
Computing Complex Temporal JoinQueries Efficiently∗

Xiao Hu

xh102@cs.duke.edu

Duke University

NC, USA

Stavros Sintos

sintos@uchicago.edu

University of Chicago

IL, USA

Junyang Gao

jygao@google.com

Google

NY, USA

Pankaj K. Agarwal

pankaj@cs.duke.edu

Duke University

NC, USA

Jun Yang

junyang@cs.duke.edu

Duke University

NC, USA

ABSTRACT

This paper studies multi-way join queries over temporal data, where

each tuple is associated with a valid time interval indicating when

the tuple is valid. A temporal join requires that joining tuples’ valid

intervals intersect. Previous work on temporal joins has focused on

joining two relations, but pairwise processing is often inefficient

because it may generate unnecessarily large intermediate results.

This paper investigates how to efficiently process complex temporal

joins involving multiple relations. We also consider a useful exten-

sion, durable temporal joins, which further selects results with long

enough valid intervals so they are not merely transient patterns.

We classify temporal join queries into different classes based

on their computational complexity. We identify the class of r-
hierarchical joins and show that a linear-time algorithm exists for

a temporal join if and only it is r-hierarchical (assuming the 3SUM

conjecture holds). We further propose output-sensitive algorithms

for non-r-hierarchical joins. We implement our algorithms and

evaluate them on both synthetic and real datasets.

CCS CONCEPTS

• Theory of computation→ Database query processing and

optimization (theory); • Information systems → Database

query processing.

KEYWORDS

temporal database, join queries, durable temporal joins

ACM Reference Format:

Xiao Hu, Stavros Sintos, Junyang Gao, Pankaj K. Agarwal, and Jun Yang.

2022. Computing Complex Temporal Join Queries Efficiently. In Proceedings
of the 2022 International Conference on Management of Data (SIGMOD ’22),
June 12–17, 2022, Philadelphia, PA, USA. ACM, New York, NY, USA, 15 pages.

https://doi.org/10.1145/3514221.3517893

∗
This work was supported by NSF awards IIS-1814493, CCF-2007556, and IIS-2008107.

Permission to make digital or hard copies of part or all of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for third-party components of this work must be honored.

For all other uses, contact the owner/author(s).

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA
© 2022 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-9249-5/22/06.

https://doi.org/10.1145/3514221.3517893

1 INTRODUCTION

Temporal data analysis [25, 35, 51, 52, 76] is an essential feature

of modern database systems, as most of the data we encounter in

practice are temporal in nature—from business transactions and

social interactions to system logs and observations of natural phe-

nomena. Temporal joins are fundamental to temporal data analysis.

Consider a temporal database where each tuple is associated with

a valid(-time) interval, which indicates when the tuple is “valid.” A

temporal join finds tuples that together satisfy, in an addition to

the join condition on their non-temporal attributes, the implicit

temporal join condition that the intersection of their valid intervals

is non-empty. To illustrate, consider the following example.

Example 1. Consider a toy database storing the collaboration net-
work among authors shown in Figure 1. Vertices represent authors

and edges represent collaborations between authors. For example,

tuple (𝐵,𝐶) with valid interval [2011, 2015] indicates that authors 𝐵
and𝐶 collaborated over this five-year time period. In practice, such

a database may be extracted and constructed from the DBLP [1]

dataset. A temporal join (involving three copies of the edge relation)

can find a chain of four authors connected by three pairwise col-

laborations simultaneously at some point in time, e.g., (𝐴, 𝐵,𝐶, 𝐷)
with collaborations happening simultaneously during 2013–2015. In

contrast, a non-temporal join would find a non-answer (𝐴, 𝐸, 𝐵, 𝐷),
because even though each of the three collaborations existed at

some point, they never took place simultaneously: the valid inter-

vals of (𝐴, 𝐸) and (𝐵, 𝐷) do not intersect.

Beyond Binary Temporal Joins. Work on temporal joins to date

has mostly focused on processing binary joins, or efficiently joining

two relations at a time [41, 77]. The drawback of this approach

is that for complex joins involving multiple relations, such as the

example above, performing a sequence of binary joins may produce

huge intermediate results, even though the final result may be small

in size. Ideally, we would like the overall algorithm to run in time

near linear in the input data size and linear in the final result size.

In recent years, there have been promising results on efficiently

processing non-temporal joins involving multiple relations [17, 65,

86]. A natural question is whether we can obtain similar results for

temporal joins as well. However, techniques for non-temporal join

processing fail to deliver in this case because they handle equality

join conditions involving non-temporal attributes, while leaving out

the temporal join condition involving the valid intervals. A simple

join-first approach, which applies these techniques first to compute

the (non-temporal) join result and the filters it using the temporal

https://doi.org/10.1145/3514221.3517893
https://doi.org/10.1145/3514221.3517893

2 4 6 8 10
Durability (year)

103

104

105

106

107

Counting durable patterns in DBLP network
Triangle
Length-two path
Three-way star
Length-three path

Figure 1: DBLP collaboration network: a toy example (left),

and statistics of durable patterns (right).

join condition, runs the risk of producing intermediate results that

are much bigger. To fill the gap in existing temporal join algorithms,

we take the first step in investigating the hardness of temporal joins

involving multiple relations, and propose a framework that handles

temporal constraints head-on in join evaluation.

Durable Temporal Joins. Beyond joining multiple relations, we

also consider other ways of enriching temporal join queries. One

such enrichment is to add a final “durability” check to temporal joins.

A temporal join computes the intersection of joining tuples’ valid

intervals as the valid interval of the result tuple. A very short result

interval, however, implies that the result tuple is valid only briefly; it

may represent more of a transient glitch than a robust pattern. Many

data analysis tasks are thusmore interested in durable temporal joins,
which return only a result tuple if the length of its valid interval—

which we call durability—is above some threshold 𝜏 specified as part

of the query. To illustrate the practical use of durability analysis,

consider the following example.

Example 2. We take a subset of the DBLP dataset pertaining to

the “inproceedings” entries and convert it to a temporal coauthor-

ship graph as in Example 1. This graph has 1,764,475 vertices and

9,460,140 edges, each labeled with a valid interval. An interesting

exploratory analysis can be done with a variety of temporal joins

designed to look for different coauthorship patterns among authors,

including length-2 paths (𝑎–𝑏 and 𝑏–𝑐), length-3 paths (𝑎–𝑏, 𝑏–𝑐 ,

and 𝑐–𝑑), 3-way stars (𝑎–𝑏, 𝑎–𝑐 , and 𝑎–𝑑), and triangles (𝑎–𝑏, 𝑏–

𝑐 , and 𝑐–𝑎). The length of the valid interval of a join result tuple

corresponds to the durability of the pattern it represents. Figure 1

counts the number of such patterns in the entire graph at differ-

ent durability threshold levels. Each data point in this figure can

be obtained by computing a durable temporal join with a desired

threshold 𝜏 and counting the number of result tuples.

Once again, we are interested in efficient algorithms with run-

ning times linear in the final result size. This requirement rules

out the naive join-first approach of computing the full temporal

join and then filtering the intermediate result to obtain the durable

tuples. Indeed, as Figure 1 illustrates, high durability thresholds lead

to results that are many orders of magnitudes smaller than those of

full temporal joins (which are equivalent to durable temporal joins

with a trivial threshold 0). We show in this paper how to avoid the

curse of large intermediate result size using a remarkably simple

transformation of the input data, which then allows us to leverage

our efficient temporal join algorithms to compute the results of

durable temporal joins directly.

A B

A E

B

B

B E

C

D

C D

D E

[2013, 2017]

[2012, 2015]

[2011, 2015]

[2017, 2019]

[2013, 2016]

[2012, 2016]

[2016, 2018]

valid interval x3 x4

E

[2013, 2015]

[2017, 2017]

valid intervalx1 x2

A B C D

A B D

B C D E −−

R1(x1, x2)

y

R2(x2, x3)

R3(x3, x4)

x

Q(R)
copies of join

Figure 2: Temporal database and temporal join query. The
left table is a temporal relation capturing the collaboration graph
in Figure 1. We consider the directed version of edges in alphabetic
ordering for simplicity. Each tuple corresponds to an edge. By making
three copies of this temporal relation and renaming the attributes, we
obtain a temporal instance R = {𝑅1 (𝑥1, 𝑥2), 𝑅2 (𝑥2, 𝑥3), 𝑅3 (𝑥3, 𝑥4)}.
The right table is the join result of temporal query Q = (V, E) over
R, whereV = {𝑥1, 𝑥2, 𝑥3, 𝑥4} and E = {{𝑥1, 𝑥2}, {𝑥2, 𝑥3}, {𝑥3, 𝑥4}},
finding all length-3 paths (vertices are in alphabetic ordering) in this
graph. (𝐵,𝐶, 𝐷, 𝐸) is a valid non-temporal join result but not temporal
join result, since it does not have a valid interval.

In the remainder of this paper, we introduce our framework

for systematic study of the evaluation of temporal joins involving

multiple relations. We classify temporal join queries into differ-

ent classes based on their computational complexity. We design

efficient algorithms for these query classes, some of which are prov-

ably optimal. We also provide an experimental evaluation of our

proposed algorithms over both synthetic and real-life datasets.

2 MODEL AND RESULTS

2.1 Problem Definition

Non-temporal Join. A (natural) join can be modeled as a hyper-

graphQ = (V, E) [18], where the set of verticesV = {𝑥1, 𝑥2, · · · , 𝑥𝑛}
models the attributes and the set of hyperedges E = {𝑒1, 𝑒2, . . . , 𝑒𝑚} ⊆
2
V

models the relations. Some examples are illustrated in Figure 3.

For each attribute 𝑥 ∈ V , let dom(𝑥) denote its domain. For a
subset of attributes 𝑒 ⊆ V , let A𝑒 =

>
𝑥 ∈𝑒 dom(𝑥). We call each

element a of A𝑒 a tuple, and we call 𝑒 the support of a, denoted by

supp(a). For 𝑒 ⊆ V , a relation 𝑅𝑒 over A𝑒 is a set of tuples from
A𝑒 , each representing an assignment of a value from dom(𝑥) to 𝑥
for each 𝑥 ∈ 𝑒 . We assume that all tuples in a relation are distinct.

For a tuple a ∈ A𝑒 and a subset of the attributes 𝑒 ′ ⊆ 𝑒 , let 𝜋𝑒′ (a)
denote the projection of a onto the subspace spanned by 𝑒 ′.

An input instance or database of Q is a set of relations R = {𝑅𝑒 |
𝑒 ∈ E}, where each 𝑅𝑒 is a relation over A𝑒 . The result of the

(non-temporal) join of Q on R, noted as Q(R), is defined as

Q(R) = {a ∈ AV | ∀𝑒 ∈ E, ∃a𝑒 ∈ 𝑅𝑒 : 𝜋𝑒 (a) = a𝑒 }. (1)

i.e., all combinations of tuples from relations in R, such that tuples

in each combination have the same value(s) on common attribute(s).

Temporal Join. A temporal input instance or database of Q further

associates each tuple a in a relation of R with an interval 𝐼a =

[𝑡−a , 𝑡+a], called the valid interval of a. To show both a and its valid

interval 𝐼a explicitly, we will use the notation ⟨a, 𝐼a⟩. The temporal
join of Q on R consists of those tuples a ∈ AV that are returned

by the non-temporal join defined in (1) and additionally satisfy

the condition 𝐼a =
⋂
𝑒∈E 𝐼𝜋𝑒 (a) ≠ ∅; 𝐼a is associated with a as its

valid interval in the output. To support joins between temporal

A

BD

E
F

G

C

x1 x2

· · ·
xnxn+1

y

x1

x2

x3
x4

xn x1

x2 x3

QCnQSn

· · ·

QLnQhier

· · ·
xn

hierarchical

line

cyclic

triangle

acyclic

star

Figure 3: Hypergraphs of join queries: (1) Qhier = 𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐴, 𝐵, 𝐷) Z 𝑅3 (𝐴, 𝐵, 𝐸) Z 𝑅4 (𝐴,𝐶, 𝐹) Z 𝑅5 (𝐴,𝐶,𝐺); (2) star join
QSn = 𝑅1 (𝑥1, 𝑦) Z 𝑅2 (𝑥2, 𝑦) Z · · · Z 𝑅𝑛 (𝑥𝑛, 𝑦); (3) line join QLn = 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z · · · Z 𝑅𝑛 (𝑥𝑛, 𝑥𝑛+1) for 𝑛 ≥ 3; (4) cycle join
QC𝑛 = 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z · · · Z 𝑅𝑛−1 (𝑥𝑛−1, 𝑥𝑛) Z 𝑅𝑛 (𝑥𝑛, 𝑥1) and triangle join Q△ = QC3. Classification of join queries: line, star,
triangle, hierarchical, acyclic and cyclic join. Qhier and QSn are hierarchical, QLn (𝑛 ≥ 3) is non-hierarchical but acyclic, and QCn is cyclic.

and non-temporal relations, we can simply set 𝐼a = (−∞,∞) of all
tuples a in a non-temporal relation. We focus on the non-empty

intersection of valid intervals as the temporal join condition.

Let 𝑁 =
∑
𝑒∈E |𝑅𝑒 | be the input size of R. Let 𝐾 = |Q(R)| be the

output size of the temporal join. We study the data complexity of
join algorithms, i.e., their running time in terms of 𝑁 and 𝐾 ; we

assume the size of Q to be bounded by a constant. An algorithm for

computing temporal join is linear if its running time is 𝑂 (𝑁 + 𝐾),
and near-linear if the running time is𝑂 ((𝑁 +𝐾) polylog(𝑁)). Note
that every algorithm for computing Q(R) must spend Ω(𝑁 + 𝐾)
time, to read every input tuple once and to report every result.

Remarks on Other Temporal Join Models. First, our proposed

solution can be extended to the settings where each tuple is asso-

ciated with a set of disjoint intervals, which arise when the same

tuple can be inserted and deleted multiple times, or when projection

causes distinct tuples to coalesce.

Second, our solution can be applied to the 𝜏-durable temporal
join for a parameter 𝜏 ≥ 0, which is the subset of temporal join

result tuples whole durability is at least 𝜏 . It should be noted that a

temporal join is simply an instance of the 𝜏-durable join with 𝜏 = 0,

where the durability criterion is trivially satisfied. On the other

hand, the general 𝜏-durable temporal join of Q on R is equivalent

to the temporal join of Q on R𝜏 , where R𝜏 is a temporal instance

derived from R using a simple “shrinking” transformation: each

tuple a in R has its valid interval [𝑡−a , 𝑡+a] shrunk to [𝑡−a + 𝜏2 , 𝑡
+
a − 𝜏2]

(and removed if this interval is empty). The transformed instance

R𝜏 can be derived from R in𝑂 (𝑁) time; we can then directly apply

our temporal join algorithms.

More generally, a broad class of temporal predicates can be refor-

mulated in terms of the non-empty intersection of valid intervals

by transforming the valid interval appropriately in the query proce-

dure. We give three examples below, and more general applications

of this overlap model are very interesting, but left as future work.

• For instance-stamped data, one looks for joining tuples whose

valid timestamps lie within 𝜏 of all others. We can support such

a query by transforming each valid timestamp 𝑡 to interval [𝑡 −
𝜏
2
, 𝑡 + 𝜏

2
] and answer the query as a (0-durable) temporal join

query on the interval-stamped data.

• For interval-stamped data, one looks for all pairs of joining tuples,

where the first leads the second with a gap of at least 𝜏 . We can

support such a query by transforming each intervals 𝑡 = [𝑡−, 𝑡+]
to [𝑡+, +∞) in the first relation and to (−∞, 𝑡−] in the second

relation, and answer the query as a 𝜏-durable temporal join.

• For interval-stamped data, one may look for a triangle (𝑎, 𝑏, 𝑐) ∈
𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐵,𝐶) Z 𝑅3 (𝐴,𝐶) where relative positioning of the

three edge intervals follows the pattern given by three intervals

𝐼1, 𝐼2, 𝐼3 (possibly non-overlapping); more precisely, there exists

some time shift Δ such that 𝐼𝑎𝑏 + Δ ⊆ 𝐼1, 𝐼𝑏𝑐 + Δ ⊆ 𝐼2, and

𝐼𝑎𝑐 + Δ ⊆ 𝐼3. We can support such a query by transforming

intervals 𝑡 ∈ 𝑅1 into [𝑡−−𝐼−
1
, 𝑡+−𝐼+

1
], 𝑡 ∈ 𝑅2 into [𝑡−−𝐼−

2
, 𝑡+−𝐼+

2
],

𝑡 ∈ 𝑅3 into [𝑡− − 𝐼−
3
, 𝑡+ − 𝐼+

3
], and answer it as a (0-durable)

temporal join query on the transformed data.

2.2 Classes of Join Queries

We introduce two important classes of join queries (see Figure 3),

which are frequently used in this paper.

Acyclic joins [23]. A join query Q is acyclic if the hypergraph Q
is acyclic, as defined by Beeri et al. [23] (called 𝛼-acyclicity in [37]).

There are several equivalent notions of acyclic joins, and we use

the one based on join tree: Q is acyclic if there exists a tree T , called
a join tree of Q, with the set E of nodes such that for any 𝑥 ∈ V ,

all nodes of T containing 𝑥 form a connected subtree of T .

Hierarchical joins [32]. An interesting subclass of acyclic join

is hierarchical join, defined as follows. A join query Q = (V, E) is
hierarchical if for every pair of vertices 𝑥,𝑦, E𝑥 ⊆ E𝑦 , E𝑦 ⊆ E𝑥 ,
or E𝑥 ∩ E𝑦 = ∅, where E𝑧 = {𝑒 ∈ E : 𝑧 ∈ 𝑒}. Efficient algorithms

have been developed for hierarchical joins in probabilistic databases

[32, 38] and dynamic query processing [24].

2.3 Our Contribution

Our theoretical results are summarized in Figure 4. In particular:

• Time-first Approach. Corresponding to the join-first approach,

we present a time-first approach, which was also known as sweep-
plane-based algorithm in the literature [20]. Intuitively, it sorts the

endpoints of input tuples first, virtually sweeps a time axis, and

computes the join results intersecting with this axis. Using this

framework, we can obtain a near-linear algorithm for hierarchical

temporal joins, by designing an efficient data structure over the

very special query structures, and an output-sensitive algorithm

for general temporal joins, by resorting to an output-sensitive

non-temporal join algorithm. (Section 3)

• Hybrid Approach. To further improve general temporal joins,

we propose a hybrid approach as a combination of join-first and
time-first approaches. The complexity of this hybrid approach

depends on two query-dependent quantities: the fractional hyper-

tree width [43], measuring how far the join query is from being

acyclic, and hierarchical hypertree width, measuring how far the

join query is from being hierarchical. Moreover, we present a

few simplification and improvement on some specific class of

Join Queries Non-Temporal Join Temporal Join

Hierarchical

𝑂 (𝑁 + 𝐾) [86]
𝑂 (𝑁 · log𝑁 + 𝐾)
[Theorem 6]

Acyclic

General

𝑂 (𝑁 𝜌) [65, 66, 80] 𝑂

(
𝑁min{fhtw+1,hhtw} + 𝐾

)
𝑂 (𝑁 fhtw + 𝐾) [43] [Theorem 12]

𝑂 (𝑁 subw + 𝐾) [17]
Figure 4: Summary of Results. 𝑁 is the input size. 𝐾 is the output
size of join results. 𝜌 is the optimal fractional edge covering number
of the query; subw is the sub-modular width of the query; fhtw is
the fractional hypertree width of the query; hhtw is the hierarchical
hypertree width of the query defined in Section 3.3.

temporal joins. At last, we provide a guideline for this unified

framework, on how to choose the best evaluation strategy for a

temporal join, which depends on the query structure. (Section 4)

• Hardness. We show two hardness results for temporal joins.

Firstly, any temporal join query can be reduced to its non-temporal
counterpart, by converting the time interval into a join attribute.

The hardness relies on the open question: is there a non-temporal

join algorithm running in 𝑂 (𝑁 subw−𝜖 + 𝐾) time, for arbitrarily

small constant 𝜖 > 0, where subw is the submodular width [17]

of the query? Moreover, for any non-r-hierarchical temporal join,

a slight subset of non-hierarchical temporal joins, we prove that

any algorithm takes Ω(𝑁
4

3
−𝜖) time for arbitrarily small constant

𝜖 > 0, assuming the 3SUM conjecture
1
holds. (Section 5)

• Experimental evaluation. We perform an extensive experi-

mental evaluation for practical temporal joins on both synthetic

and real-life datasets. We implement our proposed temporal join

algorithms, together with the pairwise framework building on

the mature binary temporal join algorithm, as the baseline. The

experimental results verify the power of our toolkit of temporal

join algorithms on different classes of queries. (Section 6)

3 TIME-FIRST APPROACH

In this section, we present the time-first approach for temporal join

evaluation, by extending the sweep-plane-based algorithm to general

temporal joins. As mentioned, it sorts the endpoints of input tuples

first, virtually sweeps a time axis, and computes the join results

intersecting with this axis. We first give a general framework in

Section 3.1, and then show how to instantiate it for hierarchical tem-

poral joins in Section 3.2, and general temporal join in Section 3.3.

3.1 Framework

We introduce the whole framework in Algorithm 1, and then give

an analysis of its time complexity.

Overview of the algorithm. Let R be a temporal instance of the

above join query. Our goal is to compute Q(R). A tuple a ∈ 𝑅𝑒 for
some 𝑒 ∈ E, is active at time 𝑡 if 𝑡 ∈ 𝐼a. For a time 𝑡 , let 𝑅𝑒 (𝑡) ⊆ 𝑅𝑒
be the set of active intervals at time 𝑡 among the tuples in 𝑅𝑒 , and

let R(𝑡) = {𝑅𝑒 (𝑡) | 𝑒 ∈ E}. Let a be a tuple in temporal join

Q(R) with valid interval 𝐼a = [𝑡−a , 𝑡+a]. Suppose a =Z𝑒∈E a𝑒 . Then
1
The 3SUM conjecture states that given three sets 𝐴, 𝐵,𝐶 ∈ R, there is no strongly

sub-quadratic algorithm to determine whether there exists (𝑎,𝑏, 𝑐) ∈ 𝐴 ×𝐵 ×𝐶 such

that 𝑎 + 𝑏 = 𝑐 .

Algorithm 1: TimeFirst(Q,R)
Input : Join query Q = (V, E) and temporal database R;
Output :Temporal join results Q(R);

1 𝑆 ← Endpoints of valid intervals in R sorted increasingly;

2 D ← ∅, 𝐿 ← ∅;
3 foreach 𝑝 ∈ 𝑆 do

4 Assume 𝑝 ∈ {𝑡−a , 𝑡+a } for some tuple a ∈ 𝑅𝑒 with 𝑒 ∈ E;
5 if 𝑝 = 𝑡−a then

6 D ← Insert(Q,R,D, a);
7 else

8 𝐿 ← 𝐿 ∪ Enumerate(Q,R,D, a);
9 D ←Delete(Q,R,D, a);

10 return 𝐿;

𝐼a = ∩𝑒∈E 𝐼a𝑒 and the right endpoint 𝑡+a is the same with the right

endpoint of a tuple that defines a, say a𝑒′ ∈ 𝑅𝑒′ , i.e., 𝑡+a = 𝐼+a𝑒′ .
Then, a is just a tuple in the natural join Q(R(𝑡+a)) of R(𝑡+a), so the
problem of temporal join reduces to a dynamic instance of natural

join, where we maintain the join result over time as tuples are

inserted and deleted according to their valid intervals. In view of

this observation, here is an outline of the overall algorithm. The

algorithm sweeps the time axis from the left to right and maintains

the set R(𝑡) in a data structure D. It stops at the endpoints of

the valid intervals, updates D, and reports the tuples of Q(R),
as follows. Let 𝑆 be the sequence of interval endpoints sorted in

increasing order. The algorithm visits 𝑆 from left to right. Suppose it

reaches an endpoint 𝑡0. If 𝑡0 is the left endpoint of the valid interval

𝐼a of a tuple a, it inserts a into D. If 𝑡0 is the right endpoint of

𝐼a, then it checks whether a contributes to a tuple in the natural

join Q(R(𝑡+a)). If the answer is yes, then it uses the Enumerate

procedure (described later) to enumerate all tuples of Q(R(𝑡+a))
that involves a. Finally, we delete a from D.

Run-time Analysis. We next give an abstract analysis of the time

complexity of Algorithm 1. Let 𝑁 be the input size of R. We assume

that the data structure D can be updated in 𝑂 (𝑓 (𝑁)) time (line

6 and line 9), and the temporal join results involving tuple a can

be enumerated in 𝑂 (𝑔(𝑁) + 𝐾 (a)) time (line 8), where 𝐾 (a) is the
number of temporal join results participated by a. In Algorithm 1,

the preprocessing step of sorting (line 1) can be done in𝑂 (𝑁 log𝑁)
time. In the for loop (lines 3-9), each tuple is inserted into D and

deleted from D exactly once, thus Insert and Delete procedures

together take𝑂 (𝑁 · 𝑓 (𝑁)) time. Moreover, the procedure Enumer-

ate is invoked for each tuple exactly once, when the right endpoint

of its valid interval is visited. Summing over all tuples, this proce-

dure takes𝑂

(∑︁
a∈R
(𝑔(𝑁) + 𝐾 (a))

)
= 𝑂 (𝑁 · 𝑔(𝑁) + 𝐾) time, where

the equation is implied by the fact that each temporal join result

is enumerated exactly once. Putting everything together, the time

complexity of Algorithm 1 is 𝑂 (𝑁 · 𝑓 (𝑁) + 𝑁 · 𝑔(𝑁) + 𝐾).
A naive application of non-temporal join algorithm at each end-

point of valid interval would not give acceptable performance. The

technical challenge is to design a data structure that can be effi-

ciently updated while supporting enumeration of join results at

every interval’s right endpoint. For example, simply performing

the linear algorithm [86] (see Figure 4) for non-temporal acyclic

joins leads to an algorithm of time complexity 𝑂 (𝑁 2 + 𝐾) for hier-
archical temporal joins. Using a novel data structure as described

in Section 3.2, we improve this result to𝑂 (𝑁 log𝑁 +𝐾). Moreover,

this specially designed algorithm serves as an important building

block for general temporal join algorithm in Section 4.

3.2 Hierarchical Temporal Join

Wenow focus on the class of hierarchical temporal joins and present

a near-linear time algorithm based on the general framework.

Data Structure. The attribute tree of Q, denoted by T := T (Q),
is a tree with V as its nodes such that 𝑥 is a descendant of 𝑦 if

E𝑥 ⊆ E𝑦 (see definition of hierarchical join in Section 2); any path

from the root to a leaf corresponds to a hyper-edge (relation) in Q.
A path from the root to an internal node may also corresponds to a

hyperedge of E (e.g. 𝐴𝐵 in Figure 5). We first obtain a generalized

join tree [49], as follows. Each node 𝑢 ∈ T is associated with the

subsetV𝑢 ⊆ V of attributes appearing on the path from 𝑢 to the

root of T (Figure 5). Let 𝑝 (𝑢) be the parent of 𝑢, and let 𝐶 (𝑢) be
the set of children of 𝑢; 𝑝 (𝑢) = ∅ for the root and 𝐶 (𝑢) = ∅ for the
leaves. Let T𝑢 be the subtree rooted at 𝑢 and let 𝐿(𝑢) be the set of
leaves in T𝑢 . Observe thatV𝑝 (𝑢) ⊆ V𝑢 . For an internal node 𝑢, if

V𝑢 is a hyperedge of E, i.e.,V𝑢 ∈ E, we add a leaf node𝑤 as a child

of 𝑢 withV𝑤 = V𝑢 . After this transformation, each relation in E
corresponds to a root-to-leaf path, as shown in Figure 5. Note that

T is independent of R and does not change during the algorithm.

We are ready now to describe the dynamic data structure D
building on T , which is a simplified version of that used by dynamic

query evaluation in [49]. We define the projection 𝜋𝑢 (a) = 𝜋V𝑢
(a).

At any given time 𝑡 , each node 𝑢 ∈ T stores a set 𝑋𝑢 (𝑡) ⊆ A𝑢 :=

Π𝑥 ∈V𝑢
dom(𝑥) of relations. If 𝑢 is a leaf, A𝑢 is a hyperedge of E.

For the leaf 𝑢, we store 𝑅𝑢 (𝑡), the set of active tuples of 𝑅V𝑢
. For

an internal node 𝑢, 𝑋𝑢 (𝑡) is the projection onV𝑢 of (natural) join

results of tuples stored at the leaves of T𝑢 , i.e., 𝑋𝑢 (𝑡) = 𝜋𝑢 (Z𝑧∈𝐿 (𝑢)
𝑋𝑧 (𝑡)). By definition, 𝑋𝑢 (𝑡) =

⋂
𝑣∈𝐶 (𝑢)

𝜋𝑢 (𝑋𝑣 (𝑡)). An example of D

is illustrated in Figure 5. The next lemma shows a nice property of

D, which can be proved by induction.

Lemma 3. For any node 𝑢 ∈ T and any time 𝑡 , 𝑋𝑢 (𝑡) stores the
projection of temporal join results induced by relations in the subtree
T𝑢 on attributesV𝑢 , i.e., 𝑋𝑢 (𝑡) = 𝜋𝑢 (Z𝑧∈𝐿 (𝑢) 𝑅𝑧 (𝑡)).

To update 𝑋𝑢 (𝑡) efficiently, tuples in 𝑋𝑢 (𝑡) are stored in groups

by their values over attributes V𝑝 (𝑢) . The set of distinct values

over attributesV𝑝 (𝑢) are stored in a binary-search tree as indexes.

Moreover, tuples in𝑋𝑢 (𝑡) with the same value over attributesV𝑝 (𝑢)
are stored in a min-heap by 𝑡+a .

Initially, D consists of T with sets 𝑋𝑢 being empty at all nodes

𝑢 ∈ T . Since we will only refer to the set 𝑋𝑢 (𝑡) at time 𝑡 , we simply

drop the argument 𝑡 and write 𝑋𝑢 to denote the current 𝑋𝑢 (𝑡).
Enumerate. As described in Algorithm 2, we divide the enumer-

ation for a into two steps: (1) check whether a participates in any

temporal results (line 2-5); (2) if no, we just stop (and return an

empty set); otherwise, we invoke Report(D, 𝑟𝑜𝑜𝑡, a) to list out all

temporal join results participated by a (line 6).

A

C

F GED

B

(R2) (R3) (R4) (R5)

(R1)

[A]

[AB] [AC]

[ACF] [ACG][ABE][ABD][AB]

[A]

[AB] [AC]

[ACF] [ACG][ABE][ABD]
a1 b1 d1

a1 b1

a1

a1 c1
a1 c2a2

a1 b1 d2
a2 b1 d1
a2 b2 d2

a1 b1 e1
a2 b1 e2
a2 b2 e2

a1 c1 f1
a1 c1 f2
a1 c2 f1

a1 c1 g1
a1 c2 g2
a2 c1 g1

[AB]
a1 b1
a2
a2 b2

b2

b1

Figure 5: Data structureD forQ
hier

= 𝑅1 (𝐴, 𝐵) Z 𝑅2 (𝐴, 𝐵, 𝐷) Z
𝑅3 (𝐴, 𝐵, 𝐸) Z 𝑅4 (𝐴,𝐶, 𝐹) Z 𝑅5 (𝐴,𝐶,𝐺). The left is the attribute tree
(upper) and generalized join tree (lower).

Algorithm 2: Enumerate(Q,R,D, a)
Input : Join query Q = (V, E), temporal database R, tuple

a, and data structure D built on Q over R;
Output :Temporal join results Q(R(𝑡+a));

1 𝑢 ← the leaf node corresponding to 𝑒 ∈ E such that a ∈ 𝑅𝑒 ;
2 while 𝑢 ≠ 𝑛𝑢𝑙𝑙 do

3 if 𝜋𝑢 (a) ∉ 𝑋𝑢 (𝑡+a) then
4 return ∅;
5 𝑢 ← 𝑝 (𝑢);
6 return Report(D, 𝑟𝑜𝑜𝑡, a);

Algorithm 3: Report(D, 𝑢, a)
Input :Data structure D, node 𝑢 in D and tuple a;
Output :Temporal join results of active tuples stored in the

subtree T𝑢 of D, that can be joined with a;
1 if 𝑢 is a leaf then return 𝑋𝑢 ⋉ {a};
2 S ← ∅;
3 if V𝑢 ⊆ supp(a) then
4 if 𝜋𝑢 (a) ∈ 𝑋𝑢 then

5 foreach 𝑣 ∈ 𝐶 (𝑢) do
6 S(𝑣, a) ←Report(D, 𝑣, a);
7 S ←>

𝑣∈𝐶 (𝑢) S(𝑣, a);
8 else

9 L ← 𝑋𝑢 ⋉ {a};
10 foreach b ∈ L do

11 S ← S ∪ Report(D, 𝑢, b);

12 return S;

Given a tuple a ∈ 𝑅𝑒 for some 𝑒 ∈ E, line 1-5 checks whether
a participates in any natural join result Q(R(𝑡+a)) of R(𝑡+a), the
currently active sets of tuples. Let 𝑢 be the leaf of T corresponding

to 𝑒 , i.e., 𝑒 = V𝑢 . Algorithm 2 shows that it can be done by checking

for every node 𝑣 lying on the path from root to 𝑢, whether 𝑋𝑣 (𝑡+a),
i.e., the current set 𝑋𝑣 at node 𝑣 , contains the tuple 𝜋𝑣 (a). This step
takes𝑂 (log𝑁) time, as only𝑂 (1) nodes lie on any root-to-leaf path
and the check procedure takes 𝑂 (log𝑁) time for each node.

We next show a recursive procedure Report(D, 𝑢, a) that out-
puts S(𝑢, a) =

(
Z𝑦∈𝐿 (𝑢) 𝑋𝑦

)
⋉ {a}, i.e., the (natural) join results

of relations in T𝑢 that can be joined with a at timestamp 𝑡+a . Then,
our original problem of enumerating all temporal join results par-

ticipated by a can be solved by invoking Report(D, 𝑟𝑜𝑜𝑡, a). The
following definition of S(𝑢, a) forms the basis of Report(D, 𝑢, a).

Lemma 4. Given node 𝑢 ∈ T and tuple a, S(𝑢, a) is defined as:

S(𝑢, a) =


𝑋𝑢 ⋉ {a} if 𝑢 is a leaf>
𝑣∈𝐶 (𝑢) S(𝑣, a) ifV𝑢 ⊆ supp(a)⋃
b∈𝑋𝑢⋉{a} S(𝑢, b) ifV𝑢 ⊈ supp(a)

(2)

Using (2), Report(D, 𝑢, a) is straightforward, as described in

Algorithm 3. Let 𝑧 be the node of T such that a ∈ 𝑋𝑧 . In the base

case when 𝑢 is a leaf, Report just returns the set of tuples in 𝑋𝑢
whose projection on attributes 𝑒 ∩V𝑢 is the same with a (line 1).

Intuitively, these tuples will form semi-join results with a. If 𝑢 is

not a leaf, Report distinguishes 𝑢 into two cases.

In the first case (lines 3-7), when V𝑢 is a subset of V𝑧 , it first
checks whether there is a tuple a′ ∈ 𝑋𝑢 with a′ = 𝜋𝑢 (a). If yes, it
invokes this whole procedure recursively for every child node of 𝑢

with a (line 5-6), and returns the Cartesian product of enumerated

results over its all children as the final join result (line 7).

In the second case (line 8-11), whenV𝑢 is not a subset ofV𝑧 , it
finds all tuples in 𝑋𝑢 whose projection on attributesV𝑧 ∩V𝑢 is the

same with that of tuple a (line 9), denoted as L. Then, it invokes
this procedure recursively on 𝑢 for each tuple in L, and returns the
union of enumerated results over all tuples in L (line 10-11).

It can be shown by induction that after spending 𝑂 (log𝑁) time,

S(𝑢, a) can be reported in 𝑂 (|S(𝑢, a) |) time.

Example 5. In Figure 5, enumeration for tuple a = (𝑎1, 𝑏1) ∈
𝑅1 proceeds by invoking Report(D, root, a). The query result

S(root, a) is essentially S({𝐴𝐵}, a) × (S({𝐴𝐶}, b) ∪ S({𝐴𝐶}, c)),
forb = (𝑎1, 𝑐1) and c = (𝑎1, 𝑐2). Moreover,S({𝐴𝐵}, a) = {(𝑎1, 𝑏1)}×
{(𝑎1, 𝑏1, 𝑑1), (𝑎1, 𝑏1, 𝑑2)}×{(𝑎1, 𝑏1, 𝑒1)},S({𝐴𝐶}, b) = {(𝑎1, 𝑐1, 𝑓1),
(𝑎1, 𝑐1, 𝑓2)}×{(𝑎1, 𝑐1, 𝑔1)},S({𝐴𝐶}, c) = {(𝑎1, 𝑐2, 𝑓1)}×{(𝑎1, 𝑐2, 𝑔2)}.

Insert/Delete. Assume that Algorithm 1 visits an endpoint of

𝐼a for tuple a ∈ 𝑅𝑒 and 𝑒 ∈ E. Let 𝑧 be the leaf of T corresponding

to 𝑒 , i.e., 𝑒 = V𝑧 . If we reach the left (resp. right) endpoint of 𝐼a,
we insert a into D (resp. delete a from D). We only describe the

insertion procedure, and the deletion is symmetric.

We first insert a to 𝑋𝑧 (𝑡). Next, we update every node lying on

the path from 𝑧 to the root 𝑟 , in a bottom-up way. Consider such a

node 𝑢. If there is an insertion of tuple a′ in 𝑋𝑣 for some child 𝑣 ∈
𝐶 (𝑢), we check whether a tuple 𝜋𝑢 (a′) needs to be inserted to 𝑋𝑢 .

In particular, if there exists a tuple a′′ ∈ 𝑋𝑣′ with 𝜋𝑣 (a′′) = 𝜋𝑣 (a′)
for every child 𝑣 ′ ∈ 𝐶 (𝑢) − {𝑣}, we insert 𝜋𝑢 (a′) into 𝑋𝑢 (𝑡). This
procedure takes 𝑂 (log𝑁) time. It updates at most one tuple for

every node lying on the path from 𝑧 to the root. Note that tuples in

𝑋𝑢 with the same value over attributesV𝑝 (𝑢) are maintained by a

min-heap. The insertion of a into 𝑋𝑢 takes 𝑂 (log𝑁) time.

Putting everything together, we come to the following result:

Theorem 6. For a hierarchical join Q and a temporal instance R,
Algorithm 1 computes Q(R) in 𝑂 (𝑁 log𝑁 + 𝐾) time.

Remark. Theorem 6 can be extended to r-hierarchical join [47], a

slightly larger class of hierarchical join. A join is r-hierarchical if its
reduced join is hierarchical, where a join is reduced if there exists
no pair of 𝑒, 𝑒 ′ ∈ E such that 𝑒 ⊆ 𝑒 ′. Any temporal join query can

be reduced in linear time.
2

3.3 General Temporal Join

We now turn to general temporal joins, however, the data struc-

ture designed for hierarchical joins cannot be applied. Now, let’s

take one step back. A straightforward instantiation of TimeFirst

framework is to maintain active tuples and apply any non-temporal

join algorithm on active tuples, whenever needed. Surprisingly,

plugging an output-sensitive non-temporal join algorithm into the

TimeFirst framework automatically yield an output-sensitive tem-

poral join algorithm, since the non-temporal join results of active

tuples are essentially the temporal join results. In this section, we

show how to incorporate an output-sensitive non-temporal join

algorithm [43] into the TimeFirst framework.

Data structure. We now use a simple data structure D storing

active tuples ofR. More specifically, active tuples from each relation,

say 𝑅𝑒 , are hashed by attributes in 𝑒 . The insertion or deletion of a

tuple becomes trivial, such that each update takes 𝑂 (1) time.

Enumerate. Similar to Section 3.2, this procedure enumerates all

temporal join results participated by tuple a, i.e., the non-temporal

join results over active tuples R(𝑡+a) participated by a. We resort

to the classical non-temporal join algorithm based on generalized
hypertree decomposition (GHD) [43] (see Figure 6):

Definition 7 (Generalized Hypertree Decomposition). Given a join

query Q = (V, E), a GHD of Q is a pair (T , 𝜆), where T is a tree

as an ordered set of nodes and 𝜆 : T → 2
V

is a labeling function

which associates to each vertex 𝑢 ∈ T a subset of attributes inV ,

𝜆𝑢 , such that the following conditions are satisfied:

• (coverage) For each 𝑒 ∈ E, there is a node𝑢 ∈ T such that 𝑒 ⊆ 𝜆𝑢 ;
• (connectivity) For each 𝑥 ∈ V , the set of nodes {𝑢 ∈ T : 𝑥 ∈ 𝜆𝑢 }
forms a connected subtree of T .

As described in Algorithm 4, Enumerate(Q,R,D, a) first con-
structs an instance RT for a GHD (T , 𝜆) of Q, over active tuples
R(𝑡+a). This step is quite standard: (i) each node 𝑢 derives a sub-

join over attributes 𝜆𝑢 and relations E𝑢 , the projection of active

tuples on attributes 𝜆𝑢 (line 6); (ii) it materializes the result for

subjoin (𝜆𝑢 , E𝑢) over instance R𝑢 , by invoking the GenericJoin

algorithm [66] (line 7). After obtaining an acyclic join query T over

instance RT , Enumerate(Q,R,D, a) essentially invokes the clas-
sical Yannakakis algorithm [86] for enumerating all join results

participated by a (line 9).

We note that procedure GenericJoin(Q,R) takes as input an
arbitrary join query Q and a non-temporal database R, and outputs
the non-temporal join results Q(R). While, procedure Yannakakis

2
In removing hyperedge 𝑒 ∈ E, we update𝑅𝑒′ with𝑅𝑒′ Z 𝑅𝑒 , for 𝑒′ ∈ E with 𝑒 ⊆ 𝑒′.
Recall that there is no pair of tuples in 𝑅𝑒 which have the same value on all attributes

in 𝑒 . Together with the fact that 𝑒 ⊆ 𝑒′, we can rewrite the temporal join 𝑅𝑒′ Z 𝑅𝑒 as:

𝑅𝑒′ Z 𝑅𝑒 = { ⟨a, 𝐼a ∩ 𝐼b ⟩ | a ∈ 𝑅𝑒′ , b ∈ 𝑅𝑒 , b = 𝜋𝑒 (a) }
which can be done by computing a non-temporal binary join and then checking validity

intervals for joins result. This way, an r-hierarchical temporal join can be reduced to a

hierarchical temporal join through𝑂 (1) temporal binary joins in linear time.

(Q,R) takes as input an acyclic join query Q and a non-temporal

database R, and outputs the non-temporal join results Q(R).

Algorithm 4: Enumerate(Q,R,D, a)
Input : Join query Q = (V, E), temporal database R, tuple

a, and data structure D built on Q over R;
Output :Temporal join results Q(R(𝑡+a));

1 Let (T , 𝜆) be a GHD of Q, and RT ← ∅;
2 foreach node 𝑢 ∈ T do

3 R𝑢 ← ∅, E𝑢 ← ∅;
4 foreach 𝑒 ∈ E with 𝑒 ∩ 𝜆𝑢 ≠ ∅ do
5 E𝑢 ← E𝑢 ∪ {𝑒 ∩ 𝜆𝑢 };
6 R𝑢 ← R ′𝑢 ∪ {𝜋𝑒∩𝜆𝑢 𝑡 | 𝑡 ∈ 𝑅𝑒 (𝑡+a)};
7 𝑆𝑢 ← GenericJoin((𝜆𝑢 , E𝑢),R𝑢);
8 RT ← RT ∪ {𝑆𝑢 };
9 return Yannakakis(T ,RT);

Run-time of Enumerate. Before analysing the time complexity

of this procedure, we review the complexity for several building

blocks first. A fractional edge cover of a join query Q = (V, E) is
a point x = {x𝑒 | 𝑒 ∈ E} ∈ RE such that for any vertex 𝑣 ∈ V ,∑
𝑒∈E𝑣 x𝑒 ≥ 1. As proved in [21], the maximum output size of a

join query Q is 𝑂 (𝑁 ∥x∥1). The running time of GenericJoin
3
is

bounded by 𝑂 (𝑁 ∥x∥1) [66]. Since the above bound holds for any

fractional edge cover, we define 𝜌 = 𝜌 (Q) to be the fractional cover
with the smallest ℓ1-norm, i.e., 𝜌 (Q) is the value of the objective
function of the optimal solution of linear programming (LP):

min

∑︁
𝑒∈E

x𝑒 , s.t. ∀𝑒 ∈ 𝐸 : x𝑒 ≥ 0 and ∀𝑣 ∈ V :

∑︁
𝑒∈E𝑣

x𝑒 ≥ 1. (3)

Moreover, Yannakakis can compute the join results of an acyclic

join query Q over a non-temporal database R in 𝑂 (𝑁 + 𝐾) time.

Given a join query Q, one of its GHD (T , 𝜆) and a node 𝑢 ∈ T ,
the width of 𝑢 is defined as the optimal fractional edge covering

number of its derived hypergraph (𝜆𝑢 , E𝑢), where E𝑢 = {𝑒 ∩ 𝜆𝑢 :

𝑒 ∈ E} (line 5). Given a join query and a GHD (T , 𝜆), the width
of (T , 𝜆) is defined as the maximum width over all nodes inVT .
Then, the fractional hypertree width of a join query follows:

Definition 8 (Fractional Hypertree Width [43]). The fractional

hypertree width of a join query Q, denoted as fhtw(Q), is
fhtw(Q) = min

(T,𝜆)
max

𝑢∈T
𝜌 (𝜆𝑢 , E𝑢)

i.e., the minimum width over all GHDs.

Basically, 𝑂 (𝑁 fhtw) is an upper bound on the number of join

results materialized for each node in T , as well as the time com-

plexity of GenericJoin (line 7). Hence, Algorithm 4 can materialize

𝑂 (|R(𝑡+a) |fhtw) join results for each node in 𝑂 (|R(𝑡+a) |fhtw) time.

By resorting to the complexity of Yannakakis algorithm, the last

step (line 9) incurs a time cost of𝑂

(
|R(𝑡+a) |fhtw + Q(R(𝑡+a)) ⋉ {a}

)
,

dominating the enumeration step.

3
Ngo et al. [66] give a more refined bound on the running time but since we assume

the size of Q to be a constant, we use𝑂 (𝑁 ∥x∥1) as a bound on the running time.

Putting everything together, we come to the following result for

general temporal joins
4
:

Theorem 9. For a join query Q and a temporal instance R, Algo-
rithm 1 computes Q(R) in 𝑂 (𝑁 fhtw+1 + 𝐾) time.

As acyclic joins have fhtw = 1, we obtain:

Corollary 10. For an acyclic join query Q and a temporal in-
stance R, Algorithm 1 computes Q(R) in 𝑂 (𝑁 2 + 𝐾) time.

4 A HYBRID APPROACH

So far, we are able to tackle a temporal join query using join-first

and time-first approaches separately. We highlight the following

two from existing extensive results: a near-linear algorithm for hi-

erarchical temporal joins (optimal), and a quadratic-time algorithm

for general acyclic temporal joins (the best theoretical result we can

achieve in this work). For general cyclic joins, existing results can

be further improved by combing these two approaches together,

noted as hybrid approach.
Our hybrid approach for general temporal joins is still built on

the notion of GHD (see Section 3.3), but involving two observations:

• Hybrid:We first compute an instance for GHD, by materializing

the temporal join results for each node using the join-first ap-

proach, and invoke the time-first approach only once to compute

the derived acyclic temporal join.

• Hierarchical GHD: We identify the hierarchical GHD for a gen-

eral join query, to which the hierarchical temporal join (Sec-

tion 3.2) can be applied, which provides another choice of apply-

ing time-first approach to non-hierarchical temporal join queries.

To characterize the time complexity of such a hybrid approach,

we use both the notion of fractional hypertree width (fhtw) of Q
from Section 3.3 and the new notion of hierarchical hypertree width
of Q, denoted by hhtw(Q), which roughly measures how close

Q is to being hierarchical; hhtw(Q) = 1 if Q is hierarchical. The

running time of this hybrid approach, as described in Section 4.1

is 𝑂 (𝑁min{fhtw(Q)+1,hhtw(Q) } + 𝐾), which is strictly better than

both join-first and time-first approach. In Section 4.2 we give some

simplification and potential improvement on some specific tempo-

ral join queries. At last, we conclude with a general guideline for

handling temporal join queries in Section 4.3.

4.1 General Temporal Join Algorithm

As described in Algorithm 5, the overall algorithm follows the stan-

dard GHD-based framework. In lines 1-9, we construct a temporal

instance of R with respect to GHD (T , 𝜆) of Q, denoted as RT . This
step is quite similar to Algorithm 4, while the only difference is

how to preserve temporal information in the GHD: with respect to

the temporal instance R𝑢 defined for node 𝑢, we note that validity

intervals of tuples from 𝑅𝑒 are carried to R𝑢 if 𝑒 ⊆ 𝜆𝑢 ; otherwise,
we just set them to be (−∞, +∞). By Definition 7, each relation

𝑒 ∈ E has its attributes fully contained by at least one node 𝑢, there-

fore all validity intervals in 𝑅𝑒 are preserved in R𝑢 for some node

𝑢 ∈ T , guaranteeing the correctness of the temporal join results.

4
The exponent of fhtw in Theorem 9 can be further improved to the sub-modular

width of input query by rewriting the join query into a union of multiple sub-queries,

and apply the (best) GHD-based algorithm for each one [17].

After obtaining the temporal instance RT , we invoke the Time-
First framework (line 10): more specifically, we use the hierarchical

temporal join algorithm in Section 3.2 if GHD (T , 𝜆) is hierarchical,
and acyclic temporal join algorithm in Section 3.3 otherwise.

Algorithm 5: Hybrid(Q,R)
Input : Join query Q = (V, E) and temporal database R;
Output :Temporal join results Q(R);

1 Let (T , 𝜆) be a GHD of Q; RT ← ∅;
2 foreach node 𝑢 ∈ T do

3 R𝑢 ← ∅, E𝑢 ← ∅;
4 foreach 𝑒 ∈ E with 𝑒 ∩ 𝜆𝑢 ≠ ∅ do
5 E𝑢 ← E𝑢 ∪ {𝑒 ∩ 𝜆𝑢 };
6 if 𝑒 − 𝜆𝑢 = ∅ then R𝑢 ← R𝑢 ∪ {𝑅𝑒 } ;
7 else R𝑢 ← R𝑢 ∪ {⟨a, (−∞, +∞)⟩ | ∃b ∈ 𝑅𝑒 , a =

𝜋𝑒∩𝜆𝑢 (b)};
8 𝑆𝑢 ← GenericJoin((𝜆𝑢 , E𝑢),R𝑢);
9 RT ← RT ∪ {⟨a, 𝐼a⟩ : ∃a ∈ 𝑆𝑢 , 𝐼a ≠ ∅};

10 return TimeFirst(T ,RT);

Run-time Analysis. First, we consider the case when (T , 𝜆) is
not hierarchical. From Section 3.3, we note that the size of mate-

rialized join result for each node in the GHD, as well as the time

complexity of GenericJoin invoked for each node, can be bounded

by𝑂 (𝑁 fhtw).5 Plugging to Corollary 10, the last invocation of Time-
First on the acyclic join T takes 𝑂 (𝑁 2·fhtw + 𝐾) time, which also

dominates the overall runtime. However, this analysis is not tight.

Recall that the time-first approach invokes enumeration procedure

at each right endpoint of a valid interval. The number of distinct end-

points of valid intervals in RT is𝑂 (𝑁), since applying intersection
does not create new endpoints. Hence, the number of enumeration

invocations of is 𝑂 (𝑁), each taking 𝑂 (𝑁 fhtw + 𝐾 (a)) time for enu-

merating results participated by a. Putting everything together, we

can improve it to 𝑂 (𝑁 fhtw+1 + 𝐾), matching Theorem 9.

Next, we consider the case when (T , 𝜆) is hierarchical. The main

observation is that previous analysis could possibly be improved

if there exists a hierarchical GHD of Q, on which the hierarchical

temporal join algorithm in Section 3.2 can be invoked. To capture

it, we define the hierarchical hypertree width of a join as follows:

Definition 11 (Hierarchical Hypertree Width). The hierarchical
hypertree width of a join query Q, denoted as hhtw(Q), is

hhtw(Q) = min

(T,𝜆) :T is hierarchical

max

𝑢∈T
𝜌 (𝜆𝑢 , E𝑢)

i.e., the minimum width over all hierarchical GHDs.

In plain language, hhtw is the minimum width over all hierarchical

GHDs of input join. In this way, we obtain another upper bound

𝑂 (𝑁 hhtw(𝑄)) on the size of materialized join results for each node

in the hierarchical GHD, as well as the time cost of GenericJoin

invoked for each node. Plugging to Theorem 6, time-first approach

takes 𝑂 (𝑁 hhtw + 𝐾) time, which also dominates the overall cost.

Combining these two upper bounds, we come to the main result:

5
When the context is clear, we always use fhtw as short for fhtw(𝑄) .

x1

x2

x3

x4

x5

x1x2x3

x1x4x5

hhtw = 1.5

fhtw = 1 hhtw = 2

fhtw = 1.5 hhtw = 2

fhtw = 1.5

x1x2x3

x1x4x5

x1 x2 x3

x4x5

x1x2 x2x3

x4x5 x3x4

x1x2x3

x3x4x5

x1x2x3 x1x6

x4x5x6

x1

x2

x3

x4

x5

x6

x1x2x3x6

x1x4x5x6

Figure 6: Hypergraphs (left), GHDs (middle) and hierarchical

GHDs (right). The first join has fhtw = hhtw = 1.5 since

both (𝑥1𝑥2𝑥3), 𝑥1𝑥4𝑥5) derive a triangle join with 𝜌 = 1.5. The

second join is acyclic, thus any join tree is a GHDwith fhtw =

1. But the minimum hierarchical GHD has hhtw = 2, with

two nodes {(𝑥1𝑥2𝑥3), (𝑥3𝑥4𝑥5)}. The third join has a GHDwith

three nodes, where (𝑥1𝑥2𝑥3), (𝑥4𝑥5𝑥6) derive a triangle join

with 𝜌 = 1.5, so fhtw = 1.5. The minimum hierarchical GHD

has hhtw = 2 with two nodes {(𝑥1𝑥2𝑥3𝑥6), (𝑥1𝑥4𝑥5𝑥6)}.

Theorem 12. Given a join query Q, a temporal instance R and a
parameter 𝜏 ≥ 0, the 𝜏-durable join result Q(R) can be computed in
𝑂 (𝑁min{fhtw+1,hhtw} + 𝐾) time.

Remark. The relative ordering between fhtw(Q) + 1 and hhtw(Q)
is still unclear for general joins. In Figure 6, we give three examples

and show their relative orderings. On acyclic joins, we observe:

• If Q is hierarchical, hhtw(Q) = 1 < fhtw(Q) + 1 = 2; and

• If Q is acyclic but non-hierarchical, fhtw(Q) + 1 = 2 ≤ hhtw(Q),
which implies that (1) time-first approach is the best for hierarchical

temporal joins; (2) hybrid approach does not asymptotically im-

prove time-first approach for acyclic but non-hierarchical temporal

joins, but may provide another choice in practice.

4.2 Further simplification and improvement

We note that Algorithm 5 can be significantly simplified on some

specific GHDs, and further improved by leveraging interval join.
We need to introduce some terminologies first. In a join query Q =

(V, E), for a subset of attributes 𝐼 ⊆ V , let E𝐼 = {𝑒 ∈ E : 𝑒∩𝐼 ≠ ∅}
be the set of hyperedges containing at least one attribute in 𝐼 , and

Q𝐼 = (𝐼 , {𝑒 ∩ 𝐼 : 𝑒 ∈ E𝐼 }) be the subhypergraph induced by 𝐼 . Then,

we lay out the condition for a guarded GHD (see Figure 6):

Definition 13 (Guarded GHD). For a join query Q, a GHD (T , 𝜆)
for Q is guarded if all nodes in T is a one-to-one mapping with

{𝑒 ∪ 𝐽 : 𝑒 ∈ E𝐼 }, for 𝐽 = ∩𝑢∈T𝜆𝑢 and 𝐼 = V − 𝐽 .

How does Algorithm 5 behave on a guarded GHD? Each node

𝑢 ∈ T is labeled with attributes 𝐽 ∪ 𝑒 for some 𝑒 ∈ E𝐼 . Recall that
it materializes the temporal join results for every node and then

applies TimeFirst to the derived acyclic join. It is very costly to

sort all materialized join results and build indexes on top of them.

Algorithm 6: HybridGuarded(Q,R, 𝐼 , 𝐽)
Input : Join query Q = (V, E) and temporal database R;
Output :Temporal join results Q(R);

1 S ← ∅, Ẽ ← {𝑒 ∈ E | 𝑒 ⊆ 𝐽 };
2 L ←GenericJoin(Q𝐽 , {𝜋 𝐽 𝑅𝑒 | 𝑒 ∈ E𝐽 });
3 foreach a ∈ L do

4 if Ẽ ≠ ∅ then 𝐼a ← ∩𝑒∈Ẽ 𝐼𝜋𝑒 (a) ;
5 foreach 𝑒 ∈ E𝐼 do
6 𝑅𝑒 (a) ← {⟨𝜋𝐼 (a′), 𝐼a′ ⟩ |∃a′ ∈ 𝑅𝑒 , 𝜋𝑒∩𝐽 (a) = 𝜋𝑒∩𝐽 (a′) };

7 Qa ← TimeFirst (Q𝐼 , {𝑅𝑒 (a) | 𝑒 ∈ E𝐼 });
8 S ← S ∪ (Qa × {a});
9 return S;

Simplification by Rewriting Algorithm 5. We next simplify

Algorithm 5 on a guarded GHD. As described in Algorithm 6, Hy-

bridGuarded takes a partition (𝐼 , 𝐽) of attributesV as input, where

𝐽 = ∩𝑢∈T𝜆𝑢 is the set of common attributes appearing in all nodes

of T . Our simplified algorithm first computes the temporal join

results, denoted by L, on the subquery Q𝐽 induced by 𝐽 , using

GenericJoin. Each tuple a ∈ L derives a residual join Q𝐼 involving
only attributes of 𝐼 , which is then solved by invoking the TimeFirst

algorithm. As a comparison, TimeFirst only sorts the input tuples

in relations 𝑅𝑒 for 𝑒 ∈ E𝐼 and builds indexes on top of them.

Further improvement by Interval Join. We show some further

improvement by leveraging the interval join6. The idea is to replace
TimeFirst (line 7) by an interval join, when Q𝐼 is a Cartesian prod-

uct. We use line-3 join QL3 = 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z 𝑅3 (𝑥3, 𝑥4)
for illustration. Tuples in relation 𝑅1, 𝑅3 are grouped by attribute

𝑥2, 𝑥3 respectively. Distinct values in dom(𝑥2) are sorted in a binary-
search tree, and the similar applies to dom(𝑥3). Moreover, tuples

in 𝑅1 (resp. 𝑅3) with the same value on attribute 𝑥2 (resp. 𝑥3) are

stored in an interval tree by their validity intervals. These indexes

can be built in 𝑂 (𝑁 log𝑁) time using 𝑂 (𝑁 log𝑁) space.
As described in Algorithm 6, we identify a partition ofV with

𝐽 = {𝑥2, 𝑥3}. Computing Q𝐽 degenerates to two semi-joins. For

tuple a ∈ L, let 𝑅1 (a) = {⟨a′, 𝐼a′⟩ | a′ ∈ 𝑅1, 𝜋𝑥2 (a′) = 𝜋𝑥2 (a)} and
𝑅3 (a) = {⟨a′, 𝐼a′⟩ | a′ ∈ 𝑅3, 𝜋𝑥3 (a′) = 𝜋𝑥3 (a)}. Each a ∈ 𝐿 derives

an residual join of 𝑅1 (a) × {a} × 𝑅3 (a), which can be handled by

interval join. It can be shown that this interval-join-based method

can improve our existing result from 𝑂 (𝑁 2 + 𝐾) to 𝑂 (𝑁 1.5 + 𝐾).
Investigating how to use interval join to speedup general temporal

joins is very interesting, and left as future work.

4.3 Summary: A Guideline for Temporal Joins

Last but not least, we conclude this section by providing a guideline
7

of choosing the best evaluation strategy for temporal joins (see

Figure 7). This guideline is built on the worst-case analysis, hence

multiple best candidate algorithms could exist for some queries. We

6
Given two sets 𝑅, 𝑆 of intervals, it asks to find all pairs (𝑟, 𝑠) ∈ 𝑅 × 𝑆 such that

𝑟 ∩ 𝑠 ≠ ∅. W.l.o.g., assume |𝑅 | ≤ |𝑆 |. After𝑂 (|𝑆 | log |𝑆 |) pre-processing time, the

query result can be returned in𝑂 (|𝑅 | log |𝑆 | +𝐾) time.

7
This guideline can be implemented by taking a temporal join query as input and

going through the tests in the decision tree (Figure 7) automatically. The leaf node it

reaches is the best algorithm suggested from our theoretical analysis. .

Q is acyclic?

Q is hierarchical?

yes

yes no

no

TimeFirst

TimeFirst

fhtw(Q) +1 ≤ hhtw(Q)?

yes no

Hybridhhtw(Q) ≤ 2?

yes no

Hybrid

Hybrid

TimeFirst

TimeFirst

Figure 7: A guideline of choosing temporal Join algorithms.

don’t distinguish those theoretically-equivalent methods, but we

can see their differences in empirical evaluation (Section 6).

The guideline only takes as input a temporal join query Q, and
works as follows. It starts with determining whether Q is acyclic

or not. If Q is acyclic, it further distinguishes whether Q is hierar-

chical or not. If Q is hierarchical, we directly apply the TimeFirst

approach based on the attribute tree (see Section 3.2). Otherwise,

Q is acyclic but non-hierarchical. In this case, we always have the

TimeFirst approach based on GHDs (see Section 3.3) in hand. If

hhtw(𝑄) = 2, the Hybrid approach based on hierarchical GHD is

also competitive. If Q is cyclic, we always have Hybrid in hand.

In this case, we note that if fhtw(𝑄) + 1 ≤ hhtw(𝑄), TimeFirst
approach based on the GHD is also a candidate solution. When

Hybrid approach is invoked, we can always play with the simplifi-

cation and optimization on guarded GHD if applicable. As the join

query has constant size, we can decide which algorithm to pick in

𝑂 (1) time. Overall, the time complexity of temporal join algorithm

chosen by this guideline matches Theorem 12.

5 HARDNESS

In this section, we show hardness of computing temporal joins by

relating them to non-temporal joins. The first hardness result is

derived for non-r-hierarchical temporal joins based on the 3SUM

conjecture [40]. The second hardness result is derived for general

temporal joins, by resorting to the open question [17]: whether

there exists a faster output-sensitive algorithm for improving the

sub-modular width of non-temporal joins.

5.1 Non-R-hierarchical Temporal Joins

Our lower bound as stated in Theorem 14 is built upon the 3SUM

conjecture: Given a set 𝑆 of𝑁 numbers, it is conjectured that finding

distinct 𝑥,𝑦, 𝑧 ∈ 𝑆 such that 𝑥 + 𝑦 = 𝑧 requires Ω(𝑁 2−𝜖) time, for

any small constant 𝜖 > 0 [40].

Theorem 14. The worst-case running time of any algorithm for
the temporal instance R of the non-r-hierarchical join Q of size 𝑁 is
Ω(𝑁 4/3−𝜖) for any constant 𝜖 > 0, under the 3SUM conjecture, even
if the output size is 𝑂 (𝑁).

Proof of Sketch. Hu et al. [47] (Lemma 5.2) proved that any

non-r-hierarchical join Q = (V, E) has a minimal path of length 3,

i.e., it is always feasible to find 𝑒1, 𝑒2, 𝑒3 ∈ E and 𝑥1, 𝑥2, 𝑥3, 𝑥4 ∈ V
such that 𝑥1 ∈ 𝑒1 − 𝑒2 − 𝑒3, 𝑥2 ∈ 𝑒1 ∩ 𝑒2 − 𝑒3, 𝑥3 ∈ 𝑒2 ∩ 𝑒3 − 𝑒1 and
𝑥4 ∈ 𝑒3 − 𝑒2 − 𝑒1. It thus suffices to prove the theorem for line-3

join 𝑄𝐿3 = 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z 𝑅3 (𝑥3, 𝑥4).

We show a reduction from triangle-listing problem to computing

temporal join QL3. Patrascu [69] has proved that in an undirected

graph𝐺 , listing 𝑁 triangles takes Ω(𝑁 4/3−𝜖) time for any constant

𝜖 > 0, assuming the 3SUM conjecture. Given an undirected graph𝐺 ,

we construct a temporal instance R for QL3. For simplicity, assume

vertices in 𝐺 and the domain of attributes in R are integers. For

each edge (𝑢, 𝑣) in 𝐺 , we add following tuples to R:
• ⟨(𝑢 + 𝑣,𝑢), [𝑣, 𝑣]⟩ and ⟨(𝑢 + 𝑣, 𝑣), [𝑢,𝑢]⟩ to 𝑅1;
• ⟨(𝑢, 𝑣), (−∞, +∞)⟩ and ⟨(𝑣,𝑢), (−∞, +∞)⟩ to 𝑅2;
• ⟨(𝑢,𝑢 + 𝑣), [𝑣, 𝑣]⟩ and ⟨(𝑣,𝑢 + 𝑣), [𝑢,𝑢]⟩ to 𝑅3.

Note that there are no identical tuples in one relation, since edges

in 𝐺 are distinct. There is a one-to-one correspondence between

QL3 (R) and the set of triangles in 𝐺 . The triple {𝑢, 𝑣,𝑤} forms a

triangle in𝐺 if and only if ⟨(𝑢+𝑤,𝑢, 𝑣, 𝑣+𝑤), [𝑤,𝑤]⟩,⟨(𝑣+𝑤, 𝑣,𝑢,𝑢+
𝑤), [𝑤,𝑤]⟩, ⟨(𝑢 + 𝑣,𝑢,𝑤,𝑤 + 𝑣), [𝑣, 𝑣]⟩, ⟨(𝑤 + 𝑣,𝑤,𝑢,𝑢 + 𝑣), [𝑣, 𝑣]⟩,
⟨(𝑣 +𝑢, 𝑣,𝑤,𝑤 +𝑢), [𝑢,𝑢]⟩, ⟨(𝑤 +𝑢,𝑤, 𝑣, 𝑣 +𝑢), [𝑢,𝑢]⟩ are in QL3 (R).
If there are 𝑁 triangles in 𝐺 , there are 𝑂 (𝑁) temporal join results

in QL3 (R). Any algorithm correctly computing QL3 (R) in 𝑂 (𝑁𝛾)
time can list all triangles in 𝐺 in 𝑂 (𝑁𝛾) time. Implied by the lower

bound for listing triangles, we can show that computing QL3 (R)
in 𝑂 (𝑁 4/3−𝜖) time is 3SUM-hard, for any 𝜖 > 0. □

5.2 Non-temporal Counterpart

Although we have shown a lower bound Ω(𝑁 4/3 + 𝐾) for line-3
temporal join in Theorem 14, it seems quite difficult to improve

our current upper bound of 𝑂 (𝑁 1.5 + 𝐾) further (Section 4.2). The

intuition is that evaluating a temporal line-3 join is equivalent to

evaluating a non-temporal triangle join, which is formally captured

by Theorem 15 and generalized to arbitrary temporal joins.

Theorem 15. A temporal join query Q = (V, E) is as hard as
any non-temporal join Q𝑆 for any subset 𝑆 ⊆ E, where Q𝑆 = (V ∪
{𝑥}, E − 𝑆 + {𝑒 ∪ {𝑥} | 𝑒 ∈ 𝑆}).

The proof of Theorem 15 can be found in the full version [15].

We refer Q𝑆 to be a non-temporal counterpart of Q. An example

of non-temporal counterpart of line-3 join is 𝑄𝑆 = 𝑅1 (𝑥1, 𝑥2, 𝑥) Z
𝑅2 (𝑥2, 𝑥3) Z 𝑅3 (𝑥3, 𝑥4, 𝑥) for 𝑆 = {𝑅1, 𝑅3}. So far, a non-temporal

join algorithm of 𝑂 (𝑁 subw(Q) + 𝐾) time complexity has been pro-

posed in [17], where subw(Q) is the sub-modular width of Q. No
lower bounds are known to rule out faster algorithms for any spe-

cific query, but the known results [17, 62] suggested it very unlikely

that an algorithm with 𝑂 (𝑁 subw(𝑄)−𝜖 + 𝐾) time complexity exists,

for any small constant 𝜖 > 0. In view of Theorem 15, we make the

following conjecture:

Conjecture 16. For a temporal join queryQ = (V, E), there is an
instanceR such that it is impossible to computeQ(R) in𝑂 (𝑁𝑤−𝜖+𝐾)
time where𝑤 = max𝑆⊆E subw(Q𝑆), for any small constant 𝜖 > 0.

6 EXPERIMENTS

6.1 Setup

All our experiments were implemented in C++, and performed on

a Linux machine with two Intel Xeon E5-2640 v4 2.4GHz processor

with 256GB of memory. All codes are public at [14].

Algorithms.We have implemented three algorithms for evalua-

tion. (1) TimeFirst: We have implemented Algorithm 1 for both

hierarchical temporal joins and general temporal acyclic joins. (2)

Hybrid: We have implemented Algorithm 5 for general tempo-

ral joins, and its optimization versionHybrid-Interval as de-

scribed in Algorithm 6. (3) Baseline: One baseline algorithm for

general temporal join queries sequentially picks a pair of relations

to join and materializes their join results as a new relation to be

further joined (if applicable, we always pick the best join order).

Two relations are joined by resorting to the forward-scan-based

algorithm [26], which has been experimentally verified as the most

efficient temporal join algorithm. (4) JoinFirst: Another baseline

algorithm for temporal graph query processing is an instantiation

of the join-first approach, which computes all subgraphs matching

the query pattern using mature subgraph matching techniques [8]

and then checks the validity interval for each subgraph. We note

that the same approach has been adopted by previous work [39].

Datasets and Queries. We use both synthetic and real datasets

for evaluating different classes of temporal join queries.

Synthetic Dataset. The idea is to enlarge the intermediate tem-
poral join size while keeping the final (temporal/durable) join size

small, i.e., a large number of intermediate results are dangling with-

out participating in final results. This can be achieved by specifying

the distribution of validity intervals of input tuples and adding two

additional relations for controlling intermediate results. Details

can be found in the full version [15].Overall, we guarantee that no

pairwise join ordering can easily compute the join results.

TPC-BiH [50] is the bi-temporal version of the TPC-H bench-

mark dataset, extended with different types of history classes, such

as degenerated, fully bi-temporal or multiple user times. Note that 5

(partsupp, part, lineitem, orders, customer) out of 8 relations have tem-

poral validity intervals. We select out the following 4 join queries:

• 𝑄tpc3 = customer Z order Z lineitem;

• 𝑄tpc5 = customer Z order Z lineitem Z supplier;

• 𝑄tpc9 = partsupp Z lineitem Z order;

• 𝑄tpc10 = partsupp Z lineitem Z order Z customer.

of the 22 standard queries from the benchmark [13] by identifying

the underlying temporal join query involving at least 3 relations.

Flights [2] is a graph with 650 vertices and 1,700 edges, storing

the flight information with 7 attributes: id, flight-number, departure-
airport, arrival-airport, aircraft-id, departure-time and arrival-time.

DBLP [58] is a common ego-network from SNAP (Stanford

Network Analysis Project) [58] for DBLP. A collaboration graph

is constructed where two authors are connected if they publish

at least one paper together in any inproceeding. This graph has

2,786,059 authors and 9,460,140 edges. Each edge is associated with

a set of disjoint intervals, each one indicating a continuous period

in which these two authors keep publishing paper in every years.

TPC-E [12] is an online transaction processing benchmark for

stock exchange. We aggregate over the temporal dataset and create

a new table 𝑅(CustomerKey, SecurityId, StartTime, EndTime) for
customer and security. An interesting task is to mine customers

with similar trading behaviors, e.g.,Qtpce = 𝜎count≥4
∑
𝑆 𝑅(𝐶1, 𝑆) Z

𝑅(𝐶2, 𝑆) Z · · · Z 𝑅(𝐶5, 𝑆) finds all sets of 5 customers who held

more than 4 common active securities at some timestamp.

LDBC-SNB [3] is a transactional graph processing benchmark,

mimicking a social network’s activity with the evolving of time.

Table 1: Execution plans for temporal join queries in Section 6. For TimeFirst, we show the GHD for line joins QL3,QL4,QL5
and the attribute tree for star joins QS3,QS4,QS5. For Hybrid, we show the GHD for all joins, where each (.) denotes one node.
For Hybrid-Interval, we show the partition (𝐼 , 𝐽) for the set of attributes, used by Algorithm 6.

Join TimeFirst Hybrid Hybrid-Interval Datasets

QL3 (𝑥1𝑥2)-(𝑥2𝑥3)-(𝑥3𝑥4) (𝑥1𝑥2𝑥3) -(𝑥3𝑥4) 𝐼 = {𝑥1, 𝑥4}, 𝐽 = {𝑥2, 𝑥3}
allQL4 (𝑥1𝑥2)-(𝑥2𝑥3)-(𝑥3𝑥4)-(𝑥4𝑥5) (𝑥1𝑥2𝑥3) -(𝑥3𝑥4𝑥5) 𝐼 = {𝑥1, 𝑥5}, 𝐽 = {𝑥2, 𝑥3, 𝑥4}

QL5 (𝑥1𝑥2)-(𝑥2𝑥3)-(𝑥3𝑥4)-(𝑥4𝑥5)-(𝑥5𝑥6) (𝑥1𝑥2𝑥3𝑥4) -(𝑥4𝑥5𝑥6) 𝐼 = {𝑥1, 𝑥6}, 𝐽 = {𝑥2, 𝑥3, 𝑥4, 𝑥5} Synthetic

QS3,QS4,QS5 (𝑥1) − {(𝑥2), (𝑥3), · · · , } – – Flights, DBLP

QC3 – (𝑥1𝑥2𝑥3) –

SyntheticQC4 – (𝑥1𝑥2𝑥3)-(𝑥1𝑥4𝑥3) –

FlightsQC5 – (𝑥1𝑥2𝑥3𝑥4) - (𝑥1𝑥4𝑥5) –

Q
bowtie

– (𝑥1𝑥2𝑥3)-(𝑥1𝑥4𝑥5) – Flights

Figure 8: Running time (above) and peak memory usage (below) on synthetic datasets. From left to right:

line (QL4), star (Q𝑆4), and cyclic (Q𝐶4)

Figure 9: Scalability.

Figure 10: Running time on real datasets (from left to right): TPC-BiH (𝑄tpc3, 𝑄tpc5, 𝑄tpc9, 𝑄tpc10), Flight

(𝑄𝐿3 ,𝑄𝐿4 ,𝑄𝐿5 ,𝑄𝑆3 ,𝑄𝑆4 ,𝑄𝑆5 ,𝑄𝐶3
,𝑄𝐶4

,𝑄𝐶5
,𝑄

bowtie
) and DBLP (𝑄𝐿3 ,𝑄𝐿4 ,𝑄𝐿5 ,𝑄𝑆3 ,𝑄𝑆4 ,𝑄𝑆5).

Figure 11: Peak Memory us-

age on TPC-BiH.

A temporal table PersonKnowsPerson(PersonId, PersonId, StartTime,
CurruentTime) is used to model relationships among people.

Queries. The set of queries to be evaluated together with their

execution plans are summarized in Table 1.

6.2 Experimental Results

Results on Synthetic Dataset. We generate synthetic datasets

for line (QL4), star (Q𝑆4), and cyclic (Q𝐶4) joins, and run our al-

gorithms with Baseline. For each query/dataset combination, we

compare the query time and the maximum memory usage for dif-

ferent values of durability threshold 𝜏 . The results are shown in

Figure 8. We choose 𝜏 ≤ 1000 since the number of final results

already decreases to 0 for 𝜏 ≥ 1000. Generally, the number of final

temporal join results increases as 𝜏 decreases. More specifically,

on the synthetic dataset over QL4, there are 109, 98, 69, 10, 8 final
results, corresponding to 𝜏 = 100, 200, 400, 800 respectively. As veri-

fied in Figure 8, the runtime of Baseline increases as 𝜏 decreases.

In all cases, our algorithms perform better than Baseline which suf-

fers from a large number of intermediate results. For line join, the

best algorithms, as expected, are TimeFirst and Hybrid-Interval.

Hybrid-Interval runs 70× faster and uses 1000× less space than
Baseline. The execution of Hybrid is similar to Baseline on line

join queries; there are only small differences in their runtime and

memory usage. We also observe this phenomenon on real datasets

later, because Hybrid over line joins just degenerates to the pair-

wise framework by Baseline, as shown in Table 1. For star join,

TimeFirst outperforms Baseline significantly since its running

time and memory usage only depend on the input size and final

temporal join size (recall Theorem 6), instead of the large number

of intermediate results. In some cases, TimeFirst runs 60× faster
while using 1000× less memory than Baseline. While Hybrid per-

forms similarly with Baseline over the line join, it outperforms

Baseline for the cyclic join query, as the number of intermediate

join results generated by Hybrid, i.e., the size of materialized rela-

tions for nodes in the GHD, is much smaller than the intermediate

join results generated by Baseline. For example, on length-4 cy-

cle join Q𝐶4 = 𝑅1 (𝑥1, 𝑥2) Z 𝑅2 (𝑥2, 𝑥3) Z 𝑅3 (𝑥3, 𝑥4) Z 𝑅4 (𝑥4, 𝑥1),
Baseline has to materialize a line-3 join (say 𝑅1 Z 𝑅2 Z 𝑅3) as

intermediate join results, while Hybrid only materializes line-2

joins (say 𝑅1 Z 𝑅2) in the process. In most cases, Hybrid runs 5×
faster using 1000× less memory than Baseline.

We also experimented with more complicated join queries us-

ing the synthetic data generator in Section 6.1. In all cases, our

algorithms run much faster than Baseline while using much less

space. Interestingly, even with small-size tables, Baseline some-

times could not finish its execution because it ran out of memory

with too many intermediate results.

Results on TPC-BiH. In Figure 10, we evaluate different algo-

rithms on four line join queries, and report their runtime as a

ratio to Baseline’s runtime. We also report the peak memory con-

sumption in Figure 11. On query 𝑄tpc3, only Hybrid-Interval can

slightly win over Baseline—the ratio is 0.96. Hybrid roughly equals

Baseline, but TimeFirst is nearly 3 times slower than Baseline.

The main reason is that relations involved in these two queries

(e.g., customer, order and lineitem) generally have low multiplicity

between join keys. For example, most customers only place a single

order, and most orders only contain one lineitem. Hence, Base-

line would not suffer from huge intermediate results. In fact, after

the first binary temporal join, we observe that the intermediate

table size has almost shrunk to the final answer size. Unfortunately,

TimeFirst and Hybrid still have to build and maintain auxiliary

data structures for pruning, but these efforts are essentially wasted

because there are so few intermediate results. Because of these

data characteristics, the overhead of TimeFirst and Hybrid makes

them less efficient than Baseline. The peak memory consumption

from Figure 11 also confirms this finding—on 𝑄tpc3, Baseline used

significantly less memory than other approaches. Results over𝑄tpc5

are similar to that of 𝑄tpc3, but more relations in the query slow

Baseline down since longer joins lead to more intermediate results.

On𝑄tpc5, TimeFirst and Hybrid still do not show advantages over

Baseline, while Hybrid-Interval can achieve about 50% speedup.

However, when it comes to 𝑄tpc9, we can see our proposed al-

gorithms taking a clear lead — all of them can be at least 10×
faster than Baseline, with Hybrid-Interval providing more than

100× speedup. The reason of this dramatic inversion of relative

performance still comes down to the data characteristics of joining

relations. In 𝑄tpc9, a one-to-many relationship exists between part-
supp and lineitem, hence the intermediate results explode as soon as

these relations were joined. Again, peak memory consumption from

Figure 11 confirms this behavior. The memory usages of TimeFirst,

Hybrid and Hybrid-Interval are only 20% of that of Baseline,

demonstrating their pruning power on skipping those unnecessary

intermediate results. Similar conclusions can be drawn on 𝑄tpc10.

Results on Flight & DBLP. Both of these datasets are graph-

structured. We evaluate a larger class of join queries, including line

joins, star joins and general cyclic joins, by conducting self-joins

on the edge table. For comprehensiveness, we also implemented

JoinFirst for subgraph matching over temporal graphs. Results

are summarized in Figure 10 (due to space limit, the results on peak

memory consumption of each approach are included in the full ver-

sion [15]). Same as before, we report running time as a ratio to that

of Baseline. On DBLP, for each type of query, JoinFirst performs

the worst, up to 3 orders of magnitude slower than Baseline, since

it completely ignores temporal predicates until the last. In contrast,

at least one approach from our proposed temporal join toolbox

wins over Baseline, offering up to 2× speedup. On Flight, a much

smaller graph, JoinFirst wins on simpler query patterns (QL3, QS3)
by an order of magnitude, but can be more than 10× slower on

more complex queries (QL5, QS5). On the other hand, we can see

JoinFirst generally performs well on cyclic queries (QC3, QC4)
with a 10-100× speedup over Baseline. But similarly, Hybrid can

beat JoinFirst on complex patterns (QC5, Qbowtie) up to an order

of magnitude. Overall, JoinFirst outperforms other methods when

the number of non-temporal join results is very small, due to the

rather simple structure of input query. Moreover, for other types

of query on both datasets, at least one approach from our toolbox

performs better than Baseline, achieving 2-100× speedup. Though

JoinFirst can be an attractive option when dealing with simple

patterns on small datasets, our proposed solutions are generally

more robust and efficient across datasets and query patterns.

It is worth mentioning that the improvement on graphs is not as

significant as that on the synthetic datasets or TPC-BiH. One reason

is that self-joins produce significantly different number of inter-

mediate results depending on the input queries. More specifically,

no dangling results will be generated for line, star and even-length

cycle joins, as it is always possible to extend an intermediate result

into a final result, for example (𝑎 − 𝑏, 𝑏 − 𝑎, 𝑎 − 𝑏, · · ·) is a line or
an even-length cycle, (𝑎 − 𝑏, 𝑎 − 𝑏, · · ·) is a star, etc. These trivial
patterns make it difficult to trim intermediate results, so such data

characteristic favors Baseline and weakens the pruning power

of our techniques. As verified in Figure 10, Baseline performs

competitively with the best of our algorithms on QL3, Q𝐿5, Q𝐿6,
Q𝑆3, Q𝑆4, Q𝑆5 and Q𝐶4. However, large number of intermediate

join results could be generated for odd-length cycles, for example

(𝑎, 𝑏, 𝑎, 𝑏, 𝑎, 𝑏) is not a length-5 cycle. On these queries, Hybrid

performs much better than Baseline, confirmed by Figure 10.

Scalability Results on TPC-E & LDBC-SNB. We evaluate the

scalability of our algorithms on the TPC-E and LDBC-SNB datasets.

For TPC-E, we consider a star join with 𝜏 = 170 and vary the input

size 𝑁 from 50𝐾 to 1𝑀 . For LDBC-SNB, we use a line join with

𝜏 = 11 and vary 𝑁 from 10𝐾 to 2𝑀 . In order to normalize the per-

formance numbers for better comparison across different datasets,

we define a new measurement throughput as the average number

of join results generated per time unit—the higher the throughput

the better. As shown in Figure 9, the throughput for all algorithms

roughly stays the same across different input size, despite small

variations, which demonstrates that TimeFirst, Hybrid-Interval

and Baseline are output-sensitive, when the output size dominates

the input size. On average, TimeFirst outperforms Baseline with

1.5× higher throughput on star join, and Hybrid-Interval beats

Baseline on line join with roughly 1.6× higher throughput.

6.3 Summary

From our experiments, we make the following observations. (i)

JoinFirst performs well only when the input query has a rather

simple structure and the dataset size is small, verifying our theoreti-

cal observation that it benefits from small number of non-temporal

join results. But JoinFirst behaves the worst when the input query

is complex or the dataset is large, due to the large number of non-

temporal join results, since it first ignores temporal predicates in

join processing. (ii) In almost all cases, at least one of our proposed

algorithms (TimeFirst, Hybrid and Hybrid-Interval) is more effi-

cient than Baseline. Baseline (or JoinFirst), and provides a good

option even in “easy” scenarios, e.g., when the input size is small,

when there are very few dangling intermediate results, or when the

query is very simple. (iii) Most importantly, our temporal toolkit

is more robust and scalable to query types and input size. Overall,

they are fast over all possible scenarios, and can efficiently handle

hard instances where Baseline/JoinFirst performs poorly.

Meanwhile, we find that the performance of our proposed algo-

rithms (TimeFirst, Hybrid and Hybrid-Interval) varies depend-

ing on the query structures, which verifies our theoretical findings

in previous sections. Roughly speaking, TimeFirst behaves the

best on hierarchical temporal joins (e.g., star join). For acyclic but

non-hierarchical temporal joins (e.g., line join), Hybrid-Interval

outperforms both TimeFirst and Hybrid if the GHD is guarded,

which illustrates the power of simplification and interval join in

Section 4.2. For cyclic temporal joins, Hybrid is always better than

the TimeFirst on cycle joins, but JoinFirst could be competitive

as well depending on the data statistics. All these observations

conform our guideline shown in Figure 7.

An important avenue for future work would be a cost-based

optimizer that is aware of both query structure and the underlying

data characteristics, and can make intelligent decisions on the best

algorithm to use—be it one of the algorithms in our toolbox, or just

Baseline, or JoinFirst—for a given occasion.

7 RELATEDWORK

Temporal Join and Temporal Support in DBMS. Most of previ-

ous efforts are put to binary temporal join, involving only two rela-

tions. Temporal binary join reduces to a set of interval joins, so most

of previous temporal join algorithms are based on interval joins.

Many different techniques have been proposed such as sort/merge-

based [45], sweep-plane-based [20, 26, 27, 70], index-based [22, 36,

51, 87], partitioning-based techniques [28, 34, 60, 74, 75, 77] and

relational algebra [33]. There are some other works [31, 56] in

parallel/distribution settings; and we will focus on in-memory pro-

cessing in this work. Moreover, how to extend these techniques to

a temporal join query involve multiple relations is still unclear.

The adoption of temporal features in industrial database man-

agement systems (DBMS) was much slower. SQL included temporal

features as part of the SQL:2011 standard [57]. Last decade has wit-

ness a big burst of temporal support in conventional database man-

agement systems, e.g., MariaDB [4], Oracle [6], IBM DB2 [72], Tera-

data [19], PostgreSQL [7], Microsoft SQL server [10], Microsoft Trill

Temporal Analytical Engine [30]. Other non-relational database

management systems also provide temporal features [5, 9, 11, 16].

Query processing over Temporal Graphs/Networks. Exten-

sive research has been performed over temporal graphs and net-

works for various applications (and we refer interested readers to

some nice surveys [29, 46, 54, 63]), depending on different temporal

sources (such as nodes, edges, or both), temporal predicates (such

as overlap, non-overlap but with bounded gap, chronological or-

dering), pattern constraints (such as isomorphic subgraphs, motifs),

etc. Several representative works include temporal journey/path

and its applications [53, 67, 79, 81–83], temporal community de-

tection [42, 59, 84, 85], and temporal motifs search [48, 55, 68, 88].

Closely related to our work, temporal join over graphs/networks

degenerates to the subgraph isomorphism problem as a self-join,

while edges participating in the subgraph are required to have

non-empty intersection among their validity intervals. Temporal

subgraph isomorphism has also been widely studied in [61, 71, 78],

but in a different setting where edges are put into a temporal se-

quence and all timestamps fall into a bounded-size window.

To the best of our knowledge, temporal subgraph isomorphism

under the non-empty overlap constraint on edges has been only

considered in [39] and [73], both of which consider graph patterns

as a special case of our temporal joins over hypergraph. [39] designs

a general index for searching temporal patterns, while our work

provides a toolkit for temporal join that exploits input query struc-

ture. [73] finds the top-𝑘 durable subgraphs, while our work aims

to return all durable join results satisfying the durability condition

𝜏 . Moreover, these two works focus on empirical evaluation; our

work provide a combination of theoretical and empirical analysis.

Non-temporal Join Algorithms. Numerous variants of the prob-

lem have been proposed and hundreds of algorithms have been

presented for non-temporal joins. We refer readers to [64] for a sur-

vey on join processing. Here we briefly mention some of the work

that is directly related to this paper. The tractability of relational

join queries is often characterized by the “acyclicity” of the un-

derlying hypergraph of the join queries. The classical Yannakakis

algorithm [86] computes an acyclic joins in 𝑂 (𝑁 + 𝐾) time. As

shown in [69], a triangle join, which is one of the simplest example

of cyclic join, takes Ω(𝑁 4/3−𝜖) time for any constant 𝜖 > 0, even

when 𝐾 = 𝑂 (𝑁), assuming the 3SUM conjecture. One standard

way of handling cyclic joins is to build a decomposition tree of the

hypergraph, such that each node defined by a subquery will be

computed first and then apply the Yannakakis algorithm on the de-

composition tree. Algorithms in this line have their time complexity

in terms of𝑂 (𝑁𝑤 +𝐾), where𝑤 is the width of the decomposition

tree such that 𝑂 (𝑁𝑤) time is needed for computing every node

and materializing their results in this tree; see [43, 62]. Grohe and

Marx [44] (see also [21]) established a relationship between the size

of a join query and the fractional edge cover 𝜌 of the join. Building

on their work, Ngo et al [65] presented a worst-case optimal algo-

rithm for arbitrary join queries of time complexity 𝑂 (𝑁 𝜌), which
is simplified in subsequent work [66].

REFERENCES

[1] DBLP. https://snap.stanford.edu/data/com-DBLP.html.

[2] Flights Dataset. https://github.com/IITDBGroup/2019-PVLDB-Reproducibility-

Snapshot-Semantics-For-Temporal-Multiset-Relations/tree/master/datasets/

flights.

[3] LDBC’s Social Network Benchmark. https://ldbcouncil.org/.

[4] MariaDB. https://mariadb.com/kb/en/library/system-versioned-tables/.

[5] MarkLogic. https://www.marklogic.com/.

[6] Oracle. https://www.oracle.com.

[7] PostgreSQL. https://www.postgresql.org.

[8] RapidMatch. https://github.com/RapidsAtHKUST/RapidMatch.

[9] SirixDB. https://sirix.io/.

[10] SQL Server. https://www.microsoft.com/en-us/sql-server/.

[11] TerminusDB. https://terminusdb.com/.

[12] TPC-E Benchmark. http://www.tpc.org/tpce/.

[13] TPC-H Benchmark. http://www.tpc.org/tpch/.

[14] https://github.com/huxiao2010/TemporalJoin.

[15] https://github.com/huxiao2010/TemporalJoin/blob/main/Temporal_Join_

SIGMOD_Full.pdf.

[16] XTDB. https://github.com/xtdb/xtdb.

[17] M. A. Khamis, H. Q. Ngo, and D. Suciu. 2017. What do Shannon-type Inequalities,

Submodular Width, and Disjunctive Datalog have to do with one another?. In

PODS. 429–444.
[18] Serge Abiteboul, Richard Hull, and Victor Vianu. 1995. Foundations of databases.

Vol. 8. Addison-Wesley Reading.

[19] M. Al-Kateb, A. Ghazal, A. Crolotte, R. Bhashyam, J. Chimanchode, and S. Pakala.

2013. Temporal query processing in Teradata. In EDBT. 573–578.
[20] L. Arge, O. Procopiuc, S. Ramaswamy, T. Suel, and J. S. Vitter. 1998. Scalable

sweeping-based spatial join. In VLDB, Vol. 98. 570–581.
[21] A. Atserias, Ma. Grohe, and D. Marx. 2008. Size bounds and query plans for

relational joins. In FOCS. IEEE, 739–748.
[22] Bruno Becker, Stephan Gschwind, Thomas Ohler, Bernhard Seeger, and Peter

Widmayer. 1996. An asymptotically optimal multiversion B-tree. The VLDB
Journal 5, 4 (1996), 264–275.

[23] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. 1983. On the desirability of

acyclic database schemes. JACM 30, 3 (1983), 479–513.

[24] C. Berkholz, J. Keppeler, and N. Schweikardt. 2017. Answering conjunctive

queries under updates. In PODS. 303–318.
[25] M. Böhlen, J. Gamper, and C. S. Jensen. 2006. Multi-dimensional aggregation for

temporal data. In EDBT. 257–275.
[26] P. Bouros, N. Mamoulis, D. Tsitsigkos, and M. Terrovitis. 2021. In-Memory

Interval Joins. The VLDB journal (2021), 1–25.
[27] T. Brinkhoff, H. Kriegel, and B. Seeger. 1993. Efficient processing of spatial joins

using R-trees. ACM SIGMOD Record 22, 2 (1993), 237–246.

[28] F. Cafagna and M. H. Böhlen. 2017. Disjoint interval partitioning. The VLDB
Journal 26, 3 (2017), 447–466.

[29] A. Casteigts, P. Flocchini, W. Quattrociocchi, and N. Santoro. 2012. Time-varying

graphs and dynamic networks. Int. J. Parallel Emergent Distrib. Syst. 27, 5 (2012),
387–408.

[30] B. Chandramouli, J. Goldstein, M. Barnett, R. DeLine, D. Fisher, J. C. Platt, J. F.

Terwilliger, and J. Wernsing. 2014. Trill: A high-performance incremental query

processor for diverse analytics. The VLDB journal 8, 4 (2014), 401–412.
[31] B. Chawda, H. Gupta, S. Negi, T. A. Faruquie, L. V. Subramaniam, and M. K.

Mohania. 2014. Processing Interval Joins On Map-Reduce.. In EDBT. 463–474.
[32] N. Dalvi and D. Suciu. 2007. Efficient query evaluation on probabilistic databases.

The VLDB Journal 16, 4 (2007), 523–544.
[33] A. Dignös, M. H. Böhlen, and J. Gamper. 2012. Temporal alignment. In SIGMOD.

433–444.

[34] A. Dignös, M. H. Böhlen, and J. Gamper. 2014. Overlap interval partition join. In

SIGMOD. 1459–1470.
[35] R. Elmasri, G. T. Wuu, and Y. Kim. 1990. The time index: An access structure for

temporal data. In VLDB. 1–12.
[36] J. Enderle, M. Hampel, and T. Seidl. 2004. Joining interval data in relational

databases. In SIGMOD. 683–694.
[37] R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database

schemes. JACM 30, 3 (1983), 514–550.

[38] R. Fagin and D. Olteanu. 2016. Dichotomies for Queries with Negation in Proba-

bilistic Databases. TODS 41, 1 (2016).
[39] M. Franzke, T. Emrich, A. Züfle, and M. Renz. 2018. Pattern search in temporal

social networks. In EDBT.
[40] A. Gajentaan and M. H. Overmars. 1995. On a class of O (n2) problems in

computational geometry. Computational geometry 5, 3 (1995), 165–185.

[41] D. Gao, C. S. Jensen, R. T. Snodgrass, and Michael D. Soo. 2005. Join operations

in temporal databases. The VLDB journal 14, 1 (2005), 2–29.
[42] M. Gong, L. Zhang, J. Ma, and L. Jiao. 2012. Community detection in dynamic

social networks based on multiobjective immune algorithm. JCST 27, 3 (2012),

455–467.

[43] G. Gottlob, G. Greco, and F. Scarcello. 2014. Treewidth and hypertree width.

Tractability: Practical Approaches to Hard Problems 1 (2014).
[44] M. Grohe and D. Marx. 2014. Constraint solving via fractional edge covers. TALG

11, 1 (2014), 1–20.

[45] H. Gunadhi and A. Segev. 1991. Query processing algorithms for temporal

intersection joins. In ICDE. 336–344.
[46] P. Holme and J. Saramäki. 2012. Temporal networks. Physics reports 519, 3 (2012),

97–125.

[47] X. Hu and K. Yi. 2019. Instance and Output Optimal Parallel Algorithms for

Acyclic Joins. In PODS. 450–463.
[48] Yuriy Hulovatyy, Huili Chen, and Tijana Milenković. 2015. Exploring the struc-

ture and function of temporal networks with dynamic graphlets. Bioinformatics
31, 12 (2015), i171–i180.

[49] M. Idris, M. Ugarte, and S. Vansummeren. 2017. The dynamic yannakakis al-

gorithm: Compact and efficient query processing under updates. In SIGMOD.
1259–1274.

[50] M. Kaufmann, P. M. Fischer, N. May, A. Tonder, and D. Kossmann. 2013. Tpc-bih:

A benchmark for bitemporal databases. In TPCTC. Springer, 16–31.
[51] M. Kaufmann, A. A. Manjili, P. Vagenas, P. M. Fischer, D. Kossmann, F. Färber,

and N. May. 2013. Timeline index: a unified data structure for processing queries

on temporal data in SAP HANA. In SIGMOD. 1173–1184.
[52] N. Kline and R. T. Snodgrass. 1995. Computing temporal aggregates. In ICDE.

222–231.

[53] G. Kossinets, J. Kleinberg, and D. Watts. 2008. The structure of information

pathways in a social communication network. In SIGKDD. 435–443.
[54] V. Kostakos. 2009. Temporal graphs. Physica A: Statistical Mechanics and its

Applications 388, 6 (2009), 1007–1023.
[55] Lauri Kovanen, Márton Karsai, Kimmo Kaski, János Kertész, and Jari Saramäki.

2011. Temporal motifs in time-dependent networks. Journal of Statistical Me-
chanics: Theory and Experiment 2011, 11 (2011), P11005.

[56] H. Kriegel, P. Kunath, M. Pfeifle, and M. Renz. 2005. Distributed intersection join

of complex interval sequences. In DASFAA. Springer, 748–760.
[57] K. Kulkarni and J. Michels. 2012. Temporal features in SQL: 2011. ACM SIGMOD

Record 41, 3 (2012), 34–43.

[58] J. Leskovec and A. Krevl. June 2014. SNAP Datasets: Stanford large network

dataset collection. (June 2014).

[59] Y. Lin, Y. Chi, S. Zhu, H. Sundaram, and B. L. Tseng. 2008. Facetnet: a framework

for analyzing communities and their evolutions in dynamic networks. In WWW.

685–694.

[60] H. Lu, B. C. Ooi, and K. Tan. 1994. On spatially partitioned temporal join. In

VLDB. 546–557.
[61] P. Mackey, K. Porterfield, E. Fitzhenry, S. Choudhury, and G. Chin. 2018. A

chronological edge-driven approach to temporal subgraph isomorphism. In Big
Data. 3972–3979.

[62] D. Marx. 2013. Tractable hypergraph properties for constraint satisfaction and

conjunctive queries. JACM 60, 6 (2013), 1–51.

[63] O. Michail. 2016. An introduction to temporal graphs: An algorithmic perspective.

Internet Mathematics 12, 4 (2016), 239–280.
[64] H. Q. Ngo. 2018. Worst-case optimal join algorithms: Techniques, results, and

open problems. In PODS. 111–124.
[65] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. 2018. Worst-case optimal join algorithms.

JACM 65, 3 (2018), 1–40.

[66] H. Q. Ngo, C. Ré, and A. Rudra. 2014. Skew strikes back: New developments in

the theory of join algorithms. ACM SIGMOD Record 42, 4 (2014), 5–16.

[67] R. K. Pan and J. Saramäki. 2011. Path lengths, correlations, and centrality in

temporal networks. Physical Review E 84, 1 (2011), 016105.

[68] A. Paranjape, A. R. Benson, and J. Leskovec. 2017. Motifs in temporal networks.

In WSDM. 601–610.

[69] M. Patrascu. 2010. Towards polynomial lower bounds for dynamic problems. In

STOC. 603–610.
[70] D. Piatov, S. Helmer, and A. Dignös. 2016. An interval join optimized for modern

hardware. In ICDE. 1098–1109.
[71] U. Redmond and P. Cunningham. 2013. Temporal subgraph isomorphism. In

ASONAM. IEEE, 1451–1452.

[72] C. M. Saracco, M. Nicola, and L. Gandhi. 2010. A matter of time: Temporal data
management in DB2 for z. Technical Report. IBM Corporation, New York.

[73] K. Semertzidis and E. Pitoura. 2016. Durable graph pattern queries on historical

graphs. In ICDE. 541–552.
[74] H. Shen, B. C. Ooi, and H. Lu. 1994. The TP-Index: A dynamic and efficient

indexing mechanism for temporal databases. In ICDE. 274–281.
[75] I. Sitzmann and P. J. Stuckey. 2000. Improving temporal joins using histograms.

In DEXA. Springer, 488–498.
[76] R. T. Snodgrass, I. Ahn, G. Ariav, D. Batory, J. Clifford, C. E. Dyreson, R. Elmasri,

F. Grandi, C. S. Jensen, W. Käfer, et al. 1994. TSQL2 language specification. ACM
SIGMOD Record 23, 1 (1994), 65–86.

[77] M. D. Soo, R. T. Snodgrass, and C. S. Jensen. 1994. Efficient evaluation of the

valid-time natural join. In ICDE. 282–292.

https://snap.stanford.edu/data/com-DBLP.html
https://github.com/IITDBGroup/2019-PVLDB-Reproducibility-Snapshot-Semantics-For-Temporal-Multiset-Relations/tree/master/datasets/flights
https://github.com/IITDBGroup/2019-PVLDB-Reproducibility-Snapshot-Semantics-For-Temporal-Multiset-Relations/tree/master/datasets/flights
https://github.com/IITDBGroup/2019-PVLDB-Reproducibility-Snapshot-Semantics-For-Temporal-Multiset-Relations/tree/master/datasets/flights
https://ldbcouncil.org/
https://mariadb.com/kb/en/library/system-versioned-tables/
https://www.marklogic.com/
https://www.oracle.com
https://www.postgresql.org.
https://github.com/RapidsAtHKUST/RapidMatch
https://sirix.io/
https://www.microsoft.com/en-us/sql-server/
https://terminusdb.com/
http://www.tpc.org/tpce/.
http://www.tpc.org/tpch/.
https://github.com/huxiao2010/TemporalJoin
https://github.com/huxiao2010/TemporalJoin/blob/main/Temporal_Join_SIGMOD_Full.pdf
https://github.com/huxiao2010/TemporalJoin/blob/main/Temporal_Join_SIGMOD_Full.pdf
https://github.com/xtdb/xtdb

[78] X. Sun, Y. Tan, Q.Wu, B. Chen, and C. Shen. 2019. TM-Miner: TFS-based algorithm

for mining temporal motifs in large temporal network. IEEE Access 7 (2019),

49778–49789.

[79] J. Tang, M. Musolesi, C. Mascolo, and V. Latora. 2010. Characterising temporal

distance and reachability in mobile and online social networks. SIGCOMM 40, 1

(2010), 118–124.

[80] T. L. Veldhuizen. 2014. Triejoin: A Simple, Worst-Case Optimal Join Algorithm.

In ICDT. 96–106.
[81] H. Wu, J. Cheng, S. Huang, Y. Ke, Y. Lu, and Y. Xu. 2014. Path problems in

temporal graphs. The VLDB journal 7, 9 (2014), 721–732.
[82] H. Wu, Y. Huang, J. Cheng, J. Li, and Y. Ke. 2016. Reachability and time-based

path queries in temporal graphs. In ICDE. 145–156.

[83] B. B. Xuan, A. Ferreira, and A. Jarry. 2003. Computing shortest, fastest, and

foremost journeys in dynamic networks. Int. J. Found. Comput. Sci. 14, 02 (2003),
267–285.

[84] Y. Yang, D. Yan, H. Wu, J. Cheng, S. Zhou, and J. Lui. 2016. Diversified temporal

subgraph pattern mining. In SIGKDD. 1965–1974.
[85] Z. Yang, A. W. Fu, and R. Liu. 2016. Diversified top-k subgraph querying in a

large graph. In SIGMOD. 1167–1182.
[86] M. Yannakakis. 1981. Algorithms for acyclic database schemes. In VLDB, Vol. 81.

82–94.

[87] D. Zhang, V. J. Tsotras, and B. Seeger. 2002. Efficient temporal join processing

using indices. In ICDE. 103–113.
[88] Q. Zhao, Y. Tian, Q. He, N. Oliver, R. Jin, and W. Lee. 2010. Communication

motifs: a tool to characterize social communications. In CIKM. 1645–1648.

	Abstract
	1 Introduction
	2 Model and Results
	2.1 Problem Definition
	2.2 Classes of Join Queries
	2.3 Our Contribution

	3 Time-First Approach
	3.1 Framework
	3.2 Hierarchical Temporal Join
	3.3 General Temporal Join

	4 A Hybrid Approach
	4.1 General Temporal Join Algorithm
	4.2 Further simplification and improvement
	4.3 Summary: A Guideline for Temporal Joins

	5 Hardness
	5.1 Non-R-hierarchical Temporal Joins
	5.2 Non-temporal Counterpart

	6 Experiments
	6.1 Setup
	6.2 Experimental Results
	6.3 Summary

	7 Related Work
	References

