
Algorithms for a Topology-aware
Massively Parallel Computation Model∗

Xiao Hu

xh102@cs.duke.edu

Duke University

Paraschos Koutris

paris@cs.wisc.edu

UW-Madison

Spyros Blanas

blanas.2@osu.edu

The Ohio State University

ABSTRACT
Most of the prior work in massively parallel data processing as-

sumes homogeneity, i.e., every computing unit has the same compu-

tational capability and can communicate with every other unit with

the same latency and bandwidth. However, this strong assumption

of a uniform topology rarely holds in practical settings, where com-

puting units are connected through complex networks. To address

this issue, Blanas et al. [9] recently proposed a topology-aware

massively parallel computation model that integrates the network

structure and heterogeneity in the modeling cost. The network is

modeled as a directed graph, where each edge is associated with

a cost function that depends on the data transferred between the

two endpoints. The computation proceeds in synchronous rounds

and the cost of each round is measured as the maximum cost over

all the edges in the network.

In this work, we take the first step into investigating three funda-

mental data processing tasks in this topology-aware parallel model:

set intersection, cartesian product, and sorting. We focus on net-

work topologies that are tree topologies, and present both lower

bounds as well as (asymptotically) matching upper bounds. Instead

of assuming a worst-case distribution as in previous results, the

optimality of our algorithms is with respect to the initial data dis-

tribution among the network nodes. Apart from the theoretical

optimality of our results, our protocols are simple, use a constant

number of rounds, and we believe can be implemented in practical

settings as well.

CCS CONCEPTS
•Computingmethodologies→Massively parallel algorithms;
• Theory of computation→ Database query processing and
optimization (theory).

KEYWORDS
query processing, massively parallel computation, topology-aware

∗
This research has been supported in part by NSF grants IIS-1814493, CCF-2007556,

CRII-1850348, III-1910014 and CCF-1816577.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00

https://doi.org/10.1145/3452021.3458318

ACM Reference Format:
Xiao Hu, Paraschos Koutris, and Spyros Blanas. 2021. Algorithms for a

Topology-aware Massively Parallel Computation Model. In Proceedings of
the 40th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems (PODS ’21), June 20–25, 2021, Virtual Event, China. ACM, New York,

NY, USA, 16 pages. https://doi.org/10.1145/3452021.3458318

1 INTRODUCTION
The popularity of massively parallel data processing systems has

led to an increased interest in studying the formal underpinnings of

massively parallel models. As a simplification of the Bulk Synchro-

nous Parallel (BSP) model [47], the Massively Parallel Computation

(MPC) model [30] has enjoyed much success in studying algorithms

for query evaluation [7, 8, 25–29, 48], as well as other fundamental

data processing tasks [2–4, 6, 21, 22, 24]. In the MPC model, any

pair of compute nodes in a cluster communicates via a point-to-

point channel. Computation proceeds in synchronous rounds: at

each round, all nodes first exchange messages and then perform

computation on their local data.

Algorithms in the MPC model operate on a strong assumption

of homogeneity: every compute node has the same data processing

capability and communicates with every other node with the same

latency and bandwidth. In practice, however, large deployments

are heterogeneous in their computing capabilities, often consisting

of different generations of CPUs and GPUs. In the cloud, the speed

of communication differs based on whether the compute nodes are

located within the same rack, across racks, or across datacenters.

In addition to static effects from the network topology, a model

needs to capture the dynamic effects of different algorithms that

may cause network contention. This homogeneity assumption is

not confined in the theoretical development of algorithms, but it is

also used when deploying algorithms in the real world.

Recent work has started taking into account the impact of net-

work topology for data processing. In the model proposed by Chat-

topadhyay et al. [11, 12], the underlying network is modeled as a

graph, where nodes communicate with their neighbors through

the connected edges. Computation proceeds in rounds. In each

round, Õ(1) bits1 can be exchanged per edge. The complexity of

algorithms in such a model is measured by the number of rounds.

Using the same model, Langberg et al. [32] prove tight topology-

sensitive bounds on the round complexity for computing functional

aggregate queries. Although these algorithmic results have appeal-

ing theoretical guarantees, they are unrealistic starting points for

implementation. As the number of rounds required is usually poly-

nomial in terms of the data size, the synchronization cost would

be extremely high in practice. In addition, the size of the data that

can be exchanged per edge in each round is too small; the compute

1
The notation Õ hides a polylogarithmic factor on the input size.

https://doi.org/10.1145/3452021.3458318
https://doi.org/10.1145/3452021.3458318

nodes in today’s mainstream parallel data processing systems can

process gigabytes of data in each round.

Recently, Blanas et al. [9] proposed a new massively parallel data

processing model that is aware of the network topology as well as

network bandwidth. The underlying communication network is

represented as a directed graph, where each edge is associated with

a cost function that depends on the data transferred between the two

endpoints. A subset of the nodes in the network consists of compute
nodes, i.e., nodes that can store data and perform computation—the

remaining nodes can only route data to the desired destination.

Computation still proceeds in rounds: in each round, each compute

node sends data to other compute nodes, receives data, and then

performs local computation. There is no limit on the size of the

data that can be transmitted per edge; the cost is defined as the

sum across all rounds of the maximum cost over all edges in the

network at each round. This model is general enough to capture

the MPC model as a special case.

In this work, we use the above topology-aware model to prove

lower bounds and design algorithms for three fundamental data pro-

cessing tasks: set intersection, cartesian product, and sorting. These
three tasks are the essential building blocks for evaluating any

complex analytical query in a data processing system.

In contrast to prior work, which either assumes a worst-case

or uniform initial data distribution over the nodes in the network,

we study algorithms in a more fine-grained manner by assuming

that the cardinality of the initial data placed at each node can be

arbitrary and is known in advance. This information allows us to

build more optimized algorithms that can take advantage of data

placement to discover a more efficient communication pattern.

Our contributions. We summarize our algorithmic results in

Table 1. Our results are restricted to network topologies that have

two properties. First, they are symmetric, i.e., for each link (u,v)
there exists a link (v,u) with the same bandwidth. Second, the

network graph is a tree. Even with these two restrictions, we can

capture several widely deployed topologies, such as star topologies

and fat trees. All our algorithms are simple to describe and run

either in a single round or in a constant number of rounds, hence

requiring minimal synchronization. We thus believe that they form

a good starting point for an efficient practical implementation. We

next present our results for each data processing task in more detail.

• Set Intersection (Section 3). In this task, we want to compute

the intersection R ∩ S of two sets. Our lower bound for set in-

tersection uses classic results from communication complexity

on the lopsided set disjointness problem. This lower bound has

a rather complicated form (as shown in Section 3.1), since each

link has a different data capacity budget depending on the un-

derlying network as well as the initial data distribution. Since

set intersection is a computation-light but communication-heavy

task, the challenge is how to effectively route the data according

to the capacity of each link. We design a single-round random-

ized routing strategy for set intersection that matches the lower

bound with high probability, losing only a polylogarithmic factor

(w.r.t. the input size and network size). Surprisingly, the routing

depends only on the topology and initial data placement, but not

the bandwidth of the links.

• Cartesian Product (Section 4). Here we want to compute the

cross product R × S of two sets. This task is fundamental for vari-

ous join operators, such as natural join, θ -join, similarity join and

set containment join. We derive two lower bounds of different

flavor. The first lower bound has a similar form as that for set

intersection. The second lower bound uses instead a counting

argument, which states that each pair in the cartesian product

must be enumerated by at least one compute node, and the two

elements participating in this result should reside on the same

node when it is enumerated. We propose a one-round determin-

istic routing strategy for computing the cartesian product, which

has asymptotically optimal guarantees. Our protocol generalizes

the HyperCube algorithm that is used to compute the cartesian

product in the MPC model [1].

• Sorting (Section 5).Wedefine a valid ordering of compute nodes

as any left-to-right traversal of the underlying network tree, after

picking an arbitrary node as the root. If the ordering of compute

nodes is v1,v2,v3, . . . , at the end of the algorithm all elements

on node vi are in sorted order and no larger than those on node

vj if i < j. Our lower bound again has a similar form to the one

we derived for set intersection. We present a sampling-based

sorting algorithm which runs in a constant number of rounds

and matches our lower bound with high probability. The protocol

is again independent of the topology and the bandwidth, and

depends only on the initial placement of the data.

2 THE COMPUTATIONAL MODEL
In this section, we present the computational model we will use for

this work.

NetworkModel. Wemodel the network topology using a directed
graphG = (V ,E). Each edge e ∈ E represents a network link with

bandwidth we ≥ 0, where the direction of the edge captures the

direction of the data flow. We distinguish a subset of nodes in the

network,VC ⊆ V , to be compute nodes. Compute nodes are the only

nodes in the network that can store data and perform computation

on their local data. Non-compute nodes can only route data. We

only consider connected networks, where every pair of compute

nodes is connected through a directed path.

Computation. A parallel algorithm A proceeds in sequential

rounds (or phases). We denote by r ∈ N the number of rounds

of the algorithm. In the beginning, each compute node v ∈ VC
holds part of the input I , denoted as X0(v) ⊆ I . In this work, we

assume that {X0(v)}v ∈VC forms a partition of the input I ; in other

words, there is no initial data duplication across the nodes. The goal

of the algorithm is to compute a function over the input I , such that

in the end the compute nodes together hold the function output.

We also assume that algorithmA has knowledge of the following:

(i) the topology of the graph, (ii) the bandwidth of each link, and

(iii) |X0(v)| for each compute node v ∈ VC . In the case of relational

data, we further assume that the algorithm knows the cardinality

of the local fragment for each relation.

We use Xi (v) to denote the data stored at compute node v ∈ VC
after the i-th round completes, where i = 1, 2, . . . , r . At every round,
the compute nodes first perform some computation on their local

data. Then, they communicate by sending data to other compute

nodes in the network. We assume that for a data transfer from

Task Algorithm Number of Rounds Lower Bounds Optimality Guarantee
Set intersection Randomized 1 Theorem 1 O(log |V | logN) with high probability

Cartesian product Deterministic 1 Theorem 7 and 9 O(1)
Sorting Randomized O(1) Theorem 15 O(1) with high probability

Table 1: A summary of our results. The graph network is G = (V ,E), while the size of the input data is denoted by N .

compute node u to compute node v , the algorithm must explicitly

specify the routing path (or a collection of routing paths). We use

Yi (e) to denote the data that is routed through link e during round

i , and |Yi (e)| denote its total size measured in bits.

Cost Model. Since the algorithm proceeds in sequential rounds,

we can decompose the cost of the algorithm, denoted cost(A), as
the sum of the costs for each round i ,

cost(A) =
r∑
i=1

costi (A)

The model captures the cost of each round by considering only

the cost of communication. The cost of the i-th round is

costi (A) := max

e ∈E
|Yi (e)|/we .

In other words, the cost of each round is captured by the cost of

transferring data through the most bottlenecked link in the net-

work. In some cases, it will be convenient to express the cost using

tuples/elements instead of bits, which we will mention explicitly.

Even though the model does not take into account any computa-

tion time in the cost, it is possible to incorporate computation costs

in the model by appropriately transforming the underlying graph

– for more details, see [10]. We should note here that our model

does not capture factors such as congestion on a router node, or

communication delays due to large network diameter.

2.1 Network Topologies
Even though the model supports general network topologies, com-

puter networks often have a specific structure. When the underly-

ing topology has some structure, several problems (such as rout-

ing [5, 13, 14, 36]) admit more efficient solutions than what is

achievable for general topologies. It is therefore natural to con-

sider restrictions on the topology that are of either theoretical or

practical interest.

Symmetric Network. Wired networks support full duplex opera-

tion that allows simultaneous communication in both directions of

a link. Furthermore, datacenter networks allocate the same band-

width for transmitting and receiving data for each node. These

networks are represented in the model using a symmetric network.

We say that a network topology is symmetric if for every edge

e = (u,v) ∈ E, we also have that e ′ = (v,u) ∈ E withwe = we ′ . In

other words, the cost of sending data from u to v is the same as the

cost of sending the same data from v to u.

Star Topology. The most common topology for small clusters is

the star topology, where all computers are connected to a single

switch. A star network with p + 1 nodes has p compute nodes

VC = {v1,v2, . . . ,vp } that are all connected to a central nodew that

only does routing. Figure 1a depicts an example of a star network.

Within a node, a multi-core CPU also exhibits a star topology:

o

v3

v4

v5

v6

v1

v2

(a) Star topology.

o1

v3

v1

v2

o2

v5

v6v4

o3

v7

v8

v9

o4

(b) Tree topology.

Figure 1: Common computer network topologies have struc-
ture, which permits more efficient solutions than what is
feasible for arbitrary topologies.

individual CPU cores exchange data through a shared cache and

memory hierarchy, which implicitly forms the center of the star.

Tree Topology. As the network grows, a single router is no longer
sufficient to connect all nodes. A common solution to scale the

network further is to arrange r routers {o1,o2, · · · ,or } in a star

topology, and connect p compute nodes VC = {v1, · · · ,vp } to indi-

vidual routers. Figure 1b shows an example of a tree topology. A

key property in a tree topology is that there exists a unique directed

path between any two compute nodes, hence routing is trivial.

In this work, we will focus on symmetric tree topologies. We make

two observations about such topologies:

• Assume w.l.o.g. that every compute node is a leaf. Indeed, if

we have a non-leaf compute node v ∈ VC , we can transform

G to a new graph G ′ by adding a new compute node v ′,
introduce a new link betweenv,v ′ with bandwidth +∞, and

make v a non-compute node.

• Assumew.l.o.g. that there are no nodes with degree 2. Indeed,

consider a node v with two adjacent edges e1 = (v,u1) and
e2 = (v,u2). We can removev and replace the two edges with

a single edge e = (u1,u2) with bandwidth min{we1 ,we2 }.

2.2 Relation to the MPC Model
We discuss here how the topology-aware model can capture the

MPC model [7, 31] as a special case.

Recall that in theMPCmodel we have a collection ofp nodes. The
MPC model is topology-agnostic: every machine can communicate

with any other machine, and the cost of a round is defined as the

maximum amount of data that is received during this round across

all machines. The MPC model corresponds to an asymmetric star

topology with p compute nodes. For every edge e = (vi ,o) that goes
from a compute node to the center o the bandwidth is we = +∞,

while for the inverse edge e ′ = (o,vi) the bandwidth iswe ′ = 1.

It should be noted that all previous works using the MPC model

assume a uniform data distribution, where each node initially re-

ceives N /p data, where N is the input size. This assumption has

been used both for lower and upper bounds. In contrast, our algo-

rithms and lower bounds take the sizes of the initial data distribution

as parameters.

3 SET INTERSECTION
In the set intersection problem, we are given two sets R and S . Our
goal is to enumerate all pairs (r , s) ∈ R ∩ S . Note that there is no
designated node for each output pair, as long as it is emitted by

at least one node. We assume that all elements from both sets are

drawn from the same domain.

Given an initial distribution D of the data across the compute

nodes, we denote byRDv , SDv the elements fromR and S respectively

in node v . Let NDv = |R
D
v | + |S

D
v |, and ND =

∑
v Nv = |R | + |S |.

Whenever the context is clear, we will drop D from the notation.

3.1 Lower Bound for Tree Topologies
We present a lower bound on the cost for the case of a symmetric

tree topology. To prove the lower bound, we use a reduction from

the lopsided set disjointness problem in communication complexity.

In this problem, Alice holds a set X of n elements and Bob holds

a set Y ofm elements from some common domain. The goal is to

decide whether the intersection X ∩ Y is empty by minimizing

communication. It is known [19, 44] that for any multi-round ran-

domized communication protocol, either Alice has to send Ω(n)
bits to Bob, or Bob has to send Ω(m) bits to Alice.

To construct the reduction, we observe that any edge e = (u,v)
defines a partitioning of the compute nodes in the tree G into two

subsets: V −e and V +e . Here, V −e is the set of compute nodes in the

same side as u, and V +e in the same side as v . Hence, any algorithm

that computes the set intersection in the tree topology also solves

a lopsided set disjointness problem, where Alice holds all data

located in V −e , Bob holds all data located in V +e , and they can only

communicate through the edge e . Following this core idea, we can

show the following lower bound.

theorem 1. Let G = (V ,E) be a symmetric tree topology. Any
algorithm computing the intersection R ∩ S has cost Ω(CLB), where

CLB = max

e ∈E

1

we
·min

 |R |, |S |,
∑
v ∈V −e

Nv ,
∑
v ∈V +e

Nv

 .
Observe that the above lower bound holds independent of the

number of rounds that the algorithm uses.

Proof. Consider an edge e ∈ E. Any algorithm that computes

the set intersection R ∩ S must solve the following problem. Alice

holds two sets, RA =
⋃
v ∈V −e Rv , and SA =

⋃
v ∈V −e Sv . Similarly,

Bob holds two sets, RB =
⋃
v ∈V +e Rv , and SB =

⋃
v ∈V +e Sv . Then,

Alice and Bob must together compute two set intersections, RA∩SB
andRB∩SA, communicating only through the link e with bandwidth
we . The lower bound for lopsided disjointness tells us that in order

to compute RA ∩ SB we need to communicate Ω(min{|RA |, |SB |})
bits, and forRB∩SA we need at leastΩ(min{|RB |, |SA |}) bits. Hence,

Algorithm 1: StarIntersect(G,D)

1 Vα ← {v ∈ VC | min{Nv ,N − Nv } < |R |}, Vβ ← VC \Vα ;

2 for v ∈ VC do
3 send every a ∈ RDv to all nodes in Vβ ∪ {h(a)} ;

4 if v ∈ Vα then
5 send every a ∈ SDv to h(a) ;

the cost of any algorithm must be Ω(C), where:

C =
1

we
max(min{|RA |, |SB |},min{|RB |, |SA |})

≥
1

2we
min{|RA | + |RB |, |SA | + |SB |, |RA | + |SA |, |RB | + |SB |}

=
1

2we
min

©«|R |, |S |,
∑
v ∈V −e

Nv ,
∑
v ∈V +e

Nv
ª®¬

Applying the above argument to every edge in the treeG , we obtain
the desired result. □

3.2 Warmup on Symmetric Star
We first consider the star topology to present some of the key ideas.

W.l.o.g. we assume |R | ≤ |S |. We present a one-round algorithm

based on randomized hashing.

Our algorithm (Algorithm 1) in its core performs a random-

ized hash join. It first partitions the compute nodes into two sub-

sets, Vα and Vβ , depending on the size of the local data. Define

N ′ = |R | +
∑
v ∈Vα |Sv |. Let h be a random hash function that maps

independently each a in the domain to node v ∈ VC with the fol-

lowing probability:

Pr [h(a) = v] =

{
Nv/N

′, v ∈ Vα

|Rv |/N
′, v ∈ Vβ

If Vβ = ∅, then the algorithm performs a distributed hash join

using the above hash function h. Observe that the algorithm does

not hash each value uniformly across the compute nodes, but with

probability proportional to the input data Nv that each node holds.

If Vβ , ∅, we perform hashing only on a subset of the data

using a subset of the nodes. In particular, each node v ∈ Vβ first

gathers all the elements from R (the smaller relation) and locally

computes R ∩ Sv , while hashing is used to compute the remaining

set intersection. After the data is communicated, the intersection

can be computed locally at each node.

We next show that the above algorithm is optimal within a poly-

logarithmic factor.

Lemma 2. Let G = (V ,E) be a symmetric star topology, and con-
sider sets R, S with N = |R | + |S |. Then, StarIntersect computes
the set intersection R ∩ S with cost O(logN log |V |) away from the
optimal solution with high probability.

Proof. The correctness of the algorithm is straightforward. We

will next bound the cost of the algorithm. We will measure the

cost using elements of the set; to translate to bits it suffices to add

a log(N) factor which captures the number of bits necessary to

represent each element.

To make the notation simpler, we will use wv to refer to the

bandwidth we of edge e = (v,w), where v ∈ VC and w is the

central node of the star topology. We can now reformulate the

lower bound from Theorem 1 as

CLB = max

{
max

v ∈Vα

min{Nv ,N − Nv }

wv
, max

v ∈Vβ

|R |

wv

}
We now distinguish two cases, depending on whether the edge is

adjacent to a node in Vα or Vβ .

Case 1: v ∈ Vβ . Consider the two edges (v,w) and (w,v). The
number of tuples that will be sent through edge (v,w) is |Rv | ≤ |R |.
As for the tuples received, node v will receive |R | − |Rv | tuples
from R, as well as some tuples from S which are in expectation:

|Rv |
N ′ ·

∑
v ∈Vα |Sv | ≤ |Rv |. Thus, the cost incurred by edges adjacent

to Vβ is: maxv ∈Vβ
|R |
wv
≤ CLB . Even though the above analysis just

bounds the expectation, we can use Chernoff bounds to show that

with probability polynomially small in the number of compute

nodes, the number of tuples will not exceed the expectation by

more than an O(log |V |) factor for any of the edges.

Case 2: v ∈ Vα . We will bound separately the number of R-tuples
and S-tuples that go through each edge.

The expected number of S-tuples that go through edge (w,v) is

©«
∑
u ∈Vα

|Su | − |Sv |
ª®¬ · NvN ′ ≤ (N ′ − R − |Sv |) · NvN ′

≤
(N ′ − Nv)Nv

N ′
≤ min{Nv ,N − Nv }

The third inequality is a direct application of the facts thatmin{a,b}

≥ a ·b
a+b for any a,b ≥ 0 and N ′ < N . Similarly, the expected number

of S-tuples that go through edge (v,w) is

|Sv | ·
N ′ − Nv

N ′
≤
(N ′ − Nv)Nv

N ′
≤ min{Nv ,N − Nv }

For R-tuples, we distinguish two cases. If Vβ = ∅, then we can

bound the expected size using the same argument as above for

S-tuples. We now turn to the case whereVβ , ∅. We first claim that

Nv ≤ N − Nv for each vertex v ∈ Vα . Indeed, if not then we must

have that N −Nv < |R |, which implies that Nv > |S |. However, this
is a contradiction since there exists u ∈ Vβ with Nu > |R |. Hence,
it suffices to bound the R-tuples that go through each edge by Nv .
Indeed, the number of R-tuples that go through (v,w) for v ∈ Vα
are at most |Rv | ≤ Nv . As for the edge (w,v), the expected number

of tuples that use the edge is:

(|R | − |Rv |) ·
Nv
N ′
≤
|R |

N ′
· Nv ≤ Nv

Combining these two cases above yields the desired claim. Note

that all expectation calculations can be extended to high probability

statements by losing a factor ofO(log |V |) as mentioned before. □

3.3 Algorithm on General Symmetric Tree
We now generalize the algorithm for the star topology to an arbi-

trary (symmetric) tree topology. W.l.o.g. we assume |R | ≤ |S |. We

V 1

C

V 2

C

V 3

C

α
β

α
α

α
α

β

β
β

β
α α

α
α

Figure 2: An illustration of a balanced partition.

partition all edges in E into two subsets:

Eα = {e ∈ E | min{
∑
v ∈V +e

Nv ,
∑
v ∈V −e

Nv } < |R |}

Eβ = {e ∈ E | min{
∑
v ∈V +e

Nv ,
∑
v ∈V −e

Nv } ≥ |R |}

An edge e ∈ E is calledα-edge if e ∈ Eα , and β-edge if e ∈ Eβ . Ob-
serve that the definition is symmetric w.r.t. the direction of the edge:

if (u,v) is an α-edge, so is (v,u). The intuition behind this partition

lies in the lower bound of Theorem 1, where the amount of data

that can go through an α-edge is O(min{
∑
v ∈V +e Nv ,

∑
v ∈V −e Nv })

and through a β-edge isO(|R |). We denote byGβ the edge-induced

subgraph of the edge set Eβ .

Lemma 3. The subgraph Gβ is a connected tree.

Proof. For the sake of contradiction, assume there exist vertices

u,v ∈ V (Gβ) such that u,v are not connected in Gβ . Then, there

exists an α-edge e on the unique path that connects u and v in G.
In turn, e splits G into two connected subtrees: G+e (that contains

all nodes in V +e), and G−e (that contains all nodes in V −e). Suppose

w.l.o.g. that u ∈ V (G+e) and v ∈ V (G
−
e).

Since u,v belong in the edge-induced subgraph of Eβ , there

exists β-edges e1 ∈ G
+
e , e2 ∈ G

−
e . We observe that V +e1 ⊆ V +e and

V −e2 ⊆ V
−
e , which implies |R | ≤

∑
v ∈V +e Nv and |R | ≤

∑
v ∈V −e Nv . In

this way, e would be an β-edge, contradicting our assumption. □

On the other hand, the edge-induced subgraph Gα derived from

Eα is not necessarily connected and forms a forest.

Balanced Partition. The first step of our algorithm is to compute

a partition {V 1

C ,V
2

C , · · · ,V
k
C } of the compute nodesVC . In particular,

the algorithm seeks a balanced partition, as illustrated in Figure 2.

Definition 4. A partition {V 1

C ,V
2

C , · · · ,V
k
C } of VC is balanced for

data distribution D if the following properties hold:

(1) If two nodes are connected inGa , they belong in the same

block of the partition ;

(2) Each edge appears in the spanning tree of at most one block

of the partition ;

(3) For every block i ,
∑
v ∈V i

C
NDv ≥ |R | ;

(4) For every β-edge e in the spanning tree of a block i , we have
min{

∑
v ∈V i

C∩V
+
e
Nv ,

∑
v ∈V i

C∩V
−
e
Nv } ≤ |R |.

Before we show how to find a balanced partition, we first discuss

how we can use it to compute the set intersection.

Algorithm 2: TreeIntersect(G,D)

1 Find a balanced partition {V 1

C ,V
2

C , · · · ,V
k
C };

2 for v ∈ VC do
3 for i = 1, . . . ,k do
4 send every a ∈ RDv to hi (a) ;

5 if v ∈ V i
C then

6 send every a ∈ SDv to hi (a) ;

The Algorithm. Let {V 1

C ,V
2

C , · · · ,V
k
C } be a balanced partition of

the compute nodesVC . For every blockV
i
C , we define a random hash

function hi that maps independently each value a in the domain to

node v ∈ V i
C with probability:

Pr [hi (a) = v] =
Nv∑

u ∈V i
C
Nu

Using the above probabilities, we can now describe the detailed

algorithm (Algorithm 2), which works in a single round. Each R-
tuple is hashed across all blocks of the partition (hence it may be

replicated), while each S-tuple is hashed only in the block that

contains the node it belongs in. After all data is communicated,

each node locally computes the set intersection.

theorem 5. On a symmetric tree topology G = (V ,E), the set
intersection R ∩ S with |R | + |S | = N can be computed in a single
round with costO(logN log |V |) away from the optimal solution with
high probability.

Proof. The correctness of the algorithm comes from the fact

that each subset of nodes V i
C computes R ∩

⋃
v ∈V i

C
Sv . Since S =⋃k

i=1
⋃
v ∈V i

C
Sv , the algorithm computes all results in R ∩ S .

We next analyze the cost. As before, we will measure the cost

in number of tuples, and then pay a O(logN) factor to translate to

bits. We first rewrite the lower bound as:

CLB = max

max

e ∈Eα

1

we
min{

∑
v ∈V +e

Nv ,
∑
v ∈V −e

Nv }, max

e ∈Eβ

|R |

we

We analyze the cost for the edges in Eα ,Eβ separately.

Case: e ∈ Eβ . We will bound the amount of data that goes through

e by O(|R |). The R-tuples that go through e are at most |R |, so
it suffices to bound the number of S-tuples that cross edge e . By
property (2) of a balanced partition, e is included in at most one

spanning tree, say of block V i
C . Then, w.h.p. the expected amount

of S-tuples that goes through e is at most

1∑
v ∈V i

C
Nv
· (

∑
v ∈V i

C∩V
−
e

Nv) · (
∑

v ∈V i
C∩V

+
e

Nv)

≤min{
∑

v ∈V i
C∩V

−
e

Nv ,
∑

v ∈V i
C∩V

+
e

Nv } ≤ |R |

The first inequality comes from the fact that
a ·b
a+b ≤ min{a,b} for

any a,b > 0. The second inequality is implied directly by property

(4) of a balanced partition.

Case: e ∈ Eα . We will bound the amount of data that goes through

e bymin

{∑
v ∈V −e Nv ,

∑
v ∈V +e Nv

}
. To bound the number of S-tuples,

we again notice that e can belong in the spanning tree of at most one

block, say V i
C . Hence, as in the previous case, w.h.p. the expected

amount of S-tuples that goes through e is at most

1∑
v ∈V i

C
Nv
· (

∑
v ∈V i

C∩V
−
e

Nv) · (
∑

v ∈V i
C∩V

+
e

Nv)

≤min{
∑

v ∈V i
C∩V

−
e

Nv ,
∑

v ∈V i
C∩V

+
e

Nv } ≤ min{
∑
v ∈V −e

Nv ,
∑
v ∈V +e

Nv }

We can bound the number of R-tuples that go through e by distin-

guishing three cases:

• none of G−e ,G
+
e contain β-edges. Then, the partition consists of

a single block, and the number of R-tuples can be bounded as we

did above with the S-tuples.
• G+e contains β-edges but G−e not. Then, all vertices in Gβ are in

V +e . The R-data that goes through e is sent by nodes inV −e , so its

size is bounded by∑
v ∈V −e

|Rv | ≤
∑
v ∈V −e

Nv = min

∑
v ∈V −e

Nv ,
∑
v ∈V +e

Nv

 .
Here, the last equality follows from the fact that G+e contains at

least one β-edge, which implies

∑
v ∈V +e Nv ≥ |R | >

∑
v ∈V −e Nv .

• G−e contains β-edges but G+e not. Then, all nodes in V +e belong

in the same block V i
C . We can abound the expected amount of

S-tuples with:

1∑
v ∈V i

C
Nv
· (

∑
v ∈V −e

|Rv |) · (
∑

v ∈V i
C∩V

+
e

Nv)

≤

∑
v ∈V −e |Rv | +

∑
v ∈V i

C∩V
+
e
Nv∑

v ∈V i
C
Nv

min{
∑
v ∈V −e

|Rv |,
∑

v ∈V i
C∩V

+
e

Nv }

≤

|R | +
∑
v ∈V i

C
Nv∑

v ∈V i
C
Nv

min{
∑
v ∈V −e

Nv ,
∑
v ∈V +e

Nv }

≤2min{
∑
v ∈V −e

Nv ,
∑
v ∈V +e

Nv }

where the last inequality is from property (3) of Definition 4.

This completes the proof. □

Finding a Balanced Partition. Finally, we present how we can

compute a balanced partition in Algorithm 3. Two vertices in G
are α-connected if there exists a path that uses only α-edges that
connects them. For the algorithm below, denote Γ(x) as the set of
nodes that are α-connected with node x in G. Moreover, we use

w(x) to denote the quantity

∑
x ∈Γ(x) Nx , i.e. the total amount of

data in the nodes from Γ(x). The algorithm initially creates a group

for each set of compute nodes that are connected through α-edges.
Then, it starts merging the groups (starting from the leaves of the

tree) as long as the total number of the elements in the group is

less than |R |. We show (in Appendix A.1) that the above algorithm

indeed creates the desired balanced partition.

Algorithm 3: BalancedPartition(G,D)

1 for x ∈ V (Gβ) do
2 Γ(x) ← {v ∈ VC | v,x are α-connected in G} ;

3 P ← ∅ ;

4 while |V (Gβ)| > 0 do
5 pick the leaf vertex x ∈ Gβ with the smallestw(x);

6 if w(x) ≥ |R | then
7 add Γ(x) to P;

8 else
9 y ← unique neighbor of x in Gβ ;

10 Γ(y) ← Γ(y) ∪ Γ(x);

11 Gβ ← Gβ \ {x};

12 return P ;

Lemma 6. Algorithm 3 outputs a balanced partition of compute
nodes VC in O(|V |) time.

Remark. Interestingly, the algorithm we described above does not

use the link bandwidths to decide what to send and where to send

to. Instead, what matters is the connectivity of the network and

how the data is initially partitioned across the compute nodes. This

is a significant practical advantage because bandwidth information

may be imprecise or have high variability at runtime, such as when

sharing a cluster with other users.

4 CARTESIAN PRODUCT
In the cartesian product problem, we are given two sets R, S with

|R | = |S | = N /2. (We will discuss in the end why the unequal

case is challenging, even on the simple symmetric star topology).

Our goal is to enumerate all pairs (r , s) for any r ∈ R, s ∈ S , such
that the output pairs are distributed among the compute nodes by

the end of the algorithm. Similar to set intersection, there is no

designated node for each output pair, as long as it is emitted by at

least one node. We assume that all elements are drawn from the

same domain, and that initially the input data is partitioned across

the compute nodes.

4.1 Lower Bounds on Symmetric Trees
We present two lower bounds on cost for the case of a symmetric

tree topology. The first one as stated in Theorem 7 has the same

form as the one in Theorem 1 when |R | = |S | = N /2, but uses a
slightly different argument. Both lower bounds are expressed in

terms of elements, and not bits.

theorem 7. Let G = (V ,E) be a symmetric tree topology. Any
algorithm computing R × S has (tuple) cost Ω(CLB), where

CLB = max

e ∈E

1

we
·min

∑
v ∈V −e

Nv ,
∑
v ∈V +e

Nv

 .
Proof. Let Copt be the cost of any algorithm computing R × S

on the tree topology G. Consider an edge e ∈ E. Suppose that

Copt ·we ≤
∑
v ∈V −e |Rv |. Then, at least one element in Ru for some

u ∈ V −e does not go through e , i.e., entering into any vertex in

V +e . In this case, in order to guarantee correctness, all data in S
must be sent to u, hence Copt · we ≥

∑
v ∈V +e |Sv |. Thus Copt ·

we ≥ min{
∑
v ∈V −e |Rv |,

∑
v ∈V +e |Sv |}. Using a symmetric argu-

ment,Copt ·we ≥ min{
∑
v ∈V −e |Sv |,

∑
v ∈V +e |Rv |}. Summing up the

two inequalities, and observing thatmin{
∑
v ∈V −e Nv ,

∑
v ∈V +e Nv } ≤

|R |(= |S | = N /2), we obtain the lower bound on edge e .
Applying the above argument to every edge in the tree G, we

obtain the desired result. □

The second lower bound uses a different argument that depends

on the underlying tree topology. To state the lower bound, we first

define a "directed" version G† of the symmetric tree G as follows.

G† has the same vertex set as G. Recall that each edge e = (u,v) in
G partitions the nodes of V into V +e and V −e . Then, if

∑
x ∈V −e Nx ≤∑

x ∈V +e Nx ,G
†
contains only an edge fromu tov , otherwise only an

edge from v to u. As the next lemma shows, the resulting directed

graph G† has a very specific structure.

Lemma 8. G† satisfies the following properties:
(1) The out-degree of every node is at most one.
(2) There exists exactly one node with out-degree zero.

Proof. By contradiction, assume there exists one node u ∈ V
with at least two out-going edges. Since G has no vertices with de-

gree 2, this means thatG† has three edges e1 = (u,v1), e2 = (u,v2),
e3 = (u,v3). For each such edge, we have

∑
x ∈V +ei

Nx ≥
∑
x ∈V −ei

Nx ,

and thus

∑
x ∈V +ei

Nx ≥ N /2. Observe that because G is a tree, it

also holds that the vertex setsV +ei are disjoint. Then we come to the

contradiction that N =
∑
x ∈V Nx ≥

∑
3

i=1
∑
x ∈V +ei

Nx ≥
3

2
N , thus

(1) is proved.

Since G† is a directed tree, it is easy to see that there must exist

at least one node with no outgoing edges; otherwise, there would

be a cycle in the graph, a contradiction. Hence, it suffices to show

that there is at most one such a node. By contradiction, assume two

nodes u,v with out-degree 0. Consider the unique path between

u,v : then, there must be a node in the path with out-degree at least

two. However, this contradicts (1), thus (2) is proven as well. □

We denote the single node with out-degree zero as r , and call

it the root of the tree. Every other node in G† will point towards
r , as the example in Figure 3 illustrates. Observe that the root r of
the tree could be a compute node. But in this case, the algorithm

that simply routes all the data to the root is asymptotically optimal,

since the cost matches the lower bound in Theorem 7. Hence, we

will focus on the case where the root is not a compute node; in this

case, it is easy to observe that all the nodes inG† with in-degree 0

are exactly the compute nodes.

A cover of G† is a subset S ⊆ V such that every leaf node has

some ancestor in S . We will be interested in minimal covers of G†.
Observe that the singleton set {r } is trivially a minimal cover.

theorem 9. Let G = (V ,E) be a symmetric tree topology. Let U
be a minimal cover of G† such that U , {r }, where r is the root of
G†. Then, any algorithm computing the cartesian product R × S for
|R | = |S | = N /2 has (tuple) cost Ω(CLB), where

CLB =
N√∑
v ∈U w2

v

,

compute nodes routing nodes

Figure 3: Two examples of a directed graph G†.

wherewv is the capacity of the unique outgoing edge of v in G†.

Proof. Let eu be the outgoing edge ofu ∈ U inG†, with capacity
costwu . Let Tu be the subtree rooted at u. From minimality of U ,

it follows that Tu ,Tv have disjoint vertex sets. Moreover, from the

definition of a node cover, every compute node belongs in some

(unique) subtree. This means that we can bound the output result

by at most the union of the outputs in the compute nodes of each

subtree. In the following, we will bound the maximum output size

of a given subtree Tu .
Assume R′u , S

′
u be the elements of R, S respectively that are in

some compute node ofTu . Moreover, assumeR′′u , S
′′
u be the elements

of R, S that go through link eu respectively. Then, the size of the

results that can be produced at subtree Tu is at most |R′u ∪ R′′u | ·
|S ′u ∪ S

′′
u |. Observe the following:

• |R′′u | ≤ Copt ·wu and |S ′′u | ≤ Copt ·wu ;

• |R′u | ≤ Copt ·wu and |S ′u | ≤ Copt ·wu . Indeed, sincewu is an

outgoing edge ofu inG†, Theorem 7 tells us thatCopt ·wu ≥

|R′u | + |S
′
u |.

Hence, we can bound the number of outputs in Tu as:

|R′u ∪ R
′′
u | · |S

′
u ∪ S

′′
u | ≤ (|R

′
u | + |R

′′
u |)(|S

′
u | + |S

′′
u |)

≤ (2 ·Copt ·wu)(2 ·Copt ·wu)

= 4 ·C2

opt ·w
2

u

To guarantee the correctness, the total size of the output must be

at least |R | · |S |. Summing over all nodes in the minimal coverU , we

obtain |R | · |S |≤4 ·C2

opt ·
∑
u ∈U w2

u . This concludes the proof. □

4.2 The Weighted HyperCube Algorithm
In this section, we present a deterministic one-round protocol on a

symmetric star topology, named weighted HyperCube (wHC), which
generalizes the HyperCube algorithm [1].

The wHC Algorithm. We assume that the data statistics |Rv |,
|Sv | are known to all compute nodes. We give a strict ordering ≤ on

the compute nodes in VC . Each node assigns consecutive numbers

to its local data. More specifically, node v labels its data in Rv from

1 +
∑
u<v |Ru | to

∑
u≤v |Ru |, and data in Sv from 1 +

∑
u<v |Su |

to

∑
u≤v |Su |. In this way, each element from R is labeled with a

unique index, as well as each one from S . In this way, each answer

in the cartesian product can be uniquely mapped to a point in the

grid □ = {1, 2, . . . , |R |} × {1, 2, . . . , |S |}.
The wHC protocol assigns to each compute node v a square □v

centered at (xv ,yv) with dimensions lv × lv . Then, a tuple ri ∈ R
will be sent to v if xv − lv ≤ i ≤ xv + lv , and a tuple sj ∈ S will be

v1 v2

v3 v4

v5 v6

v7

Figure 4: An example of packing squares.

sent to v if yv − lv ≤ j ≤ yv + lv . After all tuples are routed, the
cartesian product will be computed locally at each compute node.

To guarantee correctness, we have to make sure that

⋃
v □v = □,

i.e., the squares assigned to each node fully cover the grid.

We first compute the dimensions lv of the square assigned to

each node. Intuitively, we want to make sure that lv is proportional

to the capacity of the link. However, to make sure that we can

pack the resulting set of squares without any overlap, we consider

squares that are powers of 2. Specifically,

lv = argmin

k
{2k ≥ wv · L}, L =

N√∑
u w

2

u

(1)

Second, we need to specify the positions of the squares, i.e. de-

termine how they can be packed without any overlap. An example

of such a packing is given in Figure 4. To pack the squares, we will

make use of the following lemma.

Lemma 10 (Packing Sqares). Let S be a set of squares di × di ,
where each di is a power of two. Then, we can pack the squares in S

such that they fully cover a square of size at least
√∑

i d
2

i /2.

Proof. We provide an algorithm for the packing. We start the

following procedure in an increasing order of i ≥ 0: for each i , if
there are 4 squares of size 2

i × 2i in S , we pack them into a larger

square of size 2
i+1×2i+1. In this way, we can transform S into a new

set of squares S ′, where for every i , there are at most 3 squares of

size 2
i ×2i . It is now easy to see that, by induction starting from the

smaller size, all squares of size ≤ 2
i−1

can be packed inside a square

of size 2
i
. Hence, we can pack all squares in S ′ inside a square of

size 2
i∗+1

, where 2
i∗
is the dimension of the largest square in S ′.

To conclude the argument, observe that the square with dimension

2
i∗
is fully packed. Also, 2

i∗+1 ≥
√∑

i d
2

i . Hence, we can fully pack

a square of size at least

√∑
i d

2

i /2. □

The next lemma bounds the cost of the wHC algorithm.

Lemma 11. Let G be a symmetric star topology. Then, the wHC
algorithm correctly computes the cartesian product R × S for |R | =
|S | = N /2 with (tuple) cost O(C), where

C = max

max

v

Nv
wv
,

N√∑
v w2

v

Proof. We apply Lemma 10 with S = {lv ×lv | v ∈ VC } to show

the correctness. The squares fully pack a square of area at least

1

4

∑
v ∈VC

(2lv)2 ≥
1

4

∑
v ∈VC

(L ·wv)
2 = (N /2)2 = |R | · |S |

Algorithm 4: StarCartesianProduct(G,D)

1 if maxu Nu > N /2 then
2 all compute nodes send their data to argmaxu Nu ;

3 else run the wHC algorithm ;

Hence, the whole grid can be covered.

Next, we analyze the cost of the algorithm. First, the cost of

sending data is maxv Nv/wv . For the cost of receiving, observe

that node v receives at most 2 · (2L · wv) = 4wvL tuples. Hence,

the cost of receiving is bounded by 4L. Combining these two costs

obtains the desired result. □

4.3 Warm-up on Symmetric Star
Before we present the general algorithm for symmetric trees, we

warm up by studying the simpler symmetric star case (Algorithm 4).

The algorithm checks whether the maximum data that some

node holds exceeds N /2. If so, it is easy to observe that the strategy
where every compute node sends their data to that node is optimal.

If every node holds at mostN /2 data initially, then inG† all compute

nodes of the star are directed to the central node o, which becomes

the root of G†. In this case, running the wHC algorithm on the

whole topology can be proven optimal.

Lemma 12. On a symmetric star topology, Algorithm 4 correctly
computes the cartesian product R × S for |R | = |S | = N

2
in a single

round deterministically and with cost O(1) away from the optimal.

Proof. We distinguish the analysis into two cases, depending

on whether maxu Nu > N /2 or not. Let Copt be the cost of any
algorithm computing R × S on the tree topology G.

First, suppose that maxu Nu > N /2. Let u∗ = argmaxu Nu . For
node u∗, N − Nu∗ < N /2 < Nu∗ . For every other node v , u∗,
Nv < N /2, hence Nv < N −Nv . Then, we can write Theorem 7 as:

Copt ≥ max

v

min{Nv ,N − Nv }

2wv
≥ max

{
N − Nu∗

2wu∗
, max

v,u∗
Nv
2wv

}
But this is exactly half the cost of the protocol where all nodes send

their data to u∗.
Suppose now that maxu Nu ≤ N /2. From Theorem 7, we obtain

the lower bound Copt ≥ maxv
Nv
2wv

. Additionally, observe that in

G† all compute nodes of the star are directed to the central node

o, and hence VC is a minimal cover of G†. Indeed, if we add {o} to
VC , the cover is not minimal, since {o} is a minimal cover by itself.

Plugging this cover in Theorem 9, we obtain Copt ≥ N /
√∑

v w2

v .

To conclude, notice that these two lower bounds onCopt match the

upper bound of wHC in Lemma 11 within a constant factor. □

4.4 Algorithm on Symmetric Tree
We now generalize the techniques for the star topology to an arbi-

trary tree topology.

The Algorithm. Assume that the data statistics |Rv |, |Sv | are
known to all compute nodes. Similar to the wHC algorithm, each

tuple from R is labeled with a unique index, as well as each one from

S . In this way, each answer in the cartesian product can be uniquely

mapped to a point in the grid □ = {1, . . . , |R |} × {1, . . . , |S |}. Let

Algorithm 5: BalancedPackingTree(G)

1 forall v ∈ V \ {r } in post-order do
2 if v is a leaf then w̃v ← wv ;

3 else w̃v ← min{wv ,
√∑

u ∈ζ (v) w̃
2

u };

4 w̃r ←
√∑

u ∈ζ (r) w̃
2

u , lr ← 1;

5 forall v ∈ V \ {r } in pre-order do

6 lv ← lpv · w̃v/
√∑

u ∈ζ (pv) w̃
2

u ;

7 forall v ∈ VC do
8 dv ← argmink {2

k ≥ N · lv };

9 assign to v a square of sizes dv × dv ;

r be the root of the directed graphG†. For simplicity, we split the

routing phase into two steps.

In the first step, each compute node v ∈ VC sends its local data

to r . In the second step, we assign to each compute node v ∈ VC a

square □v such that every result t = (tr , ts) is computed on some

v . To compute t , associated tuples tr , ts will be sent to v at least

once. In this step, every tuple sent to v will be sent from the root

r , which has gathered all necessary data in the first step. Next, we

show how to find a balanced assignment on a tree and analyze its

capacity cost with respect to the lower bound in Theorem 9.

Balanced Packing on Symmetric Tree. Let ζ (u) be the set of

children nodes of u in G†, and pu the unique parent of u in G†. To
simplify notation, we usewv to denote the quantityw(v,pv).

The algorithm is split into two phases. First, it computes a quan-

tity w̃v for each nodev inG†. For the leaf nodes, we have w̃v = wv ,

while for the internal nodes w̃v is computed in a bottom-up fashion

(through a post-order traversal). In the second phase, the algorithm

computes a quantity lv for each node, but now in a top-down fash-

ion (through a pre-order traversal). As a final step, each compute

node v rounds up (N /2) · lv to the closest power of 2, and then gets

assigned a square of that dimension.

The next lemma shows that Algorithm 5 guarantees certain

properties for the computed quantities.

Lemma 13. The following properties hold:
(1) For every non-root vertex v , w̃v ≤ wv .
(2) For every vertex v , lv ≤ w̃v/w̃r .

(3) There is a minimal coverU ofG† such that w̃r =
√∑

u ∈U w2

u .

(4) For every vertexu, lu =
√∑

v ∈Tu∩VC l2v whereTu is the subtree
rooted at u.

Proof. Property (1) is straightforward from the algorithm.

We prove property (2) by induction. For the base case, v is the

root. In this case, lr = 1, so the inequality holds with equality.

Consider now any non-root vertex v with parent pv . We then have:

lv =
lpv · w̃v√∑
u ∈ζ (pv) w̃

2

u

≤
w̃v
w̃r
·

w̃pv√∑
u ∈ζ (pv) w̃

2

u

≤
w̃v
w̃r

The first inequality holds from the inductive hypothesis for the

parent node pv . The second inequality comes from line 3 of the

algorithm, which implies that w̃v ≤
√∑

u ∈ζ (v) w̃
2

u for every non-

leaf vertex v .

We also use induction to show property (3). For a subtree rooted

at leaf node v ,U = {v} is a minimal cover. In this case, w̃v = wv =√∑
u ∈U w2

u . For the induction step, consider some non-leaf node

v . If w̃v = wv , then w̃v =
√∑

u ∈U w2

u holds for the minimal cover

U = {v}. Otherwise, w̃v =
√∑

u ∈ζ (v) w̃
2

u . From the induction

hypothesis, there exists a minimal cover Uu for the subtree rooted

at u ∈ ζ (v) such that w̃2

u =
∑
t ∈Uu w

2

t . Moreover, it is easy to see

that the set U =
⋃
u ∈ζ (v)Uu is a minimal cover for the subtree

rooted at v . Hence, we can write:

w̃v =

√ ∑
u ∈ζ (v)

w̃2

u =

√ ∑
u ∈ζ (v)

∑
t ∈Uu

w2

t =

√∑
t ∈U

w2

t

The property (4) directly follows the Algorithm 5. The base

case for u ∈ VC always holds. Consider any non-leaf node u. By

induction, assume lx =
√∑

v ∈Tx∩VC l2v for each node x ∈ ζ (u).

Implied by line 6 in Algorithm 5, we have

lu =

√ ∑
x ∈ζ (u)

l2x =

√ ∑
x ∈ζ (u)

∑
v ∈Tx∩VC

l2v =

√ ∑
v ∈Tu∩VC

l2v .

This concludes our proof. □

It still remains to specify the position in the grid for each square

assigned to a compute node.

Packing squares. In this part, we discuss how we can pack each

square of dimension dv assigned to leaf node v inside □. Our goal
is to find an assignment (packing) of each square to compute nodes

VC such that for each vertex u, the number of elements that cross

the link (u,pu) is bounded by O(N · lu).
We visit all vertices in bottom-up way, starting from the leaves.

We recursively assign to each node v a set of squares in the form of

Sv = {(2
i , ci) : ci ∈ {0, 1, 2, 3}}, meaning that there are ci squares

of dimensions 2
i × 2i .

For every leaf node v ∈ VC , only one square is assigned to v by

Algorithm 5. Consider some non-leaf node u. Each of its children

v ∈ ζ (u) is assigned with a set of squares Sv . We start the following

procedure in an increasing order of i ≥ 0: for each i , if there are 4
squares of size 2

i × 2i in
⋃
v ∈ζ (u) Sv , we pack them into a larger

square of size 2
i+1×2i+1. In this way, we can transform

⋃
v ∈ζ (u) Sv

into a new set of squares Su , where for every i , there are at most

ci ≤ 3 squares of dimensions 2
i × 2i .

Next we bound the number of elements that cross the link (u,pu)
for each node u ∈ V , which is assigned with the set of squares Su .
Let Tu be the subtree rooted u. Let i∗ be the largest integer such
that ci∗ , 0. Note that each square of dimensions 2

i × 2i includes

2
i
elements from both R and S . Then, the total number of elements

for all squares in Su is

∑
i ci · 2 · 2

i ≤ 2 · (ci∗ + 1) · 2i
∗

≤ 8 · 2i
∗

,

which can be further bounded by

≤ 8 ·

√ ∑
v ∈Tu∩VC

d2v ≤ 16 · N ·

√ ∑
v ∈Tu∩VC

l2v = 16 · N · lu

The second inequality is implied by Algorithm 5, while the third

inequality comes from the fact that dv ≤ 2N · lv for each compute

node v ∈ VC . The last equality is implied by Lemma 13.

theorem 14. On a symmetric tree topology G = (V ,E), the carte-
sian product R × S for |R | = |S | = N /2 can be computed deterministi-
cally in a single round optimally.

Proof. To prove the correctness of the algorithm, we need to

show that the packing of the squares fully covers the |R | × |S | grid.

Indeed, consider the largest square 2
i∗ × 2i∗ that occurs in the set

of squares Sr assigned to the root node. Observe first that we can

pack all squares in Sr inside a 2
i∗+1 × 2i

∗+1
square, and thus

2
2(i∗+1) ≥

∑
v

d2v ≥ N 2

∑
v ∈VC

l2v = N 2

Hence, 2
2i∗ ≥ (N /2) · (N /2) = |R | · |S |, which means that the grid

is fully packed by the largest square in Sr .
We next show that the cost is asymptotically close to the lower

bounds in Theorem 7 and Theorem 9. It can be easily checked

that the number of elements transmitted through any link e at the

first step is at mostO
(
min{

∑
v ∈V −e Nv ,

∑
v ∈V +e Nv }

)
, matching the

lower bound in Theorem 7. For the second step, we have bounded

the number of elements that cross link (u,pu) byO(N ·lv). Lemma 13

implies that N · lv ≤ N ·wv/
√∑

u ∈U w2

u for some minimal cover

U of G†, hence matching the lower bound in Theorem 9. □

4.5 Discussion on Unequal Case
At last, we discuss the difficulty of computing the cartesian product

R × S with |R | , |S | on a symmetric star topology. W.l.o.g., assume

|R | < |S |. The first lower bound following the same arguement in

Theorem 7 is Ω(CLB) where

CLB = max

v ∈VC

1

wv
·min

{
Nv ,N − Nv , |R |

}
We next see how the counting argument yields the second lower

bound under the condition maxv Nv <
N
2
. LetC be the cost of any

correct algorithm. Assume R′u , S
′
u are the sets of elements from R, S

received by u. Then, the size of results that can be produced at u is

|Ru ∪ R
′
u | · |Su ∪ S

′
u |. Observe the following:

• |R′u | ≤ Copt ·wu and |S ′u | ≤ Copt ·wu ;

• IfNu < |R |, |Ru∪R
′
u | ≤ 2Copt ·wu and |Su∪S

′
u | ≤ 2Copt ·wu ;

• If Nu ≥ |R |, Copt ·wu ≥ |R |.

Summing over all node, the total size of the output must be at least

|R | · |S |. We then obtain

|R | · |S | ≤
∑
u ∈VC

(|R′u | + |R
′′
u |)(|S

′
u | + |S

′′
u |)

≤
∑

u ∈VC :Nu< |R |

2min{C ·wv , |R |} · 2min{C ·wv , |S |}

+
∑

u ∈VC :Nu ≥ |R |

|R | · {C ·wv + Su , |S |}

whose minimizer gives the second lower bound, which becomes

rather complicated without a clean form as Theorem 9.

This is just an intuition of why the unequal case would make

the lower bound hard even on the symmetric star. In Appendix A.3,

we give a more detailed analysis on the lower bound, as well as

an optimal algorithm. Extending our current result to the general

symmetric tree topology is left as future work.

5 SORTING
In the sorting problem, we are given a set R whose elements are

drawn from a totally ordered domain. We first define an ordering

of compute nodes in the following way: after picking an arbitrary

node as the root, any left-to-right traversal of the underlying net-

work tree is a valid ordering of compute nodes. The goal is to

redistribute the elements of R such that on an ordering of compute

nodes as v1,v2, · · · ,v |VC | , elements on node vi are always smaller

than those on node vj if i < j.
Given an initial distribution D of the data across the compute

nodes, we denote by NDv the initial data size in node v . Whenever

the context is clear, we drop the superscript D from the notation.

5.1 Lower Bound
Our lower bound for sorting has the same form as the one for set

intersection (Theorem 1), with the only difference that the cost is

expressed as tuples, and not bits. Recall that any edge e = (u,v) in
the tree topology G defines a partitioning of the compute nodes

in the tree G into two subsets: V −e and V +e . Here, V −e is the set of

compute nodes in the same side as u, and V +e in the same side as v .
Hence, any sorting algorithm in the tree topology also performs

some necessary comparisons between data located at V −e and V +e .

Following this core idea, we can show the following lower bound.

theorem 15. Let G = (V ,E) be a symmetric tree topology. Any
algorithm sorting elements in a set R has (tuple) cost Ω(CLB), where

CLB = max

e ∈E

1

we
·min

∑
v ∈V −e

Nv ,
∑
v ∈V +e

Nv

 .
Proof. We construct an initial data distribution R as follows.

Assume elements in R are ordered as r1, r2, · · · , rN . W.l.o.g., assume

N is even. We assign elements to compute nodes in the ordering of

{r1, r3, · · · , rN−1, r2, r4, · · · , rN }. Moreover, we pick one arbitrary

node ofG as the root, where all compute nodes are leaves of the tree.

All compute nodes in VC are also labeled as v1,v2, · · · ,v |VC | in an

left-to-right traversal ordering. For example, node v1 with initial

data size N1 will be assigned with {r1, r3, · · · , r2N1−1} if N1 ≤
N
2
,

and {r1, r3, · · · , rN−1, r2, r4, · · · , r2N1−N } otherwise. We will argue

that any algorithm correctly sorting R must incur a cost of Ω(CLB).
Consider an arbitrary edge e ∈ E with the partition V −e ,V

+
e .

Denote R−e =
⋃
v ∈V −e Rv and R+e =

⋃
v ∈V +e Rv . It should be noted

that R−e or R+e is a sub-interval of {r1, r3, · · · , rN−1, r2, r4, · · · , rN },
or a sub-interval of {r2, r4, · · · , rN , r1, r3, · · · , rN1

}. Every element

transmitted between V −e and V +e must go through edge e . W.l.o.g.,

assume |R−e | ≤
N
2
≤ |R+e |. It suffices to show that the total number

of elements exchanged between V −e and V +e is at least Ω(|R−e |).
We start with the case when |R−e | = 1, say R−e = {ri }. If ri is

not sent through e , at least one element in R+e must be sent to V −e ;

otherwise, no comparison between ri and elements in R+e is per-

formed, contradicting to the correctness of algorithms. In general,

|R−e | ≥ 2. We further distinguish four cases: (1) r2 < R
−
e , rN < R

−
e ; (2)

1 N

j2 i1 i22 N − 1ij1 j

1 N

j2 i1 i22 N − 1ij1 j

Case (3.3.1)

Case (3.3.3)

1 N

j i i1 i2k2 N − 1

Case (3.1)

i ji′ j′k′

1 N
Case (1)

elements in R
−
e elements in R

+
e

Figure 5: Data exchange between V −e ,V
+
e .

r1 < R
−
e , rN−1 < R

−
e ; (3) r2 ∈ R

−
e , rN−1 ∈ R

−
e ; (4) r1 ∈ R

−
e , rN ∈ R

−
e .

Figure 5 illustrates the data exchange between V −e and V +e .

Case (1): r2 < R−e , rN < R−e . In this case, R−e ⊆ {r1, r3, · · · , rN−1}.
Let i, j be the smallest and largest index of elements in R−e . If all
elements in R−e have been sent from V −e to V +e , then we are done.

Otherwise, let i ′, j ′ be the smallest and largest of elements in R−e
which are not sent from V −e to V +e . Furthermore, if all elements in

R−e − {ri′ , r j′} are sent fromV −e toV +e , it can be easily checked that

the number of such elements is at least
|R−e |
2

. Otherwise, there is

rk ′ ∈ R
−
e − {ri′ , r j′} not sent fromV −e toV +e . By the definition, ri′ <

rk ′ < r j′ . Implied by the ordering of compute nodes, all elements

in [ri′ , r j′] should reside on V −e when the algorithm terminates. In

this case, each element in [ri′ , r j′] − R
−
e should be sent from V +e to

V −e , and each in {ri , ri+2, · · · , ri′−2} ∪ {r j′+2, r j′+4, · · · , r j } are sent
fromV −e toV +e , as illustrated in Figure 5. So the number of elements

transmitted through edge e is at least i′−i
2
+

j−j′
2
+

j′−i′
2
=

j−i
2
≥

|R−e | − 1 ≥
|R−e |
2

. Case (2) is symmetric with Case (1).

Case (3): rN−1 ∈ R−e , r2 ∈ R−e . Let i be the smallest odd index

and j be the largest even index of elements in R−e . Note that j < i

since |R−e | ≤
N
2
. We further consider three more cases as below.

Case (3.1): all elements in {r2, r4, · · · , r j } are sent from V −e to

V +e . If all elements in {ri , ri+2, · · · , rN−1} are also sent from V −e to

V +e , thenwe are done. Otherwise, let i1, i2 be the smallest and largest

index of elements in {ri , ri+2, · · · , rN−1} not sent from V −e to V +e .

Furthermore, if all elements in {ri , ri+2, · · · , rN−1} − {ri1 , ri2 } are
sent from V −e to V +e , it can be easily checked that the number of

elements sent from V −e to V +e is at least
|R−e |
2

. Otherwise, there is

rk ′ ∈ {ri , ri+2, · · · , rN−1}−{ri1 , ri2 } not sent fromV −e toV +e . By the

definition, ri1 < rk < ri2 . Implied by the ordering of compute nodes,

all elements in [ri1 , ri2] should reside on V −e when the algorithm

terminates. In this case, each element in [ri1 , ri2]−R
−
e should be sent

fromV +e toV −e , and each in {r2, r4, · · · , r j } ∪ {ri , ri+2, · · · , ri1−2} ∪
{ri2+2, ri2+4, · · · , rN−1} are sent from V −e to V +e , as illustrated in

Figure 5. So the number of elements transmitted through edge e is

at least
j
2
+

i1−i
2
+

N−1−i2
2
+

i2−i1
2
=

N−1+j−i
2

= |R−e | − 1 ≥
|R−e |
2

.

Case (3.2): all elements in {ri , ri+2, · · · , rN−1} are sent fromV −e to

V +e , which is symmetric with Case (3.1).

Case (3.3): at least one element in {r2, r4, · · · , r j } and one ele-

ment in {ri , ri+2, · · · , rN−1} are not sent from V −e to V +e . Let j1, j2
be the smallest, largest even index of elements in R−e not sent

from V −e to V +e . Let i1, i2 be the smallest, largest odd index of

elements in R−e not sent from V −e to V +e . Then, each element in

{r2, r4, · · · , r j1−2} ∪ {r j2+2, r j2+4, · · · , r j } ∪ {ri , ri+2, · · · , ri2−2} ∪
{ri2+2, ri2+4, · · · , rN−1} is sent from V −e to V +e . Implied by the or-

dering of compute nodes, (3.3.1) elements in [r j1 , ri2] or (3.3.2) el-
ements in [r1, r j2] ∪ [ri1 , rN] should reside on V −e when the algo-

rithm terminates. In (3.3.1), each element in [r j1 , ri2] − R
−
e should

be sent from V +e to V −e , thus the number of elements transmit-

ted over e is at least i2 − j1 + 1 −
j−j1
2
−

i2−i
2
+

j1−2
2
+

j−j2
2
+

i1−i
2
+

N−1−i2
2

≥
N−1+i1−j2

2
≥ N

2
. In (3.3.2), each element in

{r1, r3, · · · , r j2−1} ∪ {ri1+1, ri1+3, · · · , rN−1} should be sent from

V +e to V −e , thus the number of elements transmitted over e is at

least
j2+1
2
+
N−i1+1

2
+
j1−2
2
+
j−j2
2
+
i1−i
2
+
N−1−i2

2
=

N−1−i2+j1
2

≥ N
2
.

Case (4) is symmetric with Case (3). □

5.2 A Sampling-based Algorithm
In the MPC model, the theoretically optimal sorting algorithm in-

herited from [23] is rather complicated. Instead, sampling-based

techniques, such as TeraSort [42], are more amenable to be ex-

tended to more complex networks. In this section, we present a

randomized communication protocol for a symmetric tree topology,

named weighted TeraSort (wTS), which generalizes the TeraSort

algorithm in three fundamental ways. First, TeraSort is designed

for the MapReduce [20] framework, which is an instantiation of

the theoretical MPC model (with star topology), and we extend it

to the general tree topology. Second, not all nodes participate in

the splitting of the data, but only the ones that initially have a sub-

stantial amount of data. Third, we do not split the data uniformly,

but proportionally to the size of the initial data. Before introducing

our algorithm, we revisit the TeraSort algorithm.

TeraSort Algorithm. It first picks an arbitrary node as the coor-

dinator. Set ρ = 4 ·
|VC |
N ln(|VC | · N).

• Round 1. Each node u ∈ VC samples each element from its local

data with uniform probability ρ, and sends all samples to the

coordinator. Let s be the number of samples generated in total.

• Round 2. The coordinator sorts all sampled elements received.

Let bi be the i · ⌈
s
|VC |
⌉-th smallest object in the sorted samples

for i ∈ {1, 2, · · · , |VC | − 1}, b0 = −∞ and b |VC | = +∞. It then
broadcasts |VC | + 1 splitters b0,b1, · · · ,b |VC | to all nodes.

• Round 3. Upon receiving all splitters, each node scans it own

elements. For each element x , the node finds the two consecutive
splitters bi and bi+1 such that bi ≤ x < bi+1 and then sends x to

vi+1. Finally, each node locally sorts all elements received.

Algorithm 6: Proportional(VH ,u)

1 ∆← 0, i ← 1;

2 while i ≤ k do
3 x ←

Nvi∑
v∈VH Nv

· Nu ;

4 if ∆ ≥ x − ⌊x⌋ then
5 N i

u ← ⌊x⌋, ∆← ∆ − (x − ⌊x⌋);

6 else
7 N i

u ← ⌊x⌋ + 1, ∆← ∆ + 1 − (x − ⌊x⌋);

8 i ← i + 1;

9 return N 1

u ,N
2

u , · · · ,N
k
u ;

The wTS Algorithm. Now we describe our algorithm. Assume

that the data statistics Nv ’s are known to all compute nodes. A com-

pute node v ∈ VC is heavy if Nv ≥ |VC | and light otherwise. Let
VH ,VL ⊆ VC be the set of heavy and light compute nodes respec-

tively. For simplicity, we pick an arbitrary non-compute node as the

root and label heavy nodes inVH from left to right asv1,v2, · · · ,vk .

• Round 1. Each light node u ∈ VL sends its local data to heavy

nodes proportional to Nvi ’s. More specifically, node u sends

N i
u local elements to vi for each i ∈ {1, 2, · · · ,k}, where N i

u is

computed by Algorithm 6. Let Mj be the number of elements

residing on heavy node vj after this round.
• Round 2. Each heavy node samples each element from its local

storage with the same uniform probability ρ independently and

then sends the sampled elements to v1. Let s be the number of

samples generated in total.

• Round 3. Node v1 sorts all samples received. Let ti be the i ·

⌈ s
|VC |
⌉-th smallest element among all samples. Let c j = ⌈

|VC |
N ·

Mj ⌉. It chooses k + 1 splitters as follows: (1) b0 = −∞; (2) bi = tj
where j = c1 + c2 + · · · + ci ; (3) bk = +∞. Then, v1 broadcasts
b0,b1, · · · ,bk to the remaining heavy compute nodes.

• Round 4. Upon receiving all splitters, each heavy node scans its

own data. For each element x , the node finds the two consecutive
splitters bi and bi+1 such that bi ≤ x < bi+1 and then sends x to

vi+1. Finally, each node locally sorts all elements received.

We point out some properties of Algorithm 6 in Lemma 16, whose

proof is in Appendix A.2. Intuitively, (1) and (2) give bounds on the

size of data redistribution for each light node; and (3) guarantees

that all data of each light node will be sent to heavy nodes.

Lemma 16. The following holds for any light node u ∈ VL :

(1) for any i ∈ [k],
∑i
j=1 N

j
u − 1 ≤

∑i
j=1 Nvj∑k
j=1 Nvj

· Nu ≤
∑i
j=1 N

j
u ;

(2) for any i1, i2 ∈ [k]with i1 < i2,
∑i2
j=i1

N
j
u ≤

∑i
2

j=i
1

Nvj∑k
j=1 Nvj

·Nu+1.

(3)
∑k
j=1 N

j
u ≥ Nu .

theorem 17. Let G = (V ,E) be a symmetric tree topology and R
be an ordered set of N elements. If N ≥ 4|VC |

2 · ln(|VC | · N), with
probability 1 − 1

N , the wST algorithm sorts R in 4 rounds with cost
O(1) away from the optimal.

The proof of Theorem 17 is given as below. A possible improve-

ment is that if the maximum data that some node holds exceeds

N /2, every node just sends their data to that node. Otherwise, we

simply run the wTS algorithm on the whole topology.

Proof. First, at least half the data is distributed across heavy

nodes initially, i.e.,

∑k
j=1 Nvj ≥

N
2
. Indeed, the size of initial data

distributed across all light node is strictly smaller than
N

2 |VC |
· |VC | =

N
2
, so the remaining data with size at least

N
2
must reside on heavy

nodes. We next analyze the cost for each round separately.

Round 1. Consider an arbitrary edge e ∈ E, which defines a parti-

tion of compute nodes V −e ,V
+
e . If VH ∩V

+
e , ∅, it holds that VH ∩

V +e = {vi ,vi+1, · · · ,vj } or {v1,v2, · · · ,vi }∪{vj ,vj+1, · · · ,vk } for
some i, j ∈ [k] and i ≤ j. For any light node u ∈ VL , the number of

data sent to the nodes in VH ∩V
+
e can then be bounded as follows

using Lemma 16(2):∑
v ∈V +e ∩VH

Nv
u ≤ 2 +

∑
v ∈V +e ∩VH

Nv∑
v ′∈VH Nv ′

· Nu

In this way, the number of data sent from light nodes in V −e to

heavy nodes in V +e can be bounded as∑
u ∈V −e ∩VL

©«2 +
∑

v ∈V +e ∩VH

Nv∑
v ′∈VH Nv ′

· Nu
ª®¬

≤
∑

u ∈V −e ∩VL

2 +
∑

u ∈V −e ∩VL

∑
v ∈V +e ∩VH

2Nv
N
· Nu

≤ 2min{
∑
u ∈V −e

Nu , |VC |} +
2

N
· (

∑
u ∈V −e

Nu) · (
∑
v ∈V +e

Nv)

≤ 4min{
∑
u ∈V −e

Nu ,
∑
v ∈V +e

Nv }

The rationale behind the third inequality is that |VC | ≤
N

2 |VC |
≤∑

v ∈V +e ∩VH Nv ≤
∑
v ∈V +e Nv and

a ·b
a+b ≤ min{a,b} holds for any

a,b ≥ 1. If VH ∩V
−
e , ∅, we can make a symmetric argument.

We observe here that the number of data received by any heavy

node v ∈ VH in round 1 is at most∑
u ∈VL

⌈
Nv∑

v ′∈VH Nv ′
· Nu ⌉ =

∑
u ∈VL

Nv∑
v ′∈VH Nv ′

· Nu +
∑
u ∈VL

1

≤
2Nv
N
·
∑
u ∈VL

Nu + |VC | ≤ 3Nv

where the rationale behind the first inequality is that

∑
v ′∈VH Nv ′ ≥

N
2
and that behind the second inequality is that |VC | ≤

N
2 |VC |

≤ Nv .

Hence, for every heavy node v ,Mv ≤ 3Nv + Nv = 4Nv .

Rounds 2 and 3. During sampling, each element is an independent

Bernoulli sample, so we have E[s] = ρN . Applying the Chernoff

bound, Pr[s ≥ 2ρN] ≤ exp (−Ω(ρN)). In round 2 and round 3, the

number of elements received or sent by any node is at most s , which
is smaller than 2ρN with probability at least 1 − exp (−Ω(ρN)) ≥

1 − (1

|VC | ·N
)4 |VC | . Observe that 2ρN ≤ N /|VC |. Since there is a

heavy node at each side of an edge that has data getting through,

we have 2ρN ≤ min{
∑
u ∈V −e Nu ,

∑
v ∈V +e Nv }.

Round 4. In this round, each heavy node vi sends out at most

Mi elements and receives all the elements falling into the interval

[bi ,bi+1). Let t0 = −∞ and t |VC | = +∞. Under the condition that

s ≤ 2ρN , we first observe that for any j ∈ {1, 2, · · · , |VC |}, |R ∩

[tj−1, tj)| ≤ 8 · N
|VC |

, which holds with probability at least 1 − 1

N ,

following a similar analysis to [46]. Together, the probability that

all these assumptions hold is(
1 − (

1

|VC | · N
)4 |VC |

)
·

(
1 −

1

4N

)
≥ 1 −

1

N

Consider any heavy compute node vj . The number of intervals

allocated to vj is exactly c j , thus the number of elements received

by vj in the last round is at most

⌈
Mj

N
· |VC |⌉ · 8 ·

N

|VC |
≤ (
|Mj |

N
· |VC | + 1) · 8 ·

N

|VC |

≤ Mj + 8 ·
N

|VC |
≤ 4Nvj + 16Nvj = 20Nvj

with probability at least 1 − 1

N .

We next bound the size of data transmitted on every edge e ∈ E.
W.l.o.g., assume

∑
v ∈V −e ∩VH Nv ≤

∑
v ∈V +e ∩VH Nv . The size of data

sent from the heavy nodes in V −e to V +e is always bounded by

the total size of data located in V −e ∩VH , i.e., O(
∑
v ∈V −e ∩VH Nv) =

O(min{
∑
v ∈V −e ∩VH Nv ,

∑
v ∈V +e ∩VH Nv }). The size of data sent from

the heavy nodes in V +e to V −e is at most the number of elements

received by all compute nodes inV −e ∩VH , i.e.,O(
∑
v ∈V −e ∩VH Nv) =

O(min{
∑
v ∈V −e ∩VH Nv ,

∑
v ∈V +e ∩VH Nv }). In either way, the size of

data transmitted over each edge e is matched by its lower bound,

thus completing the whole proof. □

6 RELATEDWORK
The fundamental difference of the topology-aware model we use

with other parallel models (e.g., BSP [47], MPC [7], LogP [18]) is that

the cost depends both on the topology and properties of the network

and the nodes. Prior models view the network as a star topology,

where each link and each node have exactly the same cost functions.

In this sense, our model can be viewed as a generalization, where

the topology and the node heterogeneity is taken into account.

There have already been some efforts to introduce topology-

aware models, including [11, 32] as mentioned in the introduction.

One line of work in distributed computing on networks are the

classical LOCAL and CONGEST models [37, 45], where distributed

problems are also considered in networks modeled as an arbitrary

graph. These two models differentiate from ours in two important

aspects. First, in each round, each node can only communicate with

its neighbors; instead, in our model we can send messages to other

nodes that may be located several hops away. Second, the target

is to design algorithms that minimize the number of rounds. As a

combination of both aspects, the diameter of the communication

network cannot be avoided as a cost in these models. Moreover,

system synchronization after each round is a huge bottleneck of

modernmassively parallel systems; thus, any algorithm in these two

models running in non-constant number of rounds would become

hard to implement efficiently in practice.

Network routing has been studied in the context of parallel algo-

rithms (see [33, 34]), distributed computing (see, e.g. [35]), and mo-

bile networks [40]. Several general-purpose optimization methods

for network problems have been proposed [43]. Our proposed re-

search deviates from prior literature by considering a “distribution-

aware” setting, and tasks that have not been considered before.

The topology-aware model we use in this paper has been pre-

viously used to design algorithms for aggregation [38]. However,

only star topologies were considered. Madden et al. [39, 41] also

proposed a tiny aggregation service which does topology-aware

in-network aggregation in sensor networks. Culhane et al. [16, 17]

propose LOOM, a system that builds an aggregation tree with fixed

fan-in for all-to-one aggregations, and assigns nodes to different

parts of the plan according to the amount of data reduced during

aggregation. Chowdhury et al. [15] propose Orchestra, a system to

manage network activities in MapReduce systems. Both systems are

cognizant of the network topology, but agnostic to the distribution

of the input data. They also lack any theoretical guarantees.

7 CONCLUSION
In this paper, we studied three fundamental data processing tasks

in a topology-aware massively parallel computational model. We

derived lower bounds based on the cardinality of the initial data

distribution at each node and we designed provably optimal algo-

rithms for each task with respect to the initial data distribution.

Interestingly, these problems have different dependency on the

topology structure, the cost functions (bandwidth), as well as the

data distribution.

There are several exciting directions for future research. For one,

we would like to extend our algorithms and lower bounds to non-

symmetric and general (non-tree) topologies. General topologies

(e.g., grid, torus) are particularly challenging because there are

multiple routing paths between two compute nodes, and thus a

topology-aware algorithm needs to consider all nodes in the routing

path, instead of just the destination. Looking further ahead, it would

be interesting to study more complex tasks that have so far been

analyzed only in the context of the MPC model, starting from a

simple join between two relations, and continuing to ensembles of

tasks in more complex queries.

REFERENCES
[1] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce envi-

ronment. TKDE, 23(9):1282–1298, 2011.
[2] P. K. Agarwal, K. Fox, K. Munagala, and A. Nath. Parallel algorithms for con-

structing range and nearest-neighbor searching data structures. In PODS, pages
429–440. ACM, 2016.

[3] A. Andoni, A. Nikolov, K. Onak, and G. Yaroslavtsev. Parallel algorithms for

geometric graph problems. In STOC, pages 574–583, 2014.
[4] S. Assadi, X. Sun, and O. Weinstein. Massively parallel algorithms for finding

well-connected components in sparse graphs. In PODC, pages 461–470, 2019.
[5] N. Bansal, Z. Friggstad, R. Khandekar, and M. R. Salavatipour. A logarithmic

approximation for unsplittable flow on line graphs. TALG, 10(1):1:1–1:15, 2014.
[6] R. d. P. Barbosa, A. Ene, H. L. Nguyen, and J. Ward. A new framework for

distributed submodular maximization. In FOCS, pages 645–654. IEEE, 2016.
[7] P. Beame, P. Koutris, and D. Suciu. Communication Steps for Parallel Query

Processing. In PODS, 2013.
[8] P. Beame, P. Koutris, and D. Suciu. Skew in Parallel Query Processing. In PODS,

2014.

[9] S. Blanas, P. Koutris, and A. Sidiropoulos. Topology-aware parallel data process-

ing: Models, algorithms and systems at scale. In CIDR, 2020.
[10] S. Blanas, K. Wu, S. Byna, B. Dong, and A. Shoshani. Parallel data analysis directly

on scientific file formats. In SIGMOD, pages 385–396, 2014.
[11] A. Chattopadhyay, M. Langberg, S. Li, and A. Rudra. Tight network topology

dependent bounds on rounds of communication. In SODA, pages 2524–2539,
2017.

[12] A. Chattopadhyay, J. Radhakrishnan, and A. Rudra. Topology matters in commu-

nication. In FOCS, pages 631–640. IEEE, 2014.
[13] C. Chekuri, A. Ene, and A. Vakilian. Node-weighted network design in planar

and minor-closed families of graphs. In ICALP, pages 206–217, 2012.
[14] C. Chekuri, S. Khanna, and F. B. Shepherd. Edge-disjoint paths in planar graphs

with constant congestion. SICOMP, 39(1):281–301, 2009.
[15] M. Chowdhury, M. Zaharia, J. Ma, M. I. Jordan, and I. Stoica. Managing data

transfers in computer clusters with orchestra. In SIGCOMM, pages 98–109, 2011.

[16] W. Culhane, K. Kogan, C. Jayalath, and P. Eugster. Loom: Optimal aggregation

overlays for in-memory big data processing. In HotCloud, pages 13–13. USENIX
Association, 2014.

[17] W. Culhane, K. Kogan, C. Jayalath, and P. Eugster. Optimal communication

structures for big data aggregation. In INFOCOM, pages 1643–1651, 2015.

[18] D. E. Culler, R. M. Karp, D. A. Patterson, A. Sahay, K. E. Schauser, E. E. Santos,

R. Subramonian, and T. von Eicken. LogP: Towards a Realistic Model of Parallel

Computation. In PPOPP, 1993.
[19] A. Dasgupta, R. Kumar, and D. Sivakumar. Sparse and lopsided set disjointness

via information theory. In A. Gupta, K. Jansen, J. Rolim, and R. Servedio, editors,

APPROX/RANDOM, pages 517–528. Springer Berlin Heidelberg, 2012.

[20] J. Dean and S. Ghemawat. Mapreduce: Simplified data processing on large clusters.

CACM, 51(1):107–113, Jan. 2008.

[21] M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrović, and R. Rubinfeld. Improved

massively parallel computation algorithms for mis, matching, and vertex cover.

In PODC, pages 129–138, 2018.
[22] M. Ghaffari, T. Gouleakis, C. Konrad, S. Mitrovic, and R. Rubinfeld. Improved

massively parallel computation algorithms for mis, matching, and vertex cover.

In PODC, pages 129–138, 2018.
[23] M. T. Goodrich. Communication-efficient parallel sorting. SICOMP, 29(2):416–432,

1999.

[24] M. T. Goodrich, N. Sitchinava, and Q. Zhang. Sorting, searching, and simulation

in the mapreduce framework. In ISAAC, pages 374–383. Springer, 2011.
[25] X. Hu and K. Yi. Instance and output optimal parallel algorithms for acyclic joins.

In PODS, pages 450–463, 2019.
[26] X. Hu and K. Yi. Massively parallel join algorithms. ACM SIGMOD Record,

49(3):6–17, 2020.

[27] X. Hu, K. Yi, and Y. Tao. Output-optimal massively parallel algorithms for

similarity joins. TODS, 44(2):6, 2019.
[28] B. Ketsman and D. Suciu. A worst-case optimal multi-round algorithm for parallel

computation of conjunctive queries. In PODS, pages 417–428. ACM, 2017.

[29] P. Koutris, P. Beame, and D. Suciu. Worst-case optimal algorithms for parallel

query processing. In ICDT, 2016.
[30] P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS,

pages 223–234. ACM, 2011.

[31] P. Koutris and D. Suciu. A guide to formal analysis of join processing in massively

parallel systems. SIGMOD Record, 45(4):18–27, 2016.
[32] M. Langberg, S. Li, S. V. Mani Jayaraman, and A. Rudra. Topology dependent

bounds for faqs. In PODS, page 432–449, 2019.
[33] F. T. Leighton. Complexity issues in VLSI: optimal layouts for the shuffle-exchange

graph and other networks. MIT press, 1983.

[34] F. T. Leighton. Introduction to parallel algorithms and architectures: Arrays· trees·
hypercubes. Elsevier, 2014.

[35] F. T. Leighton, B. M. Maggs, and S. B. Rao. Packet routing and job-shop scheduling

ino (congestion+ dilation) steps. Combinatorica, 14(2):167–186, 1994.
[36] C. E. Leiserson. Fat-trees: Universal networks for hardware-efficient supercom-

puting. IEEE Trans. Computers, 34(10):892–901, 1985.
[37] N. Linial. Locality in distributed graph algorithms. SICOMP, 21(1):193–201, 1992.
[38] F. Liu, A. Salmasi, S. Blanas, and A. Sidiropoulos. Chasing similarity: Distribution-

aware aggregation scheduling. PVLDB, 12(3):292–306, 2018.
[39] S. Madden, M. J. Franklin, J. M. Hellerstein, andW. Hong. TAG: A tiny aggregation

service for ad-hoc sensor networks. In OSDI.
[40] S. Madden, M. J. Franklin, J. M. Hellerstein, and W. Hong. The design of an

acquisitional query processor for sensor networks. In SIGMOD, pages 491–502,
2003.

[41] S. Madden, R. Szewczyk, M. J. Franklin, and D. E. Culler. Supporting aggregate

queries over ad-hoc wireless sensor networks. In WMCSA, pages 49–58, 2002.
[42] O. O’Malley. Terabyte sort on apache hadoop. 2008.

[43] D. P. Palomar and M. Chiang. A tutorial on decomposition methods for network

utility maximization. J-SAC, 24(8):1439–1451, 2006.
[44] M. Patraşcu. Unifying the landscape of cell-probe lower bounds. SICOMP,

40(3):827–847, June 2011.

[45] D. Peleg. Distributed computing: a locality-sensitive approach. SIAM, 2000.

[46] Y. Tao, W. Lin, and X. Xiao. Minimal mapreduce algorithms. In SIGMOD, pages
529–540. ACM, 2013.

[47] L. G. Valiant. A bridging model for parallel computation. CACM, 33(8):103–111,

1990.

[48] T. Yufei. A simple parallel algorithm for natural joins on binary relations. ICDT,

2020.

A OMITTED PROOFS
A.1 Proof of Lemma 6

Proof. First, we notice that in lines 1-2 each compute node

VC belongs in exactly one Γ(x). In the remaining algorithm, every

vertex inGβ withw(x) > 0 is put into exactly one block, thus P is

a partition of VC . Indeed, the only issue may occur when we are

left with a single vertex x : we claim that in this case we always

havew(x) ≥ |R |. Supposew(x) < |R |, and consider the last vertex

u for which Γ(u) was added in P (such a vertex always exists, since

every leaf vertex of Gβ initially has weight at least |R |). But then,
the algorithm could not have picked u at this point, since all other

leaf vertices have smaller weight, a contradiction.

We now prove that the output partition satisfies all properties

of a balanced partition (Definition 4).

(1) The first condition is trivial. From lines 1-2, two compute

nodes that are connected in Gα will be in the same initial Γ(x),
hence they will appear together in a block of the partition.

(2) By contradiction, assume there is an edge e = (u,v) appearing

in the spanning trees of V i
C and V

j
C for i , j. By the definition of

spanning trees, there is one pair of vertices x ,y ∈ V i
C and one pair

of vertices x ′,y′ ∈ V
j
C such that x ,x ′ ∈ G+e and y,y′ ∈ G−e . When

Algorithm 3 visits e in line 9, w.l.o.g. assume u is visited before v .
Since x ,x ′ are placed in different blocks of the partition, it cannot

be that both x ,x ′ ∈ Γ(u). W.l.o.g., x ′ < Γ(u). This implies that x ′ has
already been put into one block with vertices from G−e . Then x ′,y′

won’t appear in the same block, contradicting our assumption.

(3) It is easy to see that the algorithm adds a set of nodes to P

only if their total weight is at least |R |.
(4) Consider a block V i

C in the partition. Let e = (u,v) be a

β-edge in the spanning tree of V i
C . Then, Algorithm 3 visits e in

line 9: w.l.o.g. assume u is visited before v . At this point, we have
w(u) < |R |, since Γ(u) was merged with Γ(v). The key observation

is that we have Γ(u) = V i
C ∩V

−
e , since no other compute nodes will

be added to the "left" of e (since u is a leaf node). Hence,

min{
∑

v ∈V i
C∩V

+
e

Nv ,
∑

v ∈V i
C∩V

−
e

Nv } ≤
∑

v ∈V i
C∩V

−
e

Nv = w(u) < |R |

This completes the proof. □

A.2 Proof of Lemma 16
Proof. We first prove (1) by induction. The base case with i = 1

follows since N 1

u = ⌊
Nv

1∑k
j=1 Nvj

·Nu ⌋ + 1. Assume the claim holds for

i . Let ∆i be the value of ∆ after the i-th iteration of the while loop.

Observe that ∆i =
∑i
j=1 N

j
u −

∑i
j=1 Nvj∑k
j=1 Nvj

· Nu always holds. It can

also be checked that ∆i ≥ 0 since 0 ≤ x − ⌊x⌋ ≤ 1. Consider the

(i + 1)-th iteration of while loop. When it goes into line 4, we have:

i+1∑
j=1

N
j
u = N i+1

u +

i∑
j=1

N
j
u

= ⌊
Nvi+1∑k
j=1 Nvj

· Nu ⌋ + ∆i +

∑i
j=1 Nvj∑k
j=1 Nvj

· Nu

= (∆i − x + ⌊x⌋) +

∑i+1
j=1 Nvj∑k
j=1 Nvj

· Nu

In this case, 0 < ∆i − x + ⌊x⌋ < 1, so the claim holds. When it goes

into line 6,

i+1∑
j=1

N
j
u = N i+1

u +

i∑
j=1

N
j
u

= ⌊
Nvi+1∑k
j=1 Nvj

· Nu ⌋ + 1 + ∆i +

∑i
j=1 Nvj∑k
j=1 Nvj

· Nu

= (∆i + 1 − x + ⌊x⌋) +

∑i+1
j=1 Nvj∑k
j=1 Nvj

· Nu

We prove (2) based on (1). Observe that

i2∑
j=i1

N
j
u =

i2∑
j=1

N
j
u −

i1∑
j=1

N
j
u

≤

∑i2
j=1 Nvj∑k
j=1 Nvj

· Nu + 1 −

∑i1
j=1 Nvj∑k
j=1 Nvj

· Nu

≤

∑i2
j=i1

Nvj∑k
j=1 Nvj

· Nu + 1

We can obtain a similar expression for i2; then the claim holds by

adding the two inequalities.

Property (3) follows immediately from (1) by setting i = k . □

A.3 Cartesian Product under Unequal Sizes
We consider the general cartesian product R×S on a symmetric star

topologyG = (V ,E). For simplicity, we divide the compute nodes in

VC into two subsets: Vα = {v ∈ VC : min{Nv ,N − Nv } < |R |} and
Vβ = VC −Vα . The first lower bound can be simplified as follows.

theorem 18. Any algorithm computing cartesian product R × S
has cost Ω(C), where

C ≥ max

{
max

v ∈Vα

min{Nv ,N − Nv }

wv
, max

v ∈Vβ

|R |

wv

}
.

Moreover, we define L(R, S,VC) as the minimizer for the follow-

ing formula and give our second lower bound in Theorem 19.∑
v ∈VC

min{C ·wv , |R |} ·C ·wv ≥ |R | · |S | (2)

theorem 19. If maxv Nv ≤
N
2
, any algorithm computing carte-

sian product R × S has cost Ω(C), where

C ≥ min

{
|S |

maxv wv
,

∑
u ∈Vα |Su |

2

∑
u ∈Vβ wu

,L(R,∪u ∈Vα Su ,Vα)

}
.

Proof. It suffices to show that if C ≤ |S |/maxv wv , then C ≥

min

{ ∑
u∈Vα |Su |

2

∑
u∈Vβ

wu
,L(R,∪u ∈Vα Su ,Vα)

}
. We first rewrite the inequal-

ity in Section 4.5 as below: |R | ·
∑
u ∈Vα |Su | ≤∑

u ∈Vα

4min{C ·wv , |R |} ·C ·wv +
∑
u ∈Vβ

2|R | ·C ·wv

To make this inequality holds, at least one term should be larger

than
1

2
|R | ·

∑
u ∈Vα |Su |, thus yielding the desired result. □

Generalized wHCAlgorithm.We extend the wHC algorithm for

computing R × S with |R | < |S | on a symmetric star topology.

Algorithm 7: BalancedPackingUnEqal(G,D)

1 L∗ ← L(R, S,VC),w ← maxv wv ;

2 while □ is not fully covered do
3 u ← argmaxv ∈VC wv ;

4 if 2−ℓwL∗ ≥ |R | then
5 Assign to u a rectangle of size |R | × (wu · L

∗);

6 else
7 ℓ ← argmink {w ≥ 2

k ·wu };

8 Assign to u a square of size (2−ℓwL∗) × (2−ℓwL∗);

9 VC ← VC − {u};

To show the correctness of Algorithm 7, it suffices to show

that the grid is fully covered when VC becomes empty. Indeed,

notice that each node v covers an area of size at least L∗ ·wv ·

min{L∗ ·wv , |R |}. Summing over all compute nodes, the area cov-

ered in total is at least∑
v ∈VC

L∗ ·wv ·min{L∗ ·wv , |R |} ≥ |R | · |S |

implied by (2). Hence, the whole area of □ is covered.

Next, we analyze the cost of the algorithm. Observe that each

node v receives at most 4L∗ ·wv tuples. Hence, the cost is bounded

by 4L∗, yielding the following result.

Lemma 20. The wHC algorithm correctly computes the cartesian
product R × S with (tuple) cost O(C), where

C = max

{
max

v

Nv
wv
,L(R, S,VC)

}
PuttingEverythingTogether on Symmetric Star.Nowwe show

our algorithm for computing cartesian product on a symmetric star.

It can be easily checked that Algorithm 8 has its cost matching the

lower bound in Theorem 18 and Theorem 19, thus be optimal.

Algorithm8:GeneralizedStarCartesianProduct(G,D)

1 if maxu Nu > N /2 then
2 all compute nodes send their data to argmaxu Nu ;

3 else
4 all compute nodes send their R-tuples to Vβ ;

5 Pick the best of:

(1) compute nodes send their data to argmaxu wu ;

(2) all nodes in Vα send S-tuples proportionally to Vβ ;

(3) run wHC algorithm on Vα to compute R × ∪v ∈Vα Sv ;

	Abstract
	1 Introduction
	2 The Computational Model
	2.1 Network Topologies
	2.2 Relation to the MPC Model

	3 Set Intersection
	3.1 Lower Bound for Tree Topologies
	3.2 Warmup on Symmetric Star
	3.3 Algorithm on General Symmetric Tree

	4 Cartesian Product
	4.1 Lower Bounds on Symmetric Trees
	4.2 The Weighted HyperCube Algorithm
	4.3 Warm-up on Symmetric Star
	4.4 Algorithm on Symmetric Tree
	4.5 Discussion on Unequal Case

	5 Sorting
	5.1 Lower Bound
	5.2 A Sampling-based Algorithm

	6 Related work
	7 Conclusion
	References
	A Omitted Proofs
	A.1 Proof of Lemma ??
	A.2 Proof of Lemma ??
	A.3 Cartesian Product under Unequal Sizes

