Differentially Private Data Release over Multiple Tables

Badih Ghazi
Google Research
badighazi@gmail.com

Ravi Kumar
Google Research
ravi.k53@gmail.com

Xiao Hu
University of Waterloo
xiaohu@uwwaterloo.ca

Pasin Manurangsi
Google Research
pasin@google.com

ABSTRACT
We study synthetic data release for answering multiple linear queries over a set of database tables in a differentially private way. Two special cases have been considered in the literature: how to release a synthetic dataset for answering multiple linear queries over a single table, and how to release the answer for a single counting (join size) query over a set of database tables. Compared to the single-table case, the join operator makes query answering challenging, since the sensitivity (i.e., by how much an individual data record can affect the answer) could be heavily amplified by complex join relationships.

We present an algorithm for the general problem, and prove a lower bound illustrating that our general algorithm achieves parameterized optimality (up to logarithmic factors) on some simple queries (e.g., two-table join queries) in the most commonly-used privacy parameter regimes. For the case of hierarchical joins, we present a data partition procedure that exploits the concept of uniformized sensitivities to further improve the utility.

CCS CONCEPTS
• Information systems → Database query processing; Query optimization; • Security and privacy → Data anonymization and sanitization; • Theory of computation → Theory of database privacy and security.

KEYWORDS
Differential privacy; Synthetic data; Linear query; Multi-table join

1 INTRODUCTION
Synthetic data release is a very useful objective in private data analysis. Differential privacy (DP) [17, 18] has emerged as a compelling model that enables us to formally study the tradeoff between utility of released information and the privacy of individuals. In the literature, there has been a large body of work that studies synthetic data release over a single table, e.g., the private multiplicative weight algorithm [25], the histogram-based algorithm [43], the matrix mechanism [33], the Bayesian network algorithm [45], and other works on geometric range queries [7, 9, 11, 19, 20, 28, 34, 35] and datacubes [13].

Data analysis over multiple private tables connected via join operators has been the subject of significant interest within the area of modern database systems. In particular, the challenging question of releasing the join size over a set of private tables has been studied in several recent works including the sensitivity-based framework [15, 16, 30], the truncation-based mechanism [14, 32, 42], as well as in works on one-to-one joins [37, 41], and on graph databases [6, 10]. In practice, multiple queries (as opposed to a single one) are typically issued for data analysis, for example, a large class of linear queries on top of join results with different weights on input tuples, as a generalization of the counting join size query. One might consider answering each query independently but the utility would be very low due to the limited privacy budget, implied by DP composition rules [17, 18]. Hence the question that we tackle in this paper is: how can we release synthetic data for accurately answering a large class of linear queries over multiple tables privately?

1.1 Problem Definition
Multi-way Join and Linear Queries. A (natural) join query can be represented as a hypergraph \(H = (x, (x_1, \ldots, x_m) [1], \) where \(x \) is the set of vertices or attributes and each \(x_i \subseteq x \) is a hyperedge or relation. Let \(\text{dom}(x) \) be the domain of attribute \(x \). Define \(D = \text{dom}(x) = \prod_{x \in x} \text{dom}(x) \), and \(D_i = \text{dom}(x_i) = \prod_{x \in x_i} \text{dom}(x) \) for any \(i \in [m] \). For attribute(s) \(y \), we use \(\pi_y t \) to denote the value(s) that tuple \(t \) displays on attribute(s) \(y \).

Given an instance \(I = (R_1^1, \ldots, R_m^1) \) of \(H \), each table \(R_i^1 : D_1 \to \mathbb{Z}_{\geq 0} \) is defined as a function from domain \(D_1 \) to a non-negative integer, indicating the frequency of each tuple in \(D_1 \). This is more general than the setting where each tuple appears at most once in each relation, since it can capture annotated relations [24] with non-negative annotations. The input size of \(I \) is defined as the sum of frequencies of all data records, i.e., \(n = \sum_{t \in [m]} \sum_{t \in D_1} R_1^1(t) \).
We encode the natural join as a function \(\rho : \times i \in [m] \mathbb{D}_i \rightarrow \{0, 1\} \), such that for each combination \(\bar{t} = (t_1, \ldots, t_m) \in \times i \in [m] \mathbb{D}_i \) of tuples, \(\rho(\bar{t}) = 1 \) if and only if \(\rho_x(\alpha_x t_i) = \rho_x(\beta_x t_j) \) for each pair of \(i, j \in [m] \), i.e., \(t_i, t_j \) share the same values on the common attributes between \(x_i \) and \(x_j \). Given a join query \(\mathcal{H} \) and an instance I, the join result is also represented as a function \(\text{Join}^1 : \mathcal{D} \rightarrow \mathbb{Z}^{\geq 0} \), such that for any combination \(\bar{t} = (t_1, \ldots, t_m) \in \times i \in [m] \mathbb{D}_i \),

\[
\text{Join}^1(\bar{t}) = \rho(\bar{t}) \prod_{i \in [m]} R_i^1(t_i).
\]

The \textit{join size} of instance I over join query \(\mathcal{H} \) is therefore defined as

\[
\text{count}(I) = \sum_{\bar{t} \in x \times i \in [m] \mathbb{D}_i} \text{Join}^1(\bar{t}).
\]

For each \(i \in [m] \), we have a family \(\mathcal{Q}_i \) of linear queries defined over \(\mathbb{D}_i \) such that for \(q \in \mathcal{Q}_i \), \(q : \mathbb{D}_i \rightarrow [-1, +1] \). Let \(\mathcal{Q} = \times i \in [m] \mathcal{Q}_i \). For each linear query \(q = (q_1, \ldots, q_m) \in \mathcal{Q} \), the result over instance I is defined as

\[
q(I) = \sum_{\bar{t} = (t_1, \ldots, t_m) \in \times i \in [m] \mathbb{D}_i} \rho(\bar{t}) \prod_{i \in [m]} q_i(t_i) \cdot R_i^1(t_i).
\]

Our goal is to release a function \(\mathcal{F} : \times i \in [m] \mathbb{D}_i \rightarrow \mathbb{N} \) such that all queries in \(\mathcal{Q} \) can be answered over \(\mathbb{D} \) as accurately as possible, i.e., minimizing the \(\epsilon \)-error \(\alpha = \max_{q \in \mathcal{Q}} |q(I) - q(\mathcal{F})| \), where

\[
q(\mathcal{F}) = \sum_{\bar{t} = (t_1, \ldots, t_m) \in \times i \in [m] \mathbb{D}_i} \mathcal{F}(\bar{t}) \prod_{i \in [m]} q_i(t_i).
\]

We study the data complexity \([44]\) of this problem and assume that the size of join query is a constant. When the context is clear, we just drop the superscript \(I \) from \(R^1 \).

\textbf{DP Setting.} Two DP settings have been studied in the relational model, depending on whether foreign key constraints are considered or not. The one considering foreign key constraints assumes the existence of a primary private table, and deleting a tuple in the primary private relation will delete all other tuples referencing it; see \([14, 32, 42]\). In this work, we adopt the other notion, which does not consider foreign key constraints, but defines instances to be neighboring if one can be converted into the other by adding/removing a single tuple; this is the same as the notion studied in some previous works \([30, 31, 38, 41]\).

\textbf{Definition 1.1 (Neighboring Instances).} A pair \(I = (R_1, \ldots, R_m) \) and \(I' = (R'_1, \ldots, R'_m) \) of instances are \textit{neighboring} if there exists some \(i \in [m] \) and \(t^* \in \mathbb{D}_i \) such that:

- for any \(j \in [m] \setminus \{i\}, R_j(t) = R'_j(t) \) for every \(t \in \mathbb{D}_j \);
- \(R_i(t) = R_i^1(t) \) for every \(t \in \mathbb{D}_i \setminus \{t^*\} \) and \(|R_i(t^*) - R'_i(t^*)| = 1 \).

\textbf{Definition 1.2 (Differential Privacy \([17, 18]\)).} For \(\epsilon, \delta > 0 \), an algorithm \(\mathcal{A} \) is \((\epsilon, \delta)\)-differentially private (denoted by \((\epsilon, \delta)\)-DP) if for any pair \(I, I' \) of neighboring instances and any subset \(S \) of outputs, \(\Pr[\mathcal{A}(I) \in S] \leq e^{\epsilon} \cdot \Pr[\mathcal{A}(I') \in S] + \delta \).

\textbf{Notation.} For simplicity of presentation, we henceforth assume throughout that \(0 < \epsilon \leq O(1) \) and \(0 \leq \delta \leq 1/2 \). Furthermore, all lower bounds below hold against an algorithm that achieves the stated error \(\alpha \) with probability \(1 - \beta \) for some sufficiently small constant \(\beta > 0 \); we will omit mentioning this probabilistic part for brevity. For notational ease, we define the following quantities:

\[
f_{\text{lower}}(\mathbb{D}, \mathcal{Q}, \epsilon, \delta) = \sqrt{\frac{1}{\epsilon} \cdot \frac{\log |\mathbb{D}|}{\log |\mathcal{Q}| \cdot \log 1/\delta}}, \quad \text{and} \quad f_{\text{upper}}(\mathbb{D}, \mathcal{Q}, \epsilon, \delta) = \sqrt{\frac{1}{\epsilon} \cdot \frac{\log |\mathcal{Q}|}{\log |\mathbb{D}| \cdot \log 1/\delta}}.
\]

When \(\mathbb{D}, \mathcal{Q}, \epsilon, \delta \) are clear from context, we will omit them. Let \(\lambda = \frac{1}{4} \log \frac{1}{\delta} \), which is a commonly-used parameter in this paper.

\textbf{1.2 Prior Work}

We first review the problem of releasing synthetic data for a single table, and mention two important results in the literature. In the single table case, nearly tight upper and lower bounds are known:

\textbf{Theorem 1.3 (\([25]\)).} For a single table \(R \) of at most \(n \) records, a family \(\mathcal{Q} \) of linear queries, and \(\epsilon, \delta > 0 \), there exists an algorithm that is \((\epsilon, \delta)\)-DP, and with probability at least \(1 - 1/\text{poly}(|\mathcal{Q}|) \) produces \(\mathcal{F} \) such that all queries in \(\mathcal{Q} \) can be answered within error \(\alpha = O\left(\sqrt{n} \cdot f_{\text{upper}}\right) \) using \(\mathcal{F} \).

\textbf{Theorem 1.4 (\([8]\)).} For every sufficiently small \(\epsilon > 0 \), sufficiently large \(n, n_D \geq n^{O(1)} \) and \(n_Q \geq (n \cdot \log n_D)^{O(1)} \), there exists a family \(\mathcal{Q} \) of queries of size \(n_Q \) on a domain \(\mathbb{D} \) of size \(n_D \) such that any \((\epsilon, 1/n^{O(1)})\)-DP algorithm that takes as input a database of size at most \(n \), and outputs an approximate answer to each query in \(\mathcal{Q} \) to within error \(\alpha \) must satisfy \(\alpha \geq \Omega\left(\min\{n, \sqrt{n} \cdot f_{\text{lower}}\}\right)\).

Another related problem that has been widely studied by the database community is how to release the join size of a query privately, i.e., \(\text{count}(I) \) for every input instance \(I \). Note that \(\text{count}(I) \) is essentially a special linear query \(q = (q_1, \ldots, q_m) \) with \(q_i : \mathbb{D}_i \rightarrow \{+1\} \) for every \(i \in [m] \). A popular approach of answering the counting join size query is based on the sensitivity framework, which first computes \(\text{count}(I) \), then computes the sensitivity of the query (measuring the difference between the query answers on neighboring database instances), and releases a noise-masked query answer, where the noise is drawn from some zero-mean distribution calibrated appropriately according to the sensitivity. It is known that the local sensitivity of counting join size query, defined as

\[
\text{LS}_{\text{count}}(I) = \max_{P \sim (I, I') \text{ are neighboring}} |\text{count}(I) - \text{count}(I')|,
\]

where the maximum is over all neighboring instances \(I' \) of \(I \), cannot be directly used for calibrating noise, as \(\text{LS}_{\text{count}}(I), \text{LS}_{\text{count}}(I') \) for a pair \(I, I' \) of neighboring databases can be used to distinguish them. Global sensitivity (e.g., \([18]\)) defined as

\[
\text{GS}_{\text{count}}(I) = \max_{I} \text{LS}_{\text{count}}(I),
\]

where the maximum is over all instances \(I \), could be used but the utility is unsatisfactory in many instances. Smooth upper bounds on local sensitivity \([40]\) have instead been considered; they offer much better utility than global sensitivity. Examples include smooth sensitivity, which is the smallest smooth upper bound but usually cannot be efficiently computed, and residual sensitivity \([15]\), which...
is a constant-approximation of smooth sensitivity but can be efficiently computed and used in practice. See Section 3 for formal details.

We note that the sensitivity-based framework can be adapted to answering any single linear query, as long as the sensitivity of the specific linear query is correctly computed. However, we are not interested in answering each linear query individually, since the privacy budget (implied by DP composition) would blow up with the number of queries to be answered, which would be too costly when the query space is extremely large. Instead, we aim to release a synthetic dataset such that any arbitrary linear query can be freely answered over it while preserving DP. In building our data release algorithm, we also resort to the existing algorithms for releasing synthetic dataset for a single table. The error will be a function of the join size and the residual sensitivity of count(.)

1.3 Our Results

We first present the basic join-as-one approach for releasing a synthetic dataset for multi-table queries, which computes the join results as a single table and uses existing algorithms for releasing synthetic dataset for a single table. The error will be a function of the join size and the residual sensitivity of count(.)

Theorem 1.5. For any join query H, an instance I, a family Q of linear queries, and $\epsilon > 0, \delta > 0$, there exists an (ϵ, δ)-DP algorithm with probability at least $1 - 1/\text{poly}(|Q|)$ that can be used to answer all queries in Q within

$$\alpha = O \left(\sqrt{\text{count}(I) \cdot \text{RS}_{\text{count}}^B(I) + \text{RS}_{\text{count}}^\beta(I) \cdot \sqrt{\lambda}} \right),$$

where count(I) is the join size of H over I and $\text{RS}_{\text{count}}^\beta(I)$ is the β-residual sensitivity of I for $\beta = 1/\lambda$.

We next present the parameterized optimality with respect to the join size and the local sensitivity of count(.)

Theorem 1.6. Given arbitrary parameters $\text{OUT} \geq \Delta > 0$ such that OUT/Δ is sufficiently large and a join query H, for every sufficiently small $\epsilon > 0, n_D \geq \text{OUT}^{O(1)}$ and $n_Q \geq (\text{OUT} \cdot \log n_D)^{O(1)}$, there exists a family Q of queries of size n_Q on domain D of size n_D such that any $(\epsilon, 1/\text{poly}(1))$-DP algorithm that takes as input a multi-table database over H of input size at most n, join size OUT and local sensitivity Δ, and outputs an approximate answer to each query in Q to within error α must satisfy

$$\alpha \geq \Omega \left(\min \left\{ \text{OUT}, \sqrt{\text{OUT} \cdot \Delta \cdot \text{lower}} \right\} \right).$$

For the typical setting with $\epsilon = \Omega(1), \delta = O \left(\frac{1}{n} \right)$ for some constant $c, |Q| \leq n^{O(1)}$ and $\lambda = O (\log n)$.

The gap between the upper bound in Theorem 1.5 and the lower bound in Theorem 1.6—ignoring poly-logarithmic factors—boils down to the gap between smooth sensitivity and local sensitivity used in answering count(.) in a private way, which appears in answering such a single query in a different form.

From the upper bound in terms of residual sensitivity, we exploit the idea of *uniformized sensitivity* to further improve Theorem 1.5, by using a more fine-grained partition of input instances. For the class of hierarchical queries, which has been widely studied in the context of various database problems [4, 12, 21, 27], we obtain a more fine-grained parameterized upper bound in Theorem C.2 and lower bound in Theorem C.3. In the main text, we include Theorem 4.4 and Theorem 4.5 for the basic two-table join to illustrate the high-level idea. We defer all details to Section 4.

2 PRELIMINARIES

We introduce some commonly-used concepts, terminologies, and primitives used in this paper.

Notation. For random variables X, Y and scalars $\epsilon > 0, \delta \in [0, 1)$, we use $X \approx_{(\epsilon, \delta)} Y$ for short if $\Pr[X \in S] \leq e^\epsilon \cdot \Pr[Y \in S] + \delta$ and $\Pr[Y \in S] \leq e^\epsilon \cdot \Pr[X \in S] + \delta$ for all sets S of outcomes. For convenience, we sometimes write the distribution in place of a random variable drawn from that distribution. E.g., $a + \mathcal{D}$ is a shorthand for $a + X$, where X is a random variable with distribution \mathcal{D} (denoted $a \sim \mathcal{D}$).

Truncated Laplace Distribution. The Laplace distribution with parameter b, denoted Lap_b, has probability density function (PDF)

$$\text{Lap}_b(x) \propto e^{-|x|/b}.$$

The shifted and truncated Laplace distribution with parameters b and τ, denoted TLap_b^{τ}, is the distribution supported on $[0, 2\tau]$ whose PDF over the support satisfies $\text{TLap}_b^{\tau}(x) \propto e^{-|x|/b}$. The DP guarantees of the Laplace and truncated Laplace distributions are well-known (e.g., [18, 22, 23]): for any pair u, v with $|u - v| \leq \Delta$, $u + \text{Lap}_b/e \approx_{(\epsilon, 0)} v + \text{Lap}_b/e$ and $u + \text{TLap}_b^{\tau/e} \approx_{(\epsilon, 0)} v + \text{TLap}_b^{\tau/e}$ for $\tau = \epsilon \cdot \Delta$, where $\tau(\epsilon, \delta, \Delta) = O(\Delta \cdot \lambda)$ when ϵ is a constant.

Exponential Mechanism. The exponential mechanism (EM) [36] selects a “good” candidate from a set C of candidates. The goodness is defined by a scoring function $s(I, c)$ for an input dataset I and a candidate $c \in C$ and is assumed to have sensitivity at most one. Then, the EM algorithm consists of sampling each candidate $c \in C$ with probability $\propto \exp(-0.5e^{-s(I, c)})$; this algorithm is $(\epsilon, 0)$-DP.

3 JOIN-AS-ONE ALGORITHM

In this section, we present our Join-as-one algorithm for general join queries, which computes the join results as a single function and then invokes the single-table private multiplicative weights (PMW) algorithm [25] (see Algorithm 2). While this is apparently simple, there are many challenging issues in putting everything together. (All missing proofs are in Appendix B.)

3.1 Algorithms for Two-Table Query

We start with the simplest two-table query. Assume the join query H is given by the hypergraph with vertices $x = \{A, B, C\}$ and hyperedges $x_1 = \{A, B\}, x_2 = \{B, C\}$. For $i \in \{1, 2\}$, we define the degree of a join value $b \in \text{dom}(R_i)$ in R_i (i.e., the frequencies of data records displaying join value b in R_i) to be $\deg_{x_i, b}(R_i) = \sum_{t \in \mathcal{D}_{x_i} \cap \mathcal{D}_b} R_i(t)$.

A similar idea of uniformizing degrees of join values, i.e., how many tuples a join value appears in a relation, has been used in query processing [29], but we use it in a more complicated scenario to achieve uniform sensitivity.
The maximum degree of any join value in \(\text{dom}(B) \) is denoted as
\[\Delta = \max_{b \in \text{dom}(B)} \max_{a \in \text{dom}(A)} \deg_{a,b}(b), \deg_{b,a}(b); \] note that \(\Delta = L_{\text{count}}(I) \).

A Natural (but Flawed) Idea. Consider the following algorithm:
- Compute the join result \(J = \text{Join}^I \) and release a synthetic dataset \(\tilde{J}_I \) for \(J \) by invoking the single-table PMW algorithm;

We now briefly explain why this algorithm violates DP. Let \(\tilde{J}, \tilde{J}' \) be the synthetic datasets released by this algorithm for two neighboring databases \(I, I' \) respectively. By the property of the single-table PMW algorithm, the total number of tuples over the whole domain stays unchanged, i.e., \(\text{count}(I) = \sum_{t \in \tilde{D}_1 \times \tilde{D}_2} \tilde{j}(t) \) and \(\text{count}(I') = \sum_{t \in \tilde{D}_1 \times \tilde{D}_2} \tilde{j}'(t) \). However, \(I, I' \) could have dramatically different join sizes: Figure 1 shows two neighboring databases with join sizes \(n \) and \(0 \) respectively. Thus, \(J, J' \) can be used by an adversary to distinguish \(I, I' \), which makes the algorithm not DP.

Another Natural (but Still Flawed) Idea. To remedy the leakage in the above algorithm, we seek to protect the total number of tuples in the released dataset, say, by padding with dummy tuples:

1. (1) Compute the join result \(J = \text{Join}^I \) and release a synthetic dataset \(\tilde{J}_I \) for \(J \) by invoking the single-table PMW algorithm;
2. (2) \(\tilde{A} \leftarrow \Delta + \text{TLap}_{2\epsilon/\Delta}(1) \);
3. (3) \(\tilde{J}_2 \leftarrow \) random sample of \(\eta \) records from \(\tilde{D}_1 \times \tilde{D}_2 \), where \(\eta \sim \text{TLap}_{2\Delta/e} \);
4. (4) Release the union of these two datasets: \(\mathcal{F} = \tilde{J}_1 \cup \tilde{J}_2 \);

As noted, the local sensitivity cannot be directly used for privately releasing the join size, however, the global sensitivity of \(L_{\text{count}}(\cdot) \) is 1. Hence, the second step is to obtain an upper bound on the local sensitivity, which will be used to calibrate the noise needed to mask the join size of \(I \). More specifically, for any neighboring databases \(I, I' \), let \(\mathcal{F}, \mathcal{F}' \) be the synthetic datasets released for \(I, I' \) respectively. As mentioned, \(\sum_{t \in \tilde{D}_1 \times \tilde{D}_2} \mathcal{F}(t) \approx (\epsilon, \delta) \sum_{t \in \tilde{D}_1 \times \tilde{D}_2} \mathcal{F}'(t) \), which resolves the information leakage of the join size. However, it turns out that this approach can still lead to the distinguishability of neighboring databases \(I, I' \). Indeed, consider the following example.

Example 3.1. Consider neighboring instances \(I, I' \) in Figure 1. Assume \(\epsilon = \Theta(1) \) and \(\delta = O(1/n^c) \) for some constant \(c \). Let \(\tilde{J}_I, \tilde{J}'_I \) be the synthetic datasets released for \(J, J' \) respectively. As \(\tilde{j}(t) = 0 \) for each \(t \in \tilde{D}_1 \times \tilde{D}_2 \), \(\tilde{j}'(t) = 0 \) also holds for every \(t \in \tilde{D}_1 \times \tilde{D}_2 \). Let \(\tilde{D}' = (\text{dom}(A) \times \{b_1\}) \times ((\{b_1\}, c_1)) \). In contrast, with probability at least \(1 - 1/\text{poly}(Q) \), there exists some constant \(c_1 \) such that \(\sum_{t \in \tilde{D}'_I} \tilde{j}(t) \geq n - c_1 \cdot \sqrt{n} \cdot \text{fupper} \), for answering counting within an error of \(O(\sqrt{n} \cdot \text{fupper}) \). Moreover, \(\Delta = n \), hence \(\tilde{\Delta} = O(n \log n) \) and \(\eta \approx (n \log n)^{c_1} \). The probability that no tuple in \(\tilde{D}'_I \) is sampled by \(\tilde{j}_I' \) is \((1 - n^{-1/2})^{n^{c_1} \cdot \log n} = (1 - 1/n^{1/2})^{n^{c_1} \cdot \log n} > 1/\epsilon \) for some constant \(c_1 \). Together, \(\text{Pr}[\tilde{j}_I'_{\tilde{D}'_I} = 0] < 1/\text{poly}(Q) \) and \(\text{Pr}[\tilde{j}_I'_{\tilde{D}'_I} = 0] > 1/\epsilon \), thus violating the DP condition \(1/\epsilon < 1/\text{poly}(Q) \cdot e^{O(1) + O(1/n^c)} \).

Our Algorithm. The main insight in the idea that works is to change the order of the two steps in the previous flawed version. More specifically, we first pad dummy tuple to join results and then release the synthetic dataset for the “noisy” join results.

Algorithm 1:

1. \(\tilde{\Delta} \leftarrow \Delta + \text{TLap}_{2\epsilon/\Delta}(1) \);
2. return \(\text{PMW}_{\epsilon/2, \delta/2, \tilde{\Delta}}(I) \);

Algorithm 2:

1. \(\tilde{n} = \text{count}(I) + \text{TLap}_{2\Delta/e} \);
2. \(\tilde{F}_0 \leftarrow \tilde{n} \) times uniform distribution over \(\mathcal{D} \); \(\tilde{F}_0(x) = \frac{\tilde{n}}{|\mathcal{D}|} \);
3. \(\epsilon' \leftarrow \frac{\epsilon}{16k\log(1/\delta)} \);
4. foreach \(i = 1, \ldots, k \) do
5. Sample a query \(q_i \in Q \) using the \(\epsilon' \)-DP EM with score function \(s_i(I, q) = \frac{1}{\Lambda} \cdot |q(\tilde{F}_{i-1}) - q(I)| \);
6. \(m_i \leftarrow q_i(I) + \text{Lap}_{\epsilon'/\Delta} \);
7. Update for each \(x \in \mathcal{D} \):
 \[\tilde{F}_i(x) = \tilde{F}_{i-1}(x) \times \exp \left(q_i(x) \cdot (m_i - q_i(\tilde{F}_{i-1})) \cdot \frac{1}{2\epsilon'} \right) \];
8. return \(\text{Avg}_{x \in \mathcal{D}} \tilde{F}_k(x) \);

(1) \(\tilde{\Delta} \leftarrow \Delta + \text{TLap}_{2\epsilon/\Delta}(1) \);
(2) \(\tilde{J}_2 \leftarrow \) random sample of \(\eta \) records from \(\tilde{D}_1 \times \tilde{D}_2 \), where \(\eta \sim \text{TLap}_{2\Delta/e} \);
(3) We compute the join result \(J = \text{Join}^I(\mathcal{H}, I) \) and release a synthetic dataset \(\mathcal{F} \) for \(J \) by invoking the single-table PMW algorithm;

We observe that this approach can be further simplified by releasing a synthetic dataset for the join result \(J \) directly by invoking the single-table PMW algorithm, but starting from an initial uniform distribution parameterized by \(\tilde{\Delta} = \text{count}(I) + \Delta \). Algorithm 1 contains a complete description for releasing synthetic dataset for two-table joins. Since \(\tilde{n} \) is private and the single-table algorithm [25] releases a private synthetic dataset for \(J \), Algorithm 1 also satisfies DP, as stated in Lemma 3.2.

Lemma 3.2. Algorithm 1 is \((\epsilon, \delta)\)-DP.

Error Analysis. As shown in Appendix A, with probability \(1 - 1/\text{poly}(Q) \), Algorithm 2 returns a synthetic dataset \(\mathcal{F} \) such that every linear query in \(Q \) can be answered over \(\mathcal{F} \) with error (omitting \(\text{fupper} \)): \(O\left(\sqrt{\text{count}(I) \cdot (\Delta + \tilde{\Delta}) + (\Delta + \tilde{\Delta}) \cdot \sqrt{\Lambda}}\right) \). Then, we arrive at:
Figure 2: A hard instance constructed for two-table join, with \(n = 9, \Delta = 3 \) and OUT = 27.

Theorem 3.3. For any two-table instance \(I \), a family \(Q \) of linear queries, and \(\epsilon > 0, \delta > 0 \), there exists an algorithm that is \((\epsilon, \delta)-DP\), and with probability at least \(1 - n/\text{poly}(|Q|) \) produces \(T \) such that all linear queries in \(Q \) can be answered within error:

\[
\alpha = \mathcal{O}\left(\sqrt{\text{count}(I) \cdot (\Delta + \lambda) + (\Delta + \lambda) \cdot \sqrt{\lambda}} \cdot f_{\text{upper}}\right),
\]

where \(\text{count}(I) \) is the join size of \(I \), and \(\Delta = \text{LS}_{\text{count}}(I) \).

3.2 Lower Bounds for Two-Table Join

The first lower bound is based on the local sensitivity:

Theorem 3.4. For any \(\Delta > 0 \), there exists a family \(Q \) of queries such that any \((\epsilon, \delta)-DP\) algorithm that takes \(\epsilon \) as input a database \(I \) with local sensitivity at most \(\Delta \) and outputs an approximate answer to each query in \(Q \) within error \(\alpha \), must satisfy \(\alpha \geq \Omega(\Delta) \).

Our second lower bound is via a reduction to the single-table case: we create a two-table instance where \(R_1 \) encodes the single-table and \(R_2 \) "amplifies" both the sensitivity and the join size by a factor of \(\Delta \). This eventually results in the following lower bound:

Theorem 3.5. Given arbitrary parameters OUT \(\geq \Delta > 0 \) such that OUT/\(\Delta \) is sufficiently large, for every sufficiently small \(\epsilon > 0, n/\delta \geq \text{OUT}^{O(1)} \) and \(n/\delta \geq (\text{OUT} \cdot \log n)^{O(1)} \), there exists a family \(Q \) of queries of size \(n/\delta \) on domain \(\mathbb{D} \) of size \(n/\delta \) such that any \((\epsilon, 1/n^{\text{poly}(1)})\)-DP algorithm that takes \(\epsilon \) as input a two-table database over \(\mathcal{H} \) of input size at most \(n \), join size \(\text{OUT} \) and local sensitivity \(\Delta \), and outputs an approximate answer to each query in \(Q \) to within error \(\alpha \) must satisfy

\[
\alpha \geq \tilde{\Omega}\left(\min \left\{ \text{OUT}, \sqrt{\text{OUT} \cdot (\Delta + f_{\text{lower}}} \right\} \right) .
\]

Algorithm 3: MultiTable(I)

\[
\begin{align*}
1. & \quad \beta \leftarrow 1/\lambda; \\
2. & \quad \Lambda \leftarrow \text{LS}_{\text{count}}^e(I) \cdot e^{\text{TP}^{(\epsilon/2, \delta/2, \beta)}}; \\
3. & \quad \text{return PMW}_{\epsilon/2, \delta/2, \Lambda}(T); \\
\end{align*}
\]

It can be easily checked that I has join size at most OUT and local sensitivity \(\Delta \), and that two neighboring databases \(T, T' \) result in neighboring instances \(I, I' \). Finally, let \(Q_1 \) contain queries from \(Q_{\text{one}} \) applied on its first attribute (i.e., \(Q_1 := \{ q \circ _A \mid q \in Q_{\text{one}} \} \)), and let \(Q_2 \) contain only a single query \(q_{\text{all-one}} : D_2 \rightarrow \{+1\} \). An example is illustrated in Figure 2.

Our lower bound argument is a reduction to the single-table case. Let \(\mathcal{H}(\text{OUT}, \Delta) \) be the set of all instances of join size OUT and local sensitivity \(\Delta \). Let \(\mathcal{A} \) be an algorithm that takes any two-table instance in \(\mathcal{H}(\text{OUT}, \Delta) \), and outputs an approximate answer to each query in \(Q \) within error \(\alpha' \). For each query \(q \in Q_{\text{one}} \), let \(q' = q \circ _A q_{\text{all-one}} \) be its corresponding query in \(Q \). Let \(\tilde{q}(I) \) be the approximate answer for query \(q' \). We then return \(\tilde{q}(T) = \tilde{q}(I)/\Delta \) as an approximate answer to \(q(T) \).

We first note that this algorithm for answering queries in \(Q_{\text{one}} \) is \((\epsilon, \delta)-DP\) due to the post-processing property of DP. The error guarantee follows immediately from the observation that \(|q(T) - \tilde{q}(T)| = \Delta \cdot g(T) \). Therefore, from Theorem 1.4, we can conclude that

\[
\alpha' \geq \Delta \cdot \Omega\left(\min \left\{ \text{OUT}, \sqrt{\text{OUT} \cdot (\Delta + f_{\text{lower}}} \right\} \right) = \tilde{\Omega}\left(\min \left\{ \text{OUT}, \sqrt{\text{OUT} \cdot (\Delta + f_{\text{lower}}} \right\} \right) .
\]

3.3 Multi-Table Join

We next extend the join-as-one approach to multi-table queries. First, notice that Algorithm 1 does not work in the multi-table setting because \(\text{LS}_{\text{count}}^e() \) may itself have a large global sensitivity (unlike the two-table case where the global sensitivity of \(\text{LS}_{\text{count}}^e() \) is 1). Hence, we will have to find other ways to perturb the join size, and then use this noisy join size to parameterize the initial uniform distribution of the single-table PODS algorithm. As noted, several previous works have proposed various smooth upper bounds on the local sensitivity [40]: For \(\beta > 0 \), \(S^\beta(i) \) is a \(\beta \)-smooth upper bound on local sensitivity, if \(1 \leq S^\beta(i) \leq \text{LS}_{\text{count}}(i) \) for every instance \(i \), and (2) for any pair of neighboring instances \(i, i' \), \(S^\beta(i') \leq e^\beta S^\beta(i) \).

The smallest smooth upper bound on local sensitivity is denoted as \(\text{smooth sensitivity} \). However, as observed by [15], it takes \(n^{O(\log n)} \) time to compute smooth sensitivity for \(\text{count}() \), which is very expensive especially when the input size \(n \) of underlying instance is large. Fortunately, we do not necessarily need smooth sensitivity: any smooth upper bound on local sensitivity can be used for perturbing the join size. In building our data release algorithm, we use residual sensitivity, which is a constant-approximation of smooth sensitivity, and more importantly can be computed in time polynomial in \(n \).

To introduce the definition of residual sensitivity, we need the following terminology. Given a join query \(\mathcal{H} = (x_1, x_2, \ldots, x_m) \) and a subset \(E \subseteq [m] \) of relations, its boundary, denoted as \(\partial_E \), is the set of attributes that belong to relations both in and out of \(E \), i.e., \(\partial_E = \{ x \mid x \in x_i \cap x_j, i \in E, j \notin E \} \). Correspondingly, its maximum
boundary query is defined as3:

\[T_E(I) = \max_{t \in \text{dom}(\delta E)} \sum_{t' \in \text{dom}(\cup_{i \in E} \pi_{I \to E} t')} I(t') \text{ for } t' \in \mathbb{Z}^* \]

Definition 3.6 (Residual Sensitivity [15, 16]). Given \(\beta \) > 0, the \(\beta \)-residual sensitivity of \(\text{count}(\cdot) \) over \(I \) is defined as

\[\text{RS}_{\text{count}}^\beta(I) = \max_{k \geq 0} e^{-\beta k} \cdot \text{LS}_{\text{count}}^k(I), \]

where \(\text{LS}_{\text{count}}^k(I) = \max_{s \in \text{dom}^k} \sum_{E \subseteq [m]} T_{\text{count}(E)} \text{ for } s \in \mathbb{Z}^* \). It is well-known that \(\text{RS}_{\text{count}}^\beta(I) \) is a smooth upper bound on the \(\text{LS}_{\text{count}}(I) \) [15]. However, we do not use it (as in [15]) to calibrate the privacy guarantee

Lemma 3.7. Algorithm 3 is \((\epsilon, \delta)\)-DP.

Error analysis. By definition of TLap, we have \(|\text{TLap}_{2\beta}^{\epsilon/2, \delta/2} \text{count}(I) - \text{count}(I)\rangle \leq 2\epsilon / \beta \) and therefore \(\Lambda \) is a constant-approximation of \(\text{RS}_{\text{count}}^\beta(I) \), i.e., \(\Lambda = \Theta(\text{RS}_{\text{count}}^\beta(I)) \). Hence \(\hat{\Lambda} = O(\text{TV}_{\text{count}}(I) \cdot \Lambda) \) and therefore, the total error of Algorithm 3 is

\[O(\sqrt{n} \cdot \Lambda) = O(\text{TV}_{\text{count}}(I) \cdot \text{RS}_{\text{count}}^\beta(I) \cdot \sqrt{n}). \]

Extending the previous lower bound argument on the multi-table query, we can obtain the lower bound on the multi-table query in Theorem 1.6. Moreover, we give the worst-case analysis on the error achieved above in Appendix B.

4 UNIFORMIZED SENSITIVITY

So far, we have shown a parameterized algorithm for answering linear queries whose utility is in terms of the join size and the residual sensitivity. A natural question arises: can we achieve a more fine-grained parameterized algorithm with better utility?

Let us start with an instance of two-table join (see Figure 3), with input size \(\Theta(n) \), join size \(\Theta(n \sqrt{n}) \), and local sensitivity \(\sqrt{n} \). Algorithm 1 achieves an error of \(\Theta \). However, this instance is beyond the scope of Theorem 3.5, as the degree distribution over join values is extremely non-uniform. Revisiting the error bound in Theorem 3.3, we can gain an intuition regarding why Algorithm 1 does not perform well on this instance. The costly term is \(O(\text{TV}_{\text{count}}(I) \cdot \sqrt{\Lambda}) \), where \(\Lambda \) is the largest degree of join values in the input instance. However, there are many join values whose degree is much smaller than \(\Lambda \). Therefore, a natural idea is to uniformize sensitivities, i.e., partition the input instance into a set of sub-instances by join values, where join values with similar sensitivities are in the same sub-instance. We then invoke our previous join-as-one algorithm as a primitive on each sub-instance independently, and return the union of the synthetic datasets generated for all sub-instances. Our uniformization framework is illustrated in Algorithm 4. (All missing proofs are given in Appendix C).

4.1 Uniformized Two-Table Join

As mentioned, there is quite an intuitive way to uniformize a two-table join. As described in Algorithm 5, the high-level idea is to bucket join values in \(B \) by their maximum degree in \(R_1 \) and \(R_2 \). To protect the privacy of individual tuples, we draw a random sample from \(\text{TLap}_{2\beta}^{\epsilon/2, \delta/2} \) and add to it a join value's degree, before determining to which bucket it should go. Recall that \(\lambda = \frac{\epsilon}{\delta} \log 2 \). Let \(y_0 = 0 \) and \(y_i = 2^i \lambda \) for all \(i \in \mathbb{N} \). Conceptually, we divide \([0, n + \lambda] \) into \(t \) buckets, where the \(i \)-th bucket is associated with \(\{y_i, y_{i+1}\} \). The set of values from \(\text{dom}(B) \) whose maximum noisy degree in \(R_1 \) and \(R_2 \) falls into bucket \(i \) is denoted as \(B^i \). For each \(i \), we identify tuples in \(R_1, R_2 \) whose join value falls into \(B^i \) as \(R_1^i, R_2^i \), which forms the sub-instance \((R_1^i, R_2^i)\). More specifically, \(R_2^i : B^i \rightarrow \mathbb{Z}^* \), such that \(R_2(t) = R_2^i(t) \text{ if } t \in B^i \) and \(R_1^i(t) = R_1(t) \) otherwise. \(R_2^i \) is defined similarly. Finally, we return all the sub-instances as the partition.

Lemma 4.1 Algorithm 4 on two-table join is \((\epsilon, \delta)\)-DP.

The key insight in Lemma 4.1 is that adding or removing one input tuple can increase or decrease the degree of one join value \(b \in \text{dom}(B) \) by at most one. Hence, Algorithm 5 satisfies \((\epsilon, \delta)\)-DP by parallel composition [37]. Moreover, since each input tuple participates in exactly one sub-instance, and Algorithm 2 preserves \((\epsilon, \delta)\)-DP for each sub-instance by Lemma 3.2, Algorithm 4 preserves \((2\epsilon, 2\delta)\)-DP by basic composition [18].
Algorithm 5: Partition-TwoTable\(_{\epsilon, \delta}(I = (R_1, R_2))\)

1. foreach \(i \in \mathbb{N}\) do \(B^i \leftarrow 0\);
2. foreach \(b \in \text{dom}(B)\) do
 3. \(\deg_b(g) = \max\{\deg_{1,B}(b), \deg_{2,B}(b)\} + TLap(\epsilon, \delta, 1)\);
 4. \(i \leftarrow \max\left(1, \left\lfloor \log \frac{\lambda}{\delta} \cdot \deg_b(g) \right\rfloor \right)\);
 5. \(B^i \leftarrow B^i \cup \{b\}\);
6. foreach \(i\) with \(B^i \neq \emptyset\) do
7. foreach \(j \in \{1, 2\}\) do
8. \(R^j_1 : \text{dom}(D_j) \rightarrow \mathbb{Z}_{\geq 0}\) such that for any \(t \in D_i\), \(R^j_1(t) = R^j(t)\) if \(\pi_B t \in B^j\) and \(R^j_1(t) = 0\) otherwise;
9. return \(\bigcup_{i,B^i \neq \emptyset} (R^1_i, R^2_i)\).

Error Analysis. Note that \(n\) is not explicitly used in Algorithm 5 as this is not public, but it is easy to check that there exists no join value in \(\text{dom}(B)\) with degree larger than \(n\) under the input size constraint. Hence, it is safe to consider \(i \in \ell\) in our analysis.

Given an instance \(I\) over the two-table join, let \(\pi = \{B^1, \ldots, B^\ell\}\) be the partition of \(\text{dom}(B)\) generated by Algorithm 5. Let \(I' = (R'_1, R'_2)\) be the sub-instance induced by \(B'_\epsilon\). Let \(\mathcal{P}\) be the synthetic dataset generated for \(I'_E\). From Theorem 5.3, with probability \(1 - \alpha/\text{poly}(|Q|)\), the error for answering any linear query defined on \(\text{dom}(A) \times \text{dom}(B'_\epsilon) \times \text{dom}(C)\) with \(\mathcal{P}\) is (omitting \(f_{\text{upper}}\)) \(\alpha = O\left(\frac{\sqrt{\text{count}(I'_E) \cdot 2^\ell \cdot 2^\ell \cdot 2^\ell}}{\lambda \log 2}\right)\).

\[
\alpha \leq \sum_{i \in \ell} a_i \leq \lambda^{3/2} \cdot (\Delta + \lambda) + \sqrt{\lambda} \cdot \sum_{i \in \ell} \text{count}(I'_E) \cdot \sqrt{2^\ell},
\]

where the first inequality is implied by the Cauchy–Schwarz inequality. Furthermore, we observe that the gap between the error achieved by Algorithm 4 and Algorithm 1 can be polynomially large in terms of the data size; see Example 4.2.

Example 4.2. Consider an instance \(I\) of two-table join, which further amplifies the non-uniformity of instance in Figure 3. For \(i \in \{0, 1, \ldots, \frac{\lambda}{\log 2}\}\), there are \(k^2/8^i\) distinct join values in \(\text{dom}(B)\) with \(\deg_{B,1}(b) = \deg_{B,2}(b) = 2^i\). Obviously, \(\Delta = k^{3/2}\). It can be easily checked that the input size is \(n \leq k^2\) and join size is \(\text{count}(I) = \frac{k^2}{8^i} \log 2\).

For simplicity, we assume \(\epsilon = \Theta(1)\) and \(\delta = 1/n^c\) for some constant \(c\), therefore \(\lambda = \Theta(1)\). Algorithm 1 achieves an error of (omitting \(f_{\text{upper}}\)) \(\alpha = O\left(\sqrt{\text{count}(I'_E) \cdot \Delta}\right) = O(k^{3/2}/\log 2)\). By uniformization, join values with the same degree will be put into the same bucket (even after adding a small noise). In this way, Algorithm 5 achieves an error of (omitting \(f_{\text{upper}}\)),

\[
\alpha = O(k^{3/2} + \sum_{i \in \ell} \sqrt{k^2/8^i \cdot 2^i \cdot 2^i \cdot 2^i}) = O(k \log k),
\]

improving Algorithm 1 by a factor of \(k^{3/2} = O(n^{1/6})\).

Although the partition generated by Algorithm 5 is randomized due to noisy degrees (line 3), it is not far away from a fixed partition based on true degrees. As shown in Appendix C, Algorithm 5 can have its error bounded by what can be achieved through the uniform partition below (recall that \(\ell = \lfloor \log \frac{\lambda}{\delta} \rfloor\) and \(\gamma_1 = \lambda \cdot 2^i\) for \(i \in \ell\)).

Definition 4.3 (Uniform Partition). For an instance \(I = (R_1, R_2)\), a uniform partition \(\pi^* = \{B^1_\pi, \ldots, B^\ell_\pi\}\) such that for any \(i \in [\ell]\), \(b \in B^i_\pi\), if \(\deg_{1,B}(b) = \deg_{2,B}(b)\) then \(\deg_{1,B}(b) = \deg_{2,B}(b)\) for \(i \in [\ell]\).

Theorem 4.4. For any two-table instance \(I\), a family \(Q\) of linear queries, and \(\epsilon > 0, \delta > 0\), there exists an algorithm that is \((\epsilon, \delta)\)-DP, and with probability at least \(1 - 1/\text{poly}(|Q|)\) produces \(Q\) such that all linear queries in \(Q\) can be answered to within error:

\[
\alpha = O\left(\frac{(\ell^2 \log 2) \cdot \sqrt{\text{count}(I'_E) \cdot 2^i \cdot 2^i \cdot 2^i \cdot 2^i}}{\lambda} \cdot f_{\text{lower}}\right),
\]

where \(\ell = \lfloor \log \frac{\lambda}{\delta} \rfloor\) and \(I'_E\) is the sub-instance of \(I\) induced by \(B^i_\pi\).

Let \(\tilde{\text{OUT}} = \{\text{OUT}^j : i \in [\ell], \sum_i \text{OUT}^j \in [0, n^2]\}\) be a join size vector. An instance \(I = (R_1, R_2)\) conforms to \(\tilde{\text{OUT}}\) if

- for every \(i \in [\ell]\), \(\text{count}(I'_E) = \Theta(\text{OUT}^j)\);
- \(\text{count}(I) = \Theta(\sum_{i \in [\ell]} \text{OUT}^j)\).

Then, we introduce a more fine-grained lower bound parameterized by the join size distribution under the uniform partition, and show that Algorithm 4 is optimal up to poly-logarithmic factors. The proof is given in Appendix C.

Theorem 4.5. Given a join size vector \(\tilde{\text{OUT}}\), for every sufficiently small \(\epsilon > 0, n_D \geq (\log \text{OUT})^{O(1)}\), and \(n_0 \geq (\log \text{OUT} \cdot \log n_D)^{O(1)}\), there exists a family \(Q\) of queries of size \(n_D\) on a domain \(D\) of size \(n_D\) such that any \((\epsilon, \delta, 1/n)\)-DP algorithm that takes as input a two-table instance of input size at most \(n\) while conforming to \(\tilde{\text{OUT}}\), and outputs an approximate answer to each query in \(Q\) to within error \(\alpha\) must satisfy \(\alpha \geq \Omega\left(\min_{i \in [\ell]} \text{OUT}^j, \sqrt{\text{OUT}^j} \cdot \sqrt{2^i \cdot 2^i \cdot 2^i \cdot 2^i}, f_{\text{lower}}\right)\), for \(\ell = \lfloor \log \frac{\lambda}{\delta} \rfloor\).

4.2 Uniformized Hierarchical Join

This uniformization technique, surprisingly, can be further extended beyond two-table queries to the class of hierarchical queries. A join query \(\mathcal{P} = \{x, \{x_1, \ldots, x_m\}\}\) is hierarchical, if for any pair \(x, y\) of attributes, either \(\text{atom}(x) \subseteq \text{atom}(y)\), or \(\text{atom}(y) \subseteq \text{atom}(x)\), or \(\text{atom}(x) \cap \text{atom}(y) = \emptyset\), where \(\text{atom}(x) = \{x \in [m] : x \in x_i\}\) is the set of relations containing attribute \(x\). One can always organize the attributes of a hierarchical join into a tree such that every relation corresponds to a root-to-node path (see Figure 4).

We show how to exploit this nice property to improve Algorithm 3 on hierarchical joins with uniformization. Recall that the essence of uniformization is to decompose the instance into a set of sub-instances so that we can upper bound the residual sensitivity as tight as possible, as implied by the error expression in Theorem 1.5.
When the context is clear, we drop the superscript x. Ψ is defined as T. It is not hard to see δE forms a connected subtree of T including the root (see Figure 4). To derive an upper bound on T_E, we identify a broader class of q-aggregate queries by generalizing aggregate attributes from δE to any subset of attributes that form a connected subtree of T including the root (i.e., sitting on top of T). For simplicity, we define $\cap E \subseteq \cup i \in \mathbb{E}_x$. $\cup E \subseteq \cup i \in \mathbb{E}_x$.

Definition 4.6 (q-aggregate Query). For a hierarchical join $H = (x, \{x_1, \ldots, x_m\})$, an instance I, and a subset $E \subseteq \{x_i\}$ of relations, assume that a subset $y \subseteq \cup E$ of attributes satisfies the following property: for any $x_1, x_2 \in x$, if atom(x_1) \subseteq atom(x_2) and $x_1 \in y$, then $x_2 \in y$. A q-aggregate query defined over E on y is defined as $T_{E,y}(I) = \sum_{t \in \text{dom}(E)} \sum_{t' \in \text{dom}(\cup E)} \prod_{t \in E} R_{I}(\pi(s_y t'))$.

It is not hard to see $T_{E,y}(I) = T_{E,\delta E}(I)$ from (1). Below, we focus on an upper bound for $T_{E,y}(I)$ with general y characterized by Definition 4.6, which boils down to the product of maximum degrees.

Definition 4.7 (Maximum Degree). For a hierarchical join $H = (x, \{x_1, \ldots, x_m\})$, an instance I, $E \subseteq \{x_i\}$ and $y \subseteq \cup E$, the degree of tuple $t \in \text{dom}(y)$ is:

$$\text{deg}_{E,y}(t) = \begin{cases} \sum_{t' \in \text{deg}(x_i) \pi(s_y t') = t} R_I(t') & \text{if } |E| = 1, \text{ say } E = \{x\} \\ \prod_{t' \in \text{deg}(x_i) \pi(s_y t') = t} R_I(t') & \text{otherwise} \end{cases}$$

where $\Psi_I(t) = \{\pi(s_y t') : t' \in \text{dom}(\cup E), \prod_{t \in E} R_I(\pi(s_y t')) > 0\}$. The maximum degree is defined as $\text{mddeg}_{E,y}(y) = \max_{t \in \text{dom}(y)} \text{deg}_{E,y}(t)$.

We next show an upper bound on $T_{E,y}(I)$ using $\text{mddeg}_{E,y}(y)$'s. When the context is clear, we drop the superscript I from $\text{mddeg}_{E,y}(y)$.

Case (1). When $|E| = 1$, say $E = \{x\}$, we note that $y \subseteq x$ and $T_{E,y}(I)$ is essentially equivalent to $\text{mddeg}_{E,y}(y)$, since

$$T_{E,y}(I) = \max_{t \in \text{dom}(y)} \sum_{t' \in \text{dom}(\cup E)} R_I(t') = \text{mddeg}_{E,y}(y).$$

Case (2). In general, let $H_{E,y} = (\cup E \cup y, \{x_i - y : x_i \in E\})$ be the residual join defined on relations in E after removing attributes y. We next distinguish two cases based on the connectivity of $H_{E,y}$:

Case (2.1): $H_{E,y}$ is disconnected. Let C_E be the set of connected subqueries of $H_{E,y}$. We can further decompose $T_{E,y}(I)$ as:

$$T_{E,y}(I) = \max_{t \in \text{dom}(y)} \prod_{E \subseteq \cup E} \sum_{t' \in \text{dom}(\cup E)} \prod_{t \in E} R_I(\pi(s_y t'))$$

since $y \cap (\cup E) \subseteq \cup E$ and $y \cap (\cup E)$ satisfies the property in Definition 4.7, if y satisfies the same property.

Case (2.2): $H_{E,y}$ is connected. In this case, we have $y \subseteq \cup E$.

$$T_{E,y}(I) \leq \text{mddeg}_{E,y} \cdot \max_{t \in \text{dom}(\cup E)} \sum_{t' \in \text{dom}(\cup E)} \prod_{t \in E} R_I(\pi(s_y t'))$$

$$= \text{mddeg}_{E} \cdot T_{E,\cup E}(I),$$

since $y \subseteq \cup E$ and y satisfies the property in Definition 4.7.

Hence, $T_{E,y}(I)$ is eventually upper bounded by a product chain of maximum degrees (see Figure 4). A careful inspection reveals that the maximum degrees participating in $T_{E}(I)$ for $y = \delta E$ are not arbitrary; instead, they display rather special structures captured by Lemma 4.8, which is critical to our partition procedure.

Lemma 4.8. Every maximum degree $\text{mddeg}_{E,y}(y)$ participating in the upper bound of $T_{E}(I)$ corresponds to a distinct attribute $x \in x$ such that $E' = \text{atom}(x)$ and y corresponds to the ancestors of x in T.

4.2.2 Partition with Maximum Degrees. After getting an upper bound on $T_{E}(I)$, we now define degree configuration for hierarchical joins, similarly to the two-table join. Our target is to decompose the input instance into a set of sub-instances (which may not be tuple-disjoint), such that each sub-instance is characterized by one distinct degree configuration, and join results of all sub-instances form a partition of the final join result.

Definition 4.9 (Degree Configuration). For a hierarchical join $H = (x, \{x_1, \ldots, x_m\})$, a degree configuration is defined as $\sigma : \{x\} \times \mathbb{E} \rightarrow \mathbb{Z}$, such that for any $E \subseteq \{x\}$ and $y \subseteq x, \sigma(E, y) \neq \perp$ if and only if there exists an attribute $x \in x$ such that $E = \text{atom}(x)$ and y is the set of ancestors of x in the attribute tree T of H.

Algorithm 6 recursively decomposes the input instance by attributes in a bottom-up way on T, and invokes Algorithm 7 as a primitive to further decompose every sub-instance. Algorithm 7

3The same property on y has been characterized by q-hierarchical queries [4], where y serves as the set of output attributes there.

4A multi-way join $H = (x, \{x_i : x_i \in \{m\}\})$ can be modeled as a graph G_H, where each x_i is a vertex and an edge exists between x_i and x_j if $x_i \cap x_j \neq \emptyset$. H is connected if G_H is connected, and disconnected otherwise. For disconnected H, we can decompose it into multiple connected subqueries by finding all connected components for G_H via graph search algorithm, where each component indicates a connected subquery of H.
Algorithm 6: \textsc{Partition-Hierarchical}_\epsilon,\delta(\mathcal{H}, I)

\begin{algorithmic}[1]
\State I \leftarrow \{i\}, \mathcal{T} \leftarrow \text{an attribute tree of } \mathcal{H};
\While{there exists a non-visited node in } \mathcal{T}
\State I' \leftarrow \emptyset;
\State x \leftarrow \text{a leaf or any node whose children are all visited};
\ForEach{I' \in I do}
\State I' \leftarrow I' \cup \text{DECOMPOSE}_\epsilon,\delta(I', x);
\EndFor
\State I \leftarrow I', \text{Mark } x \text{ as visited};
\EndWhile
\State \Return I.
\end{algorithmic}

Algorithm 7: \textsc{DECOMPOSE}_\epsilon,\delta(I, x)

\begin{algorithmic}[1]
\State y \leftarrow \{y \in x : \text{atom}(x) \subseteq \text{atom}(y)\}, E \leftarrow \text{atom}(x);
\ForEach{i \in \mathbb{N} \text{ do}}
\State y' \leftarrow \emptyset;
\ForEach{i \in \text{dom}(y) \text{ do}}
\State \overline{\deg}_{E_i, y}(t) = \deg_{E_i, y}(t) + TLap(\epsilon, \delta, i);
\State i \leftarrow \max \{1, \log \frac{1}{\lambda} \cdot \overline{\deg}_{E_i, y}(t)\};
\State y' \leftarrow y' \cup \{\bar{t}\};
\EndFor
\State y' \leftarrow y' \cup \{\bar{t}\};
\If{y' \neq \emptyset}
\ForEach{j \in E \text{ do}}
\State R_{E, j, i}(t) = \deg_{E_i, y}(t) \text{ if } \pi_{\bar{t}} \in y' \text{ and } R_{E, j, i}(t) = 0 \text{ otherwise;}
\EndFor
\State \Return \bigcup_{y' \neq \emptyset} \{R_{E, j, i} : j \in E \} \cup \{R_{E, j, i} : j \notin E\};
\EndIf
\end{algorithmic}

takes as input an attribute \(x\) and an instance \(I\) that has been decomposed by all descendants of \(x\), and outputs a set of sub-instances such that their join results form a partition of join result of \(I\), and for every sub-instance \(I'\), \(\deg_{\text{atom}, x, y}(t)\) is roughly the same for every tuple \(t \in \text{dom}(y)\), where \(y\) is the set of ancestors of \(x\) in \(\mathcal{T}\).

Lemma 4.10. For input instance \(I\), let \(I\) be the set of sub-instances returned by Algorithm 7. \(I\) satisfies the following properties:

- For any \(I \in \mathcal{X}_{\mathcal{I}}([m]_{\mathcal{D}_i}), \text{there exists a node } I' \in I \text{ such that } \text{Join}^{\mathcal{I}}(I) = \text{Join}^{\mathcal{I}}(I') = 0 \text{ for any } I' \in I \setminus \{I'\}.
- Each input tuple appears in \(O(\log_c n)\) sub-instances of \(I\), where \(c\) is a constant depending on \(m\);
- Each sub-instance \(I' \in I\) corresponds to a distinct degree configuration \(\sigma\) such that for any \(E \in [m]\) and \(y \subseteq x\) with \(\sigma(E, y) \neq \perp:\n\overline{\deg}_{E, y}(t) \in \{\lambda \cdot 2^{\sigma(E, y) - 1}, \lambda \cdot 2^{\sigma(E, y)}\}\n\text{holds for any } t \in \text{dom}(y)\).

Lemma 4.11. Algorithm 4 is \((O(\log_c n) \cdot \epsilon, O(\log_c n) \cdot \delta)\)-DP, where \(c\) is a constant depending on \(m\).

The logarithmic factor in Lemma 4.11 arises since each input tuple participates in \(O(\log_c n)\) sub-instances, implied by Lemma 4.10. We present the error analysis of Algorithm 4 for hierarchical joins and a parameterized lower bound in Appendix C.

5 CONCLUSIONS AND DISCUSSION

In this paper, we proposed algorithms for releasing synthetic data for answering linear queries over multi-table joins. Our work opens up several interesting directions listed below.

Non-Hierarchical Queries. Perhaps the most immediate question is if uniformization can benefit the non-hierarchical case, even for the simplest join \(\mathcal{H}\) defined on \(x = \{A, B, C\}\) with \(x_1 = \{A, B\}\), \(x_2 = \{B, C\}\), and \(x_3 = \{C, D\}\). In determining the residual sensitivity in Definition 3.6, we observe that \(T_23(1) \leq m\deg_{2}(B) \cdot m\deg_{2}(C)\), \(T_{12}(1) \leq m\deg_{2}(B) \cdot m\deg_{2}(C)\), and \(T_{13} \leq m\deg_{2}(B) \cdot m\deg_{2}(C)\). It is easy to uniformize \(m\deg_{2}(B)\) and \(m\deg_{2}(C)\) by partitioning \(R_1, R_3\) by attributes \(B, C\) respectively. However, it is challenging to uniformize \(m\deg_{2}(B)\) and \(m\deg_{2}(C)\) by partitioning \(R_3\), keeping the number of sub-instances small. For example, a trivial strategy simply puts every individual tuple \(t \in \mathbb{D}_2\) with \(R_3(t) > 0\), together with tuples in \(R_1, R_3\) that can be joined with \(t\), as one sub-instance. In this case, it is great to have small \(m\deg_{2}(B)\) and \(m\deg_{2}(C)\), but each tuple from \(R_1 \cup R_2\) may participate in \(m\deg_{2}(B)\) or \(m\deg_{2}(C)\) sub-instances, hence the privacy consumption increases linearly when applying the parallel composition! Alternatively, one may uniformize \(m\deg_{2}(B)\) and \(m\deg_{2}(C)\) independently, say with partitions \(p_1\) of \(\text{dom}(B)\) and \(p_2\) of \(\text{dom}(C)\). However, the degrees \(\deg_{2, B}\) as well as \(\deg_{2, C}\) are defined on the whole relation \(R_2\), hence we may still end up with very non-uniform distribution of \(\deg_{2, B}, \deg_{2, C}\) when restricting to a sub-instance induced by \(p_1 \times p_2\). We leave this interesting question for future work.

Query-Specific Optimality. Throughout this work, we consider worst-case set \(Q\) of queries parameterized by its size. Although this is a reasonable starting point, it is also plausible to hope for an algorithm that is nearly optimal for all query sets \(Q\). In the single-table case, this has been achieved in [5, 26, 39]. However, the situation is more complicated in the multi-table setting since we have to take the local sensitivity into account, whereas, in the single-table case, the query family already dictates the possible change resulting from moving to a neighboring dataset. This is also an interesting open question for future research.

Instance-Specific Optimality. We have considered worst-case instances in this work. One might instead prefer to achieve fine-grained instance-optimal errors. For the single-table case, [2] observed that an instance-optimal DP algorithm is not achievable, since a trivial algorithm can return the same answer(s) for all input instances, which could work perfectly on one specific instance but poorly on all remaining instances. To overcome this, a notion of “neighborhood optimality” has been proposed [2, 16], where we consider not only a single instance but also its neighbors at some constant distance. We note, however, that this would not work in our setting when there are a large number of queries. Specifically, if we again consider an algorithm that always returns the true answer for this instance, then its error with respect to the entire neighborhood set is still quite small—at most the distance times the maximum local sensitivity in the set. This is independent of the table size \(n\), whereas our lower bounds show that the dependence on \(n\) is inevitable. As such, the question of how to define and prove instance-optimal errors remains open for the multi-query case.
REFERENCES

[34] Robert Fink and Dan Olteanu. 2016. Dichotomies for queries with negation in probabilistic databases. In SICOMP: 759–772.

Lemma A.2. With probability at least 1 − 2k/|Q|ε for any c ≥ 0, for all 1 ≤ i ≤ k, we have:

\[|q_i(F_{i-1}) - q_i(I)| ≥ \xi_i - (2c + 2) \times \gamma, \text{ and } |m_i - q_i(I)| \leq c \times \gamma. \]

Proof. For the first inequality, we note that the probability EM with parameter ε′ and sensitivity \(\tilde{\Delta} \) selects a query with quality score at least r less than the optimal is bounded by

\[\Pr[|q_i(F_{i-1}) - q_i(I)| < \xi_i - (2c + 2) / \Delta] \leq |Q| \exp \left(-\frac{1}{2} \cdot \frac{\gamma}{\Delta} \right) \leq \frac{1}{|Q|\epsilon}. \]

For the second inequality, we note that \(|m_i - q_i(I)| \leq c \cdot \gamma \) if and only if \(|\text{Lap}_{\Delta/\epsilon'}| \leq c \cdot \gamma \). From Laplace distribution, we have:

\[\Pr \left[|\text{Lap}_{\Delta/\epsilon'}| > c \cdot \left(\frac{\log |Q|}{\epsilon} \right) \right] \leq \exp(-c \cdot \log |Q|) = 1/|Q|^\epsilon. \]

A union bound over 2k events completes the proof. \(\square \)

We consider how the PMW mechanism can improve the approximation in each round where \(q_i(F_{i-1}) - q_i(I) \) has large magnitude. To capture the improvement, we use the relative entropy function:

\[\Psi_i = \frac{1}{n} \sum_{x \in \mathcal{D}} \log \left(\frac{f_i(x)}{\hat{f}_i(x)} \right), \Psi_i = \frac{1}{n} \Psi_i . \]

Here, we can only show that \(\Psi_0 \leq \log |\mathcal{D}| \) and \(\Psi_i \geq -1 \).

We next consider how \(\Psi_i \) changes in each iteration:

\[\Psi_i - \Psi_{i-1} = \frac{1}{n} \sum_{x \in \mathcal{D}} (\log f_i(x) - \log \hat{f}_{i-1}(x)) = \frac{1}{n} \cdot q_i(I) \cdot \eta_i - \frac{1}{n} \log \beta_i, \]

where \(\eta_i = \frac{1}{2n} \cdot (m_i - q_i(F_{i-1})) \) and \(\beta_i = \frac{1}{n} \cdot \sum_{x \in \mathcal{D}} \exp(q_i(x) \eta_i) \).

Using the fact that \(\exp(x) \leq 1 + x + x^2 \) for \(|x| \leq 1 \), and \(|q_i(x) | \leq 1 \), we have:

\[\beta_i \leq \frac{1}{n} \cdot \sum_{x \in \mathcal{D}} (1 + q_i(x) \eta_i) \cdot \eta_i \cdot (1 + q_i(F_{i-1}) + \eta_i^2) \]

\[\leq \frac{1}{n} \cdot \sum_{x \in \mathcal{D}} (1 + q_i(x) \eta_i + \eta_i^2) \cdot (1 + \frac{1}{n} \cdot \eta_i q_i(F_{i-1}) + \eta_i^2) \leq 1 + \frac{1}{n} \cdot \eta_i q_i(F_{i-1}) + \eta_i^2. \]

Then, we can rewrite \(\Psi_i - \Psi_{i-1} = \frac{1}{n} \cdot q_i(I) \cdot \eta_i - \log \beta_i \). Plugging the upper bound on \(\beta_i \), we have:

\[\Psi_i - \Psi_{i-1} \geq \frac{\eta_i}{n} \cdot q_i(I) - \left(\frac{\eta_i}{n} \cdot q_i(F_{i-1}) + \eta_i^2 \right) \geq \frac{1}{4n^2} \left((\xi_i - 4\gamma)^2 - \gamma^2 \right). \]

By rewriting the last inequality, we have:

\[\xi_i \leq \sqrt{\frac{4n^2}{\epsilon} \cdot (\Psi_i - \Psi_{i-1}) + \gamma^2 + 4 \times \gamma}. \]

Then, \(\text{avg}_1 \leq k \xi_i \leq \frac{\sqrt{4n^2 \cdot \text{avg}_1} (\Psi_i - \Psi_{i-1}) + \gamma^2 + 4 \gamma}{\sqrt{\log |\mathcal{D}| / k}} \leq 2n \cdot \frac{\log |\mathcal{D}|}{k} + \frac{\log |Q| \cdot \tilde{\Delta} \sqrt{k \cdot \log (1/\delta)}}{\epsilon} \)

+ \gamma, which can be bounded by \(O \left(\frac{\sqrt{n} \cdot \tilde{\Delta} \cdot \sqrt{k \cdot \log (1/\delta)}}{\epsilon} \right) \).

By taking \(k = \frac{\sqrt{n} \cdot \sqrt{\log |\mathcal{D}|}}{\frac{\log |Q| \cdot \log (1/\delta)}} \), we can obtain the minimized error as \(O\left(\sqrt{n} \cdot \tilde{\Delta} \cdot \cdot f_{upper} \right) \). Finally, recall that \(\tilde{n} \leq n + O(\tilde{\Delta} \cdot \lambda) \). This means that the error is at most \(O((\sqrt{n} \cdot \tilde{\Delta} + \tilde{\Delta} \cdot \lambda) \cdot f_{upper}) \).

B. MISSING PROOFS IN SECTION 3

B.1 Upper Bound Proofs

For neighboring instances \(I, I' \), \(|\text{count}(I) - \text{count}(I')| \leq \tilde{\Delta} \), which follows the definition of \(L \text{count}(I) \) and the non-negativity of \(\text{T Lap} \).

Proof of Lemma 3.2. It can be checked that \(\text{Lcount}(\cdot) \) has global sensitivity of 1. Therefore, the DP guarantee of the truncated Laplace mechanism implies that \(\Delta \) (computed on Line 1) is \((e/2, \delta/2)-\text{DP}) \). Applying the basic composition over this guarantee and the privacy guarantee in Theorem A.1, we can conclude that the entire algorithm is \((e, \delta)-\text{DP}) \).

\(\square \)

Proof of Lemma 3.7. It follows from the definition that the global sensitivity of \(\ln(R\text{count}\beta(I)) \) is at most \(\beta \). Furthermore, observe that Line 2 can be rewritten as \(\tilde{\Delta} \leftarrow \exp \left(\ln(R\text{count}\beta(I)) + \text{T Lap} \right) \). Therefore, by the guarantee of truncated Laplace mechanism and the post-processing property of DP, we can conclude that \(\Delta \) is \((e/2, \delta/2)-\text{DP}) \). Again, applying the basic composition of this guarantee and the privacy guarantee in Theorem A.1, we can conclude that the entire algorithm is \((e, \delta)-\text{DP}) \).

\(\square \)

B.2 Lower Bound Proofs

The main idea behind proving Theorem 1.6 is similar to that of Theorem 3.5, where one relation encodes the single table, and remaining tables “amplify” both sensitivity and join size by a \(\Delta \) factor.

Proof of Theorem 1.6. Let \(n = \text{OUT} / \tilde{\Delta} \). From Theorem 1.4, there exists a set \(Q_{\text{one}} \) of queries on domain \(D \) for which any \((e, \delta)-\text{DP}) \) algorithm that takes as input a single-table instance \(T \in D \) and outputs an approximate answer to each query in \(Q_{\text{one}} \) within \(\ell \)-error \(a \) requires that \(\epsilon \geq \frac{\tilde{\Delta}}{\text{OUT}} \left(\min \left(n, \frac{\sqrt{n} \cdot f_{\text{lower}}(D, Q_{\text{one}}, \epsilon) \right) \right) \).

For an arbitrary single-table instance \(T : D \rightarrow \mathbb{Z}^\ast \), we construct a multi-table instance I for \(\mathcal{H} \) of input size \(m \), join size OUT, and local sensitivity \(\Delta \) as follows. We pick the relation with the smallest number of attributes to encode \(T \). W.l.o.g., we assume that \(|x_1| = \min_i |x_i| \). As \(m \geq 2 \), there must exist an attribute \(y \in x - x_1 \). Let \(x \in x_1 \) be an arbitrary attribute. Let \(k = |x - x_1| \).

- Set \(\text{dom}(x) = D \times [n] \) for each \(x \in x_1 \), and \(\text{dom}(y) = \hat{\Delta}^{k} \) for each \(y \in x - x_1 \).
- Let \(R_i((a, b), \ldots, (a, b)) = \{ b \leq T(a) \} \) for all \(a \in D \) and \(b \in [n] \).
- For \(i > 1 \), let \(R_i((1) = 1 \) for all \(t \in D_i \).

It can be easily checked that I has join size OUT and local sensitivity \(\tilde{\Delta} \), and that two neighboring instances \(T, T' \) result in neighboring instances I, I'. Finally, let \(Q_1 \) contain queries from \(Q_{\text{one}} \) applied on its first value of every attribute (i.e., \(Q_1 := \{ q \circ \pi_x, 1 | q \in Q_{\text{one}} \} \) for \(x \in x_1 \), and let \(Q_1 \) contain only a single query \(q_{\text{all-one}} : D_1 \rightarrow \{ +1 \} \) for every \(i \geq 2 \). The remaining argument follows exactly the same for the two-table case as in the proof of Theorem 3.5. \(\square \)

Theorem B.1. For any \(\Delta > 0, \epsilon > 0, \delta > 0, \text{ and } \gamma > 0 \text{ such that } \epsilon^2 < 1 - \gamma < \gamma \), there exists a family \(Q \) of linear queries such that any \((e, \delta)-\text{DP}) \) algorithm that takes as input an instance I with local sensitivity at most \(\Delta \) and answers each query in \(Q \) to within error \(a \) with probability \(1 - \gamma \), must satisfy \(\epsilon \geq \Omega(\Delta) \).
We distinguish two cases below: (1) table join, let $\pi_2 = \{B_1', \ldots, B_i'\}$ be a fixed partition of $dom(B)$, such that $b \in B_i'$ if and only if $\max\{deg_{\overline{1,B}}(b), deg_{\overline{2,B}}(b)\} \in (y_i-1, y_i]$. Therefore, $\pi_2 = \{B_1', \ldots, B_i'\}$ be the join sizes released for I, respectively. Then, as A preserves (ε, δ)-DP, it must be that

$$1 - y \leq \Pr\{\text{count}(I) \in [\text{count}(I) - a, \text{count}(I) + a]\}$$

and that $\text{count}(I), \text{count}(I')$ be the join sizes released for I, I' respectively.

Thus, by the parallel composition theorem and the basic composition theorem, we can conclude that the entire algorithm is (ε, δ)-DP.

\[\Box\]

B.3 Worst-Case Error Bound

We distinguish two cases below: (1) $R_1 : D_1 \rightarrow \{0, 1\};$ (2) $R_2 : D_2 \rightarrow \mathbb{Z}^{\geq 0}$. For simplicity, we assume that $M = \Theta(1)$ and $\delta = 1/n^\varepsilon$ for some constant $\varepsilon > 0$. Therefore, $\lambda = \Theta(1)$ and $\beta = \Theta(1)$.

In the first case, we recall the AGM bound [3] on the maximum join size of a multi-way join. More specifically, let $\rho(H)$ be the fractional edge covering number of H, which is the minimum value of $\sum_{i \in [m]} W_i$ subject to $(1) \sum_{i \in \mathbb{E}_x} W_i \geq 1$ for each $x \in \mathbb{X}$ and $(2) W_i \in \{0, 1\}$ for each $i \in [m]$. Then, $\text{count}(I) \leq n^\rho(H)$ for any instance I of input size n. Now, we give an upper bound on the worst-case error. The residual sensitivity $\mathcal{R}_{\text{count}}(I)$ simply degenerates to [15]:

\[O\left(\max_{E \in H} \max_{i \in [m] \cap \{i\}} T_{E, i}(I)\right) \leq O\left(\max_{E \in H} T_{E, i}(I)\right)\]

So, $T_{E, i}(I)$ is bounded by the maximum join size of $H_{E, \partial E} = (\cup_{i \in \mathbb{E}_x} \partial E_x \setminus \mathbb{E}_x)$ for $i \in [m]$. From the AGM bound, we have $T_{E, i}(I) \leq n^\rho(H)$. The worst-case error in Theorem 1.5 has a closed-form of $O_{\rho, f_{\text{upper}}}(n^{\rho(H)})$. On the other hand, this is always smaller (at least not larger) than $O_{\rho, f_{\text{upper}}}(n^{\rho(H)})$, i.e., the maximum join size of the input join query.

In the second case, the AGM bound does not hold any more. A simpler tight bound on the maximum join size is $\Theta(n^m)$. Correspondingly, $\max_{E \in H} T_{E, i}(I) \leq n^{m-1}$. Putting everything together, the worst-case error in Theorem 1.5 has a closed-form of $O_{\rho, f_{\text{upper}}}(n^{m-2})$.

C MISSING PROOFS IN SECTION 4

C.1 Two-Table Join

Lemma C.1. Algorithm 5 is (ε, δ)-DP.

Proof. Define $LS_{\text{count}}(I) = \max_{b \in \text{dom}(B)} \{\text{deg}_{\overline{1,B}}(b), \text{deg}_{\overline{2,B}}(b)\}$. It is simple to observe that the global sensitivity of LS_{count} is one. Furthermore, the output partition is simply a post-processing of the truncated Laplace mechanism, which satisfies (ε, δ)-DP. \[\Box\]

Proof of Lemma 4.1. From Lemma C.1 the partition I is $(\varepsilon/2, \delta/2)$-DP. Furthermore, TwoTable (Algorithm 1) is $(\varepsilon/2, \delta/2)$-DP and is applied on disjoint parts of input data. Thus, by the parallel composition theorem and the basic composition theorem, we can conclude that the entire algorithm is (ε, δ)-DP. \[\Box\]

Proof of Theorem 4.4. Given an input instance I of the two-table join, let $\pi_1 = \{B_1', \ldots, B_i'\}$ be a fixed partition of $dom(B)$, such that $b \in B_i'$ if and only if $\max\{\text{deg}_{\overline{1,B}}(b), \text{deg}_{\overline{2,B}}(b)\} \in (y_i-1, y_i]$. Let $\pi_2 = \{B_1', \ldots, B_i'\}$ be the partition of $dom(B)$ returned by Algorithm 5. If $b \in B_i'$, $\max\{\text{deg}_{\overline{1,B}}(b), \text{deg}_{\overline{2,B}}(b)\} \in (y_i-1, y_i]$. It is easy to see that $B_i' \subseteq B_i \cup B_i^{+1}$. For simplicity, we denote the join size contributed by values in $B_i' \cap B_i$ and in $B_i' \setminus B_i$ as x_i, y_i, respectively. Thus, the cost of Algorithm 5 under partition π_2 is $\sum_{i \in \mathbb{E}_x} \sqrt{x_i^2 + y_i^2} \leq \sum_{i \in \mathbb{E}_x} \sqrt{x_i^2 + y_i^2} \leq \sqrt{2} \sum_{i \in \mathbb{E}_x} \sqrt{x_i^2 + y_i^2}$. Thus, can be bounded by that under π_1.

\[\Box\]

Proof of Theorem 4.5. Our proof consists of two steps:

- **Step (1):** There exists a family Q_i of queries such that any (ε, δ)-DP algorithm that takes as input an instance of join size OUT^i and local sensitivity $\lambda_i = \Theta(1)$, and outputs an approximate answer to each query in Q_i to within error α' must require $\alpha' \geq \sum_{i \in \mathbb{E}_x} \min\{\text{count}_{OUT^i} \leq \sqrt{2} \lambda_i \cdot f_{\text{lower}}\}$. We first focus on step (1) for an arbitrary $i \in \{1, \ldots, m\}$. Let γ_i be an integer such that $\gamma_i \cdot \lambda_i \cdot 2^{i-1} \leq \text{count}_{OUT^i} \leq \gamma_i \cdot \lambda_i \cdot 2^i$. Set $\Delta_i = \text{OUT}_{\text{lower}} - \rho(\gamma_i \cdot \lambda_i \cdot 2^{i-1})$, where $\Delta_i = \Theta(2 \gamma_i \cdot \lambda_i \cdot 2^{i-1})$. From Theorem 1.4, let $Q_{\text{one}}(i)$ be the set of hard queries on which any (ε, δ)-DP algorithm takes as input any single-table $T^i \in \{0, 1\}$ and outputs an approximately answer to each query in $Q_{\text{one}}(i)$ to within error α must require $\alpha \geq \sum_{i \in \mathbb{E}_x} \min\{\text{count}_{OUT^i} \leq \sqrt{2} \lambda_i \cdot f_{\text{lower}}\}$. For an arbitrary single-table $T^i \in \{0, 1\}$, we can construct a two-table instance (R_1^i, R_2^i) as follows:

- Set $\text{dom}(A) = \mathbb{D}$, $\text{dom}(B) = \mathbb{D} \times [n]$ and $\text{dom}(C) = \{\lambda_i\}$.
- Let $R_i^1(a, (b_1, b_2)) = 1$ for all $a \in \text{dom}(A)$ and $(b_1, b_2) \in \text{dom}(B)$. Let $R_i^2 = 1$ for all $b \in \text{dom}(B)$ and $c \in \text{dom}(C)$.

It can be easily checked that (R_1^i, R_2^i) has join size count_{OUT^i} and local sensitivity Δ_i, and that two neighboring instances T^i, T'^i result in neighboring instances $(R_1^i, R_2^i), (R_1'^i, R_2'^i)$ for the two-table join. Finally, let Q_i^2 contain queries from $Q_{\text{one}}(i)$ applied on its first attribute (i.e., $Q_i^2 := \{q \in \mathbb{A}_1 : q \in Q_{\text{one}}(i)\}$), and let Q_2 contain only a single query $\text{gap}_{\text{lower}}(i) \rightarrow \{+1\}$.

We use an argument similar to Theorem 3.5, showing that if there exists an (ε, δ)-DP algorithm that takes in a two-table instance of join size OUT^i and local sensitivity λ_i, and outputs an approximate answer to each query in $Q_{\text{two}}(i)$ to within error α, then there exists an (ε, δ)-DP algorithm that takes an arbitrary single-table $T^i \in \{0, 1\}$, and outputs an approximate answer to each query in $Q_{\text{one}}(i)$ to within error α must require $\alpha \geq \sum_{i \in \mathbb{E}_x} \min\{\text{count}_{OUT^i} \leq \sqrt{2} \lambda_i \cdot f_{\text{lower}}\}$. Hence $\alpha' \geq \sum_{i \in \mathbb{E}_x} \min\{\text{count}_{OUT^i} \leq \sqrt{2} \lambda_i \cdot f_{\text{lower}}\}$. \[\Box\]

Step (2). From Theorem 1.4, let $Q_{\text{two}}(i)$ be the family of linear queries over $\mathbb{D} \times \mathbb{D}$, such that $Q_{\text{two}}(i) = \{1 \leq \lambda \in [\mathbb{I}] : \lambda \in Q_{\text{two}}(i)\}$. Consider an (ε, δ)-DP algorithm A that takes as input an instance that
conforms to $\overline{\text{OUT}}$ and answers each query in Q_{two} to within error α. If $\alpha \leq \overline{\delta}$, there exists an (ϵ, δ)-DP algorithm that takes an input of instance size OUT^* and local sensitivity Δ_1, and answers each query in Q_{two} for some i within error ϵ_i, contradicting Step (1).

\section{C.2 Hierarchical Join}

\textbf{Proof of Lemma 4.8.} Let r be the root of \mathcal{T} and let path(r, x) be the set of attributes on the path from r to x. The proof has three steps.

\textbf{Step 1.} We show that for any $T_{E, Y}$ involved, if $T_{E, Y}$ falls into case (2.1), then $\partial E \subseteq y$, and if $T_{E, Y}$ falls into case (2.2), then $\partial E = y$. Initially, either case holds for $T_{E, aE}$. Moreover, we observe that the cases (2.1) and (2.2) are invoked exchangeably, i.e., $T_{E, 3r(y, \lambda)}$ will fall into case (2.2), and $T_{E, \lambda} \setminus y$ will fall into case (2.1). Next, we show that this property is preserved in each recursive step:

- $\mathcal{H}_{E, Y}$ is disconnected. By hypothesis, assume $\partial E \subseteq y$. Consider an arbitrary connected sub-query $E' \subseteq C_E$. For any pair of E' and $j \in E$, $x_i \cap x_j \subseteq y$. For any pair of $i \in E'$ and $j \in E \setminus E'$, $x_i \cap x_j \subseteq y$. This way, $\partial E' \subseteq y$. Together with $\partial E' \subseteq \lambda$, we obtain $\partial E' \subseteq y \cap (\lambda \setminus E)$.
- $\mathcal{H}_{E, Y}$ is connected. By hypothesis, assume $\partial E = y$. As $y \subseteq \lambda$, $\partial E \subseteq \lambda$. Hence, $T_{E, \lambda}$ falls into case (2.1) and has $\partial E \subseteq \lambda$.

Note that $\text{medeg}_E(y)$ is only introduced in case (2.2), hence $\partial E = y$.

\textbf{Step 2.} From Definition 4.7, $y \subseteq \lambda$. In Case (1) with $|E| = 1$, we must have $y = x_i$, thus $y \subseteq x_i$. In Case (2.2), $y \subseteq \lambda$ follows the fact that $\mathcal{H}_{E, Y}$ is connected. Together, $y \subseteq \lambda$.

\textbf{Step 3.} We first note that $E \subseteq \text{atom}(x)$. Suppose $i \in \text{atom}(x) \setminus E$. We have path($r, x$) $\subseteq \partial E$, hence path(r, x) $\subseteq y$ from Step 1. This way, $y = \lambda$ contradicts Step 2. Hence, $\text{atom}(x) \subseteq E$. Together, we have $\text{atom}(x) = E$. Moreover, as $y \subseteq \lambda$, there must be $y \subseteq \text{path}(r, x')$. Suppose $x' \notin y$. Then, there exists some relation $i \notin \partial E$ with path(r, x') $\subseteq x_i$. In this way, $x' \subseteq \partial E$ and therefore $x' \subseteq y$. Hence, $y = \text{path}(r, x')$.

\textbf{Proof of Lemma 4.10.} We prove the first property by induction. In the base case with $| \mathcal{I} | = 1$, these properties hold. Consider an arbitrary iteration of \texttt{while} loop in Algorithm 6. By hypothesis, all sub-instances in \mathcal{I} have disjoint join results, and their union is Join^i. Then, it suffices to show that $\text{DECOMPOSE}(I, x_i)$ generates a set of sub-instances of I, such that they have disjoint join results, and their union is Join^i. The disjointness is easy to show since $(R_{j,i})_{j \in \mathcal{I}}$ forms a partition of R_j, for every $j \in \text{atom}(x_i)$. The completeness follows the partition of dom(y) and definition of Join^i.

For the second property, we show that each tuple $t \in R_j$ appears in $O(\lambda)$ sub-instances, where $c = \sum_{x \in \mathcal{I}} \text{atom}(x)$. In an invocation of $\text{PARTITION-HIERARCHICAL}(I, t)$ appears in $O(\lambda)$ sub-instances if $i \notin \text{atom}(x)$, and only one sub-instance otherwise. Overall, the procedure DECOMPOSE will be invoked on every non-leaf node in \mathcal{T}, thus tuple $t \in R_j$ appears in $O(\sum_{x \in \mathcal{I}} \lambda) = O(|\mathcal{I}| \lambda)$ sub-instances.

Finally, we show that each sub-instance corresponds to a degree characterization. Let us focus on an arbitrary relation x_k Algorithm 6. For simplicity, let (x_1, \ldots, x_k) be the root-to-node path corresponding to x_j. Also, let (x_1, \ldots, x_k) be the set of ancestors of x_1, \ldots, x_k respectively. When $\text{DECOMPOSE}(I, x_j)$ is invoked, the sub-instance I' with deg_i, deg_j, deg_k for any $t \in \text{dom}(y_j)$ corresponds to $\sigma(\text{atom}(x_i), x_j) = 1$. In the subsequent invocations of DECOMPOSE, tuples with the same value $t \in \text{dom}(y_j)$ always fall into the same sub-instance, hence this property holds. Thus, each sub-instance returned by Algorithm 6 corresponds to a distinct degree characterization.

\textbf{Proof of Lemma 4.11.} Consider two neighboring instances I and \mathcal{I}. Note that $|\text{deg}_e,I(t) - \text{deg}_j,I(t)| \leq 1$ for any $E \subseteq \lambda$, $y \subseteq \lambda$, and $t \in \text{dom}(y_j)$. Each tuple in R_j contributes to at most $|x_j|$ degrees, i.e., $\text{deg}_e,I(x_j)$. Hence, $\text{deg}_I \approx (e_\ell, e_0, \delta) \text{deg}_j$, where $e_\ell = \max_{i \in |\lambda|} |x_i|$ is a join-query-dependent quantity.

Moreover, for each instance \mathcal{I}' returned, $\mathcal{I}' \subseteq (\mathcal{I}' \setminus \delta_\mathcal{I}) \mathcal{I}' \mathcal{I}$ implied by Lemma 3.2. As each tuple participates in at most $O(\ell^2)$ sub-instances, $\sum_{\mathcal{I}'} \mathcal{I}' \subseteq (\mathcal{I}' \setminus \delta_\mathcal{I}) \mathcal{I}' \mathcal{I}$ implied by the group privacy. Putting everything together and using basic composition, we conclude that Algorithm 4 is $(O(\ell^2 \cdot \epsilon), O((\ell^2 \cdot \delta))\text{-DP})$.

Given a degree configuration σ, we can upper bound $T_{E}(I)$ as T_{E}^σ and $R_{\text{count}}(I)$ as R_{count}^σ, using Definition 3.6. Similar to the two-table case, we define the uniform partition of an instance I using true degrees as $\sigma = \{I_{\text{atom}} : |x_i| \sigma \text{ is a degree configuration}\}$. Similarly, the error achieved by the partition based on noisy degrees can be bounded by the uniform one:

\textbf{Theorem C.2.} For any hierarchical join \mathcal{H} and an instance I, a family Q of linear queries, and $\epsilon > 0$, $\delta > 0$, there exists an algorithm that is (ϵ, δ)-DP, and with probability at least $1 - 1/poly(|Q|)$ produces \mathcal{F} such that all queries in Q can be answered to within error:

$$\sigma = \alpha \left(\left(\frac{\sqrt{\sum_{\sigma} \text{count}(\sigma)} \cdot R_{\text{count}}^\sigma \cdot \lambda + R_{\text{count}}^\sigma \cdot \lambda}{f_{\text{upper}}} \right) \right),$$

where σ is over all degree configurations of \mathcal{H}, I_{σ}^σ is the sub-instance characterized by σ under the uniform partition σ^*, and R_{count}^σ be the residual sensitivity derived for instance characterized by σ.

Let $\overline{\text{OUT}} = \{\mathcal{I}^{\sigma} \in \overline{\sigma} : \sigma$ is a degree configuration $\}$. The join size distribution over the uniform partition σ^*, and R_{count}^σ be the residual sensitivity derived for instance characterized by σ.

Let $\overline{\text{OUT}} = \{\mathcal{I}^{\sigma} \in \overline{\sigma} : \sigma$ is a degree configuration $\}$. The join size distribution over the uniform partition σ^*, and R_{count}^σ be the residual sensitivity derived for instance characterized by σ.