computing surveys (CSUR), 54(6):1–25,

2021.

[18] M. Damian, S. Pandit, and S. Pemmaraju. Distributed spanner construction in doubling metric spaces. In Principles of
Distributed Systems: 10th International Conference, OPODIS 2006, Bordeaux, France, December 12-15, 2006. Proceedings 10,
pages 157–171. Springer, 2006.

[19] S. Deng, S. Lu, and Y. Tao. Space-query tradeoffs in range subgraph counting and listing. In 26th International
Conference on Database Theory (ICDT 2023). Schloss-Dagstuhl-Leibniz Zentrum für Informatik, 2023.

[20] T. K. Dey and Y. Wang. Computational topology for data analysis. Cambridge University Press, 2022.

[21] H. Edelsbrunner and J. L. Harer. Computational topology: an introduction. American Mathematical Society, 2022.

[22] D. Eppstein and J. Erickson. Iterated nearest neighbors and finding minimal polytopes. Discrete & Computational
Geometry, 11(3):321–350, 1994.

[23] J. Erickson. Static-to-dynamic transformations. http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-

statictodynamic.pdf.

[24] E. Facco, M. d’Errico, A. Rodriguez, and A. Laio. Estimating the intrinsic dimension of datasets by a minimal

neighborhood information. Scientific reports, 7(1):12140, 2017.
[25] A. E. Feldmann and D. Marx. The parameterized hardness of the k-center problem in transportation networks.

Algorithmica, 82:1989–2005, 2020.
[26] M. Franzke, T. Emrich, A. Züfle, and M. Renz. Pattern search in temporal social networks. In Proceedings of the 21st

International Conference on Extending Database Technology, 2018.
[27] J. Gao, P. K. Agarwal, and J. Yang. Durable top-k queries on temporal data. Proceedings of the VLDB Endowment,

11(13):2223–2235, 2018.

[28] J. Gao, S. Sintos, P. K. Agarwal, and J. Yang. Durable top-k instant-stamped temporal records with user-specified

scoring functions. In 2021 IEEE 37th International Conference on Data Engineering (ICDE), pages 720–731. IEEE, 2021.
[29] J. Gao, Y. Xu, P. K. Agarwal, and J. Yang. Efficiently answering durability prediction queries. In Proceedings of the 2021

International Conference on Management of Data, pages 591–604, 2021.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

https://slideplayer.com/slide/5331329/
https://arxiv.org/abs/2403.16312
https://arxiv.org/abs/2403.16312
http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-statictodynamic.pdf
http://jeffe.cs.illinois.edu/teaching/datastructures/notes/01-statictodynamic.pdf

81:20 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

[30] M.-G. Gong, L.-J. Zhang, J.-J. Ma, and L.-C. Jiao. Community detection in dynamic social networks based on multiob-

jective immune algorithm. Journal of computer science and technology, 27(3):455–467, 2012.
[31] S. Har-Peled and M. Mendel. Fast construction of nets in low dimensional metrics, and their applications. In Proceedings

of the twenty-first annual symposium on Computational geometry, pages 150–158, 2005.
[32] D. S. Hochbaum. Approximating covering and packing problems: set cover, vertex cover, independent set, and related

problems. In Approximation algorithms for NP-hard problems, pages 94–143. 1996.
[33] X. Hu, S. Sintos, J. Gao, P. K. Agarwal, and J. Yang. Computing complex temporal join queries efficiently. In Proceedings

of the 2022 International Conference on Management of Data, pages 2076–2090, 2022.
[34] M. Idris, M. Ugarte, and S. Vansummeren. The dynamic yannakakis algorithm: Compact and efficient query processing

under updates. In Proceedings of the 2017 ACM International Conference on Management of Data, pages 1259–1274, 2017.
[35] A. Itai and M. Rodeh. Finding a minimum circuit in a graph. In Proceedings of the ninth annual ACM symposium on

Theory of computing, pages 1–10, 1977.
[36] H. Kaplan, K. Klost, W. Mulzer, L. Roditty, P. Seiferth, and M. Sharir. Triangles and girth in disk graphs and transmission

graphs. In 27th Annual European Symposium on Algorithms (ESA 2019). Schloss Dagstuhl-Leibniz-Zentrum fuer

Informatik, 2019.

[37] N. Kumar, L. Zhang, and S. Nayar. What is a good nearest neighbors algorithm for finding similar patches in images?

In Computer Vision–ECCV 2008: 10th European Conference on Computer Vision, Marseille, France, October 12-18, 2008,
Proceedings, Part II 10, pages 364–378. Springer, 2008.

[38] A. Kutuzov, M. Dorgham, O. Oliynyk, C. Biemann, and A. Panchenko. Making fast graph-based algorithms with graph

metric embeddings. In ACL 2019-57th Annual Meeting of the Association for Computational Linguistics, Proceedings of
the Conference, pages 3349–3355, 2020.

[39] Y.-R. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. Facetnet: a framework for analyzing communities and their

evolutions in dynamic networks. In Proceedings of the 17th international conference on World Wide Web, pages 685–694,
2008.

[40] G. Locicero, G. Micale, A. Pulvirenti, and A. Ferro. Temporalri: a subgraph isomorphism algorithm for temporal

networks. In Complex Networks & Their Applications IX: Volume 2, Proceedings of the Ninth International Conference on
Complex Networks and Their Applications COMPLEX NETWORKS 2020, pages 675–687. Springer, 2021.

[41] d. B. Mark, C. Otfried, v. K. Marc, and O. Mark. Computational geometry algorithms and applications. Spinger, 2008.
[42] T. E. Ng and H. Zhang. Predicting internet network distance with coordinates-based approaches. In Proceedings.

Twenty-First Annual Joint Conference of the IEEE Computer and Communications Societies, volume 1, pages 170–179.

IEEE, 2002.

[43] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. Journal of the ACM (JACM), 65(3):1–40,
2018.

[44] M. Overmars and J. van Leeuwen. Worst-case optimal insertion and deletion methods for decomposable searching

problems. Inf. Process. Lett., 12(4):168–173, 1981.
[45] M. H. Overmars. The design of dynamic data structures, volume 156. Springer Science & Business Media, 1987.

[46] M. Patrascu. Towards polynomial lower bounds for dynamic problems. In Proceedings of the forty-second ACM
symposium on Theory of computing, pages 603–610, 2010.

[47] P. Pope, C. Zhu, A. Abdelkader, M. Goldblum, and T. Goldstein. The intrinsic dimension of images and its impact on

learning. In 9th International Conference on Learning Representations, ICLR 2021, Virtual Event, Austria, May 3-7, 2021,
2021.

[48] K. Semertzidis and E. Pitoura. Durable graph pattern queries on historical graphs. In 2016 IEEE 32nd International
Conference on Data Engineering (ICDE), pages 541–552. IEEE, 2016.

[49] J. B. Tenenbaum, V. d. Silva, and J. C. Langford. A global geometric framework for nonlinear dimensionality reduction.

science, 290(5500):2319–2323, 2000.
[50] T. L. Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join algorithm. In Proc. International Conference on

Database Theory, 2014.
[51] K. Verbeek and S. Suri. Metric embedding, hyperbolic space, and social networks. In Proceedings of the thirtieth annual

symposium on Computational geometry, pages 501–510, 2014.
[52] J. Yang and J. Leskovec. Defining and evaluating network communities based on ground-truth. In Proceedings of the

ACM SIGKDD Workshop on Mining Data Semantics, pages 1–8, 2012.
[53] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. C. Lui. Diversified temporal subgraph pattern mining. In Proceedings

of the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pages 1965–1974, 2016.
[54] H. Zeng, H. Zhou, A. Srivastava, R. Kannan, and V. Prasanna. Accurate, efficient and scalable graph embedding. In

2019 IEEE International Parallel and Distributed Processing Symposium (IPDPS), pages 462–471. IEEE, 2019.
[55] X. Zhao, A. Sala, C. Wilson, H. Zheng, and B. Y. Zhao. Orion: shortest path estimation for large social graphs. networks,

1:5, 2010.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:21

[56] X. Zhao, A. Sala, H. Zheng, and B. Y. Zhao. Efficient shortest paths on massive social graphs. In 7th International
Conference on Collaborative Computing: Networking, Applications and Worksharing (CollaborateCom), pages 77–86.
IEEE, 2011.

A COVER TREE FOR BALL REPORTING QUERIES
We consider the case where the doubling dimension is constant or the expansion constant is

bounded by a constant. Furthermore, we assume that the spread of the items 𝑃 is bounded by a

polynomial on 𝑛. Given a query item 𝑞 and an error threshold Y the goal is to find a family of sets

𝐶 = {𝐶1, . . . ,𝐶𝑚}, with𝑚 = 𝑂 (Y−𝑂 (𝜌)), such that 𝐶𝑖 ⊆ 𝑃 , 𝐶𝑖 ∩𝐶 𝑗 = ∅, for every item 𝑝 ∈ 𝑃 with

𝜙 (𝑝, 𝑞) ≤ 1, 𝑝 ∈ 𝐶 𝑗 , for an index 𝑗 ≤ 𝑚, and for every point 𝑝 ∈ ⋃𝑖≤𝑚𝐶𝑖 it holds that 𝜙 (𝑝, 𝑞) ≤ 1+Y.
Finally we require that the distance of any pair of items inside 𝐶𝑖 to be at most Y. When the spread

is bounded, the cover tree consists of𝑂 (log𝑛) levels. Assume that the root has the highest level and

the leaf nodes has the lowest level. Each node 𝑣 in the cover tree is associated with a representative

point Rep𝑣 ∈ 𝑃 . For each node 𝑣 in level 𝑖 of the cover tree it holds that: (i) If 𝑢 is another node

in level 𝑖 then 𝜙 (Rep𝑣,Rep𝑢) > 2
𝑖
. (ii) If 𝑣 is not the root node, it always has a parent 𝑤 in level

𝑖 + 1. It holds that 𝜙 (Rep𝑣,Rep𝑤) < 2
𝑖+1

. (iii) If 𝑣 is not a leaf node, 𝑣 has always a child 𝑤 such

that Rep𝑣 = Rep𝑤 . Assuming that the doubling dimension is 𝜌 we have that each node 𝑣 of the

cover tree has 𝑂 (2𝑂 (𝜌)) = 𝑂 (1) children. The same, constant bound, holds for bounded expansion

constant. The standard cover tree has space 𝑂 (𝑛) and can be constructed in 𝑂 (𝑛 log𝑛) time [8, 31].

Notice that every node in the lowest level contains one item from 𝑃 and each item in 𝑃 appears

in one leaf node. Let 𝑃𝑣 be the set of points stored in (the leaf nodes of) the subtree rooted at node

𝑣 . We do not explicitly store 𝑃𝑣 in every node 𝑣 of the cover tree. Instead, for every node 𝑣 we add a

pointer to the leftmost leaf node in the subtree rooted at 𝑣 . If we also link all the leaf nodes, given a

node 𝑣 , we can report all points in 𝑃𝑣 following the pointers, in 𝑂 (|𝑃𝑣 |) time. Our modified cover

tree has space𝑂 (𝑛) and can be constructed in𝑂 (𝑛 log𝑛) time. For each node 𝑣 in level 𝑖 , let 𝑟𝑣 = 2
𝑖

be its separating radius and 𝑒𝑣 = 2
𝑖+1

be its covering radius.

Lemma A.1. If 𝑝 ∈ 𝑃𝑣 , 𝜙 (𝑝, Rep𝑣) < 𝑒𝑣 .

Proof. It follows by induction on the level of the tree. In the leaf nodes it holds trivially. We

assume that it holds for all nodes in level 𝑖 − 1. We show that it holds for every node at level 𝑖 . Let 𝑣

be a node at level 𝑖 . By definition we have that if𝑤 is a child of 𝑣 then 𝜙 (Rep𝑣,Rep𝑤) < 𝑟𝑣 . By the

induction assumption, if 𝑝 ∈ 𝑃𝑤 it holds that 𝜙 (𝑝,Rep𝑤) < 𝑒𝑤 , so 𝜙 (𝑝,Rep𝑣) ≤ 𝜙 (Rep𝑣,Rep𝑤) +
𝜙 (𝑝,Rep𝑤) < 𝑟𝑣 + 𝑒𝑤 = 2

𝑖+1 = 𝑒𝑣 . □

Query procedure. Given a query point 𝑞 and an error threshold Y, we start the query procedure in

the modified cover tree we constructed above. In each level 𝑖 we visit the nodes 𝑣 such that 𝑟𝑣 > 1

and 𝜙 (𝑞,Rep𝑣) ≤ 1 + 𝑒𝑣 . Let 𝑉𝑖 be the nodes in level 𝑖 we visit such that 𝑟𝑣 = 1 for 𝑣 ∈ 𝑉𝑖 . Then
we consider each of the node 𝑣 ∈ 𝑉𝑖 and we get all nodes 𝑢 in the subtree of 𝑣 with 𝑟𝑢 = Y/4. Let
𝐶 ′ be the set of all nodes 𝑢 we found. We go through each node 𝑤 ∈ 𝐶 ′ and we check whether

𝜙 (𝑞,Rep𝑤) ≤ 1 + Y/2. If yes, then we add 𝑃𝑤 in 𝐶 . Otherwise, we skip it.

Correctness. Let 𝑝 ∈ 𝑃 be an item such that 𝜙 (𝑞, 𝑝) ≤ 1. We need to show that 𝑝 belongs in a set

in 𝐶 . Let 𝑖 be the level of the node 𝑣 such that 𝑝 ∈ 𝑃𝑣 and 𝑟𝑣 = 1. Since 𝜙 (𝑞, 𝑝) ≤ 1 it also holds that

𝜙 (𝑞,Rep𝑣) ≤ 𝜙 (𝑞, 𝑝) + 𝜙 (𝑝,Rep𝑣) ≤ 1 + 𝑒𝑣 . Hence, we will visit node 𝑣 in the query procedure and

we will add it in set𝑉𝑖 . Since 𝑝 ∈ 𝑃𝑣 and 𝑣 ∈ 𝑉𝑖 , by definition, item 𝑝 lies in one of the nodes𝑤 in𝐶 ′.
We have 𝜙 (𝑞,Rep𝑤) ≤ 𝜙 (𝑞, 𝑝) +𝜙 (𝑝,Rep𝑤) ≤ 1+Y/2. So we will keep𝑤 in𝐶 . Finally, notice that for

each 𝑝 ∈ 𝑃𝑤 for a node𝑤 in 𝐶 , we have 𝜙 (𝑞, 𝑝) ≤ 𝜙 (𝑞,Rep𝑤) + 𝜙 (𝑝,Rep𝑤) ≤ 1 + Y/2 + Y/2 ≤ 1 + Y.
So the query procedure is correct.

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:22 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

Time Complexity. We first bound the number of nodes 𝑣 we visit in level 𝑖 with 𝑟𝑣 = 1. Recall

that we only consider 𝑣 if 𝜙 (𝑞,Rep𝑣) ≤ 1 + 𝑒𝑣 ≤ 3. Equivalently, we can think of a ball B of radius

3 and center 𝑞. Each node 𝑣 defines a ball B𝑣 with center Rep𝑣 and radius 1. Also notice that the

centers of any two balls B𝑣,B𝑢 have distance at least 1. The number of nodes we visit in level 𝑖 is

the same as the number of balls B𝑣 that intersect B. Using the bounded doubling dimension, it

is easy to argue that ball B of radius 3 can be covered by at most 𝑂 (2𝑂 (𝜌)) = 𝑂 (1) balls of radius
1 (a similar argument holds for bounded expansion constant). Hence, we can argue that in each

level above 𝑖 we only visit𝑂 (1) number of nodes. So in total we visit𝑂 (log𝑛) nodes until we reach
level 𝑖 with 2

𝑖 = 1. Next, since the doubling dimension is 𝜌 each node can have 𝑂 (2𝑂 (𝜌)) children.
It follows that the number of nodes we visit with 𝑟𝑢 = Y/4 in the subtree of any node 𝑣 (with 𝑟𝑣 = 1)

in 𝐶 ′ is 𝑂 (Y−𝑂 (𝜌)). Overall, the query time is 𝑂 (log𝑛 + Y−𝑂 (𝜌)).

B DYNAMIC SETTING
In this setting, we assume that we do not know the point set 𝑃 upfront. We start with an empty

point set 𝑃 ′ = ∅, and some input parameters 𝜏, Y. The goal is to construct a data structure such

that, if all points are inserted and deleted according to their lifespans, it supports the following

operations: i) if a point is deleted the data structure is updated efficiently, and ii) if a point 𝑝 is

inserted, the data structure is updated efficiently and 𝜏-durable triangles (if any) of the form (𝑝, 𝑞, 𝑠)
are reported such that 𝐼−𝑝 ≥ max{𝐼−𝑞 , 𝐼−𝑠 } along with some 𝜏-durable Y-triangles that contain 𝑝 . We

call it the DynamicOffDurable problem.

We note that the data structure we need in this dynamic setting is a dynamic version of D.

In particular, we slightly modify the standard techniques to convert our static data structure to a

dynamic one with amortized update guarantees [23, 44, 45].

We call the new dynamic data structure Ddyn
. Let 𝑃 ′ be the current instance of 𝑂 (𝑛) “active”

points.Ddyn
consists of𝐾 = 𝑂 (log𝑛) subsets of points𝐺1, . . . ,𝐺𝐾 such that for each 𝑖 ≤ 𝐾 ,𝐺𝑖 ⊆ 𝑃 ′

and

⋃
𝑖≤𝐾 𝐺𝑖 = 𝑃

′
. For each 𝑖 ≤ 𝐾 , we have a static data structure D, called D𝑖

, over 𝐺𝑖 . It holds

that for each 𝑖 ≤ 𝐾 , |𝐺𝑖 | is either 2
𝑖
or 0. The total space of the data structure is 𝑂 (𝑛 log𝑛).

Assume that we have to remove 𝑝 ∈ 𝑃 . We identify the group 𝑖 such that 𝑝 ∈ 𝐺𝑖 . We also

identify the leaf node 𝑢 of the cover tree T𝑖 that 𝑝 belongs to. Both of these operations can easily be

executed in 𝑂 (log𝑛) time with some auxiliary data structures. Then we traverse T𝑖 from 𝑢 to the

root removing 𝑝 from the linked interval trees. Notice that the structure of D𝑖
does not change,

instead only the information stored in the nodes of the interval trees containing 𝑝 are updated.

Next, assume that a new point 𝑝 is inserted at time 𝐼−𝑝 . We first place 𝑝 in a temporary min

heap 𝐻 with value 𝐼−𝑝 + 𝜏 (the time instance that 𝑝 can participate in 𝜏-durable triangles). When

we reach time 𝐼−𝑝 + 𝜏 , we derive 𝑝 from 𝐻 . At this point 𝑝 is an active point for time more than

𝜏 . We insert 𝑝 in Ddyn
as follows. We find the smallest 𝑖 such that 𝐺𝑖 = ∅. We move all points

𝐴 =
⋃
𝑗<𝑖 𝐺 𝑗 into𝐺𝑖 and construct D𝑖

over 𝐴 ∪ {𝑝}. At this point, we also need run a query to find

all 𝜏-durable triangles that contain 𝑝 (having 𝐼−𝑝 as the largest left endpoint). We run the offline

query durableBallQ𝑖 (𝑝, 𝜏, Y/2) in each D𝑖
with 𝐺𝑖 ≠ ∅. As we had in the offline case, for each 𝑖

we get a set of 𝑂 (Y−𝜌) canonical nodes of the cover tree. Each canonical node corresponds a ball

of radius at most Y/4. In the dynamic case there are in total 𝑂 (Y−𝜌 log𝑛) canonical nodes, since
there are 𝑂 (log𝑛) groups. In order to find the durable triangles, we run Algorithm 1 from the

offline case considering𝑂 (Y−𝜌 log𝑛) canonical nodes instead of𝑂 (Y−𝜌). Hence, the running time is

𝑂 (Y−𝜌 log
3 𝑛 + OUT𝑝), where OUT𝑝 is the number of 𝜏-durable triangles anchored by 𝑝 (with 𝐼−𝑝

being the largest left endpoint) along with a number of additional 𝜏-durable Y-triangles anchored

by 𝑝 . Equivalently, we can argue that OUT𝑝 is the 𝜏-durable triangles that 𝑝 participates in at the

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:23

moment 𝐼−𝑝 + 𝜏 along with some additional 𝜏-durable Y-triangles that 𝑝 participates in. Finally, we

re-construct Ddyn
from scratch after 𝑛/2 updates.

Following the analysis in [23, 44, 45] and observing that each point can change at most𝑂 (log𝑛)
groups and the construction time of the offline D is 𝑂 (𝑛 log

2 𝑛), we have that the insertion of a

point takes 𝑂 (log
3 𝑛) amortized time. The deletion takes 𝑂 (log

2 𝑛) time.

Theorem B.1. Given (𝑃, 𝜙, 𝐼), 𝜏 > 0, and Y > 0, Y-approximate DynamicOffDurable can be solved
using a data structure of 𝑂 (𝑛 log𝑛) space, 𝑂 (log

3 𝑛) amortized update time, and 𝑂 (Y𝑂 (−𝜌) log
3 𝑛 +

OUT𝑝) time to report all new 𝜏-durable triangles (along with some Y-triangles) anchored by 𝑝 , where
OUT𝑝 is the output size after inserting point 𝑝 , where 𝑛 = |𝑃 |, and 𝜌 is the doubling dimension of 𝑃 .

C EXTENSIONS
We show how we can extend our results in any ℓ𝛼 norm and we describe how to report other

patterns (except of triangles) of constant size. Furthermore, we show how to report all durable star

patterns. While we only describe the results in the offline setting, all of them can be extended to

the online setting using the approach as shown in Section 4.

C.1 ℓ𝛼 metric
In order to find all 𝜏-durable triangles in any ℓ𝛼 metric we use a quadtree T instead of a cover tree

over the input points 𝑃 . Each node𝑢 of the cover tree is associated with a square □𝑢 . Let 𝑃𝑢 −𝑃 ∩□𝑢 .
Given a point 𝑝 ∈ 𝑃 we find a set of 𝑂 (log𝑛 + Y−𝑑) canonical nodes 𝐶 in T such that for every

𝑢 ∈ 𝐶 , the diameter of □𝑢 is at most Y/2 and | |𝑝 − □𝑢 | |𝛼 ≤ 1 + Y/4. Using the same procedure we

followed for constant doubling dimensions over the canonical subsets C𝑝 , we obtain:

Theorem C.1. Given (𝑃, 𝜙, 𝐼), Y > 0, and 𝜏 > 0, where 𝑃 is a set of 𝑛 points in R𝑑 and 𝜙 is any
ℓ𝛼 norm, the Y-approximate DurableTriangle can be solved in 𝑂

(
𝑛(Y−𝑑 log𝑛 + Y−2·𝑑 + log

2 𝑛) + OUT
)

time, where OUT is the number of triangles reported, satisfying |𝑇𝜏 | ≤ OUT ≤ |𝑇 Y𝜏 |.

C.2 Other patterns
In this subsection we show how we can extend the offline algorithm to report i) durable cliques of

constant size, ii) durable paths of constant size, and iii) durable 𝑘-star patters. The algorithms can

also be extended to handle incremental queries, similarly to 𝑡𝑎𝑢-durable triangles.

Cliques. Let 𝑆 ⊆ 𝑃 be a subset of points. 𝑆 is a 𝜏-durable𝑚-clique if i) |𝑆 | =𝑚, ii) for every pair

𝑝, 𝑞 ∈ 𝑆 × 𝑆 , 𝜙 (𝑝, 𝑞) ≤ 1, and iii) | ∩𝑝∈𝑆 𝐼𝑝 | ≥ 𝜏 . Similarly, 𝑆 is called a 𝜏-durable Y-𝑚-clique if i, iii

remain the same and for every pair 𝑝, 𝑞 ∈ 𝑆 × 𝑆 , 𝜙 (𝑝, 𝑞) ≤ 1 + Y.
We consider that 𝑚 = 𝑂 (1). The algorithm to report all 𝜏-durable 𝑚-cliques is similar to

Algorithm 1. The only difference is that instead of considering all pairs C𝑝,𝑖 , C𝑝,𝑗 of the nodes

in the cover tree, we consider all possible subsets of size𝑚. Let C𝑝,𝑗1 , . . . , C𝑝,𝑗𝑚 be the family of

𝑚 subsets. If all pairwise distances among the representative points are at most 1 + Y/2 then we

report all𝑚-cliques C𝑝,𝑗1 × . . . × C𝑝,𝑗𝑚 . The correctness follows straightforwardly from Section 3. In

particular we report all 𝜏-durable𝑚-cliques and we might also report a few 𝜏-durable Y-𝑚-cliques.

The running time is also asymptotically the same with Algorithm 1.

Paths. Let 𝑆 ⊆ 𝑃 be a subset of points. 𝑆 is a 𝜏-durable𝑚-path if i) |𝑆 | =𝑚, ii) there is an ordering

of the points such that the distance of two consecutive points is at most 1, and iii) | ∩𝑝∈𝑆 𝐼𝑝 | ≥ 𝜏 .
Similarly, 𝑆 is called a 𝜏-durable Y-𝑚-path if i), iii) remain the same, and the distance between

consecutive points is at most 1 + Y.
We consider that 𝑚 = 𝑂 (1). The algorithm to report all 𝜏-durable 𝑚-cliques is similar to

Algorithm 1. The only difference is that instead of considering all pairs C𝑝,𝑖 , C𝑝,𝑗 of the nodes in the

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:24 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

cover tree, we consider all possible subsets of size𝑚. Let C𝑝,𝑗1 , . . . , C𝑝,𝑗𝑚 be the family of𝑚 subsets.

We try all possible 𝑂 (𝑚!) = 𝑂 (1) orderings and we check if we find an ordering C𝑝,𝑗1 , . . . , C𝑝,𝑗𝑚
such that 𝜙 (Rep𝑗1 ,Rep𝑗2) ≤ 1+Y/2, 𝜙 (Rep𝑗2 ,Rep𝑗3) ≤ 1+Y/2, . . .𝜙 (Rep𝑗𝑚−1

,Rep𝑗𝑚) ≤ 1+Y/2. If this
is true then we report all𝑚-paths C𝑝,𝑗1 × . . .×C𝑝,𝑗𝑚 . The correctness follows straightforwardly from
Section 3. In particular we report all 𝜏-durable𝑚-paths and we might also report a few 𝜏-durable

Y-𝑚-paths. The running time is also asymptotically the same with Algorithm 1.

𝑘-star patterns. Let 𝑆 ⊆ 𝑃 be a subset of points. 𝑆 is a 𝜏-durable𝑚-star if i) |𝑆 | =𝑚, ii) there is a

central point 𝑝 ∈ 𝑆 such that 𝜙 (𝑝, 𝑞) ≤ 1 for every other 𝑞 ∈ 𝑆 , and iii) | ∩𝑝∈𝑆 𝐼𝑝 | ≥ 𝜏 . Similarly, 𝑆 is

called a 𝜏-durable Y-𝑚-star if i), iii) remain the same, and the distance between 𝑝 and any other

point in 𝑆 is at most 1 + Y.
We consider that 𝑚 = 𝑂 (1). The algorithm to report all 𝜏-durable 𝑚-cliques is similar to

Algorithm 1. For each point 𝑝 ∈ 𝑃 , we run a query durableBallQ (𝑝, 𝜏, Y/2), but instead of querying

points within distance 1 from 𝑝 , i.e., points in ball B(𝑝, 1), we query pints within distance 2 from

𝑝 , i.e., points in ball B(𝑝, 2). We need that change because 𝑝 might belong to an𝑚-star pattern 𝑆

having the largest left endpoint 𝐼−𝑝 ≥ max𝑞∈𝑆 𝐼−𝑞 , while not being the central point. In this case, it is

always true that 𝑆 ⊆ 𝑃 ∩ B(𝑝, 2). Hence, we get C𝑝 = {C𝑝,1, . . . , C𝑝,𝑘 }, for 𝑘 = 𝑂 (Y−𝑂 (𝜌)) canonical
nodes of the cover tree that approximately cover B(𝑝, 2). Then we visit each node C𝑝,𝑗 . We initialize

a counter 𝑐 = 0. For every other node C𝑝,ℎ ∈ C𝑝 we check whether 𝜙 (Rep𝑗 ,Repℎ) ≤ 1 + Y/2. If
yes then we update 𝑐 = 𝑐 + |C𝑝,ℎ |. In the end, if 𝑐 > 𝑚 there exist |C𝑝,𝑗 |,𝑚-star patterns to report.

Hence, for each point 𝑞 ∈ C𝑝,𝑗 we report 𝑞 as the central point and then we visit all nodes C𝑝,ℎ with
𝜙 (Rep𝑗 ,Repℎ) ≤ 1+ Y/2 to report all points in𝐶𝑝,ℎ . The correctness follows straightforwardly from

Section 3 and the fact that for each 𝑝 we report all𝑚-star patterns that 𝑝 belongs to (not necessarily

as the central point) having the maximum left endpoint on its corresponding temporal interval. In

particular we report all 𝜏-durable𝑚-star patterns and we might also report a few 𝜏-durable Y-𝑚-star

patterns. The running time is also asymptotically the same with Algorithm 1.

D MISSING MATERIAL IN SECTION 5
D.1 UNION

Algorithm. In Algorithm 5 we show to how to find all (𝜏, ^)-UNION durable pairs. The high

level idea follows from Algorithm 4. Instead of ITΣ, we have the primitive data structure IT∪. Given
a query interval 𝐼𝑖𝑛 the goal is to find the interval 𝐼 ∈ I such that |𝐼 ∩ 𝐼𝑖𝑛 | is maximized, where

I = {𝐼𝑝 | 𝑝 ∈ 𝑃}. This can be found using a variant of the interval tree IT∪ as follows: First, among

all intervals that intersect 𝐼−𝑖𝑛 it finds the interval 𝐼𝑎 ∈ I with the largest right endpoint. Second,

among all intervals that intersect 𝐼+𝑖𝑛 it finds the interval 𝐼𝑏 ∈ I with the smallest left endpoint.

Third, among all intervals that lie completely inside 𝐼𝑖𝑛 it finds the longest interval 𝐼𝑐 ∈ I. In the end,
we return 𝐼 ∈ {𝐼𝑎, 𝐼𝑏, 𝐼𝑐 } with the longest intersection |𝐼 ∩ 𝐼𝑖𝑛 |. Similarly to ITΣ, the data structure
IT∪ has space 𝑂 (𝑛 log𝑛), it can be constructed in 𝑂 (𝑛 log

2 𝑛) time, and given a query interval 𝐼𝑖𝑛 ,

it returns 𝐼 in 𝑂 (log
2 𝑛) time. Using IT∪, we construct D∪ similarly to DΣ

. The only difference is

that for each node in the cover tree there exist an IT∪ data structure (instead of ITΣ). The procedure
ComputeMaxUnionD(IT∪𝑝,𝑖 , 𝐼𝑖𝑛) returns the interval 𝐼𝑖 that has the largest intersection with 𝐼𝑖𝑛

and its corresponding point in 𝑃 lies in C𝑝,𝑖 .
Next, we describe the subroutineMaxIntersection(𝐼𝑖𝑛). It simply considers all canonical nodes

in C𝑝 runningComputeMaxUnionD(IT∪𝑝,𝑖 , 𝐼𝑖𝑛) for each C𝑝,𝑖 ∈ C𝑝 such that𝜙 (Rep𝑖 ,Rep𝑗) ≤ 1+Y/2.
Hence MaxIntersection(𝐼𝑖𝑛) visits all canonical nodes that are close to both 𝑝 and 𝑞, and among

these nodes C𝑝,𝑖 , it returns the interval 𝐼 = arg max𝐼𝑖
|𝐼𝑖 ∩ 𝐼𝑖𝑛 |, i.e., the interval with the largest

intersection with 𝐼𝑖𝑛 . We also notice that ComputeMaxUnionD can be easily modified so that we

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

On Reporting Durable Patterns in Temporal Proximity Graphs 81:25

Algorithm 5: ReportUNIONPair(D∪, 𝑝, 𝜏, Y, ^)
1 C𝑝 : {C𝑝,1, C𝑝,2, · · · , C𝑝,𝑘 } ← durableBallQ (𝑝, 𝜏, Y/2), with Rep𝑖 denoting the representative

point of the cover tree node for C𝑝,𝑖 , and IT∪𝑝,𝑖 denoting the annotated interval tree for this

cover tree node;

2 foreach 𝑗 ∈ [𝑘] do
3 foreach 𝑞 ∈ C𝑝,𝑗 in descending order of 𝐼+𝑞 do
4 𝐼 ′← 𝐼𝑞 ∩ 𝐼𝑞 ;
5 𝐼 ← MaxIntersection(𝐼 ′);
6 𝐻 ← newHeap({(𝐼 , 𝐼 ′, |𝐼 ∩ 𝐼 ′ |)});
7 𝑡 ← 0;

8 for ℎ = 1 . . . ^ do
9 (𝐼𝑥 , 𝐼𝑦, |𝐼𝑥 ∩ 𝐼𝑦 |) ← the top element of 𝐻 ;

10 𝑡 ← 𝑡 + |𝐼𝑥 ∩ 𝐼𝑦 |;
11 foreach 𝐼𝑧 ∈ 𝐼𝑦 \ 𝐼𝑥 do
12 𝐼 ← MaxIntersection(𝐼𝑧);
13 𝐻.insert(𝐼 , 𝐼𝑧, |𝐼 ∩ 𝐼𝑧 |);

14 if 𝑡 ≥ (1 − 1/𝑒)𝜏 then report (𝑝, 𝑞);
15 else break;

16 Subroutine MaxIntersection(𝐼𝑖𝑛) begin
17 ` ← −1;

18 𝐼 ← ∅;
19 foreach 𝑖 ∈ [𝑘] do
20 if 𝜙 (Rep𝑖 , Rep𝑗) ≤ 1 + Y

2
then 𝐼𝑖 ← ComputeMaxUnionD(IT∪𝑝,𝑖 , 𝐼𝑖𝑛);

21 if |𝐼𝑖 ∩ 𝐼𝑖𝑛 | > ` then
22 ` ← |𝐼𝑖 ∩ 𝐼𝑖𝑛 | and 𝐼 ← 𝐼𝑖 ;

23 return (𝐼);

always skip 𝐼𝑝 and 𝐼𝑞 from the procedure of finding the interval in I with the largest intersection

with 𝐼𝑖𝑛 . From the proofs in the previous sections we have that 𝜙 (𝑝, 𝑞) ≤ 1 + Y/2 while the witness

set has distance at most 1 + Y from both 𝑝 and 𝑞. Overall, MaxIntersection(𝐼𝑖𝑛) finds an interval

𝐼 = 𝐼𝑠 such that

|𝐼𝑠 ∩ 𝐼𝑖𝑛 | ≥ max

𝑠′∈𝑃 :𝜙 (𝑝,𝑠′),𝜙 (𝑞,𝑠′) ≤1

|𝐼𝑠′ ∩ 𝐼𝑖𝑛 |,

and

𝜙 (𝑝, 𝑠), 𝜙 (𝑞, 𝑠) ≤ 1 + Y.
Finally, we describe ReportUNIONPair(D∪, 𝑝, 𝜏, Y, ^). After finding C𝑝 and for each C𝑝,𝑗 we

visit 𝑞 ∈ C𝑝,𝑗 in descending order of 𝐼+𝑞 as we did in Algorithm 4. For each pair (𝑝, 𝑞) we check, we
run the greedy algorithm for the max 𝑘-coverage problem. First, we find the interval 𝐼 ∈ I that has

the largest intersection with 𝐼 ′ = 𝐼𝑝∩𝑞 . We create a max heap 𝐻 and we insert the pair (𝐼 , 𝐼 ′) with
value |𝐼 ∩ 𝐼 ′ |. Then the algorithm proceeds in ^ iterations. In each iteration, it finds the pair (𝐼𝑥 , 𝐼𝑦)
in the max heap 𝐻 with the maximum |𝐼𝑥 ∩ 𝐼𝑦 |. 𝐼𝑥 is an interval from I, while 𝐼𝑦 is an uncovered

segment of 𝐼 ′. Hence, in each iteration, it finds the interval 𝐼𝑥 that covers the largest uncovered

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

81:26 Pankaj K. Agarwal, Xiao Hu, Stavros Sintos, and Jun Yang

area of 𝐼 ′. Then we add |𝐼𝑥 ∩ 𝐼𝑦 | in variable 𝑡 that maintains the overall union the algorithm has

computed. An interval 𝐼𝑥 might split 𝐼𝑦 into two smaller uncovered segments or into one smaller

uncovered segment of 𝐼 ′. In each case, 𝐼𝑧 ⊆ 𝐼𝑦 represents one uncovered segment created after

adding 𝐼𝑥 . We run MaxIntersection(𝐼𝑧) and we find the interval 𝐼 ∈ I that covers the largest

portion of 𝐼𝑧 and we insert the pair (𝐼 , 𝐼𝑧) in max heap 𝐻 with value |𝐼 ∩ 𝐼𝑧 |. We repeat the same

procedure for ^ iteration. In the end we check whether 𝑡 ≥ (1 − 1/𝑒)𝜏 . If yes, we report the pair
(𝑝, 𝑞), otherwise we skip C𝑝,𝑗 and continue with the next canonical node. Overall, this algorithm

gives an implementation of the greedy algorithm for the max ^-coverage problem in our setting,

using efficient data structure to accelerate the running time.

Correctness. The correctness of this algorithm follows by the correctness of the greedy algorithm

for the max ^-coverage problem, the correctness of MaxIntersection(𝐼𝑖𝑛), and the correctness of

Algorithm 4. For a pair (𝑝, 𝑞) if we find that 𝑡 ≥ (1−1/𝑒)𝜏 , then (𝑝, 𝑞) is definitely an ((1−1/𝑒)𝜏, ^)-
UNION Y-pair. As we argued in Algorithm 4, assume that for a 𝑞 ∈ C𝑝,𝑗 we find that 𝑡 < (1 − 1/𝑒)𝜏 .
Then it is safe to skip C𝑝,𝑗 because there is no other (𝜏, ^)-UNION durable pair to report. Notice

that the approximation factor for the greedy algorithm is 1 − 1/𝑒 , so if the greedy implementation

returns 𝑡 < (1 − 1/𝑒)𝜏 , we are sure that the pair (𝑝, 𝑞) is not (𝜏, ^)-UNION durable. Hence, any

other 𝑤 ∈ C𝑝,𝑗 with 𝐼+𝑤 < 𝐼+𝑞 will also not be (𝜏, ^)-UNION durable. In any case, our algorithm

returns all (𝜏, ^)-UNION durable pairs and might return some additional ((1 − 1/𝑒)𝜏, ^)-UNION
durable Y pairs. Hence, it holds that |𝐾𝜏,^ | ≤ OUT ≤ |𝐾Y(1−1/𝑒)𝜏,^ |.
Time Complexity. Next, we analyze the running time of our algorithm. As pointed out, IT∪ is
constructed in 𝑂 (𝑛 log

2 𝑛) time and it finds the interval that covers the largest uncovered area of

a query interval in 𝑂 (log
2 𝑛) time. Hence, D∪ is constructed in 𝑂 (𝑛 log

3 𝑛) time. The subroutine

MaxIntersection(𝐼𝑖𝑛) callsComputeMaxUnionD(IT∪𝑝,𝑖 , 𝐼𝑖𝑛),𝑂 (Y−𝑂 (𝜌)) times. For each pair (𝑝, 𝑞)
we check, the subroutine MaxIntersection(𝐼𝑖𝑛) is called 𝑂 (^) times, while all update operations

in the max heap 𝐻 takes 𝑂 (^ log𝑛) time. For each point 𝑝 we might check at most 𝑂 (Y−𝑂 (𝜌))
pairs that are not reported, one for each canonical node in C𝑝 . Overall, Algorithm 5 runs in

𝑂 (𝑛 log
3 𝑛 + (𝑛 +OUT)Y−𝑂 (𝜌)^ log

2 𝑛) time.

Received December 2023; revised February 2024; accepted March 2024

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 81. Publication date: May 2024.

	Abstract
	1 Introduction
	1.1 Problem Definitions
	1.2 Our Results and Approach

	2 Preliminaries
	2.1 Basic concepts and data structures
	2.2 Durable ball query

	3 Reporting Durable Triangles
	4 Incremental Reporting When Varying - .4
	4.1 Reporting for each activated point
	4.2 Computing activation thresholds
	4.3 Solution summary and complexity

	5 Reporting Aggregate-Durable Pairs
	5.1 SUM
	5.2 UNION

	6 Related Work
	7 Conclusion
	References
	A Cover tree for ball reporting queries
	B Dynamic Setting
	C Extensions
	C.1 metric
	C.2 Other patterns

	D Missing Material in Section 5
	D.1 UNION

