
Selectivity Functions of RangeQueries are Learnable∗

Xiao Hu, Yuxi Liu, Haibo Xiu, Pankaj K. Agarwal, Debmalya Panigrahi, Sudeepa Roy, and Jun Yang

{xh102,yuxi.liu,haibo.xiu,pankaj,debmalya,sudeepa,junyang}@cs.duke.edu

Duke University, Durham, NC, USA

ABSTRACT

This paper explores the use of machine learning for estimating the

selectivity of range queries in database systems. Using classic learn-

ing theory for real-valued functions based on shattering dimension,

we show that the selectivity function of a range space with bounded

VC-dimension is learnable. As many popular classes of queries (e.g.,

orthogonal range search, inequalities involving linear combination

of attributes, distance-based search, etc.) represent range spaces

with finite VC-dimension, our result immediately implies that their

selectivity functions are also learnable. To the best of our knowl-

edge, this is the first attempt at formally explaining the role of

machine learning techniques in selectivity estimation, and comple-

ments the growing literature in empirical studies in this direction.

Supplementing these theoretical results, our experimental results

demonstrate that, empirically, even a basic learning algorithm with

generic models is able to produce accurate predictions across set-

tings, matching state-of-art methods designed for specific queries,

and using training sample sizes commensurate with our theory.

CCS CONCEPTS

• Information systems→ Database query processing; • The-

ory of computation→ Sample complexity and generalization

bounds; Database query processing and optimization (the-

ory).

KEYWORDS

learning theory, selectivity estimation, range space, fat-shattering

dimension, Vapnik–Chervonenkis dimension

ACM Reference Format:

Xiao Hu, Yuxi Liu, Haibo Xiu, Pankaj K. Agarwal, Debmalya Panigrahi,

Sudeepa Roy, and Jun Yang. 2022. Selectivity Functions of Range Queries are

Learnable. In Proceedings of the 2022 International Conference onManagement

of Data (SIGMOD ’22), June 12–17, 2022, Philadelphia, PA, USA. ACM, New

York, NY, USA, 14 pages. https://doi.org/10.1145/3514221.3517896

1 INTRODUCTION

In this paper, we formally model and study the problem of learning

selectivity functions for selection queries in database (DB) systems.

∗
This work was partially supported by ARO award W911NF2110230, NSF awards

IIS-1552538, IIS-1703431, CCF-1750140, IIS-1814493, CCF-1955703, CCF-2007556, IIS-

2008107, and NIH award R01EB025021.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

SIGMOD ’22, June 12–17, 2022, Philadelphia, PA, USA

© 2022 Association for Computing Machinery.

ACM ISBN 978-1-4503-9249-5/22/06. . . $15.00

https://doi.org/10.1145/3514221.3517896

R1

R2

R3

R4

R5

R6

Figure 1: An illustration of the learned selectivity problem.

There are 20 points in the dataset 𝐷 and 5 training queries

𝑅1, 𝑅2, 𝑅3, 𝑅4, 𝑅5 with their selectivities given by 𝑠𝐷 (𝑅1) = 0.1,

𝑠𝐷 (𝑅2) = 0.3, 𝑠𝐷 (𝑅3) = 0.15, 𝑠𝐷 (𝑅4) = 0.1 and 𝑠𝐷 (𝑅5) = 0.25. The

goal is to estimate the selectivity of an unknown query 𝑅6
(in bold), and the correct answer in this example is 0.25. The

shaded area will be explained in Section 2.3.

The selectivity of a selection query on a database is defined as

the probability that a randomly chosen tuple from the database

satisfies the query predicate. Estimating query selectivity is a core

problem in the query optimization pipeline, and has a rich history of

research over many decades (see, e.g., [24, 30, 37, 38, 40]). In recent

years, the focus has shifted from traditional optimizationmethods to

machine learning (ML) techniques (e.g., [16, 25–27, 34, 36]), with the

latter outperforming the former in empirical studies. In this paper,

we establish a learning-theoretic framework for the selectivity-

estimation problem, show that the estimation problem is indeed

learnable for popular classes of selection queries from a small set of

training samples using this framework. Building on this framework,

we also develop a simple, generic learning algorithm and evaluate it

empirically: not only is this approach competitive against the state-

of-the-art methods designed for specific types of queries, but it also

works effectively for other less-studied query types, demonstrating

the power and generality of our framework.

While the query selectivity estimation problem is indeed an

important component of DB research, we believe that our work

also has implications beyond this specific problem. Our research

adds to the growing and impressive body of work that seeks to

exploit the vast advances in ML in recent years to solve problems

in DB systems. The main thrust in this area of research has been in

developing ML models and algorithms, often using deep learning

techniques, that empirically outperform existing methods in real

world DB systems. We complement this by providing a formal

framework to establish the learnability of the selectivity estimation

problem. As “ML for DB” advances further, we hope that the formal

lens that we introduce in this paper can be adapted and generalized

to a broader class of DB problems.

Our Contributions. First, we formalize the learnability of the

selectivity-estimation problem. Recall that a database is a collection

https://doi.org/10.1145/3514221.3517896
https://doi.org/10.1145/3514221.3517896

of tuples, and a selection query is a predicate that selects a subset

of these tuples. The selectivity of a selection query is the proba-

bility that a randomly selected tuple satisfies the query. In order

to learn the selectivity function, we employ the agnostic-learning

framework [17], an extension of the classical PAC learning frame-

work for real-valued functions, where we are given a set of sample

queries and their respective selectivities from a fixed distribution

(the training set), and our goal is to design an algorithm that can

output the selectivity of a new query from the same distribution

with high accuracy (see Figure 1 for an example).

Classical PAC learning theory asserts that a Boolean function

is learnable if its VC-dimension is bounded. Generalizing this no-

tion, it has been shown that a real-valued function is learnable

using finitely many samples if its fat shattering dimension (defined

in Section 2) is bounded [5, 7, 21]. This reduces the question of

learnability of selectivity functions to bounding their respective fat

shattering dimensions. We further note that selectivity functions

correspond to selection queries on the underlying data. Each se-

lection query, in turn, is a binary function on the data (i.e., which

data items satisfy the query predicate), and the complexity of a

class of binary functions is captured by its VC-dimension [45]. Our

main result shows that if a class of selection queries has bounded

VC-dimension, then the fat shattering dimension of the correspond-

ing selectivity function must also be bounded, and therefore, the

selectivity function for such queries is learnable.

This result has several implications for important query classes:

• Orthogonal Range Queries. Such queries are specified as a

conjunction of range conditions on individual attributes, e.g.:

SELECT * FROM 𝑇 WHERE 𝑎1 ≤ 𝐴1 ≤ 𝑏1 AND 𝑎2 ≤ 𝐴2 ≤ 𝑏2

They are widely used as building blocks in more complex queries,

and their selectivity-estimation (even for the simplest 1D range

queries involving just a single attribute) has been the bread and

butter of cost-based query optimizers, which uses selectivity

estimates to gauge the intermediate result sizes and choose low-

cost query execution plans. Taking a geometric view, we can

represent each data tuple defined on 𝑑 attributes as a point in R𝑑

and each query as a hyper-rectangle in the same space. Known

bounds on the VC-dimension of hyper-rectangles [22] then allow

us to conclude that their selectivity is learnable.

• Linear Inequality Queries. Such queries allow multiple at-

tributes to be brought together into one linear inequality, e.g.:

SELECT * FROM 𝑇

WHERE 𝜃0 + 𝜃1 ×𝐴1 + 𝜃2 ×𝐴2 + · · · + 𝜃𝑑 ×𝐴𝑑 ≥ 0

Able to capture more complex conditions that can encode data

correlations, these queries are popular in advanced analytical

systems. As earlier, we can represent each tuple on 𝑑 attributes

as a point in R𝑑 . Then, each query is a halfspace in R𝑑 . Again,
using known bounds on the VC-dimension of halfspaces [22], we

conclude that the corresponding selectivity function is learnable.

• Distance-based Queries. These queries specify a “reference”

object and find all objects that within some distance of it, e.g.:

SELECT * FROM 𝑇

WHERE (𝐴1 − 𝑎1)2 + (𝐴2 − 𝑎2)2 + · · · + (𝐴𝑑 − 𝑎𝑑)2 ≤ 𝑟 2

Here the reference object is (𝑎1, . . . , 𝑎𝑑) and the Euclidean (ℓ2)

distance threshold is 𝑟 . Such queries have broad applications

in text and image search, product recommendations, database

optimization, network traffic, etc. Again, selectivity estimation

enables cost-based optimization of queries involving such con-

structs. Moreover, the estimates may be of interest themselves;

e.g., we might be interested in just counting how many other

objects are in the vicinity of one object. As before, we use a geo-

metric view where the data points are in R𝑑 for 𝑑 attributes, and

the above query is a 𝑑-dimensional ℓ2-ball. Invoking the standard

bound [22] on the VC-dimension of ℓ2-balls, we can conclude

that the corresponding selectivity function is learnable.

While our framework establishes the learnability of the selec-

tivity of above query types from a small set of training examples,

it does not by itself prescribe any specific model or learning al-

gorithm. As part of establishing the learnability of our selectivity

query, we also need a procedure that, given a set of training samples

and a family of data distributions (e.g. histograms, discrete distri-

butions), constructs a data distribution from the given family that

“best fits” the training samples. Our framework then guarantees

that the learned data distribution estimates the selectivity of any

query chosen from the same distribution as the training samples

with high accuracy. For specific query types (e.g., orthogonal range

queries), there already exists a large body of work on the selectivity-

estimation problem, and our framework now gives them a solid

foundation. To demonstrate the power of our framework beyond

justifying existing methods, we further propose a simple, generic

approach that embodies our theoretical results, and empirically

validates its efficiency using extensive experiments. It is impor-

tant to note that we are not designing this generic approach to

“beat” existing methods with novel or sophisticated features; in fact,

we intentionally avoid sophisticated features so that experimental

comparison can focus on illustrating the power of our unifying

framework instead of the artifacts of extra features. Despite the

simplicity of our approach, our experimental results show that it

performs comparably to the state-of-the-art methods for orthog-

onal range queries. Furthermore, for query classes that have seen

less previous research, such as linear inequality and distance-based

queries, our generic approach also work effectively, demonstrating

the generality of the our theoretical framework.

Roadmap. This paper is organised as follows. In Section 2, we

focus on the statistical learning question of determining the sample

complexity of training for selectivity estimation problem under

the agnostic-learning framework. In Section 3, we propose two

simple generic algorithms for computing a data distribution that

minimizes the expect loss function on a finite set of training queries.

In Section 4, we implement these two algorithms to verify our

theory, both of which are trained using a certain number of queries

for obtaining small predication error on test queries, and compare

them with state-of-art methods under the same framework.

2 LEARNABILITY OF QUERY SELECTIVITY

A range space Σ is a pair (𝑋,R), where 𝑋 is a set of objects and R
is a collection of subsets of 𝑋 called ranges. For example, 𝑋 = R𝑑

and R can be the set of all 𝑑-dimensional rectangles, halfspaces, or

balls. Let 𝐷 be a probability distribution over 𝑋 . For a given 𝐷 , we

define the selectivity function 𝑠𝐷 : R → [0, 1] as

𝑠𝐷 (𝑅) = Pr

𝑥∼𝐷
[𝑥 ∈ 𝑅] .

Our goal is to learn the selectivities of the ranges in a range

space Σ under an unknown data distribution from a finite sample

of ranges and their respective selectivities. Formally, we define this

learning task as follows.

2.1 The Learning Framework

Learnability. Following the agnostic learning model proposed by

Haussler [17] (see also [5, 7]), which generalizes the PAC model,

we define learnability in a more general setting. Letℋ be a family

of functions from a domain 𝑌 to [0, 1]. Set 𝑍 = 𝑌 × [0, 1]. For a
function 𝐻 ∈ ℋ, we define the loss function ℓ𝐻 : 𝑍 → [0, 1]. For
𝑧 = (𝑦,𝑤) ∈ 𝑍 ,

ℓ𝐻 (𝑧) = (𝐻 (𝑦) −𝑤)2 .
For a probability distribution 𝑄 over 𝑍 and for a function 𝐻 ∈ ℋ,

we define

er𝑄 (𝐻) =
∫
𝑍

ℓ𝐻 (𝑧)𝑑𝑄 (𝑧) (1)

to be the mean square loss of 𝐻 with respect to distribution 𝑄 .

A learning procedureA is mapping from finite sequences in 𝑍 to

ℋ. Given a training sample z𝑛 = (𝑧1, 𝑧2, · · · , 𝑧𝑛) ∈ 𝑍𝑛
, A returns

a function A(z𝑛). Given 𝜖, 𝛿 ∈ (0, 1) and an integer 𝑛 > 0, we say

that A (𝜖, 𝛿)-learns (agnostically) from 𝑛 random training samples

with respect toℋ if

sup

𝑄

Pr[er𝑄 (A(z𝑛)) ≥ inf

𝐻 ∈ℋ
er𝑄 (𝐻) + 𝜖] ≤ 𝛿,

where Pr denotes the probability with respect to a random sample

z𝑛 ∈ 𝑍𝑛
, each of 𝑧1, 𝑧2, · · · , 𝑧𝑛 is drawn independently from 𝑍 at

random according to 𝑄 , and supremum is taken over all distribu-

tions defined on𝑍 . For 𝜖 > 0,ℋ is called 𝜖-learnable if there exists a

function 𝑛0 : [0, 1]2 → N and a learning procedureA such that for

all 𝛿 > 0 and for all 𝑛 ≥ 𝑛0 (𝜖, 𝛿), A (𝜖, 𝛿)-learns from 𝑛 examples

with respect toℋ; 𝑛0 (𝜖, 𝛿) is referred to as the minimum training

set size forℋ. Finally,ℋ is learnable if it is 𝜖-learnable for all 𝜖 > 0.

VC dimension. Returning to the selectivity function of range

space Σ = (𝑋,R), let𝒟 be a set of distributions defined on 𝑋 . Set

SΣ,𝒟 = {𝑠𝐷 | 𝐷 ∈ 𝒟}, a family of functions from R to [0, 1]. Set
𝑍 = R × [0, 1]. Our main result is a characterization of learnability

of SΣ,𝒟 in terms of the VC-dimension of Σ, defined below.

A subset 𝑃 ⊆ 𝑋 is shattered by R if {𝑃 ∩ 𝑅 | 𝑅 ∈ R} = 2
𝑃
. The

VC-dimension of R, denoted by VC-dim(Σ), is the size of the largest
subset of 𝑋 that can be shattered by Σ. An example is given in

Figure 2. If the VC-dimension of Σ is not bounded by a constant,

then VC-dim(Σ) = ∞. Our main result, stated in the theorem below,

is that SΣ,𝒟 is learnable if and only if VC-dim(Σ) is finite.

Theorem 2.1. Let Σ = (𝑋,R) be a range space, let 𝒟 be a set

of distributions defined on 𝑋 , and let 𝜖 ∈ (0, 1) be a parameter. If

VC-dim(Σ) = 𝜆, for some constant 𝜆 > 0, then the family SΣ,𝒟 of se-

lectivity functions is 𝜖-learnable with a training set of size 𝑂̃

(
1

𝜖𝜆+3

)
.
1

Conversely, if VC-dim(Σ) = ∞, SΣ,𝒟 is not (agnostically) learnable.

1𝑂̃ (.) to hide lower order terms that are in polylog

(
1

𝜖
, 1

𝛿

)
for constant 𝜆.

P1

P2

P3

P4

P5

(i) (ii)

Figure 2: VC-dimension of Σ = (R2,R□), where R□ is the set
of all two-dimensional rectangles, is 4. (i) is an illustration of

a set of 4 points shattered by R□. On the other hand, no set

𝑌 = {𝑝1, 𝑝2, 𝑝3, 𝑝4, 𝑝5} in R2 can be shattered by R□ in (ii): let

{𝑃1, 𝑃2, 𝑃3, 𝑃4} ⊆ 𝑌 be the subset of (at most 4) points of 𝑌 with

extreme 𝑥- and 𝑦-coordinates. Then any rectangle containing

𝑃1, 𝑃2, 𝑃3, 𝑃4 also contains 𝑃5.

Remark.Note that we do not assume training sample 𝑧𝑖 = (𝑅𝑖 , 𝑠𝑖) ∈
𝑍 to be of the form 𝑠𝑖 = 𝑠𝐷 (𝑅𝑖) for some data distribution 𝐷 ∈ 𝒟.

They are drawn from some distribution 𝑄 defined on R × [0, 1],
and the goal is to learn the selectivity function in SΣ,𝒟 that mini-

mizes the mean square loss. This is important, which allows us to

decouple training samples from the family of functions, and the

problem just becomes to find a function from the given family that

minimizes the expected loss. This model is more general than the

one assuming training sample in a form of 𝑧𝑖 = (𝑅𝑖 , 𝑠𝐷 (𝑅𝑖)) for
some data distribution 𝐷 ∈ 𝒟, for example, capturing the noisy

input for learning the selectivity functions.

Instead of using the mean square error in (1), we can use other

loss functions such as the 𝐿1-norm or 𝐿∞-norm of the error, i.e.,∫
(𝑦,𝑤) |𝐻 (𝑦)−𝑤 |𝑑𝑄 (𝑦,𝑤) or sup(𝑦,𝑤) |𝐻 (𝑦)−𝑤 |. Furthermore, the

theorem holds for any𝒟, the family of data distributions and the

bound on the training size is independent of𝒟. It might be possible

to obtain an improved bound on the training size for certain family

of data distributions. Finally, the theorem assumes the existence

of a procedure that efficiently computes the function in SΣ,𝒟 that

minimizes, or minimizes within additive error 𝜖 , the mean square

loss over the finite sequence of training samples; see Section 3.

2.2 Implications of Theorem 2.1

Before proving Theorem 2.1, we give some of its implications. We

begin with the query classes mentioned in the introduction.

Orthogonal Range Queries: The range space Σ□ = (R𝑑 ,R□) for
orthogonal range queries is defined as

R□ = {×𝑑𝑖=1 [𝑎𝑖 , 𝑏𝑖] : 𝑎𝑖 , 𝑏𝑖 ∈ R, 𝑎𝑖 ≤ 𝑏𝑖 ,∀𝑖 ∈ [𝑑]}.

It is well known that VC-dim(Σ□) = 2𝑑 [22] (see Figure 2 for 𝑑 = 3),

therefore Theorem 2.1 implies that for any family𝒟 of distributions

defined on R𝑑 and for any 𝜖 > 0, the selectivity functions are 𝜖-

learnable with training set of size 𝑂̃

(
1

𝜖2𝑑+3

)
.

Linear Inequality Queries: The range space Σ\ = (R𝑑 ,R\) for
linear inequality queries is defined as

R\ = {𝑅\(𝑎,𝑏) : 𝑎 ∈ R𝑑 , 𝑏 ∈ R},

where𝑅\(𝑎,𝑏) = {𝑥 ∈ R𝑑 : 𝑎·𝑥 ≥ 𝑏}. It is known thatVC-dim(Σ\) =
𝑑 + 1 [22], therefore Theorem 2.1 implies that for any family 𝒟

(0, 0)

Figure 3: (Left) Semi-algebraic range of 𝑅 = {(𝑥,𝑦) ∈ R2 |
(𝑥2 + 𝑦2 ≤ 4) ∧ (𝑥2 + 𝑦2 ≥ 1) ∧ (𝑦 − 2𝑥2 ≤ 0)}. (Right) A disc-

intersection query, discs intersected by the query disc (red)

are shown in blue.

of distributions defined on R𝑑 and for any 𝜖 > 0, the selectivity

functions are 𝜖-learnable with training set of size 𝑂̃

(
1

𝜖𝑑+4

)
.

Distance-Based Queries: The range space Σ◦ = (R𝑑 ,R◦) for
distance-based queries is defined as

R◦ = {𝑅◦(𝑎,𝑏) : 𝑎 ∈ R𝑑 , 𝑏 ∈ R},

where 𝑅◦(𝑎,𝑏) = {𝑥 ∈ R𝑑 : ∥𝑥 − 𝑎∥2 ≤ 𝑏} and ∥·∥ is the Euclidean
norm. It is known that VC-dim(Σ◦) ≤ 𝑑 + 2 [22], therefore Theo-

rem 2.1 implies that for any family𝒟 of distributions defined on

R𝑑 and for any 𝜖 > 0, the selectivity functions are 𝜖-learnable with

training set of size 𝑂̃

(
1

𝜖𝑑+5

)
.

Semi-algebraic Range Queries. A very general class of range

queries is the so-called semi-algebraic range query. A 𝑑-dimensional

semi-algebraic set is subset ofR𝑑 defined by a Boolean formula over

polynomial inequality. For example, 𝑅 = {(𝑥,𝑦) ∈ R2 | (𝑥2 + 𝑦2 ≤
4) ∧ (𝑥2 + 𝑦2 ≥ 1) ∧ (𝑦 − 2𝑥2 ≤ 0)} is a semi-algebraic sets; see

Figure 3. All the three above examples are special cases of semi-

algebraic range queries. Let T𝑑,𝑏,Δ be the set of all semi-algebraic

sets defined by at most 𝑏 𝑑-variate polynomial inequalities, each of

degree at most Δ. It is known that the VC-dimension of range space

(R𝑑 ,T𝑑,𝑏,Δ) is a constant 𝜆 := 𝜆(𝑑, 𝑏,Δ) [9]. Hence the selectivity
functions on (R𝑑 ,T𝑑,𝑏,Δ) are also learnable for any constants 𝑑, 𝑏,Δ.

Semi-algebraic sets enable us to handle range spaces in which

𝑋 is not a set of points in R𝑑 . For example, let B be the set of all

discs in R2. For a query disc 𝐵, let 𝑅𝐵 ⊆ B be the set of discs that

intersect 𝐵; see Figure 3. Define R• = {𝑅𝐵 | 𝐵 ∈ B}, and consider

the range space Σ• = (B,R•). We can map each disc in B to a point

(𝑥,𝑦, 𝑧) in R3 where (𝑥,𝑦) is the center of the disc and 𝑧 is its radius.
Then for a query disc 𝐵 centered at (𝑐𝑥 , 𝑐𝑦) and radius 𝑟 , the range

𝑅𝐵 maps to the set

𝛾𝐵 = {(𝑥,𝑦, 𝑧) ∈ R3 | (𝑥 − 𝑐𝑥)2 + (𝑦 − 𝑐𝑦)2 ≤ (𝑟 + 𝑧)2, 𝑧 ≥ 0}.

SetR3
𝑧≥0 = R

2×R𝑧≥0 and ˆR• = {𝛾𝐵 | 𝐵 ∈ B}. Then Σ• is mapped to

(R3
𝑧≥0,

ˆR•). Since ranges in ˆR are semi-algebraic sets with𝑏 = 1 and

Δ ≤ 2, VC-dim(R3≥0, ˆR•) is finite and hence selectivity functions

on (B,R) are learnable.
We conclude this discussion by giving an example of range space

for which selectivity functions are not learnable.

Polygon range queries with arbitrary number of vertices. Let

C be the set of all convex polygons in R2 with arbitrary number

of vertices. Consider the range space Σ = (R2,C). It is known that

H10 H01

H11

H00

σ(x2)

x1

σ(x1)

x2

γ

γ
γ

γ

Figure 4: 𝑥1, 𝑥2 are 𝛾-shattered by linear functions. we choose

𝐻 to be the linear function whose bit sequence 𝑏2𝑏1 corre-

sponds to 𝐸 (i.e., 𝑏𝑖 = 1 if 𝑥𝑖 ∈ 𝐸).

VC-dim(Σ) = ∞ [18], therefore Theorem 2.1 implies that selectivity

functions on Σ are not learnable.

2.3 Proof of Theorem 2.1

We prove Theorem 2.1 using the notion of fat-shattering dimension

introduced by Kearns and Schapire [21], which is a generalization

of VC-dimension, and the results by Alon et al. [5] and Bartlett-

Long [7] (see also [8]). As in Section 2.1, letℋ be a class of functions

from a domain 𝑋 into [0, 1]. Let 𝛾 ∈ (0, 1/2) be a parameter. We

say thatℋ 𝛾-shatters a subset 𝑉 ⊆ 𝑋 if there is a witness function

𝜎 : 𝑉 → [0, 1] such that for every subset 𝐸 ⊆ 𝑉 , there is a function

𝐻𝐸 ∈ ℋ with

𝐻𝐸 (𝑥) ≥ 𝜎 (𝑥) + 𝛾, ∀𝑥 ∈ 𝐸,

𝐻𝐸 (𝑥) ≤ 𝜎 (𝑥) − 𝛾, ∀𝑥 ∈ 𝑉 \ 𝐸. (2)

An example is shown in Figure 4.

The 𝛾-fat shattering dimension ofℋ, denoted by fatℋ (𝛾), is the
size of the largest subset of 𝑋 that can be 𝛾-shattered by ℋ. If

subsets of unbounded finite size can be 𝛾-shattered by ℋ, then

we set fatℋ (𝛾) = ∞. Note that if ℋ is a class of functions from

𝑋 into {0, 1}, then 𝛾-fat shattering dimension is the same as VC-

dimension. An advantage of 𝛾-fat shattering dimension is that it

is sensitive to the scale at which difference in the function values

are considered important. Alon et al. [5] proved that if fatℋ (𝑐𝜖) is
finite, where 𝑐 ∈ (0, 1) is a suitable constant, thenℋ is 𝜖-learnable.

The bound on the size of the training set was improved by Bartlett

and Long [7]. In particular, their result implies thatℋ is 𝜖-learnable

with training-set size

𝑛0 (𝜖, 𝛿) = 𝑂

(
1

𝜖2

(
fatℋ (𝜖

9

) log2 1

𝜖
+ log

1

𝛿

))
.

Returning to the selectivity functions, let Σ = (𝑋,R) be a range
space, let𝒟 be a family of probability distributions on 𝑋 and 𝛾 ∈
(0, 1). Set S := SΣ,𝒟 to be the selectivity functions defined by

𝒟. Our main technical result is that if VC-dim(Σ) = 𝜆, for some

constant 𝜆, then fatS (𝛾) = 𝑂̃

(
1

𝛾𝜆+1

)
. By plugging this result into

the results of [5, 7], we prove the first part of Theorem 2.1.

Let T ⊆ R be a subset 𝛾-shattered by S. To bound fatS (𝛾), it
suffices to prove that |T | = 𝑂̃

(
1

𝛾𝜆+1

)
. First, we partition the ranges

in T based on the values of their respective witnesses 𝜎 (𝑅)2:
T𝑗 = {𝑅 ∈ T : 𝜎 (𝑅) ∈ [(𝑗 − 1) · 𝛾, 𝑗 · 𝛾], for 𝑗 ∈ [1/𝛾]}.

Lemma 2.2. Suppose Equation (2) is realized for some subset 𝐸 ∈ T𝑗
by 𝑠𝐷 for some distribution 𝐷 ∈ 𝒟. Then, for any pair 𝑅 ∈ 𝐸, 𝑅′ ∈
T𝑗 \ 𝐸, we have

𝑠𝐷 (𝑅) − 𝑠𝐷 (𝑅′) > 𝛾 . (3)

Proof. By Equation (2), we have

𝑠𝐷 (𝑅) ≥ 𝜎 (𝑅) + 𝛾 and − 𝑠𝐷 (𝑅′) ≥ −𝜎 (𝑅′) + 𝛾
Adding these, we get

(𝑠𝐷 (𝑅) − 𝑠𝐷 (𝑅′)) + (𝜎 (𝑅′) − 𝜎 (𝑅)) ≥ 2𝛾 . (4)

Since 𝑅, 𝑅′ ∈ T𝑗 for some 𝑗 ∈ ⌈1/𝛾⌉, we have 𝜎 (𝑅′) −𝜎 (𝑅) < 𝛾 . The

lemma follows by using this inequality in Equation (4). □

Now, consider any fixed ordering 𝜋 = ⟨𝑅1, 𝑅2, · · · , 𝑅𝑘 ⟩ of the
ranges in T𝑗 , where 𝑘 = |T𝑗 |. Let us also fix the subset:

𝐸 = {𝑅2𝑖 | 1 ≤ 𝑖 ≤ ⌊𝑘/2⌋} (5)

to be the set of ranges with even index in 𝜋 . We say that an object

𝑥 ∈ 𝑋 crosses a pair of ranges 𝑅, 𝑅′
if 𝑥 ∈ 𝑅 ⊕ 𝑅′

, where ⊕ is the

symmetric difference (see Figure 1 for 𝑅1 ⊕ 𝑅3). For 1 ≤ 𝑖 < 𝑘 and

for every 𝑥 ∈ 𝑋 , we define an indicator random variable as follows:

𝐼𝑖,𝑥 =

{
1 if 𝑥 ∈ 𝑅𝑖 ⊕ 𝑅𝑖+1,

0 otherwise,

and let 𝐼𝑥 =
∑𝑘−1
𝑖=1 𝐼𝑖,𝑥 .

Since T is 𝛾-shattered by S, there is a distribution 𝐷𝜋 ∈ 𝒟

that satisfies (2) for 𝐸. The next lemma is a direct consequence of

Lemma 2.2, by summing up over the pairs of ranges 𝑅𝑖 , 𝑅𝑖−1 for
even 𝑖 in T𝑗 :

Lemma 2.3. E𝑥∼𝐷𝜋
[𝐼𝑥] > 𝛾 (𝑘 − 1).

Proof. By Lemma 2.2, E𝑥 ∈𝐷𝜋
[𝐼𝑖,𝑥] ≥ 𝛾 for any index 𝑖 since

exactly one of 𝑅𝑖 , 𝑅𝑖+1 belongs to 𝐸. The lemma now follows by

using linearity of expectation. □

The lower bound on E𝑥∼𝐷𝐸
[𝐼𝑥] in Lemma 2.3 holds for any or-

dering 𝜋 of the ranges in T𝑗 ; the distribution 𝐷𝜋 obviously depends

on 𝜋 . We now complement this lower bound with an upper bound

on E𝑥∼𝐷𝜋
[𝐼𝑥] for a specific ordering 𝜋 of T𝑗 .

Lemma 2.4. There is an ordering 𝑅1, 𝑅2, · · · , 𝑅𝑘 of the ranges in

T𝑗 such that for any distribution 𝐷 defined on 𝑋 , we have:

E𝑥 ∈𝐷 [𝐼𝑥] = 𝑂 (𝑘1−1/𝜆 log𝑘),
where 𝜆 = VC-dim(𝑋,R).

Proof. Let Σ̃ = (𝑋,T𝑗) be the range space defined by the ranges
in T𝑗 . Note that VC-dim(Σ̃) ≤ VC-dim(Σ) = 𝜆. Consider the dual

range space Σ̃∗ of Σ̃, where Σ̃∗ = (T𝑗 , {R𝑥 = {𝑅 ∈ T𝑗 : 𝑥 ∈ 𝑅} | 𝑥 ∈
𝑋 }), i.e., the objects of Σ̃∗ are the ranges of T𝑗 and for each object

𝑥 ∈ 𝑋 , we have a dual range in Σ̃∗ consisting of ranges of Σ̃ that

contain 𝑥 . Note that Σ̃∗∗ = Σ̃.
2
Note that although 𝜎 (𝑅) = 1 is excluded by this definition if 1/𝛾 is an integer, it is

a well-defined partition since 𝜎 (𝑅) cannot be equal to 1 for any range 𝑅 ∈ T . This

follows from the observation that if 𝜎 (𝑅) = 1, then Equation (2) cannot be satisfied

for 𝑅 ∈ 𝐸 since 𝐻𝐸 (𝑅) ≤ 1 and 𝛾 > 0.

We compute the desired ordering of T𝑗 , using the following re-
sults by Chazelle and Welzl [12]: Let Ξ = (𝑉 , Γ) be a finite range
space with |𝑉 | = 𝑚. We say that a range 𝛾 ∈ Γ crosses a pair

𝑣𝑖 , 𝑣 𝑗 ∈ 𝑉 if |𝛾 ∩ {𝑣𝑖 , 𝑣 𝑗 }| = 1. The result in [12] (Theorem 4.3)

proves that there is an ordering 𝑣1, 𝑣2, · · · , 𝑣𝑚 of objects in 𝑉 such

that any range in T crosses 𝑂

(
𝑚1−1/𝜆∗

log𝑚

)
pairs (𝑣𝑖 , 𝑣𝑖+1) for

1 ≤ 𝑖 < 𝑚, where 𝜆∗ is the VC-dimension of the dual range space

of Ξ.3 Applying this result to Σ̃∗ and using the fact that Σ̃∗∗ = Σ̃,
we obtain an ordering 𝑅1, 𝑅2, · · · , 𝑅𝑘 of T𝑗 such that any range

of Σ̃∗ crosses 𝑂
(
𝑘1−1/𝜆 log𝑘

)
pairs (𝑅𝑖 , 𝑅𝑖+1). By the definition, a

range R𝑥 crosses 𝑅𝑖 , 𝑅𝑖+1 if |R𝑥 ∩ {𝑅𝑖 , 𝑅𝑖+1}| = 1, which is equiv-

alent to saying that 𝑥 ∈ 𝑅𝑖 ⊕ 𝑅𝑖+1. Hence, for any 𝑥 ∈ 𝑋 , there

are 𝑂

(
𝑘1−1/𝜆 log𝑘

)
pairs (𝑅𝑖 , 𝑅𝑖+1) crossed by 𝑥 . Since this bound

holds for every 𝑥 ∈ 𝑋 , we conclude that

E𝑥∼𝐷 [𝐼𝑥] = 𝑂

(
𝑘1−1/𝜆 log𝑘

)
. □

We are now ready to bound the size of T𝑗 .

Lemma 2.5. For any 𝑗 ∈ ⌈1/𝛾⌉, |T𝑗 | = 𝑂

(
(1𝛾 log

1

𝛾)
𝜆
)
.

Proof. Plugging Lemmas 2.4 and 2.3 together, we conclude there

exists a constant 𝑐 such that

𝛾 · (𝑘 − 1) ≤ 𝑐 · 𝑘1−1/𝜆 log𝑘,

which implies that
𝑘1/𝜆

log𝑘
≤ 2𝑐/𝛾 , or 𝑘 = 𝑂

(
(1𝛾 log

1

𝛾)
𝜆
)
. □

Summing this bound over all 𝑗 ∈ ⌈1/𝛾⌉, we conclude that |T | =
𝑂̃

(
1

𝛾𝜆+1

)
. Hence, the size of any set of query ranges in R that can

be 𝛾-shattered by S is 𝑂̃

(
1

𝛾𝜆+1

)
, which implies the main technical

result of this section.

Lemma 2.6. Let Σ = (𝑋,R) be a range space with VC-dim(Σ) = 𝜆,

let𝒟 be a family of probability distribution over𝑋 , and letS := SΣ,𝒟
be the family of selectivity functions on Σ by 𝒟. For any 𝛾 ∈ (0, 1),
the 𝛾-fat shattering dimension of S is 𝑂̃

(
1

𝛾𝜆+1

)
.

Finally, plugging Lemma 2.6 into the results of Alon et al. [5]

and Bartlett-Long [7], we obtain the first part of Theorem 2.1.

We next turn to the second part of Theorem 2.1. As in Section 2.1,

letℋ be a class of functions from a domain 𝑋 into [0, 1]. Let 𝛾 ∈
[0, 1] be a parameter. Alon et al. [5] proved that if fatℋ (𝜖) = ∞,

then ℋ is not (𝜖2/8 − 𝜏)-learnable for any 𝜏 > 0. Returning to

the selectivity functions S := SΣ,𝒟 defined on the range space

Σ = (𝑋,R) and a family of probability distribution on 𝑋 as 𝒟. Our

second technical result is that if VC-dim(Σ) = ∞, then fatS (𝛾) = ∞
for any 𝛾 ∈ (0, 1/2).

Lemma 2.7. Let Σ = (𝑋,R) be a range space, let 𝒟 be a family

of probability distribution over 𝑋 , and let S := SΣ,𝒟 be the family

of selectivity functions on Σ by 𝒟. If VC-dim(Σ) = ∞, the 𝛾-fat

shattering dimension of S is also ∞, for any 𝛾 ∈ (0, 1/2).
3
For 𝜆∗ = 1, the original paper [12] proves a slightly weaker bound of𝑂 (log2𝑚) on
the number of pairs crossed by a range. Using an improved bound on 𝜖-nets for range

spaces of VC-dimension 1 (see e.g. [35], Chapter 15), the bound can be improved to

𝑂 (log𝑚) .

000

100

001

010

011

110

101

111

P3

P2

P1

Figure 5: An example of 3 convex polygons 𝑃1, 𝑃2, 𝑃3 that are

𝛾-shattered for any 𝛾 ∈ (0, 1/2). To satisfy Equation (2) for a

subset 𝐸 ⊆ {𝑃1, 𝑃2, 𝑃3}, we choose 𝐷𝐸 to be the unit mass at

the point whose bit sequence 𝑏3𝑏2𝑏1 corresponds to 𝐸 (i.e.,

𝑏𝑖 = 1 if 𝑃𝑖 ∈ 𝐸).

Proof. Consider the dual range space Σ∗ of Σ, where Σ∗ =

(R, Γ) where Γ = {R𝑥 = {𝑅 ∈ R : 𝑥 ∈ 𝑅} | 𝑥 ∈ 𝑋 } as defined in

the proof of Lemma 2.4. As shown in [12], since VC-dim(Σ) = ∞,

we have VC-dim(Σ∗) = ∞. In other words, for any integer 𝑘 > 0,

there exists a subset T𝑘 ⊆ R of 𝑘 ranges shattered by Γ, i.e., for
every subset 𝐸 ⊆ T𝑘 , there is a point 𝑥𝐸 ∈ 𝑋 such that 𝑥𝐸 ∈ 𝑅𝑖 if

all 𝑅𝑖 ∈ 𝐸 and 𝑥𝐸 ∉ 𝑅𝑖 for all 𝑅𝑖 ∈ T𝑘 \ 𝐸.
Next, we show that T𝑘 is 𝛾-shattered by S. Set 𝜎 (𝑅𝑖) = 1/2 for

all 𝑅𝑖 ∈ T𝑘 . Consider an arbitrary subset 𝐸 ⊆ T𝑘 . We choose 𝐷 ∈ 𝒟

as a delta function, which is 1 at 𝑥𝐸 and 0 everywhere else. The

corresponding selectivity function 𝑠𝐷 ∈ S has 𝑠𝐷 (𝑅𝑖) = 1 if 𝑥𝐸 ∈ 𝑅𝑖
and 0 otherwise, which realizes Equation (2) for any 𝛾 ≤ 1/2. Hence
for any 𝑘 > 0, there always exists a subset T𝑘 ⊆ R of size 𝑘 that can

be 𝛾-shattered by S for any 𝛾 ∈ (0, 1/2), i.e., the 𝛾-fat shattering
dimension of S is∞. An example is illustrated in Figure 5. □

The above lemma proves second part of Theorem 2.1, thereby

completing the proof of Theorem 2.1.

3 LEARNING ALGORITHM

Recall that Theorem 2.1 gives an upper bound on the size of train-

ing samples, but the definition of 𝜖-learnability assumes the ex-

istence of a learning procedure that for a given a finite training

sample z𝑛 = {𝑧1, 𝑧2, · · · , 𝑧𝑛} where 𝑧𝑖 = (𝑅𝑖 , 𝑠𝑖) ∈ R × [0, 1], and
a family 𝒟 of data distributions, computes a distribution 𝐷 ∈ 𝒟

such that 𝑠𝐷 minimizes the expected loss function, i.e., it returns

argmin𝐷∈𝒟
1

𝑛

∑𝑛
𝑖=1 (𝑠𝐷 (𝑅𝑖) −𝑠𝑖)2. In this section, we describe algo-

rithms for computing such a distribution. For simplicity, we focus

on selectivity queries discussed in the introduction, namely orthog-

onal range, linear inequality, and distance-based queries, though

our algorithm works for a much larger class of queries such as

semi-algebraic range queries. The aim of this section is to describe

simple, generic approaches, and we do not attempt to optimize the

learning procedure for specific selectivity queries.

3.1 A Generic Procedure

We focus on two families of distributions, histograms and discrete

distributions. In the former, a distribution is a piecewise-constant

function, i.e., 𝐷 = {(𝐵1,𝑤1), · · · , (𝐵𝑚,𝑤𝑚)}, where∑𝑚
𝑖=1𝑤𝑖 = 1. 𝐷

has uniform density
𝑤𝑖

Vol(𝐵𝑖) over each bucket 𝐵𝑖 , where Vol(𝐵𝑖) is
the volume of 𝐵𝑖 , and each 𝐵𝑖 ⊆ R𝑑 is a simple region of constant

complexity homomorphic to a ball (e.g., boxes, simplices, etc), also

called Tarski cells [48]. 𝐵𝑖 ’s are pairwise disjoint and partition R𝑑 .
For a query range 𝑅, 𝑠𝐷 (𝑅) is defined as

𝑠𝐷 (𝑅) =
𝑚∑︁
𝑗=1

Vol(𝐵𝑖 ∩ 𝑅)
Vol(𝐵𝑖)

·𝑤𝑖 (6)

Intuitively,
Vol(𝐵𝑖∩𝑅)
Vol(𝐵𝑖) computes the fraction of the bucket 𝐵𝑖 that

intersects with the query region 𝑅. Note that we do not make any

assumption on the ranges, which can be bounded or unbounded.

Multiplying this fraction by𝑤𝑖 , 𝑠𝐷 (𝑅) in essence makes the simple

assumption that the data points within each cell are distributed

uniformly. We note that when the range 𝑅 can be represented with

a simple function, such as an orthogonal range, a halfspace or a

ball, the volume of 𝑅 and its intersection with a bucket (as hyper-

rectangle) can be easily computed exactly. In general, the volume

of a complex range can be estimated via MCMC sampling [15].

A discrete distribution has a similar form𝐷 = {(𝐵1,𝑤1), · · · , (𝐵𝑚,

𝑤𝑚)}, but 𝐵𝑖 ’s are a set of𝑚 points, which we also call buckets, in

R𝑑 . As before
∑𝑚
𝑖=1𝑤𝑖 = 1. For a query range 𝑅, 𝑠𝐷 (𝑅) is defined as

𝑠𝐷 (𝑅) =
𝑘∑︁
𝑖=1

1(𝐵𝑖 ∈ 𝑅) ·𝑤𝑖 (7)

In both cases, the algorithm computes 𝐷 in two phases. The first

phase, called bucket-selection, constructs the setB = {𝐵1, 𝐵2, · · · , 𝐵𝑚}
of buckets. The second phase, called weight-estimation, computes

the weight𝑤𝑖 for each bucket 𝐵𝑖 .

Bucket design. Let {𝑅1, 𝑅2, · · · , 𝑅𝑛} be the set of ranges in the

training set z𝑛 ; here we treat each range as a geometric region

defined by the query predicate (e.g. rectangles for orthogonal range

queries, halfspaces for linear-inequality queries, balls for distance-

based queries) rather than a subset of input objects. The arrange-

ment of {𝑅1, 𝑅2, · · · , 𝑅𝑛} is the partition of R𝑑 into maximal con-

nected regions so that each region lies in the same subset of ranges

of {𝑅1, 𝑅2, · · · , 𝑅𝑛}. We further refine each region into small regions,

called cells, so that each cell has constant complexity (i.e., constant

number of vertices, edges, and faces that only depends on 𝑑) and

its boundary is connected. It is known that such a decomposition

of size 𝑂 (𝑛𝑑) can be computed in 𝑂 (𝑛𝑑 log𝑛) time [4]. We choose

B, the set of buckets, to be the resulting set of cells. If we wish to

construct a discrete distribution, we simply choose a random point

in each cell, and these points form the bucket set B.

Weight estimation Let B be the set of buckets constructed in the

previous phase. To estimate the weights, we set them as variables

and solve the following convex quadratic programming:

minimize

∑𝑛
𝑖=1 (𝑠𝐷 (𝑅𝑖) − 𝑠𝑖)2

subject to

∑𝑚
𝑗=1𝑤 𝑗 = 1,

0 ≤ 𝑤 𝑗 ≤ 1, 𝑗 ∈ {1, 2 . . . , 𝑘}.

(8)

where 𝑠𝐷 (𝑅𝑖) is the function specified in Equation (6) and (7) for

histograms and discrete distributions respectively. We solve this

problem using open-sourced non-negative least squares solver [1].

The proof of the following lemma is given in the full version [3].

Lemma 3.1. The above algorithm constructs a histogram (resp. dis-

crete distribution) that minimizes the loss function over all histograms

(resp. discrete distributions).

update

Figure 6: Bucket refinement for QuadHist. The blue rectan-

gle is a training range 𝑅 with selectivity 0.2 and the underly-

ing grid is the quadtree leaves. Splitting is recursively applied

to each node until the density of its intersection with 𝑅 is

estimated no greater than 𝜏 = 0.026. The left is the quadtree

before processing 𝑅, and the right is the quadtree after.

The main shortcoming of the above approach is that the com-

plexity of the distribution depends on the training set and increases

exponentially with dimension, in the worst case. Therefore, it is

desirable to consider distributions with bounded complexity. For

example, let 𝒟𝑘 be the family of all histograms with at most 𝑘

buckets where each bucket is a rectangle in R𝑑 , or the family of

discrete distributions with support size at most 𝑘 .

Given a training set z𝑛 , we are unaware of any polynomial-time

algorithm for computing an optimal distribution of complexity 𝑘 .

The intractability of a number of related problems [33] suggests

that the problem at hand is also NP-Hard, and we leave it as an

interesting direction of future research. In the next two subsec-

tions, we describe simple, efficient algorithms for constructing a

histogram and a discrete distribution. The weight-estimation phase

remains the same, so we focus on the bucket-design phase.

3.2 Histogram

We construct a histogramQuadHist, intended for low-dimensional

data and queries. For simplicity, we assume finite lower and upper

bounds on the range of values for each dimension. Regardless of the

query class—orthogonal range, linear inequality, or distance-based

queries—QuadHist’s buckets are a disjoint set of orthogonal ranges

coming from the partitioning of 𝐷 by a quadtree. The construction

of the quadtree is guided by both the geometry of training queries

and their selectivities, such that the resulting partitioning of the

data space is finer in parts where queries and data are denser.

Let z𝑛 = (𝑧1, 𝑧2, · · · , 𝑧𝑛) be the training set with 𝑧𝑖 = (𝑅𝑖 , 𝑠𝑖). We

construct a quadtree on the ranges 𝑅1, 𝑅2, · · · , 𝑅𝑛 in the training set

zn as follows. We start with a single-node quadtree corresponding

to a single bucket spanning the whole data space. We process each

𝑧𝑖 = (𝑅𝑖 , 𝑠𝑖) to refine (if needed) the buckets as follows. For each

leaf node 𝐵 of the quadtree (interpreting 𝐵 as a range), we compute

Vol(𝐵∩𝑅𝑖)
Vol(𝑅𝑖) · 𝑠𝑖 . In the same spirit as 𝑠𝐷 (𝑅), this quantity estimates

the fraction (out of all data points) of the data points in 𝑅 that are

also in 𝐵. We compare this estimate with a predetermined threshold

𝜏 ∈ (0, 1). If the estimate is higher than 𝜏 (informally, 𝐵 carries

“too much” density), we split the quadtree leaf 𝐵 into 2
𝑑
children

and recursively apply the procedure on them. See Figure 6 for

an illustration. After going through all training queries, we take

all leaves of the final quadtree to be our QuadHist buckets (and

proceed to the weight-assignment phase). We can control the model

size 𝑘 by varying the parameter 𝜏 or adding a hard termination

condition on the number of leaves in the splitting procedure.

Remarks. Several points are worth noting here (details are in

the full version [3]). Considering the selectivities in bucket design

protects us from devoting more buckets than necessary to regions

where data is sparse (although the weight estimation step utilizes

selectivities, the buckets would have been chosen already).

Second, the simplicity of quadtree-guided bucket design proce-

dure gives rise to an interesting and desirable property of stability:

given a training workload, the resulting collection of buckets is

always the same regardless of the ordering in which we process the

workload. This property is unfortunately missing for many com-

plex selectivity estimation schemes with more bells and whistles.

Combining the stability of bucket design with the determinism of

weight estimation, we know thatQuadHist trained on the same

query workload would always behave consistently.

Third, the quadtree doubles up as a convenient data structure

for speeding up the bucket design step of the training process. For

example, the 𝜏-based splitting procedure can piggyback on the

efficient and generic quadtree procedure for answering 𝑅 as range

query, regardless of 𝑅’s shape.

3.3 Discrete Distribution

We present a discrete distribution PtsHist as an alternative instan-

tiation of our generic method for high dimensions. QuadHist is

not expected to perform well in high dimensions because of the

well known challenges: 1) rectangles are poor representations of

high-dimensional data distributions, and 2) computing volumes of

intersections between orthogonal ranges and other types of query

ranges (e.g., balls) is difficult. Hence, PtsHist turns to using a col-

lection of points in the data space (as opposed to ranges) as buckets.

Given a target model size 𝑘 , we take the following two steps to

generate the points representing buckets. 1) We draw 0.9𝑘 points

from the interior of all training query ranges. More specifically, for

each 𝑧𝑖 = (𝑅𝑖 , 𝑠𝑖) ∈ z𝑛 , we draw 𝑠𝑖∑𝑛
𝑗=1 𝑠 𝑗

· (0.9𝑘) points uniformly at

random from the range defined by𝑅. In other words, each𝑅 receives

a “share” of points proportional to its selectivity. 2) We then draw

the remaining 0.1𝑘 uniformly at random from the whole space.

This step essentially makes it possible to allocate some density to

regions not covered by the training queries.

Although sampling from the interior of geometric objects in high

dimensions has its own challenges, it is a well-studied problem for

specific shapes such as hyperrectangles, halfspaces, and balls. Our

sampling implementation in Section 4 in fact uses straightforward

rejection sampling from the smallest bounding box [42] of 𝑅 (see our

full version [3] for details), and we have found the generic approach

to offer adequate performance in practice.

Remarks. The sampling procedure used by PtsHist does not guar-

antee an unbiased sample from any data distribution 𝐷 —but that

is not our goal of this procedure in the first place. Instead, we only

aim to generate a number of points whose positions serve as buck-

ets; the subsequent (generic) weight estimation step ensures the

consistency between the PtsHist model and the training workload.

Figure 7 illustrates the real data distribution, the histogram built

byQuadHist, and the discrete distribution built by PtsHist over

the Power dataset (see more details in Section 4).

Figure 7: Illustration of underlying data distribution and our learned model. The left is the distribution of 1000 data points

randomly drawn from Power dataset. The middle is the set of buckets of QuadHist constructed under threshold 𝜏 = 0.01. The

right is the set of buckets of PtsHist. BothQuadHist and PtsHist of size 1000 are built on 1000 training queries from the

random workload of Power dataset. We darken the buckets with their associate weights.

4 EXPERIMENTS

In this section, we implement QuadHist and PtsHist in Section 3,

empirically evaluate their performance on real-world datasets and,

when applicable, compare them against state-of-the-art solutions

(for orthogonal range queries). As mentioned in Section 3, they are

not intended to “beat” state-of-the-art solutions; rather, they are

simple, generic implementations so that our experiments can focus

on illustrating the power of our theoretical results instead of the

artifacts of additional features. We implemented all our algorithms

in Python and ran all our experiments on a server with 8 Intel Core

i7-9700 CPUs (3.00GHz). All codes are public at [2].

Datasets [13]. We use real-world datasets adopted by a recent

benchmark paper [46] for evaluation:

• Power contains electric power measurement gathered from a

house over 47 months, with 2.1M tuples over 7 attributes.

• Forest contains forest cover type data, with 581k tuples over 10

numerical attributes. It is named as CoverType in [13].

• Census contains the basic population characteristics, with 49K

tuples over 13 attributes (8 categorical and 5 numerical).

• DMV contains the vehicle registration records of NYC, with 11M

tuples over 11 attributes (10 categorical and 1 numerical).

As datasets have multiple attributes, we usually choose a subset of

attributes randomly and project the tuples on the chosen attributes.

For simplicity, we normalize the domain of each attribute into [0, 1].
Workloads. We consider orthogonal range, halfspace, and ball

queries. For orthogonal range queries, we generate three different

synthetic workloads. Each orthogonal range query 𝑅 can be rep-

resented by a center point and 𝑑 side lengths (one per dimension).

After fixing the center point, we sample each side length indepen-

dently and uniformly from [0, 1]. Depending on the distribution of

centers points, we distinguish three workloads (see Figure 8):

• Data-driven: uniformly sampling from the underlying dataset.

• Random: uniformly sampling from the 𝑑-dimensional unit cube.

• Gaussian: uniformly sampling from a 𝑑-dimensional Gaussian

distribution (the mean and variance for each dimension of the

Gaussian distribution is set as 0.5 and 0.167).

The Data-driven workload is arguably more realistic as queries

typically “follow” the underlying data distribution, but we also

want to evaluate on Random and Gaussian, which are independent

from the underlying data. We will only generate equality predicates

for categorical attributes; hence the width is zero in this case.

Workloads for other query types are generated in an analogous

fashion. For ball queries, once we pick the center point, we then

sample the ball radius uniformly from [0, 1]. For halfspace queries,
once we pick the center point (lying on the boundary plane of

the halfspace), we then randomly pick a 𝑑-dimensional unit vector

(normal to that plane) that defines the orientation of the halfspace.

Unless explicitly noted otherwise, the set of training and test

queries for each experiment are sampled uniformly and indepen-

dently from the same query workload. Note that there could be very

few queries in the overlapping, as well as the subset of predicates.

Methods Compared. For fair comparison, we restrict ourselves to

methods that only have access to query workload, but not the un-

derlying data. Since this paper is concerned with learned selectivity

estimation models that can provide provable guarantees, we also do

not include methods based on deep learning that may return models

that do not correspond to any valid hypothesis, and consequently,

have been observed to produce selectivity estimates that are not

monotone or consistent [46]. For orthogonal range queries, based

on the recent empirical study on cardinality estimation in [46] (see

Section 5 for more details), Isomer [39] produces the best accuracy

and QuickSel [36] achieves the best tradeoff between accuracy and

efficiency, so we include both in our comparison withQuadHist

and PtsHist. For halfspace and ball queries, there are no obvi-

ous candidates for comparison with our methods, as traditional

histogram-based methods have not focused on these queries.

Error Measures. We adopt two common error measures for evalu-

ating selectivity estimators. For a test query 𝑅, let 𝑠 (𝑅) and 𝑠 (𝑅) be
the estimated and true selectivities of 𝑅, respectively, and let 𝑛 be

the number of test queries.

• Root Mean Square (RMS) Error =

√√
1

𝑛

𝑛∑︁
𝑖=1

(𝑠 (𝑅𝑖) − 𝑠 (𝑅𝑖))2.

• Q-Error(p) [32]= 𝑝-th quantile of

{
max{𝑠 (𝑅𝑖), 𝑠 (𝑅𝑖)}
min{𝑠 (𝑅𝑖), 𝑠 (𝑅𝑖)}

: 𝑖 ∈ [𝑛]
}
.

Q-error is a good complement of RMS error because Q-error is better

at capturing errors that are small in absolute terms but large in

relative terms, which occur frequently since many database queries

tend to be selective. 𝐿∞ error is used for investigating different

objective functions in model training.

Figure 8: Workloads (100 orthogonal range queries) of Power:

Data-driven (left), Random (center), and Gaussian (right).

Outline.Wenext investigate the following questions on the learned

model to verify our learning theory developed in Section 2:

• Section 4.1: How does the training size affect the learned model?

• Section 4.2:What is the performance of learnedmodel if the query

workload is not correlated with the underlying data distribution?

• Section 4.3: What is the performance of learned model if training

and testing query distributions do not match?

• Section 4.4: How does the dimensionality of data space affect the

learned model?

• Section 4.5: How does the query type affect the learned model?

4.1 Learnability with Enough Training Samples

We start with selectivity estimation for orthogonal range queries,

which has been studied extensively, and validate the learnability

of selectivity functions. Recall that Theorem 2.1 shows a clear de-

pendency between error 𝜖 and training size 𝑚: we now explore

this dependency empirically. We first take a closer look at the 2D

case, where QuadHist is our generic implementation. Figure 9

shows the QuadHist results for Data-driven query workload over

Power data. We vary the number of training queries from 50 to

2000; each line plot corresponds to a specifically sized training set.

Since the accuracy of QuadHist also depends on its model com-

plexity (number of buckets), given a specific training set, we further

vary 𝜏 in the bucket design step (Section 3.2) to adjust the model

complexity. As we can see from Figure 9, error generally decreases

with model complexity, although it eventually flattens out, and in

one case even trends up because of overfitting (when using 10000

buckets for merely 50 training queries). As we increase the number

of training queries, error decreases (the series of line plots push

toward the origin), although the rate of decrease also diminishes,

consistent with Theorem 2.1’s prediction. The good news is that

with 200 training queries and 500 buckets,QuadHist already offers

practically acceptable accuracy with RMS error smaller than 0.02.

To help put our results in a boarder context, we next bring other

state-of-the-art competitors, Isomer andQuickSel, into compari-

son. For completeness we also compare with our PtsHist (although

it is intended for higher dimensions). The results are shown in Fig-

ures 10, 11, and 12. Again, we consider 2D orthogonal range queries

for Data-driven query workload over Power data. As we have seen,

model complexity can affect prediction accuracy, so for comparison,

we adoptQuickSel’s convention of using number of buckets 4× the

number of training queries, for both QuadHist and PtsHist.
4
For

Isomer, it is difficult to enforce this convention, so we let it choose

4
Note that this setup unfairly disadvantages PtsHist, because it uses much less space

per bucket than QuickSel and QuadHist. For example, assuming 2D, each bucket

(point) in PtsHist requires 2 numbers, while each bucket (2D range) inQuickSel and

QuadHist requires 4, twice that of PtsHist.

the number of buckets by itself; in our results, Isomer ends up using

number of buckets 48-160× the number of training queries.

As we vary the number of the training queries, Figure 10 shows

the actual number of buckets used by different models; Figure 11

shows their prediction accuracy; and Figure 12 shows their training

time. All models become more accurate when more queries are used

for training. While Isomer is the most accurate, it uses more buck-

ets and is much slower than others: it could not finish training in 30

minutes with 500 training queries, so the figures do not show Iso-

mer for larger training workloads.
5
On the other hand, QuadHist,

PtsHist, andQuickSel are comparable on all fronts and work very

well: their training scales to large training sets, and they are able to

deliver RMS error lower than 0.01 with 1000 training queries. An

encouraging observation is that despite the simple, generic nature

of QuadHist and PtsHist, they are able to match (if not beat) the

performance of the state-of-the-art methods. Such competitiveness

can only be attributed to the fundamental learnability of the task.

Finally, another important practical consideration is prediction

time. Note that all these models work similarly in terms of predic-

tion. QuickSel, QuadHist, and Isomer have the same estimation

procedure that involves computing intersections between orthogo-

nal ranges, while PtsHist involves checkingwhether an orthogonal

range contains a point. Therefore, their prediction time is dictated

by their model complexity and already reflected in Figure 10; we do

not separately report the prediction time for these different models.

4.2 Data vs. Query Distributions

So far, we have only presented results on Power data. We have also

repeated these experiments in the last section on other datasets and

made similar observations. Due to space constraints, we present

our complete results in the full version [3].

A second question is how the query distribution—in connection

with the underlying data distribution—may affect accuracy. We

note that one strength of our theory in Section 2 is that they hold

for arbitrary data distribution and arbitrary query distribution—

even if they are highly skewed. Indeed, most real-world datasets

exhibit skewness, including for example Power, and we have seen

that our approach indeed works well on them. However, the query

workload used so far was Data-driven. A valid question arises: what

if the query workload is not correlated with the underlying data

distribution? According to our theory, we should still do fine, but

let us validate it empirically with other query distributions Random

and Gaussian, which are independent from the underlying data

distribution. Figures 13 and 15 show the prediction errors of differ-

ent models, using the same exact setup on Power data as Figure 11

earlier, except we replace the Data-driven query workload with

Random and Gaussian, respectively. We alsreport the prediction

errors of non-empty queries in Random workload in Figure 14, as

we have observed up to 97% Random queries with selectivity near

0. The result in Figure 14 is similar to Figure 13, except with slight

increase in the RMS error of Isomer. Overall, we can make similar

observations as before—consistent with our theory, selectivity is

still learnable even if query distribution is independent of data.

5
To be fair, we note that Isomer was not originally designed for batch training; instead,

it builds its histogram by partitioning existing buckets upon observing the selectivity

of each new query, which contributes to its slow training time in this setting.

100 500 1000 5000 10000
Model complexity (#buckets)

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
M

S
er

ro
r

Orthogonal - Data-Driven Workload - Power

m: training size
m = 50
m = 200
m = 500
m = 1000
m = 2000

Figure 9: RMS Error vs. model complexity

on Data-driven workload of Power.

50 200 500 1000 2000
Number of training queries

102

103

104

N
um

be
ro

fb
uc

ke
ts

Orthogonal - Data-Driven Workload - Power

QuickSel
QuadHist

PtsHist
Isomer

Figure 10: Model complexity vs. training

size on Data-driven workload of Power.

50 200 500 1000 2000
Number of training queries

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
er

ro
r

Orthogonal - Data-Driven Workload - Power

QuickSel
QuadHist
PtsHist
Isomer

Figure 11: RMS Error vs. training size on

Data-driven workload of Power.

50 200 500 1000 2000
Number of training queries

10−2

10−1

100

101

102

103

Ti
m

e
(s

)

Orthogonal - Data-Driven Workload - Power

QuickSel
QuadHist
PtsHist
Isomer

Figure 12: Training time vs. training size on

Data-driven workload of Power.

50 200 500 1000 2000
Number of training queries

0.00

0.02

0.04

0.06

0.08

R
M

S
er

ro
r

Orthogonal - Random Workload - Power

QuickSel
QuadHist
PtsHist
Isomer

Figure 13: RMS error vs. training size on

random workload of Power.

50 200 500 1000 2000
Number of training queries

0.00

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

R
M

S
er

ro
r

Orthogonal - Random Workload (non-empty) - Power

QuickSel
QuadHist
PtsHist
Isomer

Figure 14: RMS error vs. training size on

non-empty queries in random workload of

Power.

50 200 500 1000 2000
Number of training queries

0.01

0.02

0.03

0.04

0.05

0.06

0.07

R
M

S
er

ro
r

Orthogonal - Gaussian Workload - Power

QuickSel
QuadHist
PtsHist
Isomer

Figure 15: RMS Error vs. training size on

Gaussian workload of Power.

(0.2, 0.2) (0.3, 0.3) (0.4, 0.4) (0.5, 0.5) (0.6, 0.6) (0.7, 0.7)

Training query workload

(0.7, 0.7)

(0.6, 0.6)

(0.5, 0.5)

(0.4, 0.4)

(0.3, 0.3)

(0.2, 0.2)

Te
st

qu
er

y
w

or
kl

oa
d

0.0873 0.1918 0.0979 0.0748 0.0025 0.0006

0.0802 0.2572 0.1245 0.098 0.0006 0.0003

0.026 0.0169 0.0068 0.0042 0.0008 0.0007

0.0364 0.0205 0.0077 0.0044 0.0008 0.0005

0.0135 0.0075 0.0113 0.0111 0.0185 0.0092

0.0149 0.0156 0.0351 0.032 0.0117 0.0038

Orthogonal - Gaussian Workload - Power

Figure 16: RMS Error vs. Difference be-

tween training and test query workload.

50 200 500 1000 2000
Number of training queries

0.00

0.02

0.04

0.06

0.08

R
M

S
er

ro
r

Orthogonal - Data-Driven Workload - Forest

PtsHist (d=2)
PtsHist (d=4)
PtsHist (d=6)

PtsHist (d=8)
PtsHist (d=10)

Figure 17: RMS error vs. training size on

orthogonal ranges.

2 4 6 8 10
Number of dimensions

0.00

0.01

0.02

0.03

0.04

0.05

R
M

S
er

ro
r

Orthogonal - Data-Driven Workload - Forest

QuickSel
QuadHist
PtsHist

Figure 18: RMS error vs. dimensions on

Data-driven workload of Forest.

2 4 6 8 10
Number of dimensions

5

6

7

8

9

10

11

Ti
m

e
(s

)

Orthogonal - Data-Driven Workload - Forest

QuickSel
QuadHist
PtsHist

Figure 19: Training time vs. dimensions on

Data-driven workload of Forest.

50 200 500 1000 2000
Number of training queries

0.00

0.05

0.10

0.15

0.20

R
M

S
er

ro
r

Halfspace - Data-Driven Workload - Forest

QuadHist (d=2)
PtsHist (d=2)
PtsHist (d=4)
PtsHist (d=6)
PtsHist (d=8)
PtsHist (d=10)

Figure 20: RMS error vs. training size on

halfspace queries.

50 200 500 1000 2000
Number of training queries

10−2

10−1

100

101

102

Ti
m

e
(s

)

Halfspace - Data-Driven Workload - Forest

QuadHist (d=2)
PtsHist (d=2)
PtsHist (d=4)
PtsHist (d=6)
PtsHist (d=8)
PtsHist (d=10)

Figure 21: Training time vs. training size on

halfspace queries.

50 200 500 1000 2000
Number of training queries

0.00

0.05

0.10

0.15

0.20

0.25

R
M

S
er

ro
r

Ball - Data-Driven Workload - Forest

QuadHist (d=2)
PtsHist (d=2)
PtsHist (d=4)
PtsHist (d=6)
PtsHist (d=8)
PtsHist (d=10)

Figure 22: RMS error vs. training size on

ball queries.

50 200 500 1000 2000
Number of training queries

10−2

10−1

100

101

102

Ti
m

e
(s

)

Ball - Data-Driven Workload - Forest

QuadHist (d=2)
PtsHist (d=2)
PtsHist (d=4)
PtsHist (d=6)
PtsHist (d=8)
PtsHist (d=10)

Figure 23: Training time vs. training size on

ball queries.

Besides RMS error, we also report Q-error results in Table 1 for all

query workloads. The additional insight provided by Q-error is use-

ful because a data-independent query workload (such as Random)

on skewed data (such as Power) may result in many low-selectivity

queries, where Q-error would be more informative. For example,

we have observed up to 97% Random queries with selectivity near

0. From Table 1, we see that QuadHist and PtsHist, despite (and

perhaps thanks to) their simplicity, are able to provide robust ac-

curacy in terms of Q-error, often beating the more sophisticated

QuickSel: QuickSel sometimes see Q-error larger than 50 even

when the training size is up to 2000, while QuadHist and PtsHist

have lower Q-errors even with just 50 training queries. The result

on Q-error for non-empty queries are reported separately, for which

PtsHist performs the best over all training sizes.

It is also instructive to dig deeper to see how QuadHist and

PtsHist are able to work well on query workloads that do not

correspond to the underlying data distribution. Figure 7 shows the

set of buckets in QuadHist and PtsHist that are learned from the

Random query workload over Power. Unknown to the learner, the

real data is concentrated in the lower half. However, the Random

query workload contains enough number of large queries that

span both dense and sparse regions of the data space; the learner

unfortunately only gets the overall selectivity of each such query,

so some of the density “bleeds” into the sparse upper region, and

we can see that the buckets are actually not ideal. Luckily, the

subsequent weight assignment step (Section 3) mitigates this issue

by assigning low weights to the upper region, making the resulting

distribution more consistent with the underlying data distribution.

4.3 Training vs. Testing Query Distributions

Our next question is: what if training and testing query distributions

do not match? The learning theory will not provide us with any

guarantee on the performance over a different query workload, but

in practice, if the test queryworkload is not completely disjoint from

the training query workload, we should still expect to gain some-

thing from a learned model. In this set of experiments, we explore

different combinations of training and testing query workloads. We

use 2D Gaussian query workloads , but shift the Gaussian distribu-

tion (fromwhich the center points of queries are drawn) such that its

mean is located at (0.2, 0.2), (0.3, 0.3), (0.4, 0.4), (0.5, 0.5), (0.6, 0.6),
or (0.7, 0.7) (while the covariance remains at 0.033). Figure 16 shows,

as a heat map, the prediction error of QuadHist under each train-

ing/testing combination. First, we can see that when the training

and test query workloads are the same (along the diagonal), the

error is the smallest in most cases. If we fix the training query work-

load, say the column indexed by (0.6, 0.6), we observe that error
gradually increases with the test query workload shifting away

from (0.6, 0.6) to (0.2, 0.2) or (0.7, 0.7). Symmetrically, if we fix the

test query workload, say the row indexed by (0.7, 0.7), we observe
that the error gradually decreases with training query workload

shifting from (0.3, 0.3) to (0.7, 0.7). In this case, even when the shift

between two query workloads is large, there is still considerable

overlap between their coverage of the underlying data space; hence

the error remains manageable.

4.4 Effect of Dimensionality

Recall that Theorem 2.1 shows a training size𝑚 = 𝑂̃𝑑 ((1𝜖)
𝑓 (𝑑)),

where 𝑓 (𝑑) = 2𝑑 + 3 for orthogonal range queries, 𝑓 (𝑑) = 𝑑 + 4

for linear inequality queries, and 𝑓 (𝑑) = 𝑑 + 5 for distance-based

queries. For all these range types, we see an exponential depen-

dency of sampling complexity𝑚 on the dimensionality 𝑑 . We now

investigate this dependency experimentally. Recall that PtsHist

is our method of choice in higher dimensions. For each setting of

dimensionality 𝑑 , we use a 𝑑-dimensional subspace of Forest and

a 𝑑-dimensional Data-driven orthogonal range query workload;

Figure 17 shows the error of PtsHist under different training sizes

for the given 𝑑 as a line plot. The model complexity of PtsHist is

always set to 4× the number of training queries, consistent with

earlier experiments. For each line plot, we see that the error gradu-

ally decreases with more training queries, and eventually flattens

out. As we increase 𝑑 , we see the series of line plots pushing away

from origin. Moreover, if we set the desired accuracy by drawing a

horizontal line in Figure 17, its intersections with various line plots

will show that as the dimensionality goes up, the number of train-

ing queries required to achieve this accuracy also goes up, as our

theory predicates. (Figures on model complexity and training time

are in the full version [3].) Since PtsHist’s training time primarily

depends on the model complexity, which is pegged to the training

size here, we do not see significant differences among different 𝑑 .

However, combining this observation with the observation from

Figure 17 that a higher 𝑑 demands more training queries, we still

conclude higher dimensions require longer training time.

Next, we compare PtsHist with other methods. Isomer is dif-

ficult to scale to higher dimensions due to the exponential depen-

dency of its model complexity on 𝑑 , so we compare with QuickSel

and our own QuadHist here. As before, the number of buckets

used byQuadHist and PtsHist is set to be no larger than that of

QuickSel. We vary the dimensionality of Forest from 2 to 10, using

1000 Data-driven training queries in each case. Figures 18 and 19

show the error and training time of the three methods. Overall, the

three methods have competitive prediction accuracy, and all see

larger error in higher dimensions. Since the model complexity is

fixed (across 𝑑), differences in training time primarily come from

solver speed (which can be highly situational and hard to interpret)

and per-bucket computational cost. Thanks to PtsHist’s simpler

buckets and lower per-bucket computational cost, we see that Pt-

sHist holds significant advantage in terms of training time in high

dimensions, which is the case that it is intended for.

4.5 Other Query Types

Beyond orthogonal range queries, we are also interested in other

classes of range queries, such as halfspace and ball, which have

many applications in databases but have seen much less work on

selectivity estimation than orthogonal range queries, perhaps since

the problem is perceived to be more difficult. From our theory in

Section 2.2, however, selectivity functions for these queries are also

learnable. This last set of experiments is designed to verify this

claim.s We focus onQuadHist and PtsHist show results across

different dimensions for Forest data: Figures 20, 21 for halfspace

queries and Figures 22, 23 for ball queries. All query workloads

are Data-driven, and the model complexity is always no more than

4× the number of training queries. We only show the results on

QuadHist for 𝑑 = 2, since in higher dimensions, its prediction for

halfspace and ball queries involve complicated intersection opera-

tions that make it too slow compared with PtsHist. In Figures 20

and 22, we see that error generally decreases as we increase the

training size, and higher dimensionality generally requires a bigger

training size to achieve the same level of accuracy. QuadHist is

more accurate than PtsHist in 2D, although it is not applicable in

higher dimensions. In terms of training time shown in Figures 21

and 23, we observe thatQuadHist is slow than PtsHist in 2D, and

as dimensionality increases, PtsHist’s training procedure remains

very scalable, because its complexity is primarily dependent on its

model complexity instead of 𝑑 . Overall, we observe that as simple

as it is, PtsHist provides a reasonable solution for learning the

selectivity of halfspace and ball queries, thanks to the theoretical

guarantees on the learnability of these query classes.

Summary. Our main findings can be summarised as follow:

• The empirical results have verified our learning theory by show-

ing a clear dependency between error 𝜖 , training size 𝑚 and

dimension 𝑑 . When fixing 𝑑 , more training samples lead to more

accurate modeling of data distribution, thus smaller predication

error. On the other hand, when fixing𝑚, higher dimension leads

to more coarse-grained modeling of data distribution, thus larger

prediction error. (Section 4.1 and 4.4)

• The empirical results have verified that our learning theory holds

for arbitrary data distribution and query distribution, even if they

are highly skewed. (Section 4.2)

• Our learning theory does not provide us with any guarantee on

the performance of learned model when the training and test

query distributions do not match. The empirical results imply

that we will get the most accurate model when training and

test query distribution matches exactly, but we can still gain

something from a learned model when there is overlap between

their coverage of the underlying data space. (Section 4.3)

• Two simple algorithms proposed in Section 3 work well in prac-

tice, matching or even outperforming the state-of-art methods.

QuadHist stands out for efficiency and accuracy in lower dimen-

sional space while PtsHist scales better in higher dimensional

space. (Section 4.1, 4.2 and 4.4)

5 RELATEDWORK

Orthogonal range queries.We summarize current works on learn-

ing selectivity estimation for orthogonal range queries in Table 2

(see [46] for a comprehensive review) under two metrics: method-

ology and input. There are two main approaches: one is to build a

mapping between queries and their selectivities via feature vectors,

and the other is to learn data distribution. Depending on the input

to models, we divide them into three cases: data only, query work-

load only, and both data and query (hybrid). Combing these two

metrics, we review the following four categories:

• Regressionmodel with hybrid input.MSCN [23] represents a

query as a feature vector which contains three modules (i.e., table,

join, and predicate) and uses amulti-set convolutional network for

training. MSCN enriches the training queries with materialized

samples from underlying data. LW [14] a lightweight selectivity

estimation method, uses both queries and heuristic selectivity

estimators as features. It adopts both neural network and gradient

boost tree model separately for training.

• Regression model only with query as input. DQM [16] pro-

poses one-hot encoding to encode categorical attributes (and

treats numerical attributes as categorical attributes by automatic

discretization), and uses a neural network for training.

• Data distribution model only with data as input. This line

of work takes samples from the underlying data distribution.

Both Naru [49] and DQM-D [28] decompose the data distribu-

tion into conditional data distributions using the product rule:

Naru uses progressive sampling to sample values attribute by at-

tribute according to the internal output of conditional probability

distribution, and DQM-D selects samples in proportional to the

contribution they make to the query cardinality according to the

result from the previous stage. DeepDB [19] builds sum-product

networks on random data samples to capture the data distribution.

• Data distribution model only with query as input. As far

as we are aware, query-driven histograms [11, 20, 28, 29, 36, 39]

are the methods that learn data distribution only from previous

queries, for example STHoles [11] exploits results of queries in

the workload and gathers associated statistics to progressively

build and refine a histogram; Isomer [39] applies STHoles for

histogram bucket creations, and computes the density for buckets

by maximizing entropy distribution; QuickSel [36] uses a mixture

model of uniform distributions to represent the underlying data

distribution, which can be viewed as overlapping histograms.

Training Isomer QuickSel QuadHist PtsHist

Size 50th 95th 99th MAX 50th 95th 99th MAX 50th 95th 99th MAX 50th 95th 99th MAX

D
a
t
a
-
d
r
i
v
e
n

50 1.032 1.33 2.046 2.05 1.11 1.641 3.962 4.682 1.013 1.647 3.315 3.759 1.042 2.47 3.644 3.826

200 1.006 1.051 1.232 1.45 1.027 1.411 1.743 2.699 1.008 1.265 1.588 1.59 1.011 1.512 1.75 2.621

500 - - - - 1.008 1.157 1.546 1.644 1.004 1.121 1.344 1.906 1.006 1.227 1.997 3.26

1000 - - - - 1.004 1.068 1.566 5.329 1.001 1.066 1.097 1.179 1.004 1.126 1.28 1.297

2000 - - - - 1.003 1.052 1.212 1.469 1.001 1.039 1.096 1.115 1.001 1.052 1.292 1.298

R
a
n
d
o
m

50 1.149 9.819 644.864 861.236 1.154 28.949 3572.99 18401.38 1.176 8.917 31.271 35.798 1.029 5.238 12.491 13.154

200 1.05 3.444 21.317 385.339 1.047 9.056 85.699 1434.633 1.015 1.972 7.378 9.97 1.047 7.801 24.433 46.537

500 - - - - 1.036 49.032 354.379 1277.717 1.014 1.713 16.876 20.619 1.031 2.195 8.329 17.208

1000 - - - - 1.025 22.38 284.91 686.495 1.006 1.829 2.712 9.605 1.025 3.208 5.419 13.947

2000 - - - - 1.012 5.077 32.203 53.021 1.004 1.764 2.293 4.439 1.006 1.731 9.95 20.35

R
a
n
d
o
m

(
n
o
n
-
e
m
p
t
y
) 50 1.246 10.921 36.016 60.037 1.324 30.459 48.154 203.101 1.233 7.419 85.900 550.55 1.157 3.147 5.018 5.403

200 1.053 2.047 11.491 26.253 1.11 7.091 28.577 32.144 1.050 2.731 6.140 9.720 1.111 2.797 4.734 10.011

500 - - - - 1.027 6.813 36.431 54.352 1.032 1.424 2.216 3.129 1.028 1.770 2.139 2.165

1000 - - - - 1.041 3.048 6.625 33.086 1.025 2.057 3.110 3.218 1.023 1.788 2.540 2.607

2000 - - - - 1.024 3.876 5.748 8.448 1.028 1.425 2.126 2.457 1.013 1.301 1.379 1.672

G
a
u
s
s
i
a
n

50 1.041 2.324 7.011 21.751 1.135 7.192 21.298 101.17 1.044 2.328 4.954 5.079 1.120 4.492 7.683 7.920

200 1.009 1.146 2.591 3.879 1.058 13.036 36.542 152.506 1.019 2.049 3.029 4.522 1.044 2.507 5.388 6.788

500 - - - - 1.038 6.956 58.594 596.505 1.015 1.598 3.166 3.478 1.025 1.391 1.982 2.625

1000 - - - - 1.032 3.526 9.092 447.129 1.012 1.439 2.719 4.070 1.034 2.009 2.457 2.895

2000 - - - - 1.018 2.74 10.127 218.331 1.009 1.365 1.785 2.163 1.014 1.295 1.666 2.513

Table 1: Q-error over Power. The bold numbers are those ranking the smallest in 99th Q-error.

Models Data Hybrid Query

Regression –

MSCN [23]

DMQ-Q [16]

LW [14]

Data

Naru [49]

–

STHoles [11]

Distribution

DeepDB [19] Isomer [39]

DMQ-D [16] QuickSel [36]

Table 2: Taxonomy of Learned Cardinality Estimation.

Distance-based queries. Deep learning has been studied to es-

timate the selectivity for distance-based queries. Wang et al. [47]

learned the cardinality by resorting to the VAE (Variational Au-

toencoders) and embeddings for different thresholds separately for

enhancing accuracy and guaranteeing monotonicity. Sun et al. [41]

utilized deep neural network to learn cardinality and adopt two

strategies to improve the accuracy and reduce the size of training

data, i.e., query segmentation and data segmentation. There are

some other methods depending on the underlying data, for example,

clustering-based methods [10], kernel-based methods [31].

Learning theory. It is beyond the scope of this paper to review the

relevant work on learning theory and we refer reader to a few clas-

sical books on this topic [6, 22, 44]. In the literature of ML, Valiant’s

pioneering work [43] first established the notion of learnability and

the framework of probably approximately correct (PAC) learning.

Intuitively, the learner in this framework receives random sam-

ples from underlying training data, and aims to select a hypothesis

from a set of possible hypotheses which has low generalization

error (𝜖) with high probability (1 − 𝛿) on the unobserved samples

from the same distribution. Surprisingly, relationships between

the PAC-learnability of a hypothesis class and its inherent proper-

ties have been proved. For example, a Boolean hypothesis class is

learnable if and only if it has finite VC-dimension [6, 44, 45], and a

real-valued function class is PAC-learnable if and only if it has finite

fat-shattering dimension [6, 8, 21]. This framework of PAC learning

is exactly the theoretical foundation behind our investigation of

learnability of selectivity functions.

6 CONCLUSIONS AND FUTUREWORK

In this paper, we presented an ML-based technique for estimating

the selectivity of selection queries in DB systems. Central to our ap-

proach were generalization bounds that we proved for this problem

(Theorem 2.1), thereby establishing a formal framework for apply-

ing classical ML theory (PAC learning) to DB problems. In contrast,

the predominant approach in previous work has been to use deep

learning techniques, which have consistently outperformed tradi-

tional optimization methods for a range of important problems in

DB research. However, in spite of much empirical success, obtaining

generalization bounds for deep learning remains one of the out-

standing open challenges of the modern era. We expect the trend

of using ML for DB will accelerate even further in the future, and

hope that our work in initiating a formal study of the learnability

of DB problems will complement the existing efforts at leveraging

deep learning for improving the performance of DB systems in

practice. There are several interesting directions for future work.

As mentioned earlier, understanding the complexity of finding an

optimal distribution with a given model complexity is an open prob-

lem. Although our framework does not assume query ranges to

be bounded and thus works even if we consider data distributions

with unbounded support, e.g., Gaussian mixtures, developing an

algorithm that computes a Gaussian mixture (or another model)

with a small loss given a training sample is also an open problem.

Developing theory and algorithms for learning selectivity of range

queries of practical interest with unbounded VC dimensions and

extending the learning framework to unsupervised approaches are

other intriguing directions for future work.

REFERENCES

[1] https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html.

[2] https://github.com/huxiao2010/Selectivity/.

[3] https://github.com/huxiao2010/Selectivity/blob/main/Selectivity_Function_of_

Range_Query_is_Learnable_Full.pdf.

[4] P. K. Agarwal and M. Sharir. 2000. Arrangements and their applications. In

Handbook of computational geometry. Elsevier, 49–119.

[5] N. Alon, S. Ben-David, N. Cesa-Bianchi, and D. Haussler. 1997. Scale-sensitive

dimensions, uniform convergence, and learnability. JACM 44, 4 (1997), 615–631.

[6] M. Anthony and P. L. Bartlett. 2009. Neural network learning: Theoretical founda-

tions. cambridge university press.

[7] Peter L Bartlett and Philip M Long. 1995. More theorems about scale-sensitive

dimensions and learning. In Proceedings of the eighth annual conference on Com-

putational learning theory. 392–401.

[8] P. L. Bartlett, P. M. Long, and R. C. Williamson. 1996. Fat-shattering and the

learnability of real-valued functions. J. Comput. Syst. Sci. 52, 3 (1996), 434–452.

[9] S. Ben-David and M. Lindenbaum. 1998. Localization vs. identification of semi-

algebraic sets. Machine Learning 32, 3 (1998), 207–224.

[10] N. Brisaboa, O. Pedreira, D. Seco, R. Solar, and R. Uribe. 2008. Clustering-based

similarity search inmetric spaces with sparse spatial centers. In SOFSEM. Springer,

186–197.

[11] N. Bruno, S. Chaudhuri, and L. Gravano. 2001. STHoles: A multidimensional

workload-aware histogram. In Proc. 20th ACM SIGMOD Int. Conf. Management

Data. 211–222.

[12] B. Chazelle and E. Welzl. 1989. Quasi-optimal range searching in spaces of finite

VC-dimension. Discrete & Computational Geometry 4, 5 (1989), 467–489.

[13] D. Dua and C. Graf. 2017. UCI machine learning repository. (2017). http:

//archive.ics.uci.edu/ml/index.php

[14] A. Dutt, C. Wang, A. Nazi, S. Kandula, V. Narasayya, and S. Chaudhuri. 2019.

Selectivity estimation for range predicates using lightweight models. Proc. VLDB

Endow. 12, 9 (2019), 1044–1057.

[15] W. R. Gilks, S. Richardson, and D. Spiegelhalter. 1995. Markov chain Monte Carlo

in practice. CRC press.

[16] S. Hasan, S. Thirumuruganathan, J. Augustine, N. Koudas, and G. Das. 2020. Deep

Learning Models for Selectivity Estimation of Multi-Attribute Queries. In Proc.

39th ACM SIGMOD Int. Conf. Management Data. 1035–1050.

[17] D. Haussler. 1992. Decision theoretic generalizations of the PAC model for neural

net and other learning applications. Inf. Comput. 100, 1 (1992), 78–150.

[18] D. Haussler and E. Welzl. 1987. 𝜖-nets and simplex range queries. Discret. Comput.

Geom. 2, 2 (1987), 127–151.

[19] B. Hilprecht, A. Schmidt, M. Kulessa, A. Molina, K. Kersting, and C. Binnig. 2019.

DeepDB: learn from data, not from queries! Proc. VLDB Endow. 13, 7 (2019),

992–1005.

[20] R. Kaushik and D. Suciu. 2009. Consistent histograms in the presence of distinct

value counts. Proc. VLDB Endow. 2, 1 (2009), 850–861.

[21] M. J. Kearns and R. E. Schapire. 1994. Efficient distribution-free learning of

probabilistic concepts. J. Comput. System Sci. 48, 3 (1994), 464–497.

[22] M. J. Kearns and U. Vazirani. 1994. An introduction to computational learning

theory. MIT press.

[23] A. Kipf, T. Kipf, B. Radke, V. Leis, P. Boncz, and A. Kemper. 2019. Learned

cardinalities: Estimating correlated joins with deep learning. (2019).

[24] R. J. Lipton, J. F. Naughton, and D. A. Schneider. 1990. Practical selectivity

estimation through adaptive sampling. In Proc. 9th ACM SIGMOD Int. Conf.

Management Data. 1–11.

[25] R. Marcus, P. Negi, H. Mao, N. Tatbul, M. Alizadeh, and T. Kraska. 2020. Bao:

Learning to Steer Query Optimizers. arXiv preprint arXiv:2004.03814 (2020).

[26] R. Marcus, P. Negi, H. Mao, C. Zhang, M. Alizadeh, T. Kraska, O. Papaemmanouil,

and N. Tatbul. 2019. Neo: A learned query optimizer. 12, 11 (2019), 1705–1718.

[27] R. Marcus and O. Papaemmanouil. 2018. Deep reinforcement learning for join

order enumeration. In aiDM. 1–4.

[28] V. Markl, P. J. Haas, M. Kutsch, N. Megiddo, U. Srivastava, and T. M. Tran. 2007.

Consistent selectivity estimation via maximum entropy. The VLDB journal 16, 1

(2007), 55–76.

[29] V. Markl, N. Megiddo, M. Kutsch, T. M. Tran, P. Haas, and U. Srivastava. 2005.

Consistently estimating the selectivity of conjuncts of predicates. In Proc. 31th

Very Large Data Bases. 373–384.

[30] Y. Matias, J. S. Vitter, andM.Wang. 1998. Wavelet-based histograms for selectivity

estimation. In Proc. 17th ACM SIGMOD Int. Conf. Management Data. 448–459.

[31] M. Mattig, T. Fober, C. Beilschmidt, and B. Seeger. 2018. Kernel-Based Cardinality

Estimation on Metric Data. In EDBT. 349–360.

[32] G. Moerkotte, T. Neumann, and G. Steidl. 2009. Preventing bad plans by bounding

the impact of cardinality estimation errors. Proc. VLDB Endow. 2, 1 (2009), 982–

993.

[33] S. Muthukrishnan, V. Poosala, and T. Suel. 1999. On rectangular partitionings

in two dimensions: Algorithms, complexity and applications. In ICDT. Springer,

236–256.

[34] P. Negi, R. Marcus, H. Mao, N. Tatbul, T. Kraska, and M. Alizadeh. 2020. Cost-

Guided Cardinality Estimation: Focus Where it Matters. In Proc. 36th Annu. IEEE

Int. Conf. Data Eng. IEEE, 154–157.

[35] J. Pach and P. K. Agarwal. 2011. Combinatorial geometry. Vol. 37. John Wiley &

Sons.

[36] Y. Park, S. Zhong, and B. Mozafari. 2020. Quicksel: Quick selectivity learning

with mixture models. In Proc. 39th ACM SIGMOD Int. Conf. Management Data,.

1017–1033.

[37] V. Poosala, P. J. Haas, Y. E. Ioannidis, and E. J. Shekita. 1996. Improved histograms

for selectivity estimation of range predicates. ACM Sigmod Record 25, 2 (1996),

294–305.

[38] V. Poosala and Y. E. Ioannidis. 1997. Selectivity estimation without the attribute

value independence assumption. In VLDB, Vol. 97. Citeseer, 486–495.

[39] U. Srivastava, P. J. Haas, V. Markl, M. Kutsch, and T. M. Tran. 2006. Isomer:

Consistent histogram construction using query feedback. In Proc. 22th Annu.

IEEE Int. Conf. Data Eng. 39–39.

[40] M. Stocker, A. Seaborne, A. Bernstein, C. Kiefer, and D. Reynolds. 2008. SPARQL

basic graph pattern optimization using selectivity estimation. In Proc. 17th Int.

Conf. World Wide Web. 595–604.

[41] J. Sun, G. Li, and N. Tang. 2021. Learned Cardinality Estimation for Similarity

Queries. In Proc. 40th ACM SIGMOD Int. Conf. Management Data.

[42] G. T. Toussaint. 1983. Solving geometric problems with the rotating calipers. In

Proc. IEEE Melecon, Vol. 83. A10.

[43] L. G. Valiant. 1984. A theory of the learnable. Commun. ACM 27, 11 (1984),

1134–1142.

[44] V. Vapnik. 2013. The nature of statistical learning theory. Springer science &

business media.

[45] V. N. Vapnik and A. Y. Chervonenkis. 2015. On the uniform convergence of

relative frequencies of events to their probabilities. In Measures of complexity.

Springer, 11–30.

[46] X. Wang, C. Qu, W. Wu, J. Wang, and Q. Zhou. 2021. Are We Ready For Learned

Cardinality Estimation? Proc. VLDB Endow. 14, 9 (2021), 1640–1654.

[47] Y. Wang, C. Xiao, J. Qin, X. Cao, Y. Sun, W. Wang, and M. Onizuka. 2020. Mono-

tonic cardinality estimation of similarity selection: A deep learning approach. In

Proc. 39th ACM SIGMOD Int. Conf. Management Data. 1197–1212.

[48] R. S. Wenocur and R. M. Dudley. 1981. Some special vapnik-chervonenkis classes.

Discrete Mathematics 33, 3 (1981), 313–318.

[49] Z. Yang, E. Liang, A. Kamsetty, C. Wu, Y. Duan, X. Chen, P. Abbeel, J. M. Heller-

stein, S. Krishnan, and I. Stoica. 2019. Deep unsupervised cardinality estimation.

Proc. VLDB Endow. 13, 3 (2019), 279–292.

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.nnls.html
https://github.com/huxiao2010/Selectivity/
https://github.com/huxiao2010/Selectivity/blob/main/Selectivity_Function_of_Range_Query_is_Learnable_Full.pdf
https://github.com/huxiao2010/Selectivity/blob/main/Selectivity_Function_of_Range_Query_is_Learnable_Full.pdf
http://archive.ics.uci.edu/ml/index.php
http://archive.ics.uci.edu/ml/index.php

	Abstract
	1 Introduction
	2 Learnability of Query Selectivity
	2.1 The Learning Framework
	2.2 Implications of thm:main
	2.3 Proof of thm:main

	3 Learning Algorithm
	3.1 A Generic Procedure
	3.2 Histogram
	3.3 Discrete Distribution

	4 Experiments
	4.1 Learnability with Enough Training Samples
	4.2 Data vs. Query Distributions
	4.3 Training vs. Testing Query Distributions
	4.4 Effect of Dimensionality
	4.5 Other Query Types

	5 Related work
	6 Conclusions and Future Work
	References

