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This paper studies how to use fast matrix multiplication to speed up query processing. As observed, computing

a two-table join and then projecting away the join attribute is essentially the Boolean matrix multiplication

problem, which can be significantly improved with fast matrix multiplication. Moving beyond this basic

two-table query, we introduce output-sensitive algorithms for general join-project queries using fast matrix

multiplication. These algorithms have achieved a polynomially large improvement over the classic Yannakakis

framework. To the best of our knowledge, this is the first theoretical improvement for general acyclic join-

project queries since 1981.
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1 INTRODUCTION
Over the span of half of a century, the running time for multiplying two 𝑈 ˆ 𝑈 matrices has

progressively improved from 𝑂p𝑈 2.808q [24] to 𝑂p𝑈 2.371552q [12, 27]. It is still a big open question

whether it can be solved in 𝑈 2`𝑜p1q
time eventually. Consider the multiplication of two matrices

p𝑎𝑖 𝑗 q and p𝑏 𝑗𝑘q. By treating each nonzero entry 𝑎𝑖 𝑗 as a tuple p𝑖, 𝑗q (and similarly for 𝑏 𝑗𝑘 ), Boolean

matrix multiplication can be written as a join-project query over two relations

Qmatrix “ 𝜋𝐴,𝐶𝑅1p𝐴, 𝐵q ’ 𝑅2p𝐵,𝐶q

However, both the input matrices and output matrix could be sparse, i.e., the number of nonzero

entries can be much smaller than 𝑈 2
. We would like running times that depend on the number

of non-zero entries in the input and output matrices, instead of 𝑈 . The naive algorithm that

materializes the join results and then projects out attribute 𝐵 was the classic solution. Later,

[1, 2, 11] investigated how to use fast matrix multiplication techniques to speedup sparse Boolean

matrix multiplication, and [11] also showed strong evidence that these algorithms can significantly

improve the classic solution in practice. A natural question arises: Can we exploit the fast matrix

multiplication techniques in speeding up general join-project query processing? In this work, we

answer this question in the affirmative by designing provably better output-sensitive algorithms

for general join-project queries.
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1.1 Problem Definition
Join-Project queries. A join-project query is defined as a triple Q “ pV, E, yq, where V “

t𝐴1, 𝐴2, . . . , 𝐴ℓu models the attributes, E “ t𝑒1, 𝑒2, . . . , 𝑒𝑘u Ď 2
V
models the subsets of attributes

on which relations are defined and y Ď V models the output attributes (a.k.a. free attributes). We

assume thatV “
Ť

𝑒PE 𝑒 . We also write Q as Q “ 𝜋y p𝑅1p𝑒1q ’ 𝑅2p𝑒2q ’ ¨ ¨ ¨ ’ 𝑅𝑘p𝑒𝑘qq. If y “ V ,

Q is a full join; and if y “ H, Q is a Boolean query.
Let domp𝐴q be the domain of attribute 𝐴 P V . Let dompAq “

ś

𝐴PA domp𝐴q be the domain of

a subset of attributes A Ď V . A tuple 𝑡 defined over a subset of attributes A Ď V is a function

that assigns a value from domp𝐴q to every attribute 𝐴 P A. Furthermore, for a subset of attributes

𝑋 Ď A, we denote 𝜋𝑋 𝑡 as the set of values that 𝑡 displays on every attribute in 𝑋 .
1
An instance of

Q is a set of relations R “ t𝑅𝑒 : 𝑒 P Eu, where each relation 𝑅𝑒 consists a set of tuples defined over

attributes 𝑒 . Given an instance R, the query results of Q on R is defined as

QpRq “
␣

𝑡 P dompyq : D𝑡 1 P dompVq, 𝜋y𝑡
1 “ 𝑡, @𝑒 P E, 𝜋𝑒𝑡 1 P 𝑅𝑒

(

i.e., the projection (without duplicates) of all join results (combinations of tuples, one from each

relation, such that they share the same values on their common attributes) onto attributes y. We

denote 𝑁 “
ř

𝑒PE |𝑅𝑒 | as the input size of instance R and OUT “ |QpRq| as the output size. We

study the data complexity [25] of this problem, i.e., 𝑘 and ℓ are constants, and measure the time

complexity of algorithms in terms of 𝑁 and OUT.

Classification of Queries. There are some important classes of join-project queries, which will

be discussed throughout the paper.

‚ Acyclic Query [5, 13, 17]. There are many equivalent definitions of 𝛼-acyclic joins, and we use

the one based on generalized join tree [17]. A generalized relation 𝑅𝑒 is defined on the projection

of some input relation 𝑅𝑒1 for 𝑒 1 P E onto a subset of attributes 𝑒 Ď 𝑒 1
. A join-project query

Q “ pV, E, yq is acyclic if there exists a tree T such that (1) each node in T corresponds to an

input relation or a generalized relation; (2) every input relation in E corresponds to a node in T ;

(3) for every attribute 𝐴 P V , the set of nodes containing it forms a connected subtree of T . T is

called a generalized join tree of Q. In the remaining of this paper, we use “join tree” to denote

“generalized join tree” for simplicity.

‚ Free-connex Query [3]. A join-project query Q “ pV, E, yq is free-connex if Q is acyclic and

pV, E Y tyu, yq is also acyclic.

Model of Computation. We use the standard RAM model with uniform cost measure. For an

instance of size 𝑁 , every register has length 𝑂plog𝑁 q. Any arithmetic operation (such as addition,

subtraction, multiplication and division) on the values of two registers can be done in 𝑂p1q time.

Concatenating the values of two registers can be done in𝑂p1q time. Sorting the values of 𝑁 registers

can be done in 𝑂p𝑁 log𝑁 q time.

Notations. For a subset of attributes A Ď V , we define the active domain of A with respect to an

instance R as the set of tuples in dompAq appearing in at least one join result of R, i.e., 𝜋A ’𝑒PE 𝑅𝑒 .

For a pair of relations 𝑅𝑒 and 𝑅𝑒1 , we use 𝑅𝑒 ˙ 𝑅𝑒1 “ 𝜋𝑒 p𝑅𝑒 ’ 𝑅𝑒1 q to denote the semi-join between

𝑅𝑒 and 𝑅𝑒1 . For any 𝑛 P Z`
, we use r𝑛s to denote t1, 2, ¨ ¨ ¨ , 𝑛u. For a pair of sets 𝑆1 and 𝑆2, we use

𝑆1 ´ 𝑆2 “ t𝑥 P 𝑆1 : 𝑥 R 𝑆2u to denote their set difference. We use r𝑂p𝑡q to denote 𝑂
`

𝑡1`𝑜p1q
˘

in all

complexity results.

1
If |𝑋 | “ 1, say 𝑋 “ t𝐴u, we also write 𝜋𝐴𝑡 to denote 𝜋t𝐴u𝑡 for simplicity.
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1.2 The Yannakakis framework
In the RAM model, the Yannakakis framework [29] was proposed for acyclic join-project queries

dated back to 1981. See Algorithm 4. It picks an arbitrary join tree
2 T for Q rooted at node 𝑟 .

It first removes all dangling tuples in the input instance R, i.e., those won’t appear in any full

join result, in 𝑂p𝑁 q time via a bottom-up and then a top-down phase of semi-joins. If OUT “ 0,

i.e., QpRq “ H, all input tuples will be removed as dangling tuples. After done with semi-joins,

Yannakakis framework performs joins and projections in a bottom-up way. Specifically, it takes two

relation 𝑅𝑒 and 𝑅𝑒1 such that 𝑒 is a leaf and 𝑒 1
is the parent of 𝑒 , projects away non-output attributes

that appear in 𝑒 but not in 𝑒 1
by replacing 𝑅𝑒 with 𝜋yYp𝑒X𝑒1q𝑅𝑒 , and replaces 𝑅𝑒1 with 𝑅𝑒 ’ 𝑅𝑒1 .

Then 𝑅𝑒 is removed and the step repeats until the root node 𝑅𝑟 remains. It just outputs 𝜋y𝑅𝑟 as

the final results. The running time of the Yannakakis framework is proportional to the largest

intermediate join size (after dangling tuples are removed), which is no larger than the full join

size. Hence, Yannakakis framework is always better than the naive algorithm that computes the

full join results and then projects out non-output attributes. We note that the largest intermediate

join size could differ drastically on different query plans, i.e., each query plan of the Yannakakis

framework corresponds to a rooted join tree together with the bottom-up computations of joins

and projections.

If Q is free-connex, there is a query plan that only generate at most 𝑂pOUTq intermediate join

results [4, 18], hence free-connex queries can be computed in 𝑂p𝑁 ` OUTq time, which is optimal.

Note that any acyclic full join query is free-connex. For non-free-connex queries, Yannakakis gave

an upper bound of 𝑂p𝑁 ¨ OUTq on the largest intermediate join size. For Qmatrix, the simplest

acyclic but non-free-connex query, this bound has been improved to𝑂
`

𝑁 ¨
?
OUT

˘

[2] by a better

analysis. This is also tight, since there are instances with intermediate join results (which is also

the full join results for Qmatrix) as large as Θ
`

𝑁 ¨
?
OUT

˘

. This bound also extends to star queries,

Qstar “ 𝜋𝐴1,𝐴2,¨¨¨ ,𝐴𝑘
𝑅1p𝐴1, 𝐵q ’ 𝑅2p𝐴2, 𝐵q ’ ¨ ¨ ¨ ’ 𝑅𝑘p𝐴𝑘 , 𝐵q,

on which the tight bound is 𝑂

´

𝑁 ¨ OUT1´ 1

𝑘

¯

. But, for line queries,

Qline “ 𝜋𝐴1,𝐴𝑘`1
𝑅1p𝐴1, 𝐴2q ’ 𝑅2p𝐴2, 𝐴3q ’ ¨ ¨ ¨ ’ 𝑅𝑘p𝐴𝑘 , 𝐴𝑘`1q

this bound 𝑂p𝑁 ¨ OUTq is already tight. See Appendix C.

People have incorporated generalized hypertree decomposition techniques [15] together with

worst-case optimal join algorithms [21, 26] into the Yannakakis framework to handle cyclic join-

project queries. Khamis et al. [19] proposed the PANDA algorithm, which, together with the

Yannakakis framework, can compute a join-project query Q in 𝑂
`

𝑁 subw ¨ OUT
˘

time, where

subw ě 1 is the sub-modular width of Q [20]. And subw “ 1 if and only if Q is acyclic. If

restricting the generalized hypertree decompositions to be free-connex, one can also obtain an

algorithm that can compute a join-project query Q in 𝑂
`

𝑁 fc-subw ` OUT

˘

time, where fc-subw is

the free-connex sub-modular width of Q [6]. Moreover, fc-subw “ 1 if and only if Q is free-connex.

It is not hard to see that fc-subw ě subw for arbitrary join-project query. These two algorithms

are incomparable, unless we know the value of OUT.

1.3 Fast Matrix Multiplication for Qmatrix

As mentioned, people have also investigated how to use fast matrix multiplication techniques to

speedup sparse Boolean matrix multiplication. The running time of computing two rectangular

matrices of size 𝑈 𝑎 ˆ 𝑈 𝑏
and 𝑈 𝑏 ˆ 𝑈 𝑐

is denoted as 𝑂
`

𝑈𝜔p𝑎,𝑏,𝑐q
˘

. The parameter 𝜔 , which is

commonly-noted as the exponent of fast square matrix multiplication, refers to the case 𝜔p1, 1, 1q.

2
Below, we always use “join tree” to denote “generalized join tree” for simplicity.
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The currently best bounds on 𝜔 are 2 ď 𝜔ă2.371552 [28]. Rectangular matrix multiplication can

always be tackled by partitioning rectangles into squares, for example 𝜔p𝑎, 𝑏, 𝑐q ď 𝑎 ` 𝑏 ` 𝑐 ´

mint𝑎, 𝑏, 𝑐u ¨ p3 ´ 𝜔q, but much better algorithms have been proposed. There are some important

constants related to rectangular matrix multiplication, such as, 𝛼 ď 1 defined as the largest constant

such that 𝜔p1, 𝛼, 1q “ 2, and 𝜇 is the (unique) solution to the equation 𝜔p𝜇, 1, 1q “ 2𝜇 ` 1. Note that

𝛼 “ 1 if and only if 𝜔 “ 2, and the current best bounds on 𝛼 are 0.321334 ă𝛼 ď 1 [28]. Moreover,

𝜇 “ 1

2
if 𝜔 “ 2, and the current best bounds on 𝜇 are

1

2
ď 𝜇ă 0.527661 [28].

Amossen and Pagh [2] first proposed an algorithm for Qmatrix by using fast matrix multiplica-

tion techniques, which runs in r𝑂

´

𝑁
2

3 ¨ OUT
2

3 ` 𝑁
p2´𝛼q𝜔´2

p1`𝜔qp1´𝛼q ¨ OUT
2´𝛼𝜔

p1`𝜔qp1´𝛼q ` OUT

¯

time when

OUT ě 𝑁 , and r𝑂

´

𝑁 ¨ OUT
𝜔´1

𝜔`1

¯

time when OUT ă 𝑁 . If 𝜔 “ 2, this result degenerates to

r𝑂

´

𝑁
2

3 ¨ OUT
2

3 ` 𝑁 ¨ OUT
1

3

¯

. Very recently, Abboud et al. [1] have completely improved this

to r𝑂

´

𝑁 ¨ OUT
𝜇

1`𝜇 ` OUT ` 𝑁
p2`𝛼q𝜇

1`𝜇 ¨ OUT
1´𝛼𝜇

1`𝜇

¯

. If 𝜔 “ 2, this complexity can be simplified as

r𝑂

´

𝑁 ¨ OUT
1

3 ` OUT

¯

. Surprisingly, when OUT becomes larger than 𝑁
3

2 , this result further de-

generates to r𝑂p𝑁 ` OUTq, which is (almost) optimal up to a poly-logarithmic factor. On the other

hand, improving this result for any value of OUT is rather difficult, assuming the hardness of

the all-edge-triangle problem [1]. There are many algorithm proposed for sparse Boolean matrix

multiplication, whose complexity are also measured by domain size of attributes; and we refer

readers to [1] for details.

1.4 Other Results
Deep et al. [11] extended the algorithm for Qmatrix to Qstar, but without giving any theoretical

analysis, but their results are completely dominated by our new results (see Appendix B). Hu et

al. [16] studied tree (i.e., acyclic and each relation contains at most two attributes) join-aggregate

queries defined over semi-rings in the massively parallel computation model, without using fast

matrix multiplication. Interestingly, we revisit their algorithms in the RAM model for join-project

queries, and observe some improvements over the Yannakakis framework on Qline and Qstar by

incorporating the best algorithm [1] for sparse matrix multiplication (see Appendix E). But, these

improvements are also completely dominated by our new results. In addition, there has been a

large body of works studying the fine-grained complexity of detecting or listing graph patterns

(such as triangle, cycles and cliques), and their algorithms also use fast matrix multiplication. We

refer interested readers to [7, 9, 10, 23] for details.

1.5 Our results
In this paper, we focus on acyclic but non-free-connex join-project queries where the output

attributes can be arbitrary. We present new output-sensitive algorithms by exploiting the power

of two choices - the classic Yannakakis framework [29] and the new algorithm for sparse matrix

multiplication [1]. Our main results are summarized in Figure 1.

Limitation of Yannakakis Framework.Onemaywonder what we can benefit from incorporating

the best algorithm for Qmatrix as a primitive into Yannakakis framework. Recall that in each step, it

takes two relation 𝑅𝑒 and 𝑅𝑒1 such that 𝑒 is a leaf and 𝑒 1
is the parent of 𝑒 , projects away non-output

attributes that appear in 𝑒 but not in 𝑒 1
by replacing 𝑅𝑒 with 𝜋yYp𝑒X𝑒1q𝑅𝑒 , and replaces 𝑅𝑒1 with

𝑅𝑒 ’ 𝑅𝑒1 . If 𝑒 is the last child of 𝑒 1
, then we can merge the last join with the subsequent projection

of 𝑅𝑒1 when 𝑒 1
turns to be a leaf node, into one join-project query. More specifically, it suffices to

compute 𝜋yYancp𝑒1q𝑅𝑒 ’ 𝑅𝑒1 , where ancp𝑒 1q denotes the set of attributes that appear in both 𝑒 1
and
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Join-Project Yannakakis Semi-ring

Fast Matrix Multiplication r𝑂p¨q

Query Framework [29] Algorithm

assume 𝜔 “ 2

assume best 𝜔, 𝜇, 𝛼

no assumption

Matrix Θ
`

𝑁 ¨
?
OUT

˘

OUT ` 𝑁 ¨ OUT
1

3 [1]

𝑁 ¨ OUT0.3454 ` OUT ` 𝑁 0.8 ¨ OUT0.5436 [1]

𝑁 ¨ OUT
𝜇

1`𝜇 ` OUT ` 𝑁
p2`𝛼q𝜇

1`𝜇 ¨ OUT
1´𝛼𝜇

1`𝜇
[1]

Star

Θ
´

𝑁 ¨ OUT1´ 1

𝑘

¯

OUT ` 𝑁 ¨ OUT
2

3
´

4{3

3p𝑘´1q`2

(𝑘 ě 3)
𝑁 0.372 ¨ OUT ` 𝑁 ¨ OUT

2p𝑘´1q

2.63p𝑘´1q`2

𝑁𝜔´2 ¨ OUT ` 𝑁 ¨ OUT
2p𝑘´1q

p5´𝜔qp𝑘´1q`2

Acyclic Θp𝑁 ¨ OUTq Ω
´

𝑁 ¨ OUT1´ 1

freew

¯

OUT ` 𝑁 ¨ OUT
5

6

𝑁 0.372 ¨ OUT ` 𝑁 ¨ OUT0.871

𝑁 p𝜔´2q ¨ OUT ` 𝑁 ¨ OUT
2

3
¨
3´𝜔
4´𝜔

` 1

4´𝜔

General 𝑂
`

min

␣

𝑁 subw ¨ OUT, 𝑁 fn-subw ` OUT

(˘

OUT ` 𝑁 subw ¨ OUT
5

6

[15, 19, 21, 29]

𝑁 0.372¨subw ¨ OUT ` 𝑁 ¨ OUT0.871

𝑁 p𝜔´2q¨subw ¨ OUT ` 𝑁 subw ¨ OUT
2

3
¨
3´𝜔
4´𝜔

` 1

4´𝜔

Fig. 1. Comparison of Yannakakis framework, semi-ring algorithms and fast-matrix-multiplication-based

algorithms. Any complexity results based on fast matrix multiplication in a form of r𝑂p𝑡q indicate 𝑂p𝑡1`𝑜p1qq.

Results highlighted in red are achieved in this work. 𝑁 is the input size and OUT is the output size. subw is

the sub-modular width of the input query [20]. fc-subw is the free-connex sub-modular width [6]. freew is

the free-width of input query (see Definition 3.2). 𝑘 is the number of relations in the query. 𝜔ă2.371552 is

the exponent of fast square matrix multiplication. 𝜇ă 0.527661 is the unique solution for 𝜔p𝜇, 1, 1q “ 2𝜇 ` 1.

0.321334 ă𝛼 ď 1 is the largest constant such that 𝜔p1, 𝛼, 1q “ 2.

any ancestor of 𝑒 1
. This could be captured as a matrix multiplication problem if 𝑒 X y ´ 𝑒 1 ‰ H,

𝑒 X 𝑒 1 X pV ´ yq ´ ancp𝑒 1q ‰ H and py X 𝑒 1q Y ancp𝑒 1q ´ 𝑒 ‰ H. However, its output size is not

necessarily bounded by 𝑂pOUTq. In the worst case, this output size can be as large as Θp𝑁 ¨ OUTq.

See Appendix C. Hence, materializing intermediate query results (not intermediate join size) is

still the bottleneck of whole algorithm, no matter which algorithm is used for tackling the matrix

multiplication problem.

Limitation of Semi-ring Algorithms. We next extend our scope to the whole class of algorithms

under semi-ring [14, 18], which do not allow additive inverses. We first identify the free-width for

an acyclic join-project query, denoted as freew, which measures the separation between output

attributes. See Definition 3.2. Note that freew “ 1 if and only if Q is free-connex. freew “ 𝑘 for

Qstar and freew “ 2 for Qline. In Appendix D, we prove that any semi-ring algorithm must run

in Ω
´

𝑁 ¨ OUT1´ 1

freew

¯

time, which also captures the previous observation on Qmatrix [22] and
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shows a critical separation between semi-ring algorithms and our new algorithms using fast matrix

multiplication.

New Algorithms with Fast Matrix Multiplication. Due to the inherent limitations of semi-ring

algorithms, we next resort to fast matrix multiplication techniques for faster algorithms.

(Section 2) We first revisit the algorithm for Qmatrix [1], and obtain two new observations when

each attribute has a small active domain. We focus on star query Qstar with 𝑘 ě 3 and propose an

algorithm that can reduce Qstar into a constant number of sub-queries, each of which either has

bounded intermediate join size or active domain size, and will be tackled by Yannakakis framework

and fast matrix multiplication separately. Our algorithm runs in r𝑂

´

𝑁 ¨ OUT
2

3
´

4{3

3p𝑘´1q`2 ` OUT

¯

time when 𝑘 ě 3,. This quantity
2

3
´

4{3

3p𝑘´1q`2
increases from

1

2
, 18
33
, 4
7
, ¨ ¨ ¨ , and approaches

2

3
when

𝑘 goes to infinity. When OUT becomes larger than 𝑁
3𝑘´1

𝑘`1 , this result degenerates to r𝑂p𝑁 ` OUTq,

which is (almost) optimal up to poly-logarithmic factors.

(Section 3) For a general acyclic join-project query Q, we first show a decompose procedure
based on the existential connectivity (formally defined in Section 3) of Q. Intuitively, computing Q is

equivalent to computing the full join results of all sub-queries connected by non-output attributes.

This way, it suffices to focus on an acyclic join-project query that is also existential-connected.

Inheriting a similar high-level idea, we find a recursive way to reduce Q into a constant number of

sub-queries each of which either has bounded intermediate join size or active domain size, hence

can be computed efficiently by a hybrid strategy. Our algorithm runs in r𝑂

´

𝑁 ¨ OUT
5

6 ` OUT

¯

time. Again, when OUT becomes larger than 𝑁 6
, this result degenerates to r𝑂p𝑁 ` OUTq, which is

(almost) optimal up to poly-logarithmic factors.

(Section 4) One major technical difficulty we had to overcome is that the value of OUT is

not readily available. It is known that OUT can be computed for free-connex queries within

𝑂p𝑁 q time [18, 29], and can be estimated within a constant factor for line queries with high

probability within r𝑂p𝑁 q time [8, 16]. But, how to efficiently compute or even obtain an 𝑂p1q-

approximation of OUT for general non-free-connex queries still remains open. Inspired by the

sparse recovery technique in [1], we present a general compress-recover framework to compute

an 𝑂p1q-approximation of OUT on-the-fly. The only primitive we need is an algorithm for join-

project queries when an 𝑂p1q-approximation of OUT is given, which is essentially our focus in

Sections 2 and 3. From our analysis, this framework only increases the overall complexity by a

poly-logarithmic factor.

(Section 5) Combining our new algorithm in Section 3 with generalized hypertree decomposi-

tions [19], we present an output-sensitive algorithm for cyclic join-project queries.

Remark 1. In Section 3, the decompose procedure could lead to better results if each sub-query

has rather simple structures, such as tree join-project queries. See Appendix H.

Remark 2. In Section 4, the framework does not use fast matrix multiplication, hence it can be

combined with any semi-ring algorithm. Moreover, we have an 𝑂p1q-approximation ˜OUT for OUT

such that ˜OUT ď OUT ď 2 ¨ ˜OUT when invoking the algorithms in Section 2 and Section 3.

2 STAR QUERY
In this section, we investigate star queries Qstar “ 𝜋𝐴1,𝐴2,¨¨¨ ,𝐴𝑘

𝑅1p𝐴1, 𝐵q ’ 𝑅2p𝐴2, 𝐵q ’ ¨ ¨ ¨ ’

𝑅𝑘p𝐴𝑘 , 𝐵q with 𝑘 ě 3. We start with new analyses for the algorithm in [1]. All missing proofs are

given in Appendix F.
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2.1 Boolean Matrix Multiplication Revisited
Recall that for Qmatrix “ 𝜋𝐴,𝐶𝑅1p𝐴, 𝐵q ’ 𝑅2p𝐵,𝐶q, the active domains of attributes𝐴, 𝐵,𝐶 is defined

as 𝜋𝐴p𝑅1 ’ 𝑅2q, 𝜋𝐵p𝑅1 ’ 𝑅2q, 𝜋𝐶p𝑅1 ’ 𝑅2q separately. The Yannakakis framework can remove all

dangling tuples in 𝑂p𝑁 q time. The active domain of each attribute is essentially the collection of

values that appears in at least one non-dangling tuple in the input instance. If the active domain

sizes of 𝐴, 𝐵,𝐶 are small, we are able to get better upper bounds for Qmatrix, which will be used as

primitives in our algorithms. After revisiting the algorithm in [1], we present the following results

(by applying the “square” trick for rectangular matrix multiplication):

Lemma 2.1. For an arbitrary instanceR ofQmatrix with input size𝑁 and output sizeOUT,QmatrixpRq

can be computed in

‚ r𝑂

´

𝑛𝜔´2

𝐵
¨ OUT ` 𝑁

3´𝜔
4´𝜔 ¨ p𝑛𝐵 ¨ OUTq

1

4´𝜔 ` 𝑁

¯

or

‚ r𝑂

´

𝑛𝜔´2

𝐵
¨ OUT ` 𝑛𝐵 ¨ OUT𝜔´2 ¨ max t𝑛𝐴, 𝑛𝐶u

3´𝜔
` 𝑁

¯

time, where 𝑛𝐴, 𝑛𝐵, 𝑛𝐶 are the active domain sizes of 𝐴, 𝐵,𝐶 respectively.

The complexity results in Lemma 2.1 can be further improved via fast rectangular matrix multi-

plication. We won’t pursue this direction further, which is left as the future work.

2.2 Algorithm
Now, we are ready to present our algorithm for Qstar. Suppose

˜OUT is known such that ˜OUT ď

OUT ď 2 ¨ ˜OUT. All dangling tuples (that do not participate in any join result) are removed in

𝑂p𝑁 q time. Our algorithm consists of five steps:

Step 1: Compute data statistics. We first compute for each value 𝑏 P domp𝐵q, its degree 𝑑𝑖p𝑏q in

relation 𝑅𝑖 for each 𝑖 P r𝑘s, which is defined as the number of tuples displaying value 𝑏 in attribute

𝐵, i.e., 𝑑𝑖p𝑏q “ |𝜎𝐵“𝑏𝑅𝑖 |. It is not hard to see:

Lemma 2.2. For any value 𝑏 P domp𝐵q,
ś𝑘

𝑖“1
𝑑𝑖p𝑏q ď OUT.

Proof of Lemma 2.2. For any value 𝑏 P domp𝐵q, the Cartesian product ˆ𝑖Pr𝑘s𝜎𝐵“𝑏𝑅𝑖 must be a

subset of final query results. Hence,

ś

𝑖Pr𝑘s 𝑑𝑖p𝑏q “
ˇ

ˇˆ𝑖Pr𝑘s𝜎𝐵“𝑏𝑅𝑖
ˇ

ˇ ď |QstarpRq| “ OUT. □

Step 2: Reduce Qstar. For each value 𝑏 P domp𝐵q, we define a permutation 𝜙𝑏 : r𝑘s Ñ r𝑘s such

that 𝑑𝜙𝑏p𝑖qp𝑏q ě 𝑑𝜙𝑏p𝑗qp𝑏q for any 1 ď 𝑖 ď 𝑗 ď 𝑘 . Note that we can determine 𝜙𝑏 for all 𝑏’s by

sorting all values in 𝑑𝑖p𝑏q, breaking ties. There are at most 𝑘! number of permutations in total.

Each permutation 𝜙 over r𝑘s defines a subset of values in domp𝐵q as 𝐵𝜙 “ t𝑏 P domp𝐵q : 𝜙𝑏 “ 𝜙u.

Given a parameter 0 ă 𝜌 ď 1 (whose value will be determined later), we further divide each 𝐵𝜙
into two subsets:

𝐵
light

𝜙
“

#

𝑏 P 𝐵𝜙 :

˜

𝑘
ź

𝑖“2

𝑑𝜙p𝑖qp𝑏q

¸

ď ˜OUT

𝜌

+

𝐵
heavy

𝜙
“

#

𝑏 P 𝐵𝜙 :

˜

𝑘
ź

𝑖“2

𝑑𝜙p𝑖qp𝑏q

¸

ą ˜OUT

𝜌

+

Then, we reduce Qstar into the following at most 2 ¨ 𝑘! sub-queries:

Q?

𝜙
“ 𝜋𝐴1,𝐴2,¨¨¨ ,𝐴𝑘

’𝑖Pr𝑘s 𝑅𝑖p𝐴𝑖 , 𝐵
?

𝜙
q

where ? can be heavy or light, and 𝑅𝑖p𝐴𝑖 , 𝐵
?

𝜙
q denote the set of tuples from 𝑅𝑖 whose value in

attribute 𝐵 falls into 𝐵?

𝜙
.
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Step 3: Compute Qlight
𝜙

. We compute the full join and then project out attribute 𝐵.

Step 4: Compute Qheavy
𝜙

. Let p𝜂, 𝛽q be a partition of r𝑘s, where 𝜂 “ t𝑖 P r𝑘s : 𝑖 is oddu and

𝛽 “ r𝑘s ´ 𝜂. We then materialize the following two intermediate joins:

𝑅𝜙,𝜂

´

A, 𝐵
heavy

𝜙

¯

“’𝑖P𝜂

´

𝑅𝜙p𝑖qp𝐴𝜙p𝑖q, 𝐵
heavy

𝜙
q

¯

𝑅𝜙,𝛽

´

C, 𝐵
heavy

𝜙

¯

“’𝑗P𝛽

´

𝑅𝜙p𝑗qp𝐴𝜙p𝑗q, 𝐵
heavy

𝜙
q

¯

where A “
Ť

𝑖P𝜂 𝐴𝜙p𝑖q and C “
Ť

𝑗P𝛽 𝐴𝜙p𝑗q. Then, we can reduce Qheavy

𝜙
to Qmatrix as below:

𝜋A,C

´

𝑅𝜙,𝜂

´

A, 𝐵
heavy

𝜙

¯

’ 𝑅𝜙,𝛽

´

𝐵
heavy

𝜙
,C

¯¯

(1)

and invoke the algorithm for sparse matrix multiplication in [1].

Step 5: Remove Duplicates. From above, each of the at most 2 ¨ 𝑘! subqueries could produce

𝑂pOUTq query results. The last step is to remove possible duplicates between them via sorting.

2.3 Analysis
We next analyze the time cost of each step. Step 1 and 2 can be done in 𝑂p𝑁 q time. Step 5 can

be done in r𝑂pOUTq time. Step 3 takes 𝑂 p𝑁 ¨ OUT𝜌q time. As there are at most 𝑁 tuples in 𝑅𝜙p1q,

and each tuple 𝑡 P 𝑅𝜙p1q can be joined with at most

´

ś𝑘
𝑖“2

𝑑𝜙p𝑖q p𝜋𝐵𝑡q

¯

ď ˜OUT

𝜌
tuples by the

definition of 𝐵
light

𝜙
, the number of join results is 𝑂 p𝑁 ¨ OUT𝜌q. Before analyzing step 4, we need a

helper lemma:

Lemma 2.3. Suppose
ź

𝑖Pr𝑘s

𝑑𝑖 “ 𝜆 and 𝑑𝑘 ď 𝑑𝑘´1 ď ¨ ¨ ¨ ď 𝑑1. Let 𝜂 “ t𝑖 P r𝑘s : 𝑖 is oddu and

𝛽 “ r𝑘s ´ 𝜂. We obtain:

‚
ź

𝑗P𝛽´t2u

𝑑 𝑗 ď
ź

𝑖P𝜂´t1u

𝑑𝑖 ď
?
𝜆 ď

ź

𝑖P𝜂

𝑑𝑖 ;

‚ if 𝑑1 ď 𝜆1, then

c

𝜆

𝜆1
ď
ź

𝑗P𝛽

𝑑 𝑗 ď
ź

𝑖P𝜂

𝑑𝑖 ď
?
𝜆 ¨ 𝜆1.

Lemma 2.4. The instance in (1) satisfies the following constraints:

‚ max

␣
ˇ

ˇ𝑅𝜙,𝜂
ˇ

ˇ ,
ˇ

ˇ𝑅𝜙,𝛽
ˇ

ˇ

(

ď 𝑁 ¨
?
OUT;

‚ the active domain size of 𝐵heavy

𝜙
is 𝑂

´

𝑁

OUT
𝜌{p𝑘´1q

¯

;

‚ the active domain size of A and C is 𝑂
´

OUT
1´

𝜌

2

¯

;

Proof of Lemma 2.4. Note that each tuple p𝑎, 𝑏q P 𝑅𝜙p1q can join with

ź

𝑖P𝜂´t1u

𝑑𝜙p𝑖qp𝑏q ď
?
OUT

results in

`

’𝑖P𝜂 𝑅𝜙p𝑖q

˘

, implied by Lemma 2.3. As there are at most 𝑁 tuples in 𝑅𝜙p1q, |𝑅𝜙,𝜂 | can be

bounded by 𝑂p𝑁 ¨
?
OUTq. A similar argument applies for 𝑅𝜙,𝛽 . We next bound the active domain

size of each attribute. For every value𝑏 P 𝐵
heavy

𝜙
, we have𝑑𝜙p2qp𝑏q ě

˜

𝑘
ź

𝑖“2

𝑑𝜙p𝑖qp𝑏q

¸

1

𝑘´1

ą ˜OUT

𝜌

𝑘´1

,

where the last inequality is implied by the definition of 𝐵
heavy

𝜙
. As there are at most 𝑁 tuples in 𝑅𝜙p2q,
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non-output attributeoutput attribute

B2

B1

2

3

4

5

1

Cleanse Decompose

Fig. 2. The left figure shows the hypergraph of an acyclic join-project query Q, where each attribute is

represented as a vertex and each relation is represented as a (hyper)-edge. The middle figure shows the

residual query by applying the cleanse procedure. The right figure shows the sub-queries of Q defined by

existential connectivity. Q1 is a single relation containing all output attributes. Q2 is Qmatrix. Q3 is still a

complicated join-project query, which is the focus of our algorithm in Section 3.1. Q4 is Qline
with 𝑘 “ 4. Q5

is Qstar with 𝑘 “ 4. The free-width of Q1,Q2,Q3,Q4,Q5 is 1, 2, 6, 2, 4 separately. The free-width of Q is 6.

ˇ

ˇ

ˇ
𝐵
heavy

𝜙

ˇ

ˇ

ˇ
“ 𝑂

´

𝑁

OUT
𝜌{p𝑘´1q

¯

. After removing dangling tuples, each distinct value 𝑐 P dompCq partic-

ipates in at least

ź

𝑖P𝜂

𝑑𝜙p𝑖qp𝑏q ě

˜

𝑘
ź

𝑗“1

𝑑𝜙p𝑖qp𝑏q

¸

1{2

ě

˜

𝑘
ź

𝑗“2

𝑑𝜙p𝑖qp𝑏q

¸

1{2

ě ˜OUT

𝜌

2

query results in

(1) via some tuple p𝑏, 𝑐q P 𝑅𝜙,𝛽 , where the first inequality is implied by Lemma 2.3 and the third

inequality is implied by the definition of 𝐵
heavy

𝜙
. There are OUT query results in total, so the active

domain size of attribute C is 𝑂

´

OUT
1´

𝜌

2

¯

. Similarly, each value 𝑎 P dompAq participates in at

least

ź

𝑗P𝛽

𝑑𝜙p𝑗qp𝑏q ě

˜

𝑘
ź

𝑖“2

𝑑𝜙p𝑖qp𝑏q

¸

1{2

ą ˜OUT

𝜌

2

query results in (1) via some tuple p𝑎, 𝑏q P 𝑅𝜙,𝛽 . As

there are OUT query results in total, the active domain size of A follows. □

Combining all steps by plugging Lemma 2.4 into Lemma 2.1, we obtain (setting 𝜌 “
2p𝑘´1q

p5´𝜔qp𝑘´1q`2
):

Theorem 2.5. For the star query Qstar with 𝑘 ě 3 and any instance R with input size 𝑁 and output
size OUT, if an 𝑂p1q-approximation of OUT is known, the query result QstarpRq can be computed

in r𝑂

´

𝑁𝜔´2 ¨ OUT ` 𝑁 ¨ OUT
2p𝑘´1q

p5´𝜔qp𝑘´1q`2

¯

time, where 𝑘 is the number of relations and 𝜔 is the
exponent of fast square matrix multiplication.

3 ACYCLIC QUERIES
We finally move to general acyclic join-project queries. Consider an acyclic join-project query

Q “ pV, E, yq and an instance R. All dangling tuples (that do not participate in any join result) are

removed in𝑂p𝑁 q time. We start with two procedures cleanse and decompose. An attribute 𝐴 P V is

unique if it only appears in one relation, i.e., |t𝑒 P E : 𝐴 P 𝑒u| “ 1, and joint otherwise.
CleansepQ,Rq. For a join-aggregate query Q “ pV, E, yq and an instance R, the cleanse

procedure iteratively (i) removes a unique non-output attribute 𝐴 P 𝑒 and updates 𝑅𝑒 with 𝜋𝑒´𝐴𝑅𝑒 ;

or (ii) removes a relation 𝑒 P E if there exists another relation 𝑒 1 P E with 𝑒 Ď 𝑒 1
and updates 𝑅𝑒1

with 𝑅𝑒1 ˙ 𝑅𝑒 . We describe this procedure in Algorithm 5. This can be done in𝑂p𝑁 q time, where 𝑁

is the input size of the instance. A join-project query Q is called cleansed if no more attribute or

relation can be removed by the cleanse procedure, and non-cleansed otherwise. In a cleansed query,

every unique attribute must be an output attribute.
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DecomposepQ,Rq. We define the existential connectivity of Q “ pV, E, yq by modeling it as

a graph 𝐺D
Q , where each 𝑒 P E is a vertex, and there is an edge between 𝑒, 𝑒 1 P E if they share

some non-output attribute(s), i.e., 𝑒 X 𝑒 1 ´ y ‰ H. Let E1, E2, ¨ ¨ ¨ , Eℎ Ď E be the connected

components of 𝐺D
Q . Each E𝑖 defines a subquery Q𝑖 “

˜

ď

𝑒PE𝑖

𝑒, E𝑖 ,
ď

𝑒PE𝑖

𝑒 X y

¸

and a sub-instance

R𝑖 “ t𝑅 𝑗 P R : 𝑒 𝑗 P E𝑖u. It is not hard to see that if Q is cleansed, each sub-query Q𝑖 is also cleansed,

since no more non-output attributes become unique and no more relations become a subset of

another relation in the decompose procedure. A critical observation is stated below (intuitively,

relations across different sub-queries can only join via output attributes):

Lemma 3.1. QpRq “’𝑖Prℎs Q𝑖pR𝑖q.

Then, it suffices to compute the query results for each Q𝑖 , whose output size is bounded by𝑂pOUTq,

and then compute their full join by invoking the Yannakakis framework. The last step takes at

most 𝑂pOUTq time. Hence, it suffices to focus on an acyclic join-project query Q that is cleansed

and also existentially connected.

Now, we are also ready to introduce the notion of free-width (see an example in Figure 2), which

plays an important role in capturing the lower bound of semi-ring algorithms (see Theorem D.1):

Definition 3.2 (Free-width). For any acyclic join-project query Q “ pV, E, yq, its free-width

freewpQq is defined as follows:

‚ If Q is existentially disconnected, freewpQq “ max

𝑖Prℎs
freewpQ𝑖q, where Q1,Q2, ¨ ¨ ¨ ,Qℎ are the

connected sub-queries of 𝐺D
Q .

‚ If Q is existentially connected but not cleansed, freewpQq “ freewpQ1q, where Q1
is the cleansed

version of Q.

‚ If Q is existentially connected and cleansed,

freewpQq “ max

𝑆ĎE:@𝑒P𝑆,𝑒XV‚‰H
|𝑆|,

whereV‚ denotes the set of unique attributes in Q.

All missing proofs in Section 3 are given in Appendix G.

3.1 A Recursive Algorithm
Our recursive algorithm consists of following components:

Base Cases. We consider the following base cases for Q “ pV, E, yq:

‚ if |E| “ 1, say E “ t𝑒u, we just return 𝜋y𝑅𝑒 ;

‚ if |E| “ 2, we invoke the algorithm in [1];

General Case. Let T be a join tree of Q, where each node corresponds to a relation in the input

query. A node is incident to another node T if there is an edge between them in T . A node is a

leaf node if it is only incident to one node, and internal otherwise. Let T 1
be the residual tree by

removing all leaf nodes of T . Let L Ď E be the set of leaf nodes in T 1
. We distinguish two cases.

General Case (1): |L| “ 1. We denote such a join-project query Q as a flower. We separately

describe the algorithm in Section 3.2.

General Case (2): |L| ě 2. Our algorithm will iteratively choose a node 𝑒 P L and merge all leaf

nodes in T incident to 𝑒 . In this way, we keep partitioning the input instance into multiple pieces,

while decreasing the size of Q until |L| “ 1. We show this algorithm in Section 3.3.
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Post-processing. Our recursive algorithm above will reduce Q into 𝑂p1q sub-queries, each of

them could produce 𝑂pOUTq query results. The last step is to remove possible duplicates between

them, which can be done via sorting.

3.2 General Case (1): |L| “ 1

Let T be the join tree of a flower query Q “ pV, E, yq, with L “ t𝑒0u as the core and E ´ t𝑒0u “

t𝑒1, 𝑒2, ¨ ¨ ¨ , 𝑒𝑘u as the set of petals. Implied by the property of T , we observe:

‚ for any pair of distinct relations 𝑒𝑖 , 𝑒 𝑗 P E ´ t𝑒0u, 𝑒𝑖 X 𝑒 𝑗 Ď 𝑒0;

‚ for every relation 𝑒𝑖 P E ´ t𝑒0u, 𝑒𝑖 ´ 𝑒0 ‰ H and 𝑒𝑖 ´ 𝑒0 Ď y;
‚ 𝑒0 ´ 𝑒1 ´ 𝑒2 ´ ¨ ¨ ¨ ´ 𝑒𝑘 Ď y.
Intuitively, any common attributes shared by any pair of petals also appear in the core. Any attribute

that appears in some petal but not the core (as well as all other petals) must be an output attribute.

Any attribute that only appears in core must be an output attribute. It is not hard to see that the

star query is a degenerated flower (with an arbitrary relation as the core).

A Primitive Query. We will use a slightly generalized query Q “ 𝜋𝐴,𝐶,𝐷𝑅1p𝐴, 𝐵, 𝐷q ’ 𝑅2p𝐵,𝐶, 𝐷q

of Qmatrix, which can be computed within similar complexity as Lemma 2.1. The intuition is to

transform any instance R for Q into an instance Rmatrix for Qmatrix with the same input and output

size, such that there is a one-to-one correspondence between QpRq and QmatrixpRmatrixq. So, it

suffices to construct QpRq from QmatrixpRmatrixq that can be computed with the algorithm in [1].

Lemma 3.3. For any instance R of Q “ 𝜋𝐴,𝐶,𝐷𝑅1p𝐴, 𝐵, 𝐷q ’ 𝑅2p𝐵,𝐶, 𝐷q with input size 𝑁 and out-

put sizeOUT, the query resultQpRq can be computed in r𝑂

´

𝑛𝜔´2 ¨ OUT ` 𝑁
3´𝜔
4´𝜔 ¨ p𝑛 ¨ OUTq

1

4´𝜔 ` 𝑁

¯

time, where 𝑛 is the active domain sizes of t𝐵, 𝐷u.

Proof of Lemma 3.3. Given any instance R for Q “ 𝜋𝐴,𝐶,𝐷𝑅1p𝐴, 𝐵, 𝐷q ’ 𝑅2p𝐵,𝐶, 𝐷q of input

size 𝑁 and output size OUT, we transform it into an instance Rmatrix of input size 𝑁 for Qmatrix “

𝜋𝑋,𝑍𝑅3p𝑋,𝑌 q ’ 𝑅4p𝑌, 𝑍q within𝑂p𝑁 q time such that there is a one-to-one correspondence between

QmatrixpRmatrixq and QpRq. We set domp𝑋 q “ domp𝐴q ˆ domp𝐷q, domp𝑌 q “ domp𝐵q ˆ domp𝐷q,

and domp𝑍q “ domp𝐶q. For each tuple p𝑎, 𝑏, 𝑑q P 𝑅1, we add a tuple pp𝑎, 𝑑q, p𝑏, 𝑑qq to 𝑅3, and for

each tuple p𝑏, 𝑐, 𝑑q P 𝑅2, we add a tuple pp𝑏, 𝑑q, 𝑐q to 𝑅4. Next, we show that there is a one-to-one

correspondence between QmatrixpRmatrixq and QpRq;

‚ For each query result pp𝑎, 𝑑q, 𝑐q P QmatrixpRmatrixq, there must some tuple p𝑏, 𝑑q P domp𝐵q ˆ

domp𝐷q such that pp𝑎, 𝑑q, p𝑏, 𝑑qq P 𝑅3 and pp𝑏, 𝑑q, 𝑐q P 𝑅4. From the construction above, we must

have p𝑎, 𝑏, 𝑑q P 𝑅1 and p𝑏, 𝑐, 𝑑q P 𝑅2. So, p𝑎, 𝑐, 𝑑q P QpRq.

‚ For each query result p𝑎, 𝑐, 𝑑q P QpRq, there must some value 𝑏 P domp𝐵q such that p𝑎, 𝑏, 𝑑q P 𝑅1
and p𝑏, 𝑐, 𝑑q P 𝑅2. From the construction above, we must have pp𝑎, 𝑑q, p𝑏, 𝑑qq P 𝑅3 and pp𝑏, 𝑑q, 𝑐q P

𝑅4. So, pp𝑎, 𝑑q, 𝑐q P QmatrixpRmatrixq.

In this way, it suffices to invoke any algorithm for Qmatrix to compute QmatrixpRmatrixq and then

construct QpRq as follows. For every result pp𝑎, 𝑑q, 𝑐q P QmatrixpRmatrixq reported, we just report

a query result p𝑎, 𝑐, 𝑑q for QpRq. The construction step takes 𝑂pOUTq time, since there are OUT

query results in QmatrixpRmatrixq. All complexity results in Lemma 2.1 apply to Q with 𝑋 “ t𝐴, 𝐷u,

𝑌 “ t𝐵, 𝐷u and 𝑍 “ t𝐶u. □

Now, we are ready to present the algorithm for a flower query. Suppose ˜OUT is known such that

˜OUT ď OUT ď 2 ¨ ˜OUT. Our algorithm consists of four steps. Let x “ 𝑒0 X p𝑒1 Y 𝑒2 Y ¨ ¨ ¨ Y 𝑒𝑘q.

Step 1: Compute data statistics. We compute for each tuple 𝑡 P 𝜋x𝑅0 its degree 𝑑𝑖p𝑡q in relation

𝑅𝑖 for each 𝑖 P r𝑘s, defined as 𝑑𝑖p𝑡q “

ˇ

ˇ

ˇ
𝜎𝑒𝑖X𝑒0“𝜋𝑒𝑖X𝑒

0
𝑡𝑅𝑖

ˇ

ˇ

ˇ
. We point out an observation below:
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Lemma 3.4. For any tuple 𝑡 P 𝜋x𝑅0,
ś𝑘

𝑖“1
𝑑𝑖p𝑡q ď OUT.

Proof of Lemma 3.4. Consider an arbitrary tuple 𝑡 P 𝜋x𝑅0. Recall that 𝑒𝑖 ´ 𝑒0 Ď y and p𝑒𝑖 ´

𝑒0q X p𝑒 𝑗 ´ 𝑒0q “ H for every distinct pair 𝑖, 𝑗 P r𝑘s. The Cartesian product of

p𝜋𝑒0´x p𝑅0 ˙ 𝑡qq ˆ
␣

ˆ𝑖Pr𝑘s p𝜋𝑒𝑖´𝑒0 p𝑅𝑖 ˙ 𝑡qq
(

must be a subset of the projection of final query results onto output attributes y ´ 𝑒0. Hence,

OUT ě
ˇ

ˇp𝜋𝑒0´x p𝑅0 ˙ 𝑡qq ˆ
␣

ˆ𝑖Pr𝑘s p𝜋𝑒𝑖´𝑒0 p𝑅𝑖 ˙ 𝑡qq
(
ˇ

ˇ

“ |𝜋𝑒0´x p𝑅0 ˙ 𝑡q| ¨

𝑘
ź

𝑖“1

|𝜋𝑒𝑖´𝑒0 p𝑅𝑖p𝑒𝑖q ˙ 𝑡q| ě

𝑘
ź

𝑖“1

𝑑𝑖p𝑡q. □

Step 2: Reduce Q. We define a permutation 𝜙𝑡 : r𝑘s Ñ r𝑘s such that 𝑑𝜙𝑡 p𝑖qp𝑡q ě 𝑑𝜙𝑡 p𝑗qp𝑡q for any

1 ď 𝑖 ď 𝑗 ď 𝑘 . We can determine 𝜙𝑡 for all 𝑡 ’s by sorting all values in 𝑑𝑖p𝑡q, breaking ties. There

are at most 𝑘! number of permutations in total. Each permutation 𝜙 over r𝑘s defines a subset of

tuples in 𝜋x𝑅0 as x𝜙 “ t𝑡 P 𝜋x𝑅0 : 𝜙𝑡 “ 𝜙u. Given a parameter 𝛾 P p0, 1
2
s, whose values will be

determined later, we further divide each x𝜙 into two subsets:

xlight
𝜙

“

!

𝑡 P x𝜙 : 𝑑𝜙p1qp𝑡q ą ˜OUT

𝛾
)

xheavy
𝜙

“

!

𝑡 P x𝜙 : 𝑑𝜙p1qp𝑡q ď ˜OUT

𝛾
)

Then, we can reduce Q into the following at most 2 ¨ 𝑘! sub-queries:

Q?

𝜙
“ 𝜋y

´

𝑅0 ˙ x?
𝜙

¯

’
`

’𝑖Pr𝑘s 𝑅𝑖
˘

,

where ? can be heavy or light.

Step 3: Compute Qlight
𝜙

. We first compute the join between

´

𝑅0 ˙ xlight
𝜙

¯

, 𝑅𝜙p2q, ¨ ¨ ¨ , 𝑅𝜙p𝑘q and

then project out non-output attributes that do not appear in 𝑒𝜙p1q:

𝑅new “ 𝜋yYp𝑒0X𝑒𝜙p1qq

!´

𝑅0 ˙ xlight
𝜙

¯

’
`

’𝑖Pt2,3,¨¨¨ ,𝑘u 𝑅𝜙p𝑖q

˘

)

This way, we can reduce Q light

𝜙
to the following query:

𝜋A,C,D
`

𝑅newpA,B,Dq ’ 𝑅𝜙p1qpB,D,Cq
˘

(2)

where A “ y ´ 𝑒𝜙p1q, B “ 𝑒0 X 𝑒𝜙p1q ´ y, C “ y X 𝑒𝜙p1q ´ 𝑒0 and D “ 𝑒0 X 𝑒𝜙p1q X y. We just apply

the algorithm in Lemma 3.3.

Step 4: Compute Qheavy
𝜙

. Let p𝜂, 𝛽q be a partition of r𝑘s, where 𝜂 “ t𝑖 P r𝑘s : 𝑖 is oddu and

𝛽 “ r𝑘s ´ 𝜂. We materialize the following two intermediate joins by the Yannakakis framework:

𝑅𝜙,𝜂 pA,B,Dq “

´

𝑅0 ˙ xheavy
𝜙

¯

’
`

’𝑖P𝜂 𝑅𝜙p𝑖q

˘

𝑅𝜙,𝛽 pB,C,Dq “

´

𝑅0 ˙ xheavy
𝜙

¯

’
`

’𝑗P𝛽 𝑅𝜙p𝑗q

˘

where A “
Ť

𝑖P𝜂 𝑒𝜙p𝑖q ´ 𝑒0, B “ 𝑒0 ´ y, C “
Ť

𝑗P𝛽 𝑒𝜙p𝑗q ´ 𝑒0 and D “ 𝑒0 X y. Then, we reduce

Qheavy

𝜙
to the following query:

𝜋A,C,D
`

𝑅𝜙,𝜂 pA,B,Dq ’ 𝑅𝜙,𝛽 pB,C,Dq
˘

. (3)

We just apply the algorithm in Lemma 3.3.
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Step 5: Remove Duplicates. From above, each of the at most 2 ¨ 𝑘! subqueries could produce

𝑂pOUTq query results. The last step is to remove possible duplicates between them via sorting.

3.3 General Case (2): |L| ě 2

For every node 𝑒 P L, let 𝑒inc be the unique node incident to 𝑒 in T 1
. All other nodes incident to

𝑒 in T must be leaf nodes of T , which are denoted as E𝑒 Ď E. Let y𝑒 Ď y be the set of output

attributes that only appears in some relation in E𝑒 , i.e., y𝑒 “
Ť

𝑒1PE𝑒
𝑒 1 X y ´ 𝑒 . As Q is cleansed,

for every leaf node 𝑒 1 P E𝑒 , there is 𝑒
1 ´ 𝑒 Ď y.

Step 1: Computing data statistics. Consider an arbitrary node 𝑒 P L with a set of leaf nodes

E𝑒 incident to it in T . For each tuple 𝑡 P 𝑅𝑒 , we define △p𝑡q as the number of distinct tuples in

dompy𝑒q that can be joined with 𝑡 , i.e., △p𝑡q “
ś

𝑒1PE𝑒
|𝑅𝑒1 ˙ 𝑡 |.

Step 2: Reduce Q. For an arbitrary node 𝑒 P L, a tuple 𝑡 P 𝑅𝑒 is heavy if △p𝑡q ą

a

2 ¨ ˜OUT, and

light otherwise. Let 𝑅heavy

𝑒 , 𝑅
light

𝑒 be the heavy and light tuples in 𝑅𝑒 separately. We can reduce the

original query into 𝑂
`

2
|L|

˘

subqueries:

Q𝜒 “ 𝜋y
`

’𝑒PL 𝑅?

𝑒

˘

’ p’𝑒1PE´L 𝑅𝑒1 q

where ? P theavy, lightu can be different for different nodes 𝑒 P L, and 𝜒 P theavy, lightuL is

simply the collection of “labels” for all nodes in L. Below, we point out a critical observation

(therefore we only need to consider subqueries with at most one heavy relation in L):

Lemma 3.5. If ? is heavy for at least two distinct nodes 𝑒, 𝑒 1 P L, then Q𝜒 “ H.

Proof of Lemma 3.5. By contradiction, suppose there exists a pair of nodes 𝑒, 𝑒 1 P L such that

𝑅𝑒 , 𝑅𝑒1 are heavy, and the query results of Q𝜉
is not emtpy. Then, it is always feasible to find a join

result 𝑡 of all relations involved. Let 𝑡 P 𝑅
heavy

𝑒 , 𝑡 P 𝑅
heavy

𝑒1 be the projection of 𝑡 onto 𝑒, 𝑒 1
separately.

Note that Δp𝑡q ą

a

2 ¨ ˜OUT and Δp𝑡 1q ą

a

2 ¨ ˜OUT. And, y𝑒 X y𝑒1 “ H. This way, the Cartesian

product p’𝑒2PE𝑒
𝑅𝑒2 ˙ 𝑡q ˆ

`

’𝑒2PE𝑒1 𝑅𝑒2 ˙ 𝑡
˘

is a subset of the projection of final query results

QpRq onto y𝑒 Y y𝑒1 , after all dangling tuples are removed. Hence,

OUT ă 2 ¨ ˜OUT “

a

2 ¨ ˜OUT ¨

a

2 ¨ ˜OUT ă Δp𝑡q ¨ Δp𝑡 1q ď OUT,

coming to a contradiction. □

Step 3: Compute Q𝜒

𝜙
. As |L| ě 2, together with Lemma 3.5, there is at least one light relation in

L, say 𝑒 . We compute the full join results of 𝑅𝑒 with relations in E𝑒 , and project out non-output

attributes that do not appear in 𝑒inc, i.e.,

𝑅new “ 𝜋y𝑒Yp𝑒XyqYp𝑒X𝑒inc´yq

´

𝑅
light

𝑒 ’ p’𝑒1PE𝑒
𝑅𝑒1 q

¯

.

Recall that y𝑒 is the set of output attributes only appearing in some relation in E𝑒 , 𝑒 X y is

the set of output attributes appearing in 𝑒 , and 𝑒 X 𝑒inc ´ y is the set of non-output attributes

appearing in both 𝑒, 𝑒inc. We update Q𝜒

𝜙
by removing all relations in E𝑒 , replacing 𝑒 with new “

y𝑒 Y p𝑒 X yq Y p𝑒 X 𝑒inc ´ yq, and updating 𝑅𝑒 with 𝑅new. At last, we invoke the whole algorithm

recursively.

3.4 Analysis

General case (1): |L| “ 1. We consider amore general scenario for an instanceR “ t𝑅0, 𝑅1, ¨ ¨ ¨ , 𝑅𝑘u

with core size 𝑁 “ |𝑅0|, petal size 𝑁 1 “ max

𝑖Pr𝑘s
|𝑅𝑖 | for 𝑁

1 “ 𝑂p𝑁 ¨
?
OUTq, and output size OUT. We

start with two important observations:
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Lemma 3.6. The instance in (2) satisfies the following constraints:

‚ |𝑅new| “ 𝑂
`

𝑁 ¨ OUT1´𝛾
˘

and |𝑅𝜙p1q| ď 𝑁 1 “ 𝑂p𝑁 ¨
?
OUTq;

‚ the active domain size of BY D is 𝑂 p𝑁 q;

Proof of Lemma 3.6. The active domain size of BYD is𝑂p𝑁 q, since BYD Ď 𝑒0 and |𝑅0| “ 𝑁 .

We observe that

𝑘
ź

𝑖“2

𝑑𝜙p𝑖qp𝜋x𝑡q ď ˜OUT

1´𝛾
for every tuple 𝑡 P 𝑅0 ˙ xlight

𝜙
, implied by Lemma 3.4 and

the definition of xlight
𝜙

. As there are at most 𝑁 tuples in 𝑅0, and each tuple 𝑡 P 𝑅0˙xlight
𝜙

can be joined

with

𝑘
ź

𝑖“2

𝑑𝜙p𝑖qp𝜋x𝑡q ď ˜OUT

1´𝛾
tuples in the join

`

’𝑖Pt2,3,¨¨¨ ,𝑘u 𝑅𝜙p𝑖q

˘

. So, the number of intermediate

join results materialized for computing 𝑅new, as well as the size of 𝑅new, is 𝑂
`

𝑁 ¨ OUT1´𝛾
˘

. □

Lemma 3.7. The instance in (3) satisfies the following constraints:

‚
ˇ

ˇ𝑅𝜙,𝜂
ˇ

ˇ “ 𝑂

´

𝑁 ¨ OUT
1`𝛾

2

¯

and
ˇ

ˇ𝑅𝜙,𝛽
ˇ

ˇ “ 𝑂

´

𝑁 ¨
?
OUT

¯

;
‚ the active domain size of BY D is 𝑂 p𝑁 q.

Proof of Lemma 3.7. We first observe that the active domain size of B Y D is 𝑂p𝑁 q, since

B Y D Ď 𝑒0 and |𝑅0| ď 𝑁 . Consider any tuple 𝑡 P 𝑅0 ˙ xheavy
𝜙

. It participates in at most

ź

𝑗P𝜂

𝑑𝜙p𝑗qp𝜋x𝑡q ď

˜

𝑑𝜙p1qp𝜋x𝑡q ¨

𝑘
ź

𝑗“1

𝑑𝜙p𝑗qp𝜋x𝑡q

¸

1

2

ď

a

˜OUT

𝛾
¨ OUT join results of

`

’𝑗P𝜂 𝑅𝜙p𝑗q

˘

, im-

plied by Lemma 2.3 and Lemma 3.4, hence

ˇ

ˇ𝑅𝜙,𝜂
ˇ

ˇ

is 𝑂

´

𝑁 ¨ OUT
1`𝛾

2

¯

. Similarly, it participates

in at most

ź

𝑗P𝛽

𝑑𝜙p𝑗qp𝜋x𝑡qď

˜

𝑘
ź

𝑗“1

𝑑𝜙p𝑗qp𝜋x𝑡q

¸

1

2

ď
?
OUT join results of ’𝑖P𝛽 𝑅𝜙p𝑖q, hence |𝑅𝜙,𝛽 | is

𝑂
`

𝑁 ¨
?
OUT

˘

. □

Now, we are ready to analyze the cost of each step separately. Steps 1 and 2 can be done within

𝑂p𝑁 ` 𝑁 1q “ 𝑂p𝑁 ¨
?
OUTq time. Step 5 can be done within r𝑂pOUTq time. Plugging Lemma 3.6

into Lemma 3.3, Step 3 takes

r𝑂

´

𝑁 ¨ OUT
p1´𝛾q¨

3´𝜔
4´𝜔

` 1

4´𝜔 ` 𝑁𝜔´2 ¨ OUT ` 𝑁 ¨ OUT1´𝛾
¯

time. Plugging Lemma 3.7 into Lemma 3.3, Step 4 takes

r𝑂

´

𝑁 ¨ OUT
1`𝛾

2
¨
3´𝜔
4´𝜔

` 1

4´𝜔 ` 𝑁𝜔´2 ¨ OUT ` 𝑁 ¨ OUT
1`𝛾

2

¯

time. Combining all steps, we obtain (by setting 𝛾 “ 1

3
):

Lemma 3.8. For a flower query Q and an arbitrary instance R with core size 𝑁 , output size OUT,
and petal size 𝑁 1 “ 𝑂

`

𝑁 ¨
?
OUT

˘

, if an 𝑂p1q-approximation of OUT is known, the query results
QpRq can be computed in

r𝑂

´

𝑁 ¨ OUT
2

3
¨
3´𝜔
4´𝜔

` 1

4´𝜔 ` 𝑁𝜔´2 ¨ OUT

¯

time, where 𝜔 is the exponent of fast square matrix multiplication.
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Fig. 3. Compress relation 𝑅1 for the line query 𝜋𝐴1,𝐴4
𝑅1p𝐴1, 𝐴2q ’ 𝑅2p𝐴2, 𝐴3q ’ 𝑅3p𝐴3, 𝐴4q. The arrow from

𝑡 to 𝑡 1
indicates that 𝑡 1

is constructed from 𝑡 at line 10 of Algorithm 1. After obtaining 𝑆
p3q

1
, the residual query

Q1
is defined as 𝜋𝐴4

´

𝑅2p𝐴2, 𝐴3q ˙ 𝑆
p3q

1

¯

’ 𝑅3p𝐴3, 𝐴4q. When invoking Algorithm 1 recursively, we apply

the Cleanse procedure on Q1
, which essentially removes 𝐴2 and 𝑒2 iteratively. We are left with 𝑅3, which falls

into the base case at line 2. It is easy to see Lemma 4.1 on this example. Moreover, |J p3q| “ 3, |J p2q| “ 4,

|J p1q| “ 5, and |J p0q| “ 8.

General case (2): |L| ě 2. We analyze the cost of reducing a join-project query from general case

(2) to general case (1). Suppose we are given an instance R with input size 𝑁 and output size OUT.

Step 1 and 2 can be done in𝑂p𝑁 q time. In Step 3, the size of 𝑅new can be bounded by𝑂p𝑁 ¨
?
OUTq,

since there are at most 𝑁 tuples in 𝑅𝑒 and each tuple 𝑡 P 𝑅
light

𝑒 can be joined with at most

△p𝑡q ď

a

˜OUT tuples in ’𝑒1PE𝑒
𝑅𝑒1 . It removes all leaf nodes in E𝑒 as well as 𝑒 , and adds a new

leaf node 𝑅new of size 𝑂p𝑁 ¨
?
OUTq.

Moreover, we point out an invariant of this recursive algorithm that the size of internal relations

is always bounded by 𝑂p𝑁 q and the size of leaf relations is always bounded by 𝑂
`

𝑁 ¨
?
OUT

˘

.

The Recursive Algorithm. From our analysis above, an input join-project query Q and an

instance R of input size 𝑁 and output size OUT, is reduced to a constant number of instances

for flower queries, each of core size 𝑂p𝑁 q, petal size 𝑂
`

𝑁 ¨
?
OUT

˘

, and output size 𝑂pOUTq.

Plugging into Lemma 3.8, we obtain:

Theorem 3.9. For any acyclic but non-free-connex join-project query Q and an instance R with
input size 𝑁 and output size OUT, if an𝑂p1q-approximation of OUT is known, the query results QpRq

can be computed within
r𝑂

´

𝑁 ¨ OUT
2

3
¨
3´𝜔
4´𝜔

` 1

4´𝜔 ` 𝑁𝜔´2 ¨ OUT

¯

time, where 𝜔 is the exponent of fast square matrix multiplication.

4 ESTIMATE OUT ON-THE-FLY
So far, we assume that an 𝑂p1q-approximation of OUT is known in advance. We now remove this

assumption by showing our framework in Algorithm 1. We note that this is definitely not the only

way to approximate OUT. As long as an 𝑂p1q-approximation of OUT is obtained, it can be fed into

our output-aware algorithms presented in Sections 2-3.

In Algorithm 1, we first cleanse the input query Q “ pV, E, yq and instance R (line 1). If E only

contains one relation, say E “ t𝑒u, we just return the projection of 𝑅𝑒 onto output attributes y (line

2). In general, we always start with a relation 𝑒 P E, such that after removing its unique attributes
(those only appear in 𝑒), 𝑒 becomes a subset of another relation 𝑒 1

(line 3). As Q is already cleansed,

all unique attributes in 𝑒 are output attributes.

(line 4-13) We iteratively compress 𝑅𝑒 by halving the active domain size of 𝑒 ´ 𝑒 1
, until there

is a single value left (line 13). The compression works as follows. Suppose all values in 𝜋𝑒´𝑒1𝑅𝑒
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Algorithm 1: AcyclicpQ “ pV, E, yq,Rq

1 pQ,Rq Ð CleansepQ,Rq; § Algorithm 5;

2 if |E| “ 1, say E “ t𝑒u then return 𝜋y𝑅𝑒 ;

3 Find 𝑒 P E such that there exists some 𝑒 1 P E with 𝑒 ´𝑈 Ď 𝑒 1
, where 𝑈 is the set of unique

attributes in 𝑒 , i.e., those only appear in 𝑒;

4 Relabel tuples in 𝜋𝑒´𝑒1𝑅𝑒 as 𝑎1, 𝑎2, 𝑎3, ¨ ¨ ¨ ;

5 𝑆
p0q
𝑒 Ð 𝑅𝑒 , 𝑖 Ð 1;

6 while true do

7 𝑆
p𝑖q
𝑒 Ð H;

8 foreach 𝑡 P 𝑆
p𝑖´1q
𝑒 do

9 Suppose 𝜋𝑒´𝑒1𝑡 “ 𝑎 𝑗 ;

10 𝑡 1 Ð a tuple with 𝜋𝑒´𝑒1𝑡 1 “ 𝑎
t
𝑗`1

2
u
and 𝜋𝐴𝑡

1 “ 𝜋𝐴𝑡 for any attribute 𝐴 P 𝑒 X 𝑒 1
;

11 𝑆
p𝑖q
𝑒 Ð 𝑆

p𝑖q
𝑒 Y t𝑡 1u;

12 if

ˇ

ˇ

ˇ
𝜋𝑒´𝑒1𝑆

p𝑖q
𝑒

ˇ

ˇ

ˇ
“ 1 then break;

13 𝑖 Ð 𝑖 ` 1;

14 𝑅𝑒1 Ð 𝑅𝑒1 ˙ 𝑆
p𝑖q
𝑒 ;

15 Q1 Ð pV´p𝑒 ´ 𝑒 1q, E ´ t𝑒u, y ´ 𝑒q;

16 J p𝑖q Ð

´

𝜋𝑒´𝑒1𝑆
p𝑖q
𝑒

¯

ˆ Acyclic pQ1,R ´ t𝑅𝑒uq; § Algorithm 1;

17 while 𝑖 ą 0 do

18 J p𝑖´1q Ð Compute Q over R ´ t𝑅𝑒uY

!

𝑆
p𝑖´1q
𝑒

)

using 2 ¨ |J p𝑖q| as the approximated

output size; § Algorithms in Section 2 or Section 3;

19 𝑖 Ð 𝑖 ´ 1;

20 return J p0q
;

are labeled as 𝑎1, 𝑎2, 𝑎3, ¨ ¨ ¨ . Initially, set 𝑆
p0q
𝑒 “ 𝑅𝑒 . Suppose 𝑆

pℎq
is created recursively. We next

compress 𝑆
pℎq
𝑒 into 𝑆

pℎ`1q
𝑒 as follows. For every tuple 𝑡 P 𝑆

pℎq
𝑒 , with 𝜋𝑒´𝑒1𝑡 “ 𝑎 𝑗 , we add a tuple 𝑡

1
to

𝑆
pℎ`1q
𝑒 such that 𝑡 1

shares the same value as 𝑡 on every attribute in 𝑒 X 𝑒 1
, and 𝜋𝑒´𝑒1𝑡 1 “ 𝑎

t
𝑗`1

2
u
. This

way, for any pair of tuples 𝑡1, 𝑡2 P 𝑆
pℎq
𝑒 such that 𝜋𝑒X𝑒1𝑡1 “ 𝜋𝑒X𝑒1𝑡2, 𝜋𝑒´𝑒1𝑡1 “ 𝑎 𝑗 and 𝜋𝑒´𝑒1𝑡2 “ 𝑎 𝑗`1

for some odd 𝑗 , they will be “compressed” into one tuple. Then, we continue applying the procedure

to compress 𝑆
pℎ`1q
𝑒 .

(line 14-20) Let 𝑆
p𝑖q
𝑒 be the compressed relation such that all tuples share the same value in 𝑒 ´ 𝑒 1

.

We update 𝑅𝑒1 with 𝑅𝑒1 ˙ 𝑆
p𝑖q
𝑒 (line 14), remove 𝑒 from E as well as all unique attributes in 𝑒 from

V (line 15), and handle the residual query by invoking the whole algorithm recursively (line 16).

Define Rp𝑖q “ pR ´ t𝑅𝑒uq Y

!

𝑆
p𝑖q
𝑒

)

. Let J p𝑖q
be the results returned for Rp𝑖q

. As we will prove

in Lemma 4.1,

ˇ

ˇJ p𝑖q
ˇ

ˇ

is a 2-approximation of the output size of Q
`

Rp𝑖´1q
˘

. Hence, we iteratively

invoke our output-sensitive algorithms in Section 2 (if Q is Qstar) or Section 3 (if Q is a general

acyclic join-project query) for computing Rp𝑖´1q,Rp𝑖´2q, ¨ ¨ ¨ ,Rp0q
. Note that Rp0q “ R. At last, we

return Q
`

Rp0q
˘

, i.e., J p0q
. See an example in Figure 3.

Correctness. We next show the correctness of this algorithm by establishing the following lemma:
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Lemma 4.1. |J p𝑖q| ď |J p𝑖´1q| ď 2 ¨ |J p𝑖q|.

Proof. From the construction of 𝑆
p𝑖q
𝑒 , it is not hard to see that if there exists a query result

𝑡 1 P Q
`

Rp𝑖´1q
˘

with 𝜋𝑒´𝑒1𝑡 1 “ 𝑎2𝑗´1 or 𝜋𝑒´𝑒1𝑡 “ 𝑎2𝑗 , there exists a query result 𝑡 P Q
`

Rp𝑖q
˘

such

that 𝜋𝑒X𝑒1𝑡 “ 𝜋𝑒X𝑒1𝑡 1
and 𝜋𝑒´𝑒1𝑡 “ 𝑎 𝑗 . So, |J p𝑖q| ě 1

2
¨ |J p𝑖´1q|. On the other hand, if there exists

a query result 𝑡 P Q
`

Rp𝑖q
˘

with 𝜋𝑒´𝑒1𝑡 “ 𝑎 𝑗 , there must exist a query result 𝑡 1 P Q
`

Rp𝑖´1q
˘

such

that 𝜋𝑒X𝑒1𝑡 “ 𝜋𝑒´𝑒1𝑡 1
, and 𝜋𝑒´𝑒1𝑡 1 “ 𝑎2𝑗´1 or 𝜋𝑒´𝑒1𝑡 “ 𝑎2𝑗 . So, |J p𝑖q| ď |J p𝑖´1q|. Together, we

complete the proof. □

With Lemma 4.1, the query results Q
`

Rp𝑖´1q
˘

can be computed by our algorithms in Section 2-

Section 3 at line 18. Moreover, J p0q “ QpRq. Hence, for any acyclic join-project query Q and

instance R, the query results QpRq can be computed by Algorithm 1.

Analysis. At last, we come to the time complexity of Algorithm 1. The while-loop at line 6-13

takes 𝑂p𝑁 log𝑁 q time. Note that each iteration takes 𝑂p𝑁 q time to construct 𝑆
p𝑖q
𝑒 . After 𝑂plog𝑁 q

iterations, the active domain size of 𝑒 ´ 𝑒 1
will decrease to 1, since the active domain size of the

input instance is 𝑂p𝑁 q after all dangling tuples are removed. Moreover, while-loop at line 17-19

takes 𝑂 p𝑓Qp𝑁,OUTq ¨ log𝑁 q time in total, if an instance for Q with input size 𝑁 and output size

OUT can be computed in 𝑓Qp𝑁,OUTq time, when an 𝑂p1q-approximation of OUT is known.

Theorem 4.2. For an arbitrary acyclic join-project query Q “ pV, E, yq and an instance R
of input size 𝑁 and output size OUT, if there is an algorithm that can compute QpRq within
𝑓Qp𝑁,OUTq time when an 𝑂p1q-approximation of OUT is known, Algorithm 1 can compute QpRq

within 𝑂 p𝑁 ¨ log𝑁 ` OUT ` 𝑓Qp𝑁,OUTq ¨ log𝑁 q time.

Proof of Theorem 4.2. First, line 1-5 take𝑂p𝑁 q time and line 14-15 takes𝑂p1q time. By hypoth-

esis, assume Acyclic pQ1,R ´ t𝑅𝑒uq takes 𝑂 p𝑁 log𝑁 ` OUT ` 𝑓Q1 p𝑁,OUTq ¨ p|E| ´ 1q ¨ log𝑁 q

time. The while-loop at line 6-13 takes𝑂p𝑁 log𝑁 q time. Each iteration takes𝑂p𝑁 q time to construct

𝑆
p𝑖q
𝑒 . There are at most 𝑁 values in 𝜋𝑒´𝑒1𝑅𝑒 , and each iteration would decrease this number by a

factor of 2. After 𝑂plog𝑁 q iterations, line 12 will be triggered. Moreover, when the while-loop at

line 6-13 is broken, we have 𝑖 “ 𝑂plog𝑁 q. The while-loop at line 17-19 takes𝑂 p𝑓 p𝑁,OUTq ¨ log𝑁 q

time. As 𝑓Q1 p𝑁,OUTq ď 𝑓Qp𝑁,OUTq, Acyclic pQ,Rq incurs a cost of

𝑁 log𝑁 ` OUT ` 𝑓Qp𝑁,OUTq ¨ |E| ¨ log𝑁 “ 𝑂 p𝑁 log𝑁 ` OUT ` 𝑓Qp𝑁,OUTq ¨ log𝑁 q . □

Plugging Theorem 2.5 and Theorem 3.9 into Theorem 4.2 separately, we obtain:

Theorem 4.3. For the star query Qstar with 𝑘 ě 3 and any instance R with input size 𝑁 and output

sizeOUT, the query result QstarpRq can be computed within r𝑂

´

𝑁𝜔´2 ¨ OUT ` 𝑁 ¨ OUT
2p𝑘´1q

p5´𝜔qp𝑘´1q`2

¯

time, where 𝑘 is the number of relations and 𝜔 is the exponent of fast square matrix multiplication.

Theorem 4.4. For any acyclic but non-free-connex join-project query Q and an instance R with
input size 𝑁 and output size OUT, the query results QpRq can be computed within

r𝑂

´

𝑁 ¨ OUT
2

3
¨
3´𝜔
4´𝜔

` 1

4´𝜔 ` 𝑁𝜔´2 ¨ OUT

¯

time, where 𝜔 is the exponent of fast square matrix multiplication.

5 IMPLICATIONS TO CYCLIC QUERIES
At last, we turn to cyclic join-project queries. Combining our algorithm for acyclic queries with the

generalized hypertree decomposition techniques, worst-case optimal join algorithms [15, 19, 21, 26]

and our new algorithm for acyclic join-project queries, we obtain:

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 98. Publication date: May 2024.



98:18 Xiao Hu

Algorithm 2: CyclicpQ,Rq

1 pQ1,R1q, pQ2,R2q, ¨ ¨ ¨ , pQℓ ,Rℓq Ð a set of decomposed sub-instances for pQ,Rq by [19];

2 foreach 𝑖 P rℓs do J𝑖 Ð AcyclicpQ𝑖 ,R𝑖q; § Algorithm 1;

3 return J1 Y J2 Y ¨ ¨ ¨ Y Jℓ ;

Theorem 5.1. For any non-free-connex join-project query Q and an instance R of input size 𝑁 and
output size OUT, the query results QpRq can be computed within

r𝑂

´

𝑁 subw ¨ OUT
2

3
¨
3´𝜔
4´𝜔

` 1

4´𝜔 ` 𝑁 p𝜔´2q¨subw ¨ OUT

¯

time, where subw is the sub-modular width of Q and 𝜔 is the exponent of fast square matrix multipli-
cation.

The complete procedure is illustrated in Algorithm 2. Consider an arbitrary cyclic join-project

query Q and an instance R of input size 𝑁 and output size OUT. We first apply the hypertree

decomposition techniques proposed in [19] to decompose the input pair pQ,Rq into a set of input

pairs pQ1,R1q,pQ2,R2q, ¨ ¨ ¨ ,pQℓ ,Rℓq for some constant ℓ , such that QpRq “
Ť

𝑗Prℓs Q 𝑗 pR 𝑗 q and for

any 𝑗 P rℓs, the following properties hold: (i) Q 𝑗 is an acyclic join-project query; (ii) the input size

of R 𝑗 is 𝑂
`

𝑁 subw

˘

; (iii) the output size of Q 𝑗 pR 𝑗 q is 𝑂pOUTq. For each 𝑗 P rℓs, we simply invoke

Algorithm 1 to compute Q 𝑗 pR 𝑗 q separately. At last, we remove duplicates over all sub-instances.

For simplicity, let OUT𝑗 “ |Q 𝑗 pR 𝑗 q| be the output size of Q 𝑗 over R 𝑗 . Implied by Theorem 4.4,

the Q 𝑗 pR 𝑗 q can be computed within

r𝑂

ˆ

𝑁 subw ¨ OUT
2

3
¨
3´𝜔
4´𝜔

` 1

4´𝜔

𝑗
` 𝑁 p𝜔´2q¨subw ¨ OUT𝑖

˙

time, where subw is the sub-modular width of Q and 𝜔 is the exponent of fast square matrix

multiplication. As OUT𝑖 ď OUT, this complexity is also bounded by

r𝑂

´

𝑁 subw ¨ OUT
2

3
¨
3´𝜔
4´𝜔

` 1

4´𝜔 ` 𝑁 p𝜔´2q¨subw ¨ OUT

¯

.

As there are 𝑂p1q sub-instances, and each of them generates at most 𝑂pOUTq query results, the

last step of removing duplicates can be done within r𝑂pOUTq time. Putting everything together, we

obtain Theorem 5.1.

Example 5.2. For a join-project query𝜋𝐴1,𝐴2,𝐴3
𝑅1p𝐴1, 𝐴2q ’ 𝑅2p𝐴2, 𝐴3q ’ 𝑅3p𝐴3, 𝐴4q ’ 𝑅4p𝐴1, 𝐴4q

with subw “ 3

2
and fc-subw “ 2, our new algorithm can compute it within r𝑂

´

𝑁
3

2 ¨ OUT
5

6 ` OUT

¯

time, which has improved the previous result 𝑂

´

min

!

𝑁
3

2 ¨ OUT, 𝑁 2

)¯

by (almost) a factor of

OUT

1

6 if OUT ď 𝑁
1

2 and by a factor of
𝑁 1{2

OUT
5{6 if 𝑁

1

2 ă OUT ă 𝑁
3

5 .
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Algorithm 3: DeDanglepQ,Rq [29]

1 Let T be a join tree of Q rooted at 𝑟 ;

2 while visit nodes a bottom-up way do

3 foreach node 𝑒 visited with 𝑒 ‰ 𝑟 do

4 𝑒 1 Ð the parent of 𝑒;

5 𝑅𝑒1 Ð 𝑅𝑒1 ˙ 𝑅𝑒 ;

6 while visit nodes a top-down way do

7 foreach node 𝑒 visited with 𝑒 ‰ 𝑟 do

8 𝑒 1 Ð the parent of 𝑒;

9 𝑅𝑒 Ð 𝑅𝑒 ˙ 𝑅𝑒1 ;

10 return updated R;

Algorithm4:YannakakispQ,Rq [29]

1 R Ð DeDanglepQ,Rq;

2 Let T be a join tree of Q rooted at 𝑟 ;

3 while visit nodes a bottom-up way do

4 foreach node 𝑒 visited with 𝑒 ‰ 𝑟

do

5 𝑒 1 Ð the parent of 𝑒;

6 𝑅𝑒 Ð 𝜋yYp𝑒X𝑒1q𝑅𝑒 ;

7 𝑅𝑒1 Ð 𝑅𝑒 ’ 𝑅𝑒1 ;

8 return 𝜋y𝑅𝑟 ;

A DETAILS OF YANNAKAKIS FRAMEWORK
In Algorithm 3, we show how to remove dangling tuples in an input instance R for an acyclic

join-project query Q, which runs in𝑂p𝑁 q time. In Algorithm 4, we show the Yannakakis framework.

In Section 1.5, we also mentioned a slightly modified version of Yannakakis framework, in which

some specific operations can be captured as the Boolean matrix multiplication problem. Suppose

we choose a join tree rooted at 𝑅𝑘 . It starts with 𝑅1. As 𝑅1 is the only child of 𝑅2, it updates 𝑅2 with

𝜋𝐴1,𝐴3
𝑅1p𝐴1, 𝐴2q ’ 𝑅2p𝐴2, 𝐴3q directly, and then removes𝑅1. In the next iteration with𝑅2, it does not

need to project away any attribute, and just further updates 𝑅3 with 𝜋𝐴1,𝐴4
𝑅2p𝐴1, 𝐴3q ’ 𝑅3p𝐴3, 𝐴4q.

It repeats this procedure until only one relation is left.

B NEW ANALYSIS OF STAR QUERY IN [11]
Recall the a star query Qstar is defined as Qstar “ 𝜋𝐴1,𝐴2,¨¨¨ ,𝐴𝑘

𝑅1p𝐴1, 𝐵q ’ 𝑅2p𝐴2, 𝐵q ’ ¨ ¨ ¨ ’

𝑅𝑘p𝐴𝑘 , 𝐵q. This algorithm is also built on the heavy-light decomposition technique. Suppose two

parameter △1, △2 are given, whose values will be determined later. For any 𝑖 P r𝑛s, a value 𝑎𝑖 P

domp𝐴𝑖q is heavy if it appears in more than △2 tuples in 𝑅𝑖 and light otherwise. A value 𝑏 P domp𝐵q

is heavy if it appears in more than △1 tuples in 𝑅𝑖 for some 𝑖 P r𝑘s. Then, the input query can be

reduced into the following sub-queries:

𝜋𝐴1,𝐴2,¨¨¨𝐴𝑘
𝑅1p𝐴

?

1
, 𝐵?q ’ 𝑅2p𝐴

?

2
, 𝐵?q ’ ¨ ¨ ¨ ’ 𝑅𝑘p𝐴?

𝑘
, 𝐵?q

where ? can be either heavy or light, and can be different over different attributes.

‚ If𝐴?

𝑖 “ 𝐴
light

𝑖
for some 𝑖 P r𝑘s, it invokes the Yannakakis framework. The number of intermediate

join results is at most 𝑂pOUT ¨ △2q, hence the time cost of this step is 𝑂pOUT ¨ △2q.

‚ If 𝐵? “ 𝐵light
, it invokes the Yannakakis framework. The number of intermediate join results is

at most 𝑂p𝑁 ¨ △𝑘´1

1
q, hence the time cost of this step is 𝑂p𝑁 ¨ △𝑘´1

1
q.

‚ If 𝐴?

𝑖 “ 𝐴
heavy

𝑖
for every 𝑖 P r𝑘s and 𝐵? “ 𝐵heavy

, it is reduced to a rectangular matrix multiplica-

tion problem of sizes MM

ˆ

p
𝑁

△2

qt 𝑘
2

u,
𝑁

△1

, p
𝑁

△2

qr 𝑘
2

s

˙

.

Hence, the overall cost is 𝑁 ¨ Δ𝑘´1

1
` OUT ¨ Δ2 ` MM

ˆ

p
𝑁

△2

qt 𝑘
2

u,
𝑁

△1

, p
𝑁

△2

qr 𝑘
2

s

˙

. To achieve the

minimum cost, we always require 𝑁 ¨ Δ𝑘´1

1
“ OUT ¨ Δ2. For simplicity, we assume 𝜔 “ 2 and 𝑘 is

even. We distinguish two more cases:
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‚ p 𝑁
△2

qℓ ď 𝑁
△1

: The cost of matrix multiplication is
𝑁
△1

¨ p 𝑁
△2

qℓ . Hence, the total cost is

𝑁 ¨ △2ℓ´1

1
` OUT ¨ △2 `

𝑁

△1

¨ p
𝑁

△2

qℓ ě 𝑁 ¨ OUT
2ℓ´1

2ℓ`1

where the equality is achieved when △1 “ OUT

1

2ℓ`1 and △2 “ 𝑁 ¨ OUT
´ 2

2ℓ`1 . The p 𝑁
△2

qℓ ă 𝑁
△1

holds if OUT ď 𝑁 .

‚ p 𝑁
△2

qℓ ą 𝑁
△1

: The cost of matrix multiplication is p 𝑁
△2

q𝑘 . Hence, the total cost is

𝑁 ¨ △2ℓ´1

1
` OUT ¨ △2 ` p

𝑁

△2

q2ℓ ě p𝑁 ¨ OUTq
2ℓ

2ℓ`1

by setting △1 “

´

OUT
2ℓ

𝑁

¯
1

p2ℓ`1qp2ℓ´1q

and △2 “ 𝑁 2ℓ{p2ℓ`1q

OUT
1{p2ℓ`1q . The p 𝑁

△2

qℓ ą 𝑁
△1

holds if OUT ą 𝑁 .

Hence, this algorithm runs in𝑂

´

𝑁 ¨ OUT
𝑘´1

𝑘`1 ` p𝑁 ¨ OUTq
𝑘

𝑘`1

¯

time for even 𝑘 . We next consider

the case when 𝑘 is odd. When 𝑘 “ 3, this algorithm runs in𝑂
`

𝑁 ¨ OUT4{5 ` p𝑁 ¨ OUTq3{4
˘

. When

𝑘 “ 5, this algorithm runs in𝑂p𝑁 ¨OUT2{3 ` p𝑁 ¨OUTq5{6q time. For 𝑘 ě 6, this algorithms runs in

Ω
`

𝑁 ¨ OUT5{7
˘

time. Putting everything together, our new result in Figure 1 completely improves

this result for every value of 𝑘 .

C LIMITATIONS OF YANNAKAKIS
We consider the line query with 𝑘 “ 3: 𝜋𝐴1,𝐴4

𝑅1p𝐴1, 𝐴2q ’ 𝑅2p𝐴2, 𝐴3q ’ 𝑅3p𝐴3, 𝐴4q. There are two

query plans under the Yannakakis framework: plan 1 of 𝜋𝐴1,𝐴4
p𝜋𝐴1,𝐴3

p𝑅1 ’ 𝑅2qq ’ 𝑅3 and plan 2

of 𝜋𝐴1,𝐴4
𝑅1 ’ p𝜋𝐴2,𝐴4

p𝑅2 ’ 𝑅3qq.

We first construct an instance (see the top half of Figure 4). Assume OUT ď 𝑁 . Attributes𝐴1,𝐴2,

𝐴3, 𝐴4 have domain sizes
OUT

2
, 𝑁
OUT

, 𝑁
2
, 1. Relations 𝑅1 is a Cartesian product between𝐴1 and 𝐴2, 𝑅2

is a many-to-one mapping from 𝐴2 to 𝐴3, and 𝑅3 is a one-to-many mapping from 𝐴3 to 𝐴4. It can

be easily checked that this instance has input size Θp𝑁 q and output size ΘpOUTq. Note that plan

1 incurs a cost of Θp𝑁 ¨ OUTq since |𝑅1 ’ 𝑅2| “ 𝑁 ¨OUT
2

, while plan 2 incurs a cost of Θp𝑁 q since

|𝑅2 ’ 𝑅3| “ 𝑁 and |𝑅1 ˆ domp𝐴4q| “ 𝑁 . We next construct a symmetric instance (see the bottom

half of Figure 4). In this case, these two plans would have opposite behaviors. At last, we consider

the instance by combining these two sub-instances together. In this instance, both plan incurs a

cost of Θp𝑁 ¨ OUTq, since |𝑅1 ’ 𝑅2| “ |𝑅2 ’ 𝑅3| “ Θp𝑁 ¨ OUTq. Similarly, we can construct an

instance for general line queries, such that the intermediate join results materialized by Yannakakis

algorithm is Θp𝑁 ¨ OUTq.

Moreover, this hard instance also shows that |𝜋𝐴1,𝐴3
p𝑅1 ’ 𝑅2q| “ |𝜋𝐴2,𝐴4

p𝑅2 ’ 𝑅3q| “ Θp𝑁 ¨

OUTq. Hence, no matter which algorithm is used for computing 𝜋𝐴1,𝐴3
p𝑅1 ’ 𝑅2q or 𝜋𝐴2,𝐴4

p𝑅2 ’ 𝑅3q,

even with fast matrix multiplication techniques, the bottleneck is still to materialize the output of

the intermediate matrix multiplication, which is as expensive as Θp𝑁 ¨ OUTq.

D LIMITATION OF SEMI-RING ALGORITHMS
Theorem D.1. For an acyclic join-project query Q with free-width freew, given parameters 1 ď

𝑁,OUT ď 𝑁 freew, there exists an instance R for Q of input size Θp𝑁 q and output size ΘpOUTq such

that any semi-ring algorithm for computing the query resultsQpRq requiresΩ
´

𝑁 ¨ OUT1´ 1

freew ` OUT

¯

time.

Hard Instance for Matrix Multiplication [2, 22]. We start with the hard instance for Qmatrix “

𝜋𝐴,𝐶𝑅1p𝐴, 𝐵q ’ 𝑅2p𝐵,𝐶q. Attributes 𝐴, 𝐵,𝐶 have domain size

?
OUT, 𝑁?

OUT

,
?
OUT. Relations 𝑅1 is

a Cartesian product between 𝐴 and 𝐵, and 𝑅2 is a Cartesian product between 𝐵 and 𝐶 . It has been
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Algorithm 5: CleansepQ “ pV, E, yq,Rq

1 R Ð DeDanglepQ,Rq;

2 while true do

3 if D𝐵 P V ´ y s.t. 𝐵 only appears in one
relation, say 𝑒 then

4 𝑅𝑒 Ð 𝜋𝑒´𝐵𝑅𝑒 ;

5 V Ð V ´ t𝐵u;

6 if D𝑒, 𝑒 1 P E s.t. 𝑒 Ď 𝑒 1
then E Ð E ´ t𝑒u;

7 if Q does not change from last iteration then

break;

8 return updated Q,R;

A1 A2 A3 A4

OUT
2

N

OUT
N
2 1

1
N

OUTN
2

OUT
2

Fig. 4. A hard instance of line-3 query

for Yannakakis framework. The num-

bers below are the domain sizes.

proved by [22] that when only semi-ring operations are allowed, any algorithm needs to incur a

cost of Ω
`

𝑁 ¨
?
OUT

˘

.

Hard Instance for Star Queries [2]. We can generalize the hard instance for Qmatrix to Qstar

as follows. Attribute 𝐴𝑖 has domain size OUT
1{𝑘

for any 𝑖 P r𝑚s, and attribute 𝐵 has domain size

𝑁

OUT
1{𝑘 . Relations 𝑅𝑖 is a Cartesian product between 𝐴𝑖 and 𝐵. The similar argument can be made

such that when only semi-ring operations are allowed, any algorithm needs to incur a cost of

Ω
`

𝑁 ¨ OUT1´1{𝑘
˘

.

Hard Instance for General Acyclic Join-Project Queries. Consider an acyclic join-project query

Q that is also cleansed. We will remove this assumption at last. Let Q1,Q2, ¨ ¨ ¨ ,Qℎ be the connected

sub-queries in 𝐺D
Q . Wlog, assume Q1 has the maximum number of relations that contain unique

output attributes. Let 𝑒1, 𝑒2, ¨ ¨ ¨ , 𝑒ℓ be the set of relations that contain unique output attributes. By

definition, ℓ “ freew. We pick an arbitrary unique output attribute from 𝑒𝑖 denoted as 𝐴𝑖 .

We construct a hard instance as follows. Each chosen output attribute 𝐴𝑖 has its domain size

OUT
1{ℓ

. For any remaining output attribute 𝐴 P y´ t𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓu, we set domp𝐴q “ t˚u. Every

non-output attribute 𝐵 P V ´ y has domain size
𝑁

OUT
1{ℓ . Consider an arbitrary relation 𝑅𝑒 . There is

a one-to-one mapping between all non-output attributes. If 𝑒 P t𝑒1, 𝑒2, ¨ ¨ ¨ , 𝑒ℓu, 𝑅𝑒 is a Cartesian

product between the unique output attribute and non-output attributes, with OUT
1{ℓ ¨ 𝑁

OUT
1{ℓ “ 𝑁

tuples. Otherwise, 𝑅𝑒 is a one-to-one mapping between all non-output attributes, with
𝑁

OUT
1{ℓ tuples.

It can be easily shown that for any non-output attribute 𝐵, the projection of the query results QpRq

onto attributes 𝐴1, 𝐴2, ¨ ¨ ¨ , 𝐴ℓ , 𝐵 has its size as large as

´

OUT
1{ℓ
¯ℓ

¨
𝑁

OUT
1{ℓ

“ 𝑁 ¨ OUT1´ 1

ℓ ,

which is equivalent to the hard instance for Qstar with ℓ relations. See an example in Figure 5. Any

semi-ring algorithm forQ andR would imply a semi-ring algorithm forQstar with the corresponding

hard instance. Hence, when only semi-ring operations are allowed, any algorithm needs to incur a

cost of Ω
´

𝑁 ¨ OUT1´ 1

freew

¯

.

Now, we consider the case when Q is not cleansed. Let Q1
be the cleansed version of Q. We

construct the hard instance for Q1
as above. For every non-output attribute that has been removed

by the cleanse procedure from Q, we set its domain as t˚u. For every relation 𝑒 that has been

removed by the cleanse procedure from Q, there must exist some relation 𝑒 1
in Q1

such that 𝑒 Ď 𝑒 1
.

We just set 𝑅𝑒 “ 𝜋𝑒𝑅𝑒1 as the projection of 𝑅𝑒1 . All arguments apply for Q.
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A1 A2 A3 A4 A5

N√
OUT

√
OUT

√
OUT

N√
OUT

N√
OUT

Fig. 5. A hard instance of line-4 query for semi-ring algorithms. The numbers below are the domain sizes.

E NEW ANALYSIS OF [16] IN RAMMODEL
Hu et al. [16] have investigated the join-aggregate queries defined over semi-ring in the mas-

sively parallel computational model. Note that join-project query is defined on a special semi-ring

pt0, 1u,X,Yq. Revisiting this algorithm in the RAM model, we observe:

‚ given any instance R of Qline with input size 𝑂p𝑁 ¨
?
OUTq and output size OUT, there is an

algorithm running in 𝑂p𝑁 ¨
?
OUTq time that can reduce R into 𝑂p1q instances of Qmatrix with

input size 𝑂p𝑁 ¨
?
OUTq and output size OUT.

‚ given any instance R of Qstar with input size 𝑂p𝑁 ¨
?
OUTq and output size OUT, there is an

algorithm runs in𝑂p𝑁 ¨
?
OUTq time that can reduce R into𝑂p1q instances of Qmatrix with input

size 𝑂p𝑁 ¨
?
OUTq and output size OUT, and runs in 𝑂p𝑁 ¨ OUTq time.

‚ given any instanceR of tree queryQ (an acyclic query such that each relation contains at most two

attributes), with input size𝑁 and output sizeOUT, there is an algorithm running in𝑂p𝑁 ¨OUT2{3q

time that can reduce R into 𝑂p1q instances of Qmatrix with input size 𝑂
`

𝑁 ¨ OUT2{3
˘

and output

size OUT.

In incorporating the best algorithm [1] for sparse Boolean matrix multiplication, we obtain the

following results (assuming 𝜔 “ 2):

‚ Given an instance R for Qline or Qstar with input size 𝑁 and output size OUT, the QlinepRq and

QstarpRq can be computed in r𝑂

´

𝑁 ¨ OUT
5

6 ` OUT

¯

time.

‚ Given an instance R for a tree query Q with input size 𝑁 and output size OUT, the QpRq can be

computed in r𝑂 p𝑁 ¨ OUT ` 𝑁 ` OUTq time. This is no better than the Yannakakis algorithm.

F MISSING PROOFS IN SECTION 2
Proof of Lemma 2.1. We review the algorithm in [1]. Suppose we are given two input matrices

M1 P t0, 1u𝑛𝐴ˆ𝑛𝐵
and M2 P t0, 1u𝑛𝐵ˆ𝑛𝐶

. For an arbitrary Boolean matrix M P t0, 1u𝑛1ˆ𝑛2
, we

denote supppMq “ tp𝑖, 𝑗q P r𝑛1s ˆ r𝑛2s : Mr𝑖, 𝑗s “ 1u be the support ofM, i.e., the set of indices for

all non-zero entries in A. Let 𝑁 “ supppM1q ` supppM2q and OUT “ supppM1 ¨M2q. The essence

of the algorithm presented in [1] is a primitive for sparse input and dense output matrix where

𝑛𝐴 ¨ 𝑛𝐶 ď OUT, which is also the bottleneck of whole algorithm. We note that all other primitives

together take r𝑂p𝑁 ` OUTq time. Suppose an 𝑂p1q-approximation of OUT is known.

The First Complexity Result. Set Δ “ p
𝑛𝐵 ¨OUT

𝑁
q

1

4´𝜔 . A value 𝑏 P domp𝐵q is heavy if its degree is
greater than Δ in 𝑅1 or 𝑅2, and light otherwise. Let 𝐵heavy, 𝐵light

be the set of heavy, light values in

𝐵 respectively. We then divide Qmatrix into two sub-queries: Q?

matrix
“ 𝜋𝐴,𝐶𝑅1p𝐴, 𝐵

?q ’ 𝑅2p𝐵
?,𝐶q,

where ? can either be heavy or light. For Q light

matrix
, we compute the full join results and then project

out 𝐵. The cost of this step is𝑂p𝑁 ¨ Δq “ 𝑂

´

𝑁
3´𝜔
4´𝜔 ¨ p𝑛𝐵 ¨ OUTq

1

4´𝜔

¯

. For Qheavy

matrix
, we compute the

Proc. ACM Manag. Data, Vol. 2, No. 2 (PODS), Article 98. Publication date: May 2024.



98:24 Xiao Hu

following rectangular matrix multiplication:

MM

𝑥 ¨𝑧ďOUT,
Δď𝑥,
Δď𝑧

p𝑥, 𝑛𝐵, 𝑧q ď max

𝑥 ¨𝑧ďOUT,

Δď𝑥ď OUT

Δ ,

Δď𝑧ď OUT

Δ

𝑥 ¨ 𝑧 ¨ 𝑛𝐵

mint𝑥, 𝑛𝐵, 𝑧u3´𝜔
(4)

We further distinguish two more cases:

‚ Case 1: mint𝑥, 𝑧u ă 𝑛𝐵 . Then, we can further bound p4q ď
𝑛𝐵 ¨ OUT

Δ3´𝜔
ď 𝑁

3´𝜔
4´𝜔 ¨ p𝑛𝐵 ¨ OUTq

1

4´𝜔 .

‚ Case 2: mint𝑥, 𝑧u ą 𝑛𝐵 . Then, we can further bound p4q ď max

𝑥 ¨𝑧ďOUT,

Δď𝑥ď OUT

Δ ,

Δď𝑧ď OUT

Δ

𝑥 ¨ 𝑧 ¨ 𝑛𝐵

𝑛3´𝜔
𝐵

ď OUT ¨ 𝑛𝜔´2

𝐵
.

Combining these two cases, we obtain the following result as desired.

The Second Complexity Result. We skip the heavy-light strategy and compute the rectangular

matrix multiplications directly:

MM

𝑥 ¨𝑧ďOUT,
𝑥ď𝑛𝐴,
𝑧ď𝑛𝐶

p𝑥, 𝑛𝐵, 𝑧q ď max

𝑥 ¨𝑧ďOUT,
𝑥ď𝑛𝐴,
𝑧ď𝑛𝐶

𝑥 ¨ 𝑧 ¨ 𝑛𝐵

mint𝑥, 𝑛𝐵, 𝑧u3´𝜔
(5)

We further distinguish two more cases:

‚ Case 1: mint𝑥, 𝑧u ď 𝑛𝐵 . Then, we can further bound (5) as

p5q ď max

𝑥 ¨𝑧ďOUT,
𝑥ď𝑛𝐴,
𝑧ď𝑛𝐶

𝑥 ¨ 𝑧 ¨ 𝑛𝐵

mint𝑥, 𝑧u3´𝜔
“ max

𝑥 ¨𝑧ďOUT,
𝑥ď𝑛𝐴,
𝑧ď𝑛𝐶

𝑛𝐵 ¨ maxt𝑥, 𝑧u ¨ mint𝑥, 𝑧u𝜔´2

“ max

𝑥 ¨𝑧ďOUT,
𝑥ď𝑛𝐴,
𝑧ď𝑛𝐶

𝑛𝐵 ¨ p𝑥 ¨ 𝑧q𝜔´2 ¨ maxt𝑥, 𝑧u3´𝜔

ď 𝑛𝐵 ¨ OUT𝜔´2 ¨ maxt𝑛𝐴, 𝑛𝐶u3´𝜔

‚ Case 2: mint𝑥, 𝑧u ą 𝑛𝐵 . Then, we can further bound p5q ď max

𝑥 ¨𝑧ďOUT,
𝑥ď𝑛𝐴,
𝑧ď𝑛𝐶

𝑥 ¨ 𝑧 ¨ 𝑛𝐵

𝑛3´𝜔
𝐵

ď OUT ¨ 𝑛𝜔´2

𝐵
.

Combining these two cases, we obtain the result as desired. □

Proof of Lemma 2.3. As 𝑑𝑘 ď 𝑑𝑘´1 ď ¨ ¨ ¨ ď 𝑑1,
ź

𝑖P𝜂

𝑑𝑖 ě
ź

𝑗P𝛽

𝑑 𝑗 and

ź

𝑖P𝜂´t1u

𝑑𝑖 ě
ź

𝑗P𝛽´t2u

𝑑 𝑗 . As

ź

𝑖P𝜂

𝑑𝑖 ¨
ź

𝑗P𝛽

𝑑 𝑗 “ 𝜆, we have
ź

𝑖P𝜂

𝑑𝑖 “ max

$

&

%

ź

𝑖P𝜂

𝑑𝑖 ,
ź

𝑗P𝛽

𝑑 𝑗

,

.

-

ě 𝜆1{2
Wlog, assume 𝑘 is even (the odd

case can be proved similarly). As 𝑑1 ě 𝑑2 ě ¨ ¨ ¨ ě 𝑑𝑘´1,

ź

𝑖P𝜂zt1u

𝑑𝑖 ď

˜

𝑘
ź

𝑗“2

𝑑 𝑗

¸

1{2

“

ˆ

𝜆

𝑑1

˙

1{2

.

Hence,

ź

𝑖P𝜂zt1u

𝑑𝑖 ď 𝜆1{2
. Moreover, if 𝑑1 ď 𝜆1

,

ź

𝑖P𝜂

𝑑𝑖 “
ź

𝑖P𝜂zt1u

𝑑𝑖 ¨ 𝑑1 ď

ˆ

𝜆

𝑑1

˙

1{2

¨ 𝑑1 “ p𝜆 ¨ 𝑑1q
1{2 ď

?
𝜆 ¨ 𝜆1

. Again, as

ź

𝑖P𝜂

𝑑𝑖 ¨
ź

𝑗P𝛽

𝑑 𝑗 “ 𝜆, we have
ź

𝑗P𝛽

𝑑 𝑗 ě

c

𝜆

𝜆1
. □
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Correctness Proof of Theorem 2.5. Given any input instance R for Qstar, we denote S as

the results returned by the algorithm in Section 2.2. To prove the correctness, we next show

QstarpRq “ S. Direction Ď. For each query result p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q P QstarpRq, there must exist

some value 𝑏 P domp𝐵q, such that p𝑎𝑖 , 𝑏q P 𝑅𝑖 for each 𝑖 P r𝑘s. Then, in step 1, let 𝜙 “ 𝜙𝑏 be

the permutation of 𝑏 for simplicity. If 𝑏 P 𝐵
light

𝜙
, then p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q is computed by Step 3. If

𝑏 P 𝐵
heavy

𝜙
, p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q is computed by Step 4. Hence, every query result must be reported

by this algorithm. Direction Ě. For each tuple p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q P S reported by this algorithm. If

p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q is reported by Step 3 or Step 4, it is easy to check that there exists some 𝑏 P domp𝐵q

such that p𝑎𝑖 , 𝑏q P 𝑅𝑖 for each 𝑖 P r𝑘s, hence p𝑎1, 𝑎2, ¨ ¨ ¨ , 𝑎𝑘q P QstarpRq. □

G MISSING PROOFS IN SECTION 3
Correctness Proof of Lemma 3.8. Given any input instance R for a flower query Q, we denote

S as the results returned by the algorithm in Section 3.2. To prove the correctness, we next show

QpRq “ S. Direction Ď. For each query result 𝑡1 P QpRq, there must exist a full join result

𝑡2 P’𝑒PE 𝑅𝑒 such that 𝜋y𝑡2 “ 𝑡1. Let 𝑡 “ 𝜋x𝑡2. In step 1, let 𝜙 “ 𝜙𝑡 be the permutation of 𝑡 for

simplicity. If 𝑡 P xlight
𝜙

, then 𝑡1 is computed by Step 3. If 𝑡 P xheavy
𝜙

, 𝑡1 is computed by Step 4. Hence,

every query result must be reported by this algorithm. Direction Ě. For each tuple 𝑡1 P S reported

by this algorithm. If 𝑡1 is reported by step 3 or step 4, it is easy to check that there exists some full

join result 𝑡2 P’𝑒PE 𝑅𝑒 such that 𝜋y𝑡2 “ 𝑡1, hence 𝑡2 P QstarpRq. □

Correctness Proof of Theorem 3.9. Given any input instance R for a general acyclic join-

project query Q, we denote S as the results returned by the algorithm in Section 3.2. To prove

the correctness, we next show QpRq “ S. This trivially holds for all base cases as well as the

general case (1). We next prove it for general case (2) by induction. By hypothesis, we assume

that each subquery Q𝜒
is correctly computed. Then, it suffices to show that the union of query

results of Q𝜒
over all possible labels 𝜒 is exactly QpRq. This is straightforwardly guaranteed by

the decomposition in Step 2. Putting everything together, we complete the whole proof. □

H BETTER RESULTS ON TREE QUERY
Corollary H.1. For a tree join-project query Q with its cleansed version Q1, where each connected

component of 𝐺D
Q1 is Qmatrix, and an instance R of input size 𝑁 and output size OUT, the QpRq

can be computed in r𝑂

´

𝑁 ¨ OUT
𝜇

1`𝜇 ` OUT ` 𝑁
p2`𝛼q𝜇

1`𝜇 ¨ OUT
1´𝛼𝜇

1`𝜇

¯

time. If 𝜔 “ 2, it degenerates to
r𝑂
`

𝑁 ¨ OUT1{3 ` OUT

˘

.

Corollary H.2. For a tree query Q with its cleansed version Q1 where each connected component
of𝐺D

Q1 is Qstar, and an instance R of input size 𝑁 and output size OUT, the QpRq can be computed in

r𝑂

´

𝑁𝜔´2 ¨ OUT ` 𝑁 ¨ OUT
2pfreew´1q

p5´𝜔qpfreew´1q`2

¯

time, where freew is the free-width of Q. If 𝜔 “ 2, it degenerates to r𝑂

´

𝑁 ¨ OUT
2pfreew´1q

3pfreew´1q`2 ` OUT

¯

.
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