
Massively Parallel Join Algorithms

Xiao Hu

Duke University

xh102@cs.duke.edu

Ke Yi

HKUST

yike@cse.ust.hk

ABSTRACT
Due to the rapid development of massively parallel data pro-

cessing systems such as MapReduce and Spark, there have

been revived interests in designing algorithms in a massively

parallel computational model. Computing multi-way joins,

as one of the central algorithmic problems in databases, has

received much attention recently. This paper surveys some

of the recent algorithms, as well as lower bounds. We focus

on multi-round algorithms, while referring readers to [27] for

single-round algorithms.

1. INTRODUCTION

1.1 Join and Join-aggregate Queries
A (natural) join is represented as a hypergraph Q =

(V, E), where the vertices V = {x1, . . . , xn} model the
attributes and the hyperedges E = {e1, . . . , em} ✓ 2V

model the relations. Let dom(x) be the domain of at-
tribute x 2 V. An instance of Q is a set of relations
R = {R(e) : e 2 E}, where R(e) is a set of tuples on
attributes e. We use IN =

P
e2E |R(e)| to denote the

size of R. The join result of Q on R is

Q(R) = {t | ⇡et 2 R(e), 8e 2 E}.
Let OUT = |Q(R)| be the output size. We study the
data complexity of algorithms, namely, the query size
(i.e., n+m) is treated as a constant.
We consider join-aggregate queries over annotated re-

lations [17, 23, 25] with one semiring. Let (R,�,⌦)
be a commutative semiring. We assume that every tu-
ple t is associated with an annotation w(t) 2 R. The
annotation of a join result t 2 Q(R) is

w(t) := ⌦te2R(e),⇡et=te,e2Ew(te).

Let y ✓ V be a set of output attributes (a.k.a. free vari-
ables) and ȳ = V � y the non-output attributes (a.k.a.
bound variables). A join-aggregate query Qy(R) asks us
to compute �ȳQ(R) =
�
(ty, w(ty)) : ty 2 ⇡yQ(R), w(ty) = �t2Q(R):⇡yt=tyw(t)

.

In plain language, a join-aggregate query first computes
the join Q(R) and the annotation of each join result,
which is the ⌦-aggregate of the tuples comprising the
join result. Then it partitionsQ(R) into groups by their
projection on y. Finally, for each group, it computes the
�-aggregate of the annotations of the join results.

Many queries can be formulated as special join-aggre-
gate queries. For example, if we take R to be the domain
of integers, � to be addition, ⌦ to be multiplication, and
set w(t) = 1 for all t, then it becomes the COUNT(*)

GROUP BY y query; in particular, if y = ;, the query
computes |Q(R)|. The join-project query ⇡yQ(R), also
known as a conjunctive query, is a special join-aggregate
query by discarding the annotations.

1.2 Model of Computation
We adopt theMassively Parallel Computation (MPC)

model [28, 8, 9, 27]. In the MPC model, there are p
servers connected by a complete communication net-
work. Data are initially distributed across p servers with
each server holding IN/p tuples. Computation proceeds
in rounds or super steps. In each round, each server
first receives messages from other servers (if there are
any), performs some local computation, and then sends
messages to other servers. The complexity of the algo-
rithm is measured by the number of rounds, and the
load, denoted as L, which is the maximum message size
received by any server in any round. We will only con-
sider constant-round algorithms. In this case, whether a
server is allowed to keep messages it has received from
previous rounds is irrelevant: if not, it can just keep
sending all these messages to itself over the rounds, in-
creasing the load by a constant factor.
The MPC model can be considered as a simplified ver-

sion of the bulk synchronous parallel (BSP) model [32],
but it has enjoyed more popularity in recent years. This
is mostly because the BSP model takes too many mea-
sures into consideration, such as communication costs,
local computation time, memory consumption, etc. The
MPC model unifies all these costs with one parameter
L, which makes the model much simpler. Meanwhile,
although L is defined as the maximum incoming mes-
sage size of a server, it is also closely related to the local
computation time and memory consumption, which are
both increasing functions of L. Thus, L serves as a
good surrogate of these other cost measures. This is
also why the MPC model does not limit the outgoing
message size of a server, which is less relevant to other
costs.
We will adopt the mild assumption IN � p1+✏ where

✏ > 0 is any small constant. This assumption clearly
holds on any reasonable values of IN and p in practice;

6 SIGMOD Record, September 2020 (Vol. 49, No. 3)

theoretically, this is the minimum requirement for the
model to be able to compute some almost trivial func-
tions, like the “or” of N bits, in O(1) rounds [15]. When
IN � p1+✏, many basic operations (see Section 2) can
be performed in O(1) rounds with O(IN/p) load, which
is often called “linear load”, as it is the load needed to
shu✏e all input data once.
When proving lower bounds, we confine ourselves to

tuple-based join algorithms, i.e., the tuples are atomic
elements that must be processed and communicated in
their entirety. The only way to create a tuple is by
making a copy, from either the original tuple or one of
its copies. We say that an MPC algorithm computes the
join Q on instance R if the following is achieved: For
any join result t 2 Q(R), the tuples (or their copies)
te such that te 2 R(e),⇡e 2 R(e) for all e 2 E must
be present on the same server at some point. Then the
server will emit the join result. Recall that we allow
a server to keep all messages it has received, so this
requirement is equivalent to requiring that the tuples
te all arrive at some server. For join-aggregate queries,
we assume that the only way for a server to create new
semiring elements is by multiplying and adding existing
semiring elements currently residing on the same server.

1.3 Classification of Join Queries
Various classes of join queries have been studied in

the literature. The relationships of join queries to be
mentioned are illustrated in Figure 2.

Acyclic joins [10]. A join Q = (V, E) is acyclic (a.k.a.
↵-acyclic) if there exists a tree T whose nodes are in
one-to-one correspondence with the hyperedges in E ,
such that for any vertex v 2 V, all nodes containing v
are connected in T . Such a tree T is called the join tree
of Q. Note that the join tree may not be unique for a
given Q.

Hierarchical joins [14]. A join Q = (V, E) is hierarchical
if for every pair of vertices x, y, there is Ex ✓ Ey, or
Ey ✓ Ex, or Ex \ Ey = ;, where Ex = {e 2 E : x 2 e}
is the set of hyperedges containing attribute x. This
is equivalent to the condition that all attributes can be
organized into a forest, such that x is a descendant of y
i↵ Ex ✓ Ey.
r-hierarchical joins [20]. We consider a slightly larger
class of hierarchical joins. A reduce procedure on a hy-
pergraph (V, E) is to remove an edge e 2 E if there
exists another edge e0 2 E such that e ✓ e0. We can re-
peatedly apply the reduce procedure until no more edge
can be reduced, and the resulting hypergraph is said to
be reduced. A join is r-hierarchical if its reduced join
hypergraph is hierarchical. A hierarchical join must be
r-hierarchical, but not vice versa. For example, the join
R1(A) 1 R2(A,B) 1 R3(B) is r-hierarchical but not
hierarchical. On the other hand, an r-hierarchical join
must be acyclic.
Note that the reduction procedure can be done in

linear load using semijoins (see Section 2).

Tall-flat joins [28]. A join Q = (V, E) is tall-flat if one
can order the attributes as x1, x2, · · · , xh, y1, y2, · · · , yl

x1

x2

x3

x5 x6x4

x1

x2 x3

x4 x5

Figure 1: Tall-flat and hierarchical join.

tall-flat

hierarchical

r-hierarchical

acyclic

graph

cyclic

Figure 2: Relationships of joins.

such that (1) Ex1 ◆ Ex2 ◆ · · · ◆ Exh
; (2) Exh

◆ Eyj

for j = 1, 2, · · · , l; and (3) |Eyj
| = 1 for j = 1, 2, · · · , l.

Obviously, a tall-flat join is hierarchical. For a tall-flat
join, this attribute forest takes the form of a special tree,
which consists of a single “stem”plus a number of leaves
at the bottom. Consider two examples: Q1 = R1(x1) 1
R2(x1, x2) 1 R3(x1, x2, x3, x4) 1 R4(x1, x2, x3, x5) 1
R5(x1, x2, x3, x6) is a tall-flat join, and Q2 = R1(x1, x2)
1 R2(x1, x3, x4) 1 R3(x1, x3, x5) is a hierarchical join
(but not tall-flat). Their attribute forests (actually,
trees for these cases) are shown in Figure 1.

Graph joins [24, 31]. A join is a graph join if every
relation contains at most two attributes. If each rela-
tion contains exactly two attributes, the hypergraph be-
comes an ordinary graph. If a graph join is also acyclic,
it is a tree join, i.e., the hypergraph is a tree.

Free-connex join-aggregate queries [6]. With respect to
join-aggregate queries, free-connex queries are an im-
portant subclass. To define a free-connex query, we
introduce the notion of a width-1 GHD, which can be
considered as a generalized join tree. A width-1 GHD of
a hypergraph Q = (V, E) is a tree T , where each node
u 2 T is a subset of V, such that (1) for each attribute
x 2 V, the nodes containing x are connected in T ; (2)
for each hyperedge e 2 E , there exists a node u 2 T
such that e ✓ u; and (3) for each node u 2 T , there
exists a hyperedge e 2 E such that u ✓ e.
Given a set of output attributes y, T is free-connex if

there is a subset of connected nodes of T , denoted as T 0

(such a T 0 is said to be a connex subset), such that y =S
u2T 0 u. A join-aggregate query Qy is free-connex if it

has a free-connex width-1 GHD. For example, the join-
project query ⇡AR1(A,B) 1 R2(B,C) is free-connex
while

P
B R1(A,B) 1 R2(B,C) is not.

1.4 Complexity Measures
In worst-case analysis, the entire space of instances

is divided into classes by the input size IN, and the
running time is measured on the worst instance in each
class. Let R(IN) be the class of instances with input
size IN. The load of an MPC Algorithm A is a function

SIGMOD Record, September 2020 (Vol. 49, No. 3) 7

of IN, defined as

LA(IN) = max
R2R(IN)

LA(R),

where Algorithm A is worst-case optimal if

LA(IN) = O(LA0(IN)),

for every algorithm A0.
A more refined approach is parameterized analysis,

which further subdivides the instance space into smaller
classes by introducing more parameters that can better
characterize the di�culty of each class. For the join
problem, the output size OUT is a commonly used pa-
rameter, and each class of instances share the same in-
put and output size. Let R(IN,OUT) be the class of
instances with input size IN and output size OUT. Then
the load of an MPC algorithm A is thus a function of
both IN and OUT, defined as

LA(IN,OUT) = max
R2R(IN,OUT)

LA(R),

Algorithm A is output-optimal if

LA(IN,OUT) = O(LA0(IN,OUT)),

for every algorithm A0.
Further subdividing the instance space leads to more

refined analyses. In the extreme case when each class
contains just one instance, we obtain instance-optimal
algorithms. Algorithm A is instance-optimal if

LA(R) = O(LA0(R)),

for every instance R and every algorithm A0.
By definition, an instance-optimal algorithm must be

output-optimal, and an output-optimal algorithm must
be worst-case optimal, but the reverse direction may
not be true.
In the RAMmodel, the Yannakakis algorithm [34] can

compute any acyclic join in time O(IN + OUT), which
is both output-optimal and instance-optimal, because
on any instance R, any algorithm has to spend at least
⌦(IN) time to read inputs and ⌦(OUT) time to enumer-
ate the outputs. Thus, the two notions of optimality
coincide (but both are stronger than worst-case opti-
mality). Fundamentally, this is because the di�culty of
any instance R is precisely characterized by its input
size and output size, and all instances in R(IN,OUT)
have exactly the same complexity O(IN + OUT).

1.5 Overview of Results
Earlier e↵orts have been devoted to one-round MPC

algorithms; please see [27] for an excellent survey. How-
ever, for many queries, there can be a polynomial dif-
ference between one-round and multi-round algorithms.
For example, the optimal load for the triangle joinQ4 =
R1(B,C), R2(A,C), R3(A,B) is O(IN

p1/2), while a two-

round algorithm can achieve O(IN

p2/3) [26].

In this paper, we focus on multi-round (but still a con-
stant) algorithms in the MPC model. We give a brief
overview of results below, while describing some selec-
tive algorithms in more detail in later sections. Tables 1
and 2 provide a summary of the results.

Instance-optimal join algorithms. We start from com-
puting the Cartesian product of m sets of sizes N1, . . . ,
Nm. Since the output size is

Qm
i=1

Ni and each server
can emit at most Lm results if the load is L, an imme-

diate lower bound on L is (
Q

m

i=1 Ni

p)
1
m . In addition, any

algorithm computing the full Cartesian product must
also implicitly compute the Cartesian product of any
subset of the m sets. Applying the same argument for
each subset S, we obtain a lower bound of

LCartesian(p,R) := max
S✓{1,...,m}

✓Q
i2S Ni

p

◆ 1
|S|

. (1)

It has been shown that the HyperCube algorithm [2] in-
curs a load of LCartesian(p,R) · logO(1) p on any instance
R [8]. Thus, it can be considered as an instance-optimal
algorithm for computing Cartesian products, with an
optimality ratio of logO(1) p.
We can extend the Cartesian product lower bound to

a join query Q = (V, E). For any subset of relations
S ✓ E , define

Q(R, S) := (1e2S R(e))nQ(R),

i.e., the join results of relations in S that are part of
a full join result. Clearly, any algorithm computing
Q(R) must implicitly also compute Q(R, S) for every
S. Because each join result in Q(R, S) consists of |S|
tuples, one from each relation in S, a server can emit at
most O(L|S|) join results of Q(R, S), so we must have
p · L|S| = ⌦(|Q(R, S)|). Thus, we obtain the following
per-instance lower bound on the load:

Linstance(p,R) := max
S✓E

✓
|Q(R, S)|

p

◆ 1
|S|

. (2)

It has been shown that r-hierarchical queries are pre-
cisely the class of queries that admit instance-optimal
algorithms [8, 20]. More precisely, there is an algo-
rithm with load O(INp + Linstance(p,R)) for comput-
ing any r-hierarchical query, while for every acyclic join
that is not r-hierarchical, there is an instance R with
Linstance(p,R) = O(INp) but any multi-round algorithm

must incur a load of ⌦̃(IN

p1/2) on R. Section 3 gives more
details on these results.

Output-sensitive algorithms. By plugging the two-way
join algorithm [8, 22] into the classical Yannakakis al-
gorithm [34], one can compute any acyclic join with
load O(INp + OUT

p) [1], but this is not output-optimal.
As mentioned, an instance-optimal algorithm must also
be output-optimal, so we have automatically obtained
output-optimal algorithms for r-hierarchical joins. In
fact, it has been shown that Linstance(p,R) = O(INp +

2
For a join queryQ = (V, E), the edge quasi-packing number

is defined as follows. Let x ✓ V be any subset of vertices

of V. Define the residual hypergraph derived by removing

attributes in x as Qx = (Vx, Ex), where Vx = V � x and

Ex = {e � x : e 2 E}. The edge quasi-packing number of

Q is the maximum optimal fractional edge packing number

over all Qx’s, i.e.,
⇤
= maxx✓V ⌧

⇤
(Qx).

8 SIGMOD Record, September 2020 (Vol. 49, No. 3)

Joins
Instance-optimal Output-optimal Worst-case Optimal

one-round multi-round one-round multi-round one-round multi-round

tall-flat

eO (L
⇤
)

⇥ (L
⇤
) [20]

O

⇣
IN

p1/max{1,k⇤�1} + (
OUT

p)
1
k⇤
⌘
[20]

eO
⇣

IN

p1/
⇤

⌘
eO
⇣

IN

p1/⇢
⇤

⌘
[18]

r-hierarchical

[8]

[26]

w/o dangling

tuples

r-hierarchical

!

⇣
IN

p +
OUT

p

⌘

w/ dangling

[28]

tuples

acyclic

! (L
⇤
) [20]

⇥

⇣
IN

p +

p
IN·OUT

p

⌘
[20]

LB for OUT  p · IN

cyclic
⌦̃

⇣
min{ IN+OUT

p ,
IN

p2/3
}
⌘

eO
⇣

IN

p1/⇢
⇤

⌘

for triangle join [20]

for LW join [26],

graph join [24, 31]

⌦

⇣
IN

p1/⌧
⇤

⌘

for �-join [18]

Table 1: Join algorithms in the MPC model. IN is the input size, OUT is the output size and p is the number of
servers in the MPC model. For instance-optimal algorithms, L⇤ = IN

p +Linstance(p,R). For output-optimal algorithm

on r-hierarchical joins, k⇤ = dlogIN OUTe. ⇤ is the optimal fractional edge quasi-packing number2; ⇢⇤ is the optimal
fractional edge cover number; ⌧⇤ is the optimal fractional edge packing number.

q
OUT

p) for all r-hierarchical joins [20], improving the

Yannakakis algorithm by a quadratic factor.
Unfortunately, such a quadratic improvement is not

possible beyond r-hierarchical joins, even for the line-3
join R1(A,B) 1 R2(B,C) 1 R3(C,D) [22], which is the
simplest non-r-hierarchical join. Nevertheless, one can

achieve a load of O(INp +
p
IN·OUT

p) [20] for all acyclic
joins (see Section 4.1 for more details), which improves
upon Yannakakis algorithm as long as OUT > IN. This
bound has also been shown to be optimal for OUT =
O(p · IN). Note that some restriction on OUT is in-

herent, because the O(INp +
p
IN·OUT

p) bound cannot be
optimal for all values of OUT. When OUT is large
enough, a worst-case optimal algorithm will take over,
as will be seen next.
What kind of output-sensitive bounds are achievable

for cyclic joins remains an open problem, even for the
triangle join. While there is an output-sensitive algo-
rithm for the triangle join in the RAM model [11], we
currently don’t have any non-trivial upper bounds in the
MPC model. On the lower bound side, a lower bound of
⌦̃(min{ IN+OUT

p , IN

p2/3 }) has been shown for cyclic joins

in the MPC model [20]; please see Section 7.1 for more
details. This shows a separation from acyclic joins, i.e.,
cyclic joins are harder than acyclic ones by at least a

factor of ⌦̃(
q

OUT

IN
).

Worst-case Optimal Join Algorithms. For worst-case
optimal algorithms, we consider the simpler case where
all relations R(e) have equal size. In the RAM model,
there is a unified algorithm computing all joins inO(IN⇢⇤

)
time [30, 33, 8], where ⇢⇤ is the optimal fractional edge
cover of the query hypergraph, i.e., it is the optimal

solution of the following linear program:

minimize
X

e2E
xe

subject to
X

e:v2e,e2E
xe � 1, 8v 2 V

xe � 0, 8e 2 E .

The conjecture had been an MPC algorithm with load
O(IN

p1/⇢⇤). Such a load can be easily shown to be opti-

mal: Each server can only produce O(L⇢⇤
) join results

in a constant number of rounds when the load is lim-
ited to L (implied by the AGM bound [4]), so all the p
servers can produce at most O(p ·L⇢⇤

) join results. On
the other hand, the output size can be as large as IN⇢⇤

on certain instances, so the load L has to be ⌦(IN

p1/⇢⇤)
in the worst case. Indeed, this load has been achieved
on certain classes of joins, such as graph joins [24, 31],
Loomis-Whitney (LW) joins [26], and acyclic joins [18];
we describe some of these algorithms in Section 4.2 and
Section 6.
Until very recently, an ⌦(IN

p1/⌧⇤) lower bound has been

proved for the �-join Q� = R1(A,B,C) 1 R2(D,E, F)
1 R3(A,D) 1 R4(B,E) 1 R5(C,F) [18], where ⌧⇤ is
the optimal fractional edge packing of the query, i.e.,
the optimal solution of the following linear program:

maximize
X

e2E
xe

subject to
X

e:v2e,e2E
xe  1, 8v 2 V

xe � 0, 8e 2 E .

On Q�, we have ⇢⇤ = 2 and ⌧⇤ = 3, so this result rules

SIGMOD Record, September 2020 (Vol. 49, No. 3) 9

out the possibility of achieving O
⇣

IN

p1/⇢⇤

⌘
for all joins.

Please see Section 7.2 for more details.

Join-Aggregate Algorithms. For a join-aggregate query,
computing the full join and then performing the aggre-
gation can be far from optimal, since the full join size
can be much larger than the final output size OUT. In
the RAMmodel, the Yannakakis algorithm can be mod-
ified to push down the aggregation as early as possible.
Specifically, after removing the dangling tuples, we per-
form a bottom-up traversal of the join tree. For each
R(e) and R(e0) such that e is a leaf and e0 is the parent
of e, and we replace R(e0) with ⇡y[anc(e0)R(e) 1 R(e0),
where anc(e0) is the set of attributes in e0 that appear in
the ancestors of e0. Then R(e) is removed and the step
is repeated until only one relation remains. It has been
noted that this algorithm can be easily modified to han-
dle join-aggregate queries, by replacing the projection
⇡y[anc(e0) by an aggregation [23].
The running time of this algorithm is proportional to

the largest intermediate join size |R(e) 1 R(e0)|. It is
known that if the query is free-connex, then the maxi-
mum intermediate join size is O(OUT) [23, 7]. For non-
free-connex queries, Yannakakis gave an upper bound
of O(IN · OUT) in his original paper [34]. For matrix
multiplication

P
B R1(A,B) 1 R2(B,C), which is the

simplest non-free-connex query, this has been tightened
to O(IN

p
OUT) [3], which is also shown to be opti-

mal in the semiring model, as there are instances with
⌦(IN

p
OUT) elementary products. This bound is also

extended to star queries3, for which the bound becomes
O(IN ·OUT1�1/n).
Plugging the optimal two-way join algorithm to the

Yannakakis algorithm, together with the MPC primi-
tives for semi-join and aggregation (Section 2), we are
able to compute join-project or join-aggregate queries in
the MPC model. This is referred to as distributed Yan-
nakakis algorithm in [23, 1]. The load of this algorithm
is O(INp + J

p), where J is the maximum intermediate
join size. Combined with the previously known bounds
on J [34, 23, 7, 3], this implies that it can compute free-
connex queries with load O(INp + OUT

p), matrix multipli-

cation with load O(INp + IN
p
OUT

p), star queries with load

O(INp + IN·OUT
1�1/n

p), and general acyclic join-aggregate

queries with load O(INp + IN·OUT

p).
For any free-connex query, we can reduce it to a full

acyclic join and then invoke the output-sensitive algo-

rithm. This improves the load to O(INp +
p
IN·OUT

p)
(see Section 4.3). However, for non-free-connex queries,
such a reduction is not possible. In fact, matrix multi-
plication, which is the simplest non-free-connex query,
already requires a di↵erent treatment. Recently, it has
been shown that matrix multiplication can be solved in

O(1) rounds with load eO(min{ INp
p ,

IN

p + IN
2/3·OUT

1/3

p2/3 })
which is also optimal [21]; Section 5 describes this algo-
3
A star query is defined as

P
B R1(A1, B) 1 R2(A2, B) 1

· · · 1 Rm(Am, B).

rithm in more detail. Improved bounds have also been
obtained for other non-free-connex queries, as summa-
rized in Table 2.

2. MPC PRIMITIVES
Assume IN > p1+✏ where ✏ > 0 is any small constant.

We first introduce the following primitives in the MPC
model, all of which can be computed with linear load
O(INp) in O(1) rounds.

Sorting [16]: Given IN elements, redistribute them so
that each server has O(INp) elements in the end, while
any element on server i is smaller than or equal to any
element on server j, for any i < j.

Reduce-by-key [22]: Given IN (key, value) pairs, co-
mpute the“sum”of values for each key, where the“sum”
is defined by any associative operator. An aggregate
�yR can be computed as a reduce-by-key operation.
This primitive will also be frequently used to compute

data statistics, for example the degree information. The
degree of value a 2 dom(x) in relation R(e) is defined
as the number of tuples in R(e) having this value in
attribute x, i.e., |�x=aR(e)|. Each tuple t 2 R(e) is
considered to have “key” ⇡xt and “value” 1.

Multi-search [22]: Given N1 elements x1, x2, · · · , xN1 as
set X and N2 elements y1, y2, · · · , yN2 as set Y , where
all elements are drawn from an ordered domain. Set
IN = N1 + N2. For each xi, find its predecessor in Y ,
i.e., the largest element in Y but smaller than xi.

Semi-Join: Given two relations R1 and R2 with a com-
mon attribute x, the semijoin R1 n R2 returns all the
tuples in R1 whose value on x matches that of at least
one tuple in R2. This can be reduced to a multi-search
problem: For each t 2 R1, if its predecessor on the x
attribute in R2 is the same as that of t, then it is in the
semi-join.
Note that we can remove all dangling tuples, i.e., those

do not appear in the join results, of an acyclic-join [34]
by a constant number of semi-joins, so it can be done
in O(1) rounds with linear load. Moreover, semi-joins
are also used to reduce a join and join-aggregate query.
If there exists a pair of relations R(e), R(e0) such that
e ⇢ e0, then we can replace R(e0) with R(e) 1 R(e0) and
then discard R(e). Note that by the earlier definition,
the annotation of a join result is the ⌦-aggregate of the
annotations of tuples comprising the join result, so the
annotations in R(e) are aggregated into those in R(e0)
correctly. As mentioned, a join query can be reduced by
applying a set of semi-joins until no relation is a subset
of another relation.

Parallel-packing [22]: Given IN numbers x1, x2, · · · ,
xIN where 0 < xi  1 for i = 1, 2, · · · , IN, group them
into m sets Y1, Y2, · · · , Ym such that

P
i2Yj

xi  1 for

all j, and
P

i2Yj
xi � 1

2
for all but one j. Initially, the

IN numbers are distributed arbitrarily across all servers,
and the algorithm should produce all pairs (i, j) if i 2 Yj

when done. Note that m  1 + 2
P

i xi.

10 SIGMOD Record, September 2020 (Vol. 49, No. 3)

Join Aggregate
The Yannakakis algorithm New results [21]

Query

Matrix
O
⇣

IN

p + IN·
p
OUT

p

⌘
[23, 3]

eO
✓

N1+N2
p +min

⇢q
N1N2

p , N1/3
1 ·N1/3

2 ·OUT
1/3

p2/3

�◆

Multiplication (1) optimal for N1, N2 � 2 and max{N1, N2}  OUT  N1N2;

(2) eO
⇣

IN

p +min
n

INp
p ,

IN
2/3·OUT

1/3

p2/3

o⌘
if N1 = N2;

Star O

✓
IN

p + IN·OUT
1� 1

n

p

◆
[23, 3] eO

⇣
(IN·OUT

p)2/3 + IN·OUT
1/2

p + IN+OUT

p

⌘

Line
O
⇣

IN

p + IN·OUT

p

⌘
[23]

Tree eO
⇣

IN·OUT
2/3

p + IN+OUT

p

⌘

Table 2: Summary of Join-Aggregate Queries in the MPC model. In the sparse matrix multiplication, N1, N2 are
the number of non-zero entries in two input matrices respectively. Generally, any instance for the join-aggregate
query has input size IN and output size OUT. p is the number of servers.

Output size computation [20, 23, 21]: For any acyclic
join Q, the value of OUT can be computed exactly as
a special case of our join-aggregate algorithm, which
will be described in Section 4.3. This result also applies
for free-connex join-aggregate queries after applying a
primitive transformation.
However, for cyclic full join and non-free-connex join-

aggregate queries, how to compute OUT e↵ectively is
still open. Fortunately, a constant-factor approximation
of OUT for line join-aggregate queries (including matrix
multiplication as a special case) can be computed in
O(1) rounds with linear load. A similar idea has been
used by [13] in the RAM model.

3. R-HIERARCHICAL JOINS
It is known that r-hierarchical joins are precisely the

class of joins that admit instance-optimal algorithms.
In this section, we first present an instance-optimal al-
gorithm, and then the lower bound. There are two such
algorithms. The BinHC algorithm [8] is randomized and
has some extra polylogarithmic factors, while the one in
[20] is deterministic without any logarithmic factors.
Note that the BinHC algorithm is a generalization of

the HyperCube algorithm to general joins. The load of
the BinHC algorithm is parameterized by the degrees
of all subsets of attribute values. Beame et al. [8] show
that BinHC is optimal (up to polylog factors) within
the class of instances sharing the same degrees, among
all one-round MPC algorithms. A stronger analysis of
the BinHC algorithm shows that it is actually instance-
optimal (up to polylog factors) for (1) all tall-flat joins,
and (2) all r-hierarchical joins provided that the in-
stance does not contain dangling tuples. Furthermore,
since the per-instance lower bound (2) also holds for
multi-round algorithms, these instance-optimality re-
sults extend to multi-round algorithms as well. For r-
hierarchical joins with dangling tuples, one-round algo-
rithms cannot achieve O(INp +Linstance(p,R)) load. But,
removing dangling tuples (an MPC primitive) first and
then running BinHC algorithm, leads to a multi-round
algorithm of O((INp + Linstance(p,R)) · logO(1) p) load,

where the O(1) exponent depends on the query size,

and is at least m, the number of relations.
Below we describe the latter deterministic algorithm

with load O(INp + Linstance(p,R)), i.e., improving the

instance-optimality ratio from logO(1) p to O(1).

3.1 An Instance-Optimal Algorithm
We give a sketch of the recursive algorithm in [20]. It

chooses a fixed threshold L, whose value will be deter-
mined later.

Inductive hypothesis: For an r-hierarchical join Q with
an instance R, the join results Q(R) can be computed
using (Q,R, L) servers in O(1) rounds withO(L) load,
where

 (Q,R, L) = max
S✓E

⇠
1e2S R(e)

L|S|

⇡
.

Base case: When Q has just one relation, say E = {e},
in which case the algorithm simply emits all tuples in
the relation. This step can be done using O(|R(e)|

L)

servers with O(L) load. Note that |R(e)|
L  (Q,R, L).

General case: In general, we first reduce the query and
remove all the dangling tuples, which can be done by
MPC primitives. Then we are left with a hierarchical
join Q on an instance R with no dangling tuples. Note
that Q has an attribute forest, denoted as T , where
each relation corresponds to a root-to-leaf path of T .
The algorithm will proceed by the following two cases.

Case (1): Q is connected. Suppose the root attribute
of T is x. Since x is included in all relations, we can
decompose the original join into disjoint subsets by the
value on x. Each a 2 dom(x) induces a sub-instance
Ra = {�x=aR(e) : e 2 E}. A sub-instance is heavy if it
contains more than L tuples, and light otherwise.
All light sub-instances are packed into groups (an

MPC primitive) and send a group as whole to one server
for computation. Then, it remains to compute Qx on
each heavy Ra, where Qx is the residual query by re-
moving x from all relations in Q. The challenge is to
allocate p servers in total to these residual queries ap-
propriately so as to compute all Qx(Ra)’s in parallel

SIGMOD Record, September 2020 (Vol. 49, No. 3) 11

while ensuring a uniform load of O(L). To do so, we
allocate for instance Ra

pa = max
S✓E

⇠
Qx(Ra, S)

L|S|

⇡

servers and compute Qx(Ra)’s recursively in parallel.
By hypothesis, for each heavy sub-instance Ra, Qx(Ra)
can be computed using pa servers with O(L) load.

Case (2): Q is disconnected. Let Q1,Q2, · · · ,Qk be
the connected components of Q. In this case, the join
becomes a Cartesian product Q1(R1) ⇥ · · · ⇥ Qk(Rk),
where each Qi(Ri) is a join under the Case (1).
The idea is to arrange servers into a p1⇥p2⇥ · · ·⇥pk

hypercube, where each server is identified with coor-
dinates (c1, c2, · · · , ck), for ci 2 [pi]. For every com-
bination c1, . . . , ci�1, ci+1, . . . , ck, the pi servers with
coordinates (c1, · · · , ci�1, ⇤, ci+1, · · · , ck) form a group
to compute Qi(Ri) (using the algorithm under Case
(1)). Yes, eachQi(Ri) is computed p1 · · · pi�1pi+1 · · · pk
times, which seems to be a lot of redundancy. How-
ever, as we shall see, there will be no redundancy in
terms of the final join results, and it is exactly due to
this redundancy that we avoid the shu✏ing of the in-
termediate result and achieve an optimal load. Con-
sider a particular server (c1, . . . , ck). It participates in
k groups, one for each Qi(Ri), i = 1, . . . , k. For each
Qi(Ri), it emits a subset of its join results, denoted
Qi(Ri, c1 . . . , ck). Then the server emits the Carte-
sian product Q1(R1, c1 . . . , ck)⇥· · ·⇥Qk(Rk, c1 . . . , ck).
Note that for each group of servers computing Qi(Ri),
the pi servers in the group emit Qi(Ri) with no re-
dundancy, so there is no redundancy in emitting the
Cartesian product.
It remains to show how to allocate the p servers for

each sub-query so that p1 · · · pk = O(p) If |Ri| < L is
light, we set pi = 1; otherwise set

pi = max
S✓Ei

⇠
|Qi(Ri, S)|

L|S|

⇡
.

By hypothesis, Qi(Ri) can be computed using pi servers
with O(L) load. Although each server participates in k
sub-queries, it still has a load of O(L).
Combining two cases completes the inductive proof.

Choosing L. At last, we show how to choose an ap-
propriate value of L. For an input join Q and an in-
stance R, we first compute the value of Linstance(p,R)
by a constant number of MPC primitives. Setting L =
Linstance(p,R) + IN

p will yield (Q,R, L) = O(p), thus
leading to an instance-optimal algorithm.

3.2 Lower Bound
The instance-optimal load O(INp + Linstance(p,R)) is

not achievable beyond r-hierarchical joins. More pre-
cisely, the following lower bound is proved in [20]:

Theorem 1. For any IN � p3/2, there exists an in-
stance R with input size ⇥(IN) for any acyclic but non-
r-hierarchical join, such that any tuple-based algorithm

that computes the join in O(1) rounds must have a load

of ⌦
⇣

IN

p1/2 log IN

⌘
, while Linstance(p,R) = O(INp).

4. ACYCLIC JOIN
Theorem 1 has ruled out the possibility of achiev-

ing an instance-optimal algorithm for non-r-hierarchical
joins. In this section, we review two algorithms for
general acyclic joins, one is worst-case optimal algo-
rithm [18] and the other is output-sensitive [20] (but
optimal on specific range of OUT). We illustrate the
high-level idea of these two algorithms through the line-
3 join R1(A,B) 1 R2(B,C) 1 R3(C,D), which is the
simplest acyclic but non-r-hierarchical join. Finally, we
turn to free-connex join-aggregate query. After apply-
ing a linear transformation procedure, any free-connex
join-aggregate query can be reduced to a full join query,
thus benefits from any results achieved for acyclic joins.

4.1 Output-sensitive algorithm
Note that in the RAM model, the Yannakakis algo-

rithm first removes all the dangling tuples and then per-
forms pairwise joins in some arbitrary order. It is shown
that the join order does not a↵ect the asymptotic run-
ning time: After dangling tuples have been removed,
any intermediate join result is part of a full join result,
so the running time of the last join, which is ⇥(OUT),
dominates that of any intermediate join. Interestingly,
the join order does matter in the MPC model. More-
over, it is shown that a global best order may not exist
even for the line-3 join. The basic idea of the output-
sensitive algorithm is to decompose the join into mul-
tiple pieces, and find a provably good join order of the
Yannakakis algorithm for each piece.

Line-3 join. The value of OUT should be computed in

advance (an MPC primitive). Set ⌧ =
q

OUT

IN
. We first

compute degrees for values of attribute B in relation R1.
A value b 2 dom(B) is heavy if it has degree greater than
⌧ in R1, and light otherwise. Let BH , BL be the set of
heavy and light values in B respectively. In this way,
we decompose the join into the following two parts as
Q1,Q2 and compute them with aggregated Yannakakis
algorithm using di↵erent join orderings:

Q1 = R1(A,B
H) 1

�
R2(B

H , C) 1 R3(C,D)
�

Q2 =
�
R1(A,BL) 1 R2(B

L, C)
�
1 R3(C,D)

The observation is that the intermediate joinR2(BH , C)
1 R3(C,D) has its size bounded by OUT

⌧ , since each in-
termediate join result has a heavy B value, so it joins
with at least ⌧ tuples in R1. Meanwhile, the intermedi-
ate join R1(A,BL) 1 R2(BL, C) has its size bounded by
IN · ⌧ , since each tuple from R2 can join with at most ⌧
tuples from R1. The load of computing two sub-queries

is O(INp + IN·⌧
p + OUT

p·⌧ +
q

OUT

p) = O(INp +
p
IN·OUT

p).

Note that the value of ⌧ is set to achieve the minimum.

This algorithm can be extended to arbitrary acyclic
joins with the same load complexity, but the decom-
position is much more complicated based on the join

12 SIGMOD Record, September 2020 (Vol. 49, No. 3)

tree of acyclic join. The challenge is still to bound
the size of any intermediate join result as O(IN

p
OUT).

We refer readers to [20] for algorithmic details. Mean-
while, a lower bound has been presented for any non-r-
hierarchical acyclic join: For any IN  OUT  c · p · IN
for some constant c, there exists an instance R with
input size ⇥(IN) and output size ⇥(OUT), such that
any tuple-based algorithm computing it in O(1) rounds

must have a load of ⌦(min{
p
IN·OUT

p·log IN
, INp

p}). This es-

tablishes the output-optimality of the output-sensitive
algorithm for OUT = O(p · IN).

Remark. We have obtained a complete understanding
of line-3 join in terms of output-optimality: (1) when
OUT  IN, the Yannakakis algorithm has linear load
O(INp); (2) when IN < OUT  c ·p · IN, the lower bound
becomes ⌦̃(

p
IN·OUT

p), which is matched by the output-
sensitive algorithm; (3) when OUT � c ·p · IN, the lower
bound is ⌦(INp

p), which is matched by the worst-case op-

timal algorithm [19, 26, 20]. In particular, this means
that when OUT is large enough, the load complexity of
the join is no longer output-sensitive. This also stands
in contrast with the RAM model, where the complexity
of acyclic joins always grows linearly with OUT. On
more complicated joins, the worst-case optimal algo-
rithms have a higher load, and the output-optimality
for OUT values in the middle is still unclear.

4.2 Worst-case Optimal Algorithm
In the output-sensitive algorithm, the original join is

divided into O(2|E|) pieces, which is still a constant as
long as the query has constant size. However, to target
the worst-case optimal algorithm, a more fine-grained
decomposition of the original join is needed, and inter-
mediate join results should be dealt with more carefully.
The framework of this worst-case optimal algorithm

is also based on the join tree of acyclic join: Each time
it peels one leaf relation o↵ and reduces the original join
into a smaller one until it becomes empty. Eventually,
each relation is divided into disjoint partitions of size
⇥(L), where L = O(IN

p1/⇢⇤) is the target of the worst-
case optimal algorithm for computing acyclic joins, and
each piece of subjoin query involves exactly one parti-
tion from each relation. In this way, each subjoin can be
computed locally and join results are emitted directly
without generating any intermediate join result.

Line-3 join [19, 26, 20]. We next present an algorithm
for line-3 join with load O(L), where L = INp

p .

Similarly, we first compute degrees for values of at-
tribute B in relation R1. A value b 2 dom(B) is heavy
if it has degree greater than L in R1 and light other-
wise. Let BH , BL be the set of heavy and light values
in B respectively. We further divide BL into k = O(N1

⌧)
disjoint groups B1, B2, · · · , Bk such that values in each
group have total degree ⇥(⌧) in relation R1. The orig-
inal join is decomposed into following subjoins:

Q1 =
[

b2BH

(R1(A, b)⇥R2(b, C) 1 R3(C,D))

Q2 =
[

i

(R1(A,Bi) 1 R2(Bi, C) 1 R3(C,D))

For a subjoin query induced by heavy value b in Q1,
we compute the Cartesian product between tuples in
R1(A, b) and results of R2(b, C) 1 R3(C,D). To com-
pute these subjoins in parallel, we allocate servers pro-
portional to the degree of b in relation R1. For a subjoin
query induced by group Bi inQ2, we allocate

p
p servers

and compute R1(A,Bi) 1 R2(Bi, C) 1 R3(C,D) by
broadcasting tuples in R1(A,Bi) and invoking the op-
timal binary-join algorithm for R2(Bi, C) 1 R3(C,D).

4.3 Free-Connex Join-Aggregate Queries
We now present a primitive through which any free-

connex join-aggregate query can be transformed into a
full join, running in O(1) rounds with linear load.
In the preprocessing step, we remove the dangling tu-

ples and reduce the query. We find a free-connex width-
1 GHD T of Q [6, 5]. Note that the nodes of T also
define a hypergraph, and can be regarded as another
join-aggregate query, but with the property that it has
a free-connex subset T 0 such that y =

S
u2T 0 u. We

construct an instance RT = {R(u) : u 2 T } such that
Qy(R) = T (RT), where T (RT) denotes the result of
running the query defined by ⇡yT on RT . Observe that
on a reduced Q, the condition e ✓ u in property (2) of
a width-1 GHD can be replaced by e = u, since if e ⇢ u
and u ✓ e0 for some other e0 2 E due to property (3),
we would find e ⇢ e0. This implies that T has only
two types of nodes: (1) all hyperedges in E , and (2)
nodes that are a proper subset of some e 2 E . Then we
construct RT as follows. For each u 2 T of type (1),
we set R(u) := R(e) where e = u; for each u 2 T of
type (2), we set R(u) := R(e) for any e 2 E , u ⇢ e, but
the annotations of all tuples in R(u) are set to 1 (the
⌦-identity). Then, we only focus on computing T (RT).

Lemma 1. Given any free-connex width-1 GHD T
and an instance RT , an instance RT 0 can be returned
in O(1) rounds with linear load such that T (RT) =
T 0(RT 0), where T 0 is the free-connex subset of T .

By plugging to the optimal two-way join algorithm in
[8, 22], the aggregated Yannakakis algorithm [23] can
aggregate over all the non-output attributes, returning
a modified query T 0(RT 0) that only has the output at-
tributes. Because T 0 is an acyclic join, thus any results
in Section 4.2 and Section 4.1 can be applied to T 0.
Moreover, the join size of a (non-aggregate) join is a

special join-aggregate query with y = ;, without any
circular dependency here, which must be free-connex.
Thus, for any acyclic join Q and any instance R, |Q(R)|
can be computed in O(1) rounds with linear load.

5. SPARSE MATRIX MULTIPLICATION
In this section, we review the output-optimal algo-

rithm [21] for sparse matrix multiplication problem, i.e.,P
B R1(A,B) 1 R2(B,C), which is the simplest non-

free-connex query. Let N1, N2 be the sizes of R1, R2

respectively.

SIGMOD Record, September 2020 (Vol. 49, No. 3) 13

First, if N1 = 1 (resp. N2 = 1), the problem can be
trivially solved by simply broadcasting the only tuple
in R1 (resp. R2) with O(1) load. In general, for any
N1, N2 � 2, it can be solved in O(1) rounds with

eO

N1 +N2

p
+min{

r
N1N2

p
,
N

1/3
1

·N1/3
2

·OUT
1/3

p2/3
}
!

load, with probability at least 1� 1/NO(1).
One can verify that this presents an asymptotic im-

provement over the Yannakakis algorithm for OUT =
!(1). In fact, our algorithm performs the same amount
of computation as the Yannakakis algorithm and com-
putes all O(IN

p
OUT) elementary products, which is

unavoidable in the semiring model. The key to the
reduction in load is locality, namely, we arrange these
elementary products to be computed on the servers in
such a way that most of them can be aggregated locally.
The standard Yannakakis algorithm has no locality at
all, and all the elementary products are shu✏ed around.

Observation 1. If N1 > pN2 or N2 > pN1, matrix
multiplication can be computed with linear load.

We start with Observation 1, in which two cases can
be tackled just by sorting (an MPC primitive). Below,
we assume 1/p < N1/N2 < p.

5.1 Worst-case optimal algorithm
We first describe an algorithm with load O(

q
N1N2

p).

This is actually worst-case optimal because when there
is a single value in the domain of attribute B, there are
N1N2 elementary products. A server with load L can
compute O(L2) of them in a constant number of rounds,

so we have pL2 = ⌦(N1N2), i.e., L = ⌦(
q

N1N2
p).

Set L =
q

N1N2
p . We first compute all degrees for

values in attributes A and C. A value a 2 dom(A)
(resp. c 2 dom(C)) is heavy if it has degree greater
than L in R1 (resp. R2), and light otherwise. The set
of heavy and light values in A (resp. C) is denoted as
AH and AL (resp. CH and CL). Then, the original
query can be decomposed into four subqueries:

X

B

R1(A
?, B) 1 R2(B,C !),

where ?, ! can be either H or L. Note that the results
produced by these subqueries are disjoint and the final
aggregated result is just their union. We handle each
subquery separately.

Case (1): At least one of A,C is heavy. W.l.o.g., as-
sume A is heavy. We use the aggregated Yannakakis to
compute

P
B R1(AH , B) 1 R2(B,C) with load O(Jp),

where J = |R1(AH , B) 1 R2(B,C)| = O
�
N1N2

⌧

�
since

each tuple in R2 can join with at most N1
⌧ values in AH .

Case (2): Both A,C are light. We divide AL into
k = O(N1

L) disjoint groups A1, A2, · · · , Ak such that
each group has total degree O(L) in R1(AL, B) (an

MPC primitive) as well as l = O(N2
L) disjoint groups

C1, C2, · · · , Cl for CL such that each group has total
degree O(L) in R2(B,CL). Then we arrange all servers
into a dN1

L e ⇥ dN2
L e grid, where each one is associated

with (i, j) for i 2 [dN1
L e], j 2 [dN2

L e]. The server (i, j) re-
ceives all tuples in R1(Ai, B), R2(B,Cj) and then com-
pute the subquery

P
B R1(Ai, B) 1 R2(B,Cj) locally.

5.2 Output-sensitive algorithm
We first compute a constant-factor approximation of

OUT, which should be known by the algorithm in ad-
vance. Another important observation on OUT is that
any matrix multiplication can be computed with a load
O(OUT+ IN

p), through sorting and reduce-by-key prim-

itives. Below, we consider the case that OUT > N1+N2
p .

Observation 2. Matrix multiplication can be com-
puted with load eO(OUT + N1+N2

p).

We next show an algorithm with load O(L), where

L =
N1/3

1
·N1/3

2
·OUT1/3

p2/3
+

N1 +N2

p
.

Slightly di↵erent from the previous algorithm, value a 2
dom(A) is heavy if it participates in more than ⌧ =q

N2·OUT·L
N1

final aggregate results, and light otherwise.

Note that there are at most OUT

⌧ values in AH since
aggregate results by di↵erent a’s are disjoint.

Case (1): A is heavy. We use the aggregated Yan-
nakakis to compute

P
B R1(AH , B) 1 R2(B,C) with

load O(Jp), where J = |R1(AH , B) 1 R2(B,C)| =

O
�
N2·OUT

⌧

�
, since each tuple in R2 can join with at

most OUT

⌧ values in AH .

Case (2): A is light. We divide AL into k1 = O(OUT

⌧)
disjoint groups A1, A2, · · · , Ak1 such that values in each
group appear in O(⌧) final results. On group Ai, value
c 2 dom(C) is heavy if it appears in more than L results
of the subquery

P
B �A2Ai

R1(A,B) 1 R2(B,C), and
light otherwise. The set of heavy and light values in
dom(C), with respect to Ai, is denoted as CH

i and CL
i .

Observe that |CH
i |  ⌧

L .

Case (2.1): C is heavy. For each group Ai, we use the
aggregated Yannakakis algorithm to compute

P
B R1(Ai, B) 1

R2(B,CH
i) with Ji = |R1(Ai, B) 1 R2(B,CH

i)| = O(|R1(Ai, B)|·
⌧
L), since each tuple in R1(Ai, B) can join with at most
⌧
L values in CH

i . To compute all groups in parallel, we
allocate servers proportional to the input sizes of each
group and achieve a uniform load of O(L) for all groups.

Case (2.2): C is light. For each group Ai, we divide

CL
i into k2 = O(

q
OUT

L ·
q

N2
N1

) disjoint groups Ci
1
,

Ci
2
, · · · , Ci

k2
such that values in each group appear to-

gether in O(L) results of the subquery
P

B R1(Ai, B) 1
R2(B,C). Note that each pair of (Ai, Ci

j) further de-
fines a subquery as

P
B R1(Ai, B) 1 R2(B,Ci

j), which

14 SIGMOD Record, September 2020 (Vol. 49, No. 3)

has output size smaller than L. Thus, by allocating
servers proportional to the input sizes, we can reduce it
to the case in Observation 2, achieving a uniform load
of O(L) for all subqueries.

5.3 Lower Bound
We mention the following two lower bounds, which

together show that the upper bound achieved is optimal
when N1, N2 � 2 and max{N1, N2}  OUT  N1N2.

Theorem 2. For any N1, N2 � 2, there exists an
instance R for matrix multiplication with input sizes
N1, N2 such that any algorithm computing it must incur

a load of ⌦
⇣

N1+N2
p

⌘
in the semiring MPC model.

Theorem 3. For any 1/p  N1/N2  p and 1 
OUT  N1N2, there exists an instance R for sparse
matrix multiplication with input sizes N1, N2 and output
size OUT, such that any algorithm computing it in O(1)
rounds in the semiring MPC model must incur a load

of ⌦

✓
min

⇢q
N1N2

p , N1/3
1 ·N1/3

2 ·OUT
1/3

p2/3

�◆
.

5.4 General Tree Queries
In [21], an output-sensitive algorithm based on matrix

multiplication is also proposed for general tree queries.
However, an inherent di�culty for tree query is that
it is not known how to compute a constant-factor ap-
proximation of OUT without actually computing all the
query results. One standard technique is to repeatedly
double a guess of OUT and try to run the algorithm,
until the guess is correct (i.e., within a constant fac-
tor of the true value). This would work in a sequential
model, since the running times of the successive guesses
will form a geometric series, increasing the total running
time by only a constant factor. In the parallel model like
the MPC, although the total load can still be bounded,
but the repeated guesses would lead to O(logN) rounds
of computation. The idea to get around this is to make
the algorithm oblivious to the value of OUT, i.e., the
value of OUT is not needed by the algorithm but only
used in the analysis. All details, including how to reduce
the orignal query into a matrix multiplication problem,
and how to bound the sizes of intermediate query results
with OUT, are referred to [21].

6. GRAPH JOIN
Graph join, as a special class of cyclic joins, enjoy very

nice properties as follows: (1) ⌧⇤  ⇢⇤; (2) ⌧⇤+⇢⇤ = |V|;
(3) ⌧⇤ and ⇢⇤ admit half-integral solutions. In plain
language, a graph join always has its optimal fractional
edge packing number smaller than edge covering num-
ber; moreover, every edge takes a value in {0, 1

2
, 1} in

the optimal solution for edge cover and packing. Those
three properties are taken full use by algorithm design.
In [24], Ketsman and Suciu gave an algorithm in the

MPC model for computing the graph join with load
O(IN

p1/⇢⇤). Later, this complicated algorithm was sim-

plified by Tao [31], and the number of rounds required

was decreased from 7 to 3. These two algorithms are
based on the HyperCube algorithm [2, 8], which ar-
ranges servers into a hypercube where each dimension
corresponds to one attribute. We first mention one im-
portant property of this algorithm on graph joins, re-
silient to the data skew. Let p be a function mapping
each attribute x to a positive integer px. Instance R
is skew-free with respect to p if for each relation R(e)
with e = {x, y}, each value of dom(x) has degree at

most |R(e)|
px

and each value of dom(y) has degree at most
|R(e)|
py

. For a graph join Q and a skew-free instance R
under p, the join result Q(R) can be computed usingQ

x2V px servers in a single round with load complexity
O(IN/mine2E

Q
v2e pv).

For a graph join Q and an instance R, if each value
of any attribute has degree smaller than IN

p1/2⇢⇤ , then

this is a skew-free instance w.r.t. px = p1/2⇢
⇤
for every

attribute x 2 V . Implied by the result above, such an
instance can be computed using p|V|/2⇢⇤  p servers in
a single round with load O(IN

p1/⇢⇤). The challenge comes
when skew exists. The high-level idea is to decompose
the original join into a set of skew-free subjoins and
allocate servers appropriately for computing all subjoins
in parallel while achieving a uniform load of O(IN

p1/⇢⇤).

Set ⌧ = IN

� . For each attribute x, it divides values
in dom(x) into heavy and light. More specifically, value
a 2 dom(x) is heavy if there exists a relation e for x 2 e
such that a has degree more than ⌧ in R(e), and light
otherwise. Then, the join results can be distinguished
into O(2|V|) cases, such that each case corresponds to
one subset of attributes S ✓ V and each join results
fall into this case has heavy values in S and light val-
ues in V � S. Fixing one subset of attributes S, there
are O(�S) di↵erent combinations of heavy values over
S, and each one is noted as configuration. In this way,
the original join is divided into a set of subjoins, each
one corresponds to a residual query by fixing a config-
uration. Consider a subjoin defined by a configuration
over attributes S. Observe that all values in dom(x) for
x 2 V�S are light,thus this is a skew-free instance. The
HyperCube algorithm is then applied for each subjoin
independently. More algorithmic details, including how
to allocate servers for each subjoin, and semi-join re-
duction, can be found in [31].

7. LOWER BOUNDS FOR CYCLIC JOINS
In this section, we review two lower bounds for cyclic

joins, one is an output-sensitive lower bound for the tri-
angle join Q4 = R1(B,C) 1 R2(A,C) 1 R3(A,B) [20],
and the other is an worst-case optimal lower bound for
the box-minus join Q� = R1(A,B,C) 1 R2(D,E, F)
1 R3(A,D) 1 R4(B,E) 1 R5(C,F) [18], both of which
verify that cyclic joins are inherently more di�cult than
acyclic joins. The high-level idea of these lower bound
proofs is still resorted to the counting argument. It first
show how to construct an probabilistic instance such
that it will have a bounded J(L), the maximum number
of join results a server can produce, if it loads at most

SIGMOD Record, September 2020 (Vol. 49, No. 3) 15

L tuples from each relation. Then setting p · J(L) =
⌦(|Q(R)|) yields a lower bound on L. Any attempts in
lowering this bound further would break the counting
argument.

7.1 A lower bound for Triangle Join
ForQ4, a worst-case lower bound of ⌦(IN

p2/3) is known,
by the counting argument. However, if OUT is also used
as a parameter, this argument only leads to a lower
bound of ⌦((OUT

p)
3
2). This lower bound has been im-

proved to ⌦(min{ IN

p + OUT

p logN , IN

p2/3 }). The proof given in

[20], is quite technical, but the intuition is simple: When

OUT = ⇥(IN
3
2), the triangles are “dense” enough, so

a server can achieve the maximum e�ciency and emit
⇥(L

3
2) triangles. However, for small OUT, we can con-

struct an instance in which the triangles are “sparse”
so that a server cannot be as e�cient. In fact, an in-
stance constructed randomly (in a certain way) would
have this property with high probability. This lower
bound has the following consequences:
When OUT � IN ·p1/3 for some constant c, the lower

bound becomes ⌦̃(IN

p2/3), which means that the worst-

case optimal algorithm of [26] is actually also output-
optimal in this parameter range. Finding ⌦̃(IN · p1/3)
triangles is as di�cult as finding ⇥(IN3/2) triangles.
When IN  OUT  IN · p1/3, the lower bound be-

comes ⌦̃(OUT

p) while we do not have a matching upper
bound yet. Nevertheless, this already exhibits a sepa-
ration from acyclic joins, which can be done with load

O(
p
IN·OUT

p), with a gap being at least ⌦̃(
q

OUT

IN
).

7.2 A lower bound for Box-minus Join
When studying the worst-case optimal algorithms for

cyclic joins, it is surprisingly observed that O(IN

p1/⇢⇤) is
not necessarily a correct target for multi-round worst-
case optimal join algorithms [18]. An open question
posed in [29, 24] was answered: For Q�, whether there
exists a better upper bound than eO(IN

p1/3), or a better

lower bound than ⌦(IN

p1/2)? Note that Q� has optimal
fractional edge covering number ⇢⇤ = 2 and optimal
fractional edge packing number ⌧⇤ = 3. [18] proves a
higher lower bound ⌦(IN

p1/3) for Q�.
The intuition for proving this lower bound is that a

probabilistic instance could be shown when there are
⇥(IN2) join results, a server cannot be as e�cient since
the input instance is “sparse” enough. For the remain-
ing cyclic joins (except LW join and graph join), there
are no other lower bounds. Meanwhile, the existing al-
gorithm [26] can compute it in a single round with load
eO(IN

p1/3)
4, which is already worst-case optimal implied

by this new lower bound.

8. CONCLUSION
4Q� has optimal fractional edge quasi-packing number as 3.

In this article, we have surveyed recent results on
computing join and join-aggregate queries in the MPC
model. While most of them are theoretical in nature,
experimental results have been presented in [12, 22],
showing that some of the algorithmic ideas can lead to
practical performance gains with certain engineering ef-
forts. We conclude by summarizing several key results
and posing some open questions:

• The instance-optimality can be achieved if and
only if the join query is r-hierarchical.

• Beyond r-hierarchical joins, the output-optimality
has only been achieved on acyclic joins if the out-
put size is small, by an output-sensitive algorithm.
Note that this algorithm is not always optimal, at
least when the output size is large. However, there
is no result on the output-optimal upper bound for
cyclic joins in the MPC model, even for the trian-
gle join. On the other hand, a lower bound for the
triangle join indicates an inherent gap between the
acyclic joins and cyclic joins in terms of the depen-
dence on OUT.

• Worst-case optimal algorithms with load O(IN

p1/⇢⇤)
have been discovered for acyclic joins and some
specific class of cyclic joins (graph join and LW
join). On the other hand, a recent edge-packing
lower bound for the box-minus join Q� shows that
O(IN

p1/⇢⇤) is not achievable for all queries. It is thus
an intriguing question to determine the worst-case
complexity for the remaining cyclic joins. Would
it be ⌦(IN/p1/max{⇢⇤,⌧⇤})?

• For join-aggregregate query, if it is free-connex, it
can be transformed into a full join query through
primitive operations and then enjoy all the results
for full-join queries. For non-free-connex queries,
the output-optimal algorithm has been achieved
only for the matrix multiplication query. For other
non-free connex queries, some output-sensitive al-
gorithms have been developed, but without any
non-trivial lower bound.

9. REFERENCES
[1] F. Afrati, M. Joglekar, C. Ré, S. Salihoglu, and

J. D. Ullman. GYM: A multiround join algorithm
in MapReduce. In Proc. International Conference
on Database Theory, 2017.

[2] F. N. Afrati and J. D. Ullman. Optimizing
multiway joins in a map-reduce environment.
IEEE Transactions on Knowledge and Data
Engineering, 23(9):1282–1298, 2011.

[3] R. R. Amossen and R. Pagh. Faster join-projects
and sparse matrix multiplications. In Proceedings
of the 12th International Conference on Database
Theory, pages 121–126. ACM, 2009.

[4] A. Atserias, M. Grohe, and D. Marx. Size bounds
and query plans for relational joins. SIAM
Journal on Computing, 42(4):1737–1767, 2013.

16 SIGMOD Record, September 2020 (Vol. 49, No. 3)

[5] G. Bagan. Algorithmes et complexité des
problèmes d’énumération pour l’évaluation de
requêtes logiques. PhD thesis, Université de Caen,
2009.

[6] G. Bagan, A. Durand, and E. Grandjean. On
acyclic conjunctive queries and constant delay
enumeration. In International Workshop on
Computer Science Logic, pages 208–222. Springer,
2007.

[7] N. Bakibayev, T. Kocisky, D. Olteanu, and
J. Zavodny. Aggregation and ordering in
factorised databases. In Proc. International
Conference on Very Large Data Bases, 2013.

[8] P. Beame, P. Koutris, and D. Suciu. Skew in
parallel query processing. In Proc. ACM
Symposium on Principles of Database Systems,
2014.

[9] P. Beame, P. Koutris, and D. Suciu.
Communication steps for parallel query
processing. Journal of the ACM (JACM),
64(6):40, 2017.

[10] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis.
On the desirability of acyclic database schemes.
Journal of the ACM (JACM), 30(3):479–513,
1983.

[11] A. Björklund, R. Pagh, V. V. Williams, and
U. Zwick. Listing triangles. In International
Colloquium on Automata, Languages, and
Programming, pages 223–234. Springer, 2014.

[12] S. Chu, M. Balazinska, and D. Suciu. From theory
to practice: E�cient join query evaluation in a
parallel database system. In Proc. ACM SIGMOD
International Conference on Management of
Data, 2015.

[13] E. Cohen. Estimating the size of the transitive
closure in linear time. In Proceedings 35th Annual
Symposium on Foundations of Computer Science,
pages 190–200. IEEE, 1994.

[14] N. Dalvi and D. Suciu. E�cient query evaluation
on probabilistic databases. The VLDB Journal,
16(4):523–544, 2007.

[15] M. T. Goodrich. Communication-e�cient parallel
sorting. SIAM Journal on Computing,
29(2):416–432, 1999.

[16] M. T. Goodrich, N. Sitchinava, and Q. Zhang.
Sorting, searching and simulation in the
mapreduce framework. In Proc. International
Symposium on Algorithms and Computation,
2011.

[17] T. J. Green, G. Karvounarakis, and V. Tannen.
Provenance semirings. In Proc. ACM Symposium
on Principles of Database Systems, 2007.

[18] X. Hu. Cover or pack: New upper and lower
bounds for massively parallel joins, https:
//users.cs.duke.edu/~xh102/cover.pdf.
Technical report, Duke University, 2020.

[19] X. Hu and K. Yi. Towards a worst-case
I/O-optimal algorithm for acyclic joins. In Proc.
ACM Symposium on Principles of Database

Systems, 2016.
[20] X. Hu and K. Yi. Instance and output optimal

parallel algorithms for acyclic joins. In Proc. ACM
Symposium on Principles of Database Systems,
2019.

[21] X. Hu and K. Yi. Parallel algorithms for sparse
matrix multiplication and join-aggregate queries.
In Proc. ACM Symposium on Principles of
Database Systems, 2020.

[22] X. Hu, K. Yi, and Y. Tao. Output-optimal
massively parallel algorithms for similarity joins.
ACM Transactions on Database Systems, 44(2):6,
2019.

[23] M. R. Joglekar, R. Puttagunta, and C. Ré. AJAR:
Aggregations and joins over annotated relations.
In Proc. ACM Symposium on Principles of
Database Systems, 2016.

[24] B. Ketsman and D. Suciu. A worst-case optimal
multi-round algorithm for parallel computation of
conjunctive queries. In Proc. ACM Symposium on
Principles of Database Systems, 2017.

[25] M. A. Khamis, H. Q. Ngo, and A. Rudra. FAQ:
Questions asked frequently. In Proc. ACM
Symposium on Principles of Database Systems,
2016.

[26] P. Koutris, P. Beame, and D. Suciu. Worst-case
optimal algorithms for parallel query processing.
In Proc. International Conference on Database
Theory, 2016.

[27] P. Koutris, S. Salihoglu, and D. Suciu.
Algorithmic Aspects of Parallel Data Processing.
Now Publishers, 2018.

[28] P. Koutris and D. Suciu. Parallel evaluation of
conjunctive queries. In Proc. ACM Symposium on
Principles of Database Systems, 2011.

[29] P. Koutris and D. Suciu. A guide to formal
analysis of join processing in massively parallel
systems. ACM SIGMOD Record, 45(4):18–27,
2017.

[30] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra.
Worst-case optimal join algorithms. In Proc.
ACM Symposium on Principles of Database
Systems, pages 37–48, 2012.

[31] Y. Tao. A simple parallel algorithm for natural
joins on binary relations. In 23rd International
Conference on Database Theory, 2020.

[32] L. G. Valiant. A bridging model for parallel
computation. Communications of the ACM,
33(8):103–111, 1990.

[33] T. Veldhuizen. Leapfrog triejoin: A simple,
worst-case optimal join algorithm. In Proc.
International Conference on Database Theory,
2014.

[34] M. Yannakakis. Algorithms for acyclic database
schemes. In Proc. International Conference on
Very Large Data Bases, pages 82–94, 1981.

SIGMOD Record, September 2020 (Vol. 49, No. 3) 17

