
Fast Join ProjectQuery Evaluation using Matrix
Multiplication

Shaleen Deep
University of Wisconsin-Madison

shaleen@cs.wisc.edu

Xiao Hu
Duke University

xh102@cs.duke.edu

Paraschos Koutris
University of Wisconsin-Madison

paris@cs.wisc.edu

ABSTRACT
In the last few years, much effort has been devoted to devel-
oping join algorithms to achieve worst-case optimality for
join queries over relational databases. Towards this end, the
database community has had considerable success in devel-
oping efficient algorithms that achieve worst-case optimal
runtime for full join queries, i.e., joins without projections.
However, not much is known about join evaluation with
projections beyond some simple techniques of pushing down
the projection operator in the query execution plan. Such
queries have a large number of applications in entity match-
ing, graph analytics and searching over compressed graphs.
In this paper, we study how a class of join queries with pro-
jections can be evaluated faster using worst-case optimal
algorithms together with matrix multiplication. Crucially,
our algorithms are parameterized by the output size of the
final result, allowing for choosing the best execution strategy.
We implement our algorithms as a subroutine and compare
the performance with state-of-the-art techniques to show
they can be improved upon by as much as 50x. More impor-
tantly, our experiments indicate that matrix multiplication
is a useful operation that can help speed up join processing
owing to highly optimized open source libraries that are also
highly parallelizable.

ACM Reference Format:
Shaleen Deep, Xiao Hu, and Paraschos Koutris. 2020. Fast Join
Project Query Evaluation using Matrix Multiplication. In Proceed-
ings of the 2020 ACM SIGMOD International Conference on Manage-
ment of Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA.
ACM,NewYork, NY, USA, 11 pages. https://doi.org/10.1145/3318464.
3380607

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies
are not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. Copyrights
for components of this work owned by others than the author(s) must
be honored. Abstracting with credit is permitted. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Request permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Copyright held by the owner/author(s). Publication rights licensed
to the Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3380607

1 INTRODUCTION
In this paper, we study the problem of evaluating join queries
where the join result does not contain all the variables in
the body of the query. In other words, some of the variables
have been projected out of the join result. The simplest way
to evaluate such a query is first to compute the full join,
make a linear pass over the result, project each tuple, and
finally remove the duplicates. While this approach is concep-
tually simple, it relies on efficientworst-case optimal join algo-
rithms [12, 32, 33, 35]. The main result of this line of work is
a class of algorithms that run in timeO (|D|ρ

∗

+ |OUT|), where
D is the database instance and ρ∗ is the optimal fractional
edge cover of the query [12]. In the worst case, there exists
a database D with |OUT| = |D|ρ

∗

. In practice, most query
optimizers create a query plan by pushing down projections
in the join tree.

Example 1. Consider relationR (x ,y) of sizeN that represents
a social network graph where an edge between two users x and
y denotes that x and y are friends. We wish to enumerate all
users pairs who have at least one friend in common [31]. This
task can be captured by the query Q̈ (x , z) = R (x ,y),R (z,y),
which corresponds to the following SQL query:
SELECT DISTINCT R1.x, R2.x
FROM R1 as R, R2 as R WHERE R1.y = R2.y

Suppose that the graph contains a small (constant) number
of communities and the users are spread evenly across them.
Each community has O (

√
N) users, and there exists an edge

between most user pairs within the same community. In this
case, the full join result is Θ(N 3/2) but |Q̈ (D) | = Θ(N).

As the above example demonstrates, using worst-case
optimal join algorithms can lead to an intermediate output
that can be much larger than the final result after projection,
especially if there are many duplicate tuples. Thus, we ask
whether it is possible to design faster algorithms that skip
the construction of the full result when it is large, and as
a result, speed up the evaluation. Ideally, we would like to
have algorithms that run faster than worst-case optimal join
algorithms, are sensitive to the output of the projected result,
and have low memory requirements during execution.
In this paper, we show how to achieve the above goal

for a fundamental class of join queries called star joins. Star
joins are join queries where every relation joins on the same

https://doi.org/10.1145/3318464.3380607
https://doi.org/10.1145/3318464.3380607
https://doi.org/10.1145/3318464.3380607

variable. The motivation to build faster algorithms for star
joins with projection is not limited to faster query execution
in DBMS systems. Next, we present a list of three applications
that benefit from these faster algorithms.

Set Similarity. Set similarity is a fundamental operation in
many applications such as entitymatching and recommender
systems. Here, the goal is to return all pairs of sets such that
contain at least c common elements. Recent work [21] gave
the first output-sensitive algorithm that enumerates all simi-
lar sets in timeO (|D|2−

1
c · |OUT|

1
2c). As the value of c increases,

the running time tends to O (|D|2). The algorithm also re-
quires O (|D|2−

1
c · |OUT|

1
2c) space. We improve the running

time and the space requirement of the algorithm for a large
set of values that |OUT| can take, for all c .

Set Containment. The efficient computation of set contain-
ment joins over set-valued attributes has been extensively
studied in the literature. A long line of research [27, 29, 30, 40]
has developed trie-based join methods where the algorithm
performs an efficient blocking step. We show that for cer-
tain datasets, our algorithm can identify set containment
relationships much faster than state-of-the-art techniques.

Graph Analytics. In the context of graph analytics, the
graph to be analyzed is often defined as a declarative query
over a relational schema [7, 36, 38, 39]. For instance, consider
the DBLP dataset, which stores author and paper pairs in a
table R (author ,paper). To analyze the relationships between
co-authors, we can extract the co-author graph, which we
can express as the view V (x ,y) = R (x ,p),R (y,p). Recent
work [36] has proposed compression techniques where a
preprocessing step generates a succinct representation of
V (x ,y). However, these techniques require a very expensive
pre-processing step, rely on heuristics, and do not provide
any formal guarantees on the running time. Further, suppose
that we want to support an API where a user can check
whether authors a1 and a2 have co-authored a paper or not.
This is an example of a boolean query. In this scenario, the
view R (x ,p),R (y,p) is implicit and not materialized. Since
such an API may handle thousands of requests per second,
it is beneficial to batch B queries together and evaluate them
at once. We show that our algorithms can lead to improved
performance by minimizing user latency and resource usage.

Our contribution. In this paper, we show how to evalu-
ate star join queries with projections using output-sensitive
algorithms. We summarize our technical contribution below.

(1) Ourmain contribution (Section 3) is an output-sensitive
algorithm that evaluates star join queries with pro-
jection. We use worst-case optimal joins and matrix
multiplication as two fundamental building blocks to
split the join into multiple subjoin queries which are

evaluated separately. This techniquewas initially intro-
duced by [11], but their runtime analysis is incorrect
for certain regimes of the output size. We improve and
generalize the results via a more careful application of
(fast) matrix multiplication.

(2) We show (Section 4) how to exploit the join query
algorithms for the problems of set similarity, set con-
tainment, join processing and boolean set intersection.
Our algorithms also improve the best known prepro-
cessing time bounds for creating offline data structures
for the problems of set intersection [20] and compress-
ing large graphs [36].

(3) We develop a series of optimization techniques that ad-
dress the practical challenges of incorporating matrix
multiplication algorithms to join processing.

(4) We implement our solution as an in-memory proto-
type and perform a comprehensive benchmarking to
demonstrate the usefulness of our approach (Section 6).
We show that our algorithms can be used to improve
the running time for set similarity, set containment,
join processing and boolean query answering over
various datasets for both single-threaded and multi-
threaded settings. Our experiments indicate that ma-
trix multiplication can achieve an order of magnitude
speedup on average and up to 50× speedup over state-
of-the-art baselines.

2 PROBLEM SETTING
In this section, we present the basic notions and terminology
and then define the problems we study in this paper.

2.1 Problem Definitions
In this paper, we will focus on the 2-path query, which con-
sists of a binary join followed by a projection:

Q̈ (x , z) = R (x ,y), S (z,y)

and its generalization as a star join:

Q⋆
k (x1,x2, . . . ,xk) = R1 (x1,y),R2 (x2,y), . . . ,Rk (xk ,y).

We will often use the notation dom(x) to denote the con-
stants that the values variable x can take. We use Q (D) to
denote the result of the query Q over input database D, or
also OUT when it is clear from the context. Apart from the
above queries, the following closely related problems will
also be of interest.
Set Similarity (SSJ). In this problem, we are given two fam-
ilies of sets represented by the binary relations R (x ,y) and
S (z,y). Here, R (x ,y) means set x contains element y, and
S (z,y) means set z contains element y. Given an integer
c ≥ 1, the set similarity join is defined as

{(a,b) | |πy (σx=a (R)) ∩ πy (σz=b (S)) | ≥ c}

In other words, we want to output the pairs of sets where the
intersection size is at least c . When c = 1, SSJ becomes equiv-
alent to the 2-path query Q̈ . The generalization of set simi-
larity to more than two relations can be defined in a similar
fashion. Previous work [21] only considered the unordered
version of SSJ. The ordered version simply enumerates OUT
in decreasing order of similarity. This allows users to see the
most similar pairs first instead of enumerating output tuples
in arbitrary order.
Set Containment (SCJ). Similar to SSJ, given two families
of sets represented by the relations R, S , we want to output

{(a,b) | πy (σx=a (R)) ⊆ πy (σz=b (S))}

In other words, we want to output the pairs of sets where
one set is contained in the other.
Boolean Set Intersection (BSI). In this problem, we are
given again two families of sets represented by the relations
R, S . Then, for every input pair two sets a,b, we want to an-
swer the following boolean CQ which asks whether the two
sets have a non-empty intersection: Qab () = R (a,y), S (b,y).
If we also want to output the actual intersection, we can use
the slightly modified CQ Q̄ab (y) = R (a,y), S (b,y), which
does not project the join variable. The boolean set intersec-
tion problem has been a subject of great interest in the theory
community [10, 17, 18, 20, 34] given its tight connections
with distance oracles and reachability problems in graphs.

In order to study the complexity of our algorithms, we will
use the uniform-cost RAM model [25], where data values, as
well as pointers to databases, are of constant size. Through-
out the paper, all complexity results are with respect to data
complexity where the query is assumed fixed.

2.2 Matrix Multiplication
LetA be aU ×V matrix andC be aV ×W matrix over a field
F . We use Ai, j to denote the entry of A located in row i and
column j. The matrix product AC is a U ×W matrix with
entries (AC)i, j =

∑V
k=1 Ai,kCk, j .

Join-Project as Matrix Multiplication. It will be conve-
nient to view the 2-path query as a matrix computation
operation. Let𝒜,ℬ be the adjacency matrices for relations
R, S respectively: this means that 𝒜i, j = 1 if and only if
tuple (i, j) ∈ R (similarly for S). Observe that although each
relation has size at most |D|, the input adjacency matrix can
be as large as |D|2. The join output result Q̈ (D) can now be
expressed as the matrix product𝒜 · ℬ where matrix multi-
plication is performed over the boolean field.
Complexity. Multiplying two square matrices of size n triv-
ially takes time O (n3), but a long line of research on fast
matrix multiplication has dropped the complexity to O (nω),
where 2 ≤ ω < 3. The current best known value is ω =
2.373 [22], but it is believed that the actual value is 2 + o(1).

We will frequently use the following folklore lemma.

Lemma 1. Let ω be any constant such that we can multiply
two n × n matrices in time O (nω). Then, two matrices of size
U × V and V ×W can be multiplied in time M (U ,V ,W) =
O (UVW βω−3), where β = min{U ,V ,W }.

For the theoretically best possibleω = 2+o(1), rectangular
fast matrix multiplication can be done in time O (UVW /β).

2.3 Known Results
Ideally, we would like to compute Q⋆

k in time linear to the
size of the input and the output. However, [13] showed that
Q̈ cannot be evaluated in time O (|OUT|) assuming that the
exponent ω in matrix multiplication is greater than two.
A straightforward way to compute any join query with

projections is to compute the join using any worst-case opti-
mal algorithm and then deduplicate to find the projection.
This gives the following baseline result.

Proposition 1 ([32, 33]). Any CQQ with optimal fractional
edge cover ρ∗ can be computed in time O (|D|ρ

∗

).

Proposition 1 implies that we can compute the star query
Q⋆
k in timeO (|D|k), where k is the number of joins. However,

the algorithm is oblivious to the actual output OUT and will
have the same worst-case running time even when OUT is
much smaller than |D|k – as it often happens in practice.
To circumvent this issue, [11] showed the following output
sensitive bound that uses only combinatorial techniques:

Lemma2 ([11]). Q⋆
k can be computed in timeO (|D|·|OUT|1−

1
k).

For k = 2, the authors make use of fast matrix multiplica-
tion to improve the running time to Õ (N 0.862 · |OUT|0.408 +

|D|2/3 · |OUT|2/3). In the next section, we will discuss the flaws
in the proof of this result in detail.

3 COMPUTING JOIN-PROJECT
In this section, we describe our main technique and its theo-
retical analysis.

3.1 The 2-Path Query
Consider the query Q̈ (x , z) = R (x ,y), S (z,y). Let NR and
NS denote the cardinality of relations R and S respectively.
Without loss of generality, assume that NS ≤ NR . For now,
assume that we know the output size |OUT|; we will show
how to drop this assumption later.
We will also assume that we have removed any tuples

that do not contribute to the query result, which we can do
during a linear time preprocessing step.
Algorithm. Our algorithm follows the idea of partitioning
the input tuples based on their degree as introduced in [11],
but it differs on the choice of threshold parameters. It is

Algorithm 1: Computing πxzR (x ,y) Z S (z,y)

1 R− ← {R (a,b) | |σx=aR (x ,y) | ≤ ∆2 or |σy=bS (z,y) | ≤
∆1}, R+ ← R \ R−

2 S− ← {S (c,b) | |σz=cS (z,y) | ≤ ∆2 or |σy=bS (z,y) | ≤
∆1}, S+ ← S \ S+

3 T ← (R− Z S) ∪ (R Z S−) /* use wcoj */
4 M1 (x ,y) ← R+ adj matrix,M2 (y, z) ← S+ adj matrix
5 M ← M1 ×M2 /* matrix multiplication */
6 T ← T ∪ {(a, c) | Mac > 0}
7 return T

parametrized by two integer constants ∆1,∆2 ≥ 1. It first
partitions each relation into two parts, R−,R+ and S−, S+:

R− = {R (a,b) | |σx=aR (x ,y) | ≤ ∆2 or |σy=bS (z,y) | ≤ ∆1}

S− = {S (c,b) | |σz=cS (z,y) | ≤ ∆2 or |σy=bS (z,y) | ≤ ∆1}

In other words, R−, S− include the tuples that contain at
least one value with low degree. R+, S+ contain the remain-
ing tuples from R, S respectively. Algorithm 1 describes the
detailed steps for computing the join. It proceeds by perform-
ing a (disjoint) union of the following results:
(1) Compute R− Z S and R Z S− using any worst-case

optimal join algorithm, then project.
(2) Materialize R+, S+ as two rectangular matrices and use

matrix multiplication to compute their product.
Intuitively, the "light" values are handled by standard join

techniques, since they will not result in a large intermediate
result before the projection. On the other hand, since the
"heavy" values will cause a large output, it is better to com-
pute their result directly using (fast) matrix multiplication.
Analysis.We now provide a runtime analysis of the above
algorithm, and discuss how to optimally choose ∆1,∆2.

We first bound the running time of the first step. To com-
pute the full join result (before projection), a worst-case
optimal algorithm needs time O (NR + NS + |OUTZ |), where
|OUTZ | is the size of the join. The main observation is that the
size of the join is bounded by NS · ∆1 + |OUT| · ∆2. Hence, the
running time of the first step isO (NR +NS · ∆1 + |OUT| · ∆2).

To bound the running time of the second step, we need to
bound appropriately the dimensions of the two rectangular
matrices that correspond to the subrelations R+, S+. Indeed,
the heavy x-values forR+ are at mostNR/∆2, while the heavy
y-values are at most NS/∆1. This is because |dom(y) | ≤ NS .
Hence, the dimensions of the matrix for R+ are (NR/∆2) ×
(NS/∆1). Similarly, the dimensions of the matrix for S+ are
(NS/∆1) × (NS/∆2). The matrices are represented as two-
dimensional arrays and can be constructed in time C =
max{NR/∆2 ·NS/∆1,NS/∆1 ·NS/∆2} by simply iterating over
all possible heavy pairs and checking whether they form a

tuple in the input relations. Thus, from Lemma 1 the run-
ning time of the matrix multiplication step isM (NR

∆2
, NS
∆1
, NS
∆2

).
Summing up the two steps, the cost of the algorithm is in
the order of:

NR + NS ∆1 + |OUT|∆2 +M
(NR

∆2
,
NS

∆1
,
NS

∆2

)
+C (1)

Using the above formula, one can plug in the formula for
the matrix multiplication cost and solve to find the optimal
values for ∆1,∆2. We show how to do this in Section 5.

In the next part, we provide a theoretical analysis for
the case where matrix multiplication is achievable with the
theoretically optimalω = 2 for the case where NR = NS = N .
Observe that the matrix construction cost C is of the same
order as M (NR

∆2
, NS
∆1
, NS
∆2

) even when ω = 2, since β is the
smallest of the three terms NR/∆2,NS/∆1,NS/∆2. Thus, it is
sufficient to minimize the expression

f (∆1,∆2) = N + N · ∆1 + |OUT| · ∆2 +
N 2

∆2 min{∆1,∆2}

while ensuring 1 ≤ ∆1,∆2 ≤ N .
The first observation is that for any feasible solution f (x ,y)

where x > y, we can always improve the solution by decreas-
ing the value of ∆1 from x to y. Thus, w.l.o.g. we can impose
the constraint 1 ≤ ∆1 ≤ ∆2 ≤ N .
Case 1. |OUT| ≤ N . Since ∆1 ≤ ∆2, we have f (∆1,∆2) = N ·
∆1+ |OUT| ·∆2+N

2/∆2 · ∆1. To minimize the running time we
equate ∂ f /∂∆1 = N − N 2/(∆2∆

2
1) = 0 and ∂ f /∂∆2 = OUT −

N 2/(∆1∆
2
2) = 0. Solving this system of equations gives that

the critical point has ∆1 = |OUT|
1/3, ∆2 = N /|OUT|2/3. Since

|OUT| ≤ N , this solution is feasible, and it can be verified that
it is the minimizer of the running time, which becomes

N + N · |OUT|1/3

Case 2. |OUT| > N . For this case, there is no critical point
inside the feasible region, so we will look for a minimizer
at the border, where ∆1 = ∆2 = ∆. This condition gives
us f (∆) = (N + |OUT|) · ∆ + N 2/∆2, with minimizer ∆ =(
2N 2/(N + |OUT|)

)1/3
. The runtime then becomes

O (N 2/3 · |OUT|2/3)

We can summarize the two cases with the following result.

Lemma 3. Assuming that the exponent in matrix multiplica-
tion is ω = 2, the query Q̈ can be computed in time

O (|D| + |D|2/3 · |OUT|1/3 ·max{|D|, |OUT|}1/3)

Lemma 2 implies a running time ofO (|D| · |OUT|1/2) for Q̈ ,
which is strictly worse compared to the running time of the
above lemma for every output size |OUT|.
Remark. For the currently best known value of ω = 2.37,
the running time is O (|D|0.83 · |OUT|0.589 + |D| · |OUT|0.41). It

can also be shown that this algorithm is worst-case optimal
(up to constant factors).

Comparing with previous results. We now discuss the
result in [11], which uses matrix multiplication to give a
running time of Õ (|D|0.862 · |OUT|0.408 + |D|2/3 · |OUT|2/3). We
point out an error in their analysis that renders their claim
incorrect for the regime where |OUT| < N .

In order to obtain their result, the authors make a split of
tuples into light and heavy, and obtain a formula for running
time in the order ofN∆b+ |OUT|∆ac+M

(
N
∆ac
, N∆b ,

N
∆ac

)
, where

∆b ,∆ac are suitable degree thresholds. Then, they use the
formula from [26] for the cost of matrixmultiplication, where
M (x ,y,x) = x1.84 · y0.533 + x2. However, this result can be
applied only when x ≥ y, while the authors apply it for
regimes where x < y. (Indeed, if say x = N 0.3 and y = N 0.9,
then we would have M (x ,y,x) = N 1.03, which is smaller
than the input size N 1.2.) Hence, the running time analysis
is valid only when N /∆ac ≥ N /∆b , or equivalently ∆b ≥ ∆c .
Since the thresholds are chosen such that N∆b = |OUT|∆ac ,
it means that the result is correct only in the regime where
|OUT| ≥ N . In other words, when the output size is smaller
than the input size, the running time formula from [11] is
not applicable.
In the case where ω = 2, the cost formula from [26] be-

comesM (x ,y,x) = x2, and [11] gives an improved running
time of Õ (N 2/3 · |OUT|2/3). Again, this is applicable only when
|OUT| ≥ N , in which case it matches the bound from Lemma 3.
Notice that for |OUT| < N 1/2 the formula would imply a de-
terministic sublinear time algorithm.

3.2 The Star Query
We now generalize the result to the star queryQ⋆

k . As before,
we assume that all tuples that do not contribute to the join
output have already been removed.
Algorithm. The algorithm is parametrized by two integer
constants ∆1,∆2 ≥ 1. We partition each relation Ri into three
parts, R+i ,R

−
i and R⋄i :

R−i = {Ri (a,b) | |σxi=aRi (xi ,y) | ≤ ∆2}

R⋄i = {Ri (a,b) | |σy=bR j (x j ,y) | ≤ ∆1, for each j ∈ [k] \ i}
R+i = Ri \ (R

−
i ∪ R

⋄
i)

In other words, R−i contains all the tuples with light x , R⋄i
contains all the tuples with y values that are light in all other
relations, and R+i the remaining tuples. The algorithm now
proceeds by computing the following result:

(1) Compute R1 Z . . .R
−
j Z . . .Rk using any worst-case

optimal join algorithm, then project for each j ∈ [k].
(2) Compute R1 Z . . .R

⋄
j Z . . .Rk using any worst-case

optimal join algorithm, then project for each j ∈ [k].

(3) Materialize R+1 , . . . ,R
+
k as rectangular matrices and use

matrix multiplication to compute their product.
Analysis.We assume that all relation sizes are bounded by
N . The running time of the first step is O (|OUT| · ∆2) since
each light value of variable xi in relation Ri contributes to
at least one output result.

For the second step, the key observation is that since y is
light in all the relations (except possibly Ri), the worst-case
join size before projection is bounded by O (N · ∆k−1

1), and
hence the running time is also bounded by the same quantity.

The last step is more involved than simply running matrix
multiplication. This is because for each output result formed
by heavy xi values in R+i (say t = (a1,a2, . . . ak)), we need
to count the number of y values that connect with each
ai in t . However, running matrix multiplication one at a
time between two matrices only tells about the number of
connection y values for any two pair of ai and not all of t .
In order to count the y values for all of t together, we divide
variables x1, . . . xk into two groups of size ⌈k/2⌉ and ⌊k/2⌋
followed by creating two adjacency matrices. Matrix V is of
size
(
N
∆2

) ⌈k/2⌉
× N

∆1
such that

V(a1,a2, ...a⌈k/2⌉),b =



1, (a1,b) ∈ R1, . . . , (a ⌈k/2⌉ ,b) ∈ R ⌈k/2⌉

0, otherwise

Similarly, matrixW is of size
(
N
∆2

) ⌊k/2⌋
× N

∆1
such that

W(a⌈k/2⌉+1 ...ak),b =



1, (a ⌈k/2⌉+1,b) ∈ R ⌈k/2⌉+1, . . . , (ak ,b) ∈ Rk

0, otherwise

Matrix construction takes time (N /∆2)
⌈k/2⌉ · N /∆1 time

in total. We have now reduced step three to computing the
matrix product V ×W T . Summing up the cost of all three
steps, the total cost is as below which can be minimized
similar to two-path query:

N · ∆k−1
1 + |OUT| · ∆2 +M

((N
∆2

) ⌈k/2⌉
,
N

∆1
,
(N
∆2

) ⌊k/2⌋)
3.3 Boolean Set Intersection
In this setting, we are presented with a workloadW con-
taining boolean set intersection (BSI) queries of the form
Qab () = R (a,y), S (b,y) parametrized by the constants a,b.
The queries come at a rate of B queries per time unit. In or-
der to service these requests, we can use multiple machines.
Our goal is twofold: minimize the number of machines we
use, while at the same time minimizing the average latency,
defined as the average time to answer each query.
Our key observation is that, instead of servicing each

request separately, we can batch the requests and compute
them all at once. To see why this can be beneficial, suppose
that we batch together C queries. Then, we can group all

Algorithm 2: SizeAware [21]
Input: Indexed sets R = {R1, . . . ,Rm } and c
Output: Unordered SSJ result

1 degree threshold x = GetSizeBoundary(R, c),L ← ∅

2 R = Rl ∪ Rh /* partition sets into light and heavy */
3 Evaluate R Z Rh and enumerate result
4 foreach r ∈ Rl do
5 foreach c-subset rc of r do
6 L[rc] = L[rc] ∪ r
7 foreach l ∈ L[rc] do
8 enumerate every set pair in l if not output already

pairs of constants (a,b) to a single binary relation T (x , z) of
size C , and compute the following conjunctive query:

Qbatch (x , z) = R (x ,y), S (z,y),T (x , z).

Here, R, S have size N , andT has sizeC . The resulting output
will give the subset of the pairs of sets that indeed intersect.
The above query can be computed by applying a worst-case
optimal algorithm and then performing the projection: this
will take O (N ·C1/2) time. Hence, the average latency for a
request will be C

B +
N

C1/2 . This idea can be extended to speed
up the boolean version of the two-path query. We refer the
reader to the full version of the paper for more details [19].

4 SPEEDING UP SSJ AND SCJ
In this section, we describe how to apply Algorithm 1 to
speed up unordered SSJ. We refer the reader to the full ver-
sion of this paper on how we can handle ordered SSJ and
SCJ [19].
We first review the state-of-the-art algorithm from [21]

called SizeAware. Algorithm 2 describes the size-aware set
similarity join algorithm. The key insight is to identify a
degree threshold x and partition the input sets into light
and heavy. All heavy sets that form an output pair are enu-
merated by a sort-merge join. All light sets are processed
by generating all possible c-sized subsets and then building
an inverted index over it that allows for enumerating all
light output pairs.x is chosen such that the cost of processing
heavy and light sets is equal to each other.

We propose three key modifications that give us the new
algorithm called SizeAware++. First, observe that JH = R Z
Rh (line 3) is a natural join and requires N · N /x operations
(recall that |Rh | = N /x in the worst-case) even if the join out-
put is smaller. Thus, Algorithm 1 is applicable here directly.
This strictly improves the theoretical worst-case complexity
of Algorithm 2 whenever |JH | < N 2/x for all c .
The second modification is to deal with high duplication

when enumerating all light pairs using the inverted index
L[rc]. The key observation is that the algorithm in line 8

goes over all possible pairs and generates the full join result,
which takes |JL | =

∑
rc |L[rc]|2 time. If the final output

is smaller than |JL |, then the matrix multiplication-based
algorithm can speed up the computation.

The third modification relates to optimizing the expansion
of light nodes (line 3 in Algorithm 1). Recall that the algo-
rithm expands all light y values. Suppose we have R (x ,y)
and S (z,y) relations indexed and sorted according to the
variable order in the schema. Let L[b] = {c | (c,b) ∈ S (z,y)}
denote the inverted index for relation S . The time required
to perform the deduplication for a fixed value for x (say
a) is T =

∑
b :(a,b)∈R |L[b]|. This is unavoidable for overlap

c = 1. However, it is possible that for c > 1, the output size
is much smaller than T . In other words, the deduplication
step is expensive when the overlap between L[b] is high for
different values of b. The key idea is to reuse computation
across multiple a if there is a shared prefix and high overlap
as explained in the full version [19].
Next, we highlight the important aspects regarding the

parallelization of SSJ. Partitioning the join JH is straightfor-
ward since all parallel tasks require no synchronization and
access the input data in a read-only manner. Parallelizing
JL in SizeAware is harder because each parallel task needs
to coordinate in order to deduplicate multiple results across
different c-subsets. On the other hand, using matrix multipli-
cation allows for coordination-free parallelism as the matrix
can be partitioned easily and each parallel task requires no
interaction with each other.

5 COST-BASED OPTIMIZATION
In this section, we briefly describe some of our optimizations
necessary to make our algorithms practical.

Estimating output size. So far, we have not discussed how
to estimate |OUT|. We derive an estimate in the following
manner. First, it is simple to show that the following holds
for Q̈ : |dom(x) | ≤ |OUT| ≤ min{|dom(x) |2 |, |OUTZ |}| and
|OUTZ | ≤ N ·

√
|OUT|. Thus, a reasonable estimate for |OUT|

is the geometric mean of max{|dom(x) |, (|OUTZ |/N)2} and
min{|dom(x) |2 |, |OUTZ |}|. If |OUTZ | is not much larger than
N, then the full join size is also reasonable estimate.

Matrix multiplication cost. A key component of our tech-
niques is matrix multiplication. Lemma 1 states the complex-
ity of performing multiplication and also includes the cost
of creating the matrices. However, in practice, this could be
a significant overhead in terms of memory usage and time.
Further, the scalability of matrix multiplication implementa-
tion itself is subject to the matrix size, the underlying linear
algebra framework, and the hardware support (vectorization,
SIMD instructions, multithreading support, etc.) In order

Algorithm 3: Cost Based Optimizer
Output: degree threshold ∆1,∆2

1 Estimate full join result |OUTZ | and |OUT|
2 if |OUTZ | ≤ 20 · N then
3 use worst-case optimal join algorithm

4 tlight ← |OUTZ |, theavy ← 0, prevlight ← ∞, prevheavy ←
0,∆1 = N

5 while true do
6 prevlight ← tlight, prevheavy ← theavy
7 prev∆1 ← ∆1, prev∆2 ← ∆2
8 ∆1 ← (1 − ϵ)∆1,∆2 ← N · ∆1/|OUT|

9 tlight ← TI · sum(y∆1) + ·TI · sum(x∆2)+

10 Tm · |dom(x) | +Ts · cdfx(y∆1) · |dom(x) |

11 u,v,w ← #heavy x ,y, z values using count(wδ)

12 theavy ← M̂ (u,v,w, co) +Tm · (u · v + u ·w)

13 if prevlight + prevheavy ≤ tlight + theavy then
14 return prev∆1 , prev∆2

to minimize the runtime, we need to take into considera-
tion all of the above system parameters to find the optimal
thresholds.

Symbol Description

Ts avg time for sequential access
Tm avg time for allocating 32 bytes of memory
co number of cores available
M̂ (u,v,w, co) estimate of time required to multiply matrices of

dimension u ×v and v ×w using co cores
TI avg time for random access and insert

Table 1: Symbol definitions.

Algorithm 3 describes the cost-based optimizer used to
find the best thresholds. To simplify the description, we de-
scribe the details for the case of Q̈ where R = S . If the full join
result is not much larger than the size of input relation, then
we can simply use any worst case optimal join algorithm. For
our experiments, we set the upper bound for |OUTZ | to be at
most 20 · N . Beyond this point, we begin to see the benefit
of using matrix multiplication for join-project computation.
To find the best possible estimates for ∆1,∆2, we employ

binary search over the value of ∆2. In each iteration, we
increase or decrease its value by a factor of (1−ϵ) where ϵ is
a constant 1. Once we fix the value of∆1 and∆2, we can query
our precomputed index structure to find the exact number of
operations that will be performed for all lighty values and all
light x values. Then, we find the number of heavy remaining
values and get the estimate for time required to compute
the matrix product. We stop the process when the estimate
1We fix ϵ = 0.95 for our experiments

of the total time exceeds that of the previous iteration. The
entire process terminates in O (log2 N) steps.
Note that since M̂ (u,v,w, co) is system dependent, we

precompute a table that stores the time required for dif-
ferent values of u,v,w, co. As a brute-force computation
for all possible values is very expensive to store and com-
pute, we store the time estimate for M̂ (p,p,p, co) for p ∈
{1000, 2000, . . . , 20000}, co ∈ [5]. Then, given an arbitrary
u,v,w, co, we can extrapolate from the nearest estimate avail-
able from the table.

6 EXPERIMENTAL EVALUATION
In this section, we empirically evaluate the performance of
our algorithms. The main goal of the section is four fold:
(1) Empirically verify the speed-up obtained for the 2-

path and star queries using algorithm from Section 3
compared to Postgres, MySQL, EmptyHeaded [9] and
Commercial database X.

(2) Evaluate the performance of our approach against
SizeAware and SizeAware++ for unordered and or-
dered SSJ.

(3) Evaluate the performance our approach against three
state-of-the-art algorithms, namely PIEJoin [29], LIMIT+
[15], and PRETTI for SCJ

(4) Validate batching for boolean set intersection.
All experiments are performed on a machine with Intel

Xeon CPU E5-2660@2.6GHz, 20 cores and 150 GB RAM.
Unless specified, all experiments are single threaded imple-
mentations. For all experiments, we focus on self-join i.e all
relations are identical. All C++ code is compiled using clang
8.0 with -Ofast flag and all matrix multiplication related
code is additionally compiled with -mavx -mfma -fopenmp
flags for multi-core support. Each experiment is run 5 times
and we report the running time by averaging three values
after excluding the slowest and the fastest runtime.

6.1 Datasets
We conduct experiments on six real-world datasets from
different domains. DBLP [1] is a bibliography dataset from
DBLP representing authors and papers. RoadNet [5] is road
network of Pennsylvania. Jokes [3] is a dataset scraped from
Reddit where each set is a joke and there is an edge between
a joke and a word if the work is present in the joke. Words [6]
is a bipartite graph between documents and the lexical to-
kens present in them. Image [2] dataset is a graph where
each image is connected to a feature attribute if the image
contains the corresponding attribute and Protein [4] refers
to a bipartite graph where an edge signifies interaction be-
tween two proteins. Table 2 shows the main characteristics
of the datasets. DBLP and RoadNet are examples of sparse
datasets whereas the other four are dense datasets.

RoadNet DBLP Jokes Words Protein Image
Datasets

10−1

100

101

102

103

104

105

R
un

ni
ng

ti
m

e
in

se
c

Two Path Join

MMJoin

Non-MMJoin

Postgres
MySQL

EmptyHeaded
System X

(a) Two path query - single core

RoadNet DBLP Jokes Words Protein Image
Datasets

100

101

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Star Join

MMJoin

Non-MMJoin

(b) Three star query - single core

RoadNet DBLP Jokes Words Protein Image
Datasets

10−1

100

101

102

103

104

105

R
un

ni
ng

ti
m

e
in

se
c

SCJ

MMJoin

PIEJoin
PRETTI
LIMIT+

(c) SCJ Running Time

2 4 6 8 10
Number of cores

10−1

100

101

102

103

R
un

ni
ng

ti
m

e
in

se
c

2-path Join - Parallel

MMJoin

Non-MMJoin

(d) Jokes - multi core

2 4 6 8 10
Number of cores

101

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

2-path Join - Parallel

MMJoin

Non-MMJoin

(e) Words - multi core

2 4 6 8 10
Numer of cores

100

101

102

103

R
un

ni
ng

ti
m

e
in

se
c

Star Join - Parallel

MMJoin

Non-MMJoin

(f) Jokes - multi core

2 4 6 8 10
Numer of cores

100

101

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Star Join - Parallel

MMJoin

Non-MMJoin

(g) Words - multi core

Figure 1: Join Processing for two path and star query

Dataset |R | No. of sets |dom| Avg set size Min set size Max set size

DBLP 10M 1.5M 3M 6.6 1 500
RoadNet 1.5M 1M 1M 1.5 1 20
Jokes 400M 70K 50K 5.7K 130 10K
Words 500M 1M 150K 500 1 10K
Protein 900M 60K 60K 15K 50 50K
Image 800M 70K 50K 11.4K 10K 50K

Table 2: Dataset Characteristics

6.2 Join Processing
In this part, we evaluate the running time for two queries: Q̈
andQ⋆

3 . To extract the maximum performance from Postgres,
we use PGTune to set the best configuration parameters. This
is important to ensure that the query plan does not perform
nested loop joins. For all datasets, we build a hash index
over each variable to ensure that the optimizer can choose
the best query plan. We manually verify that the query plan
generated by PostgreSQL (and MySQL) when running these
queries chooses HashJoin or MergeJoin. For DBMS X, we
allow up to 1TB of disk space and supply query hints to make
sure that all resources are available for query execution. Fig-
ure 1a shows the run time for different algorithms on a single
core. MySQL and Postgres have the slowest running time
since they evaluate the full query join result and then dedu-
plicate. DBMSX performsmarginally better thanMySQL and
Postgres. The non-matrix multiplication join (denoted Non-
MMJoin) based on Lemma 2 is the second-best algorithm.
The matrix multiplication-based join (denoted MMJoin) is
the fastest on all datasets except RoadNet and DBLP, where

the optimizer chooses to compute the full join. A reason for
the huge performance difference betweenMMJoin and other
algorithms is that deduplication by computing the full join
result requires either sorting the data or using hash tables,
both of which are expensive operations. By using matrix
multiplication, we avoid materializing the large intermediate
join result. EmptyHeaded performs comparably toMMJoin
for the Jokes dataset and outperforms MMJoin slightly on
the Image dataset. This is because the Image dataset con-
tains a dense component. Since EmptyHeaded is designed as
a linear algebra engine like Intel MKL, the performance is
similar.

Figure 1d and Figure 1e show the performance of the com-
binatorial and non-combinatorial algorithm as the number
of cores increases. Both algorithms demonstrate a speed-up.
We omit MySQL and Postgres, since they do not allow for
multi-core processing of single queries.

Next, we turn to the star query on three relations. For this
experiment, we take the largest sample of each relation so
that the result can fit in the main memory and the join can
finish in reasonable time. Figure 1b shows the performance
of the combinatorial and the non-combinatorial join on a
single core. All other engines (except EmptyHeaded) failed
to finish in 15000 seconds, except on RoadNet and DBLP.
EmptyHeaded performs similarly to MMJoin on the Protein
and Image datasets, but not on the other datasets. Figure 1f
and Figure 1g show the performance in a multi-core setting.

2 3 4 5 6
overlap value c

103

104

105

R
un

ni
ng

ti
m

e
in

se
c

Ordered SSJ

MMJoin

SizeAware++
SizeAware

(a) Image - single core

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
Batch size (×103)

100

101

102

A
ve

ra
ge

de
la

y
in

se
c

Average Delay

MMJoin

Non-MMJoin

(b) Jokes

0.5 0.7 0.9 1.1 1.3 1.5 1.7 1.9
Batch size (×103)

0

1

2

3

4

5

A
ve

ra
ge

de
la

y
in

se
c

Average Delay

MMJoin

Non-MMJoin

(c) Words

1 1.5 2 2.5 3 3.5 4 4.5
Batch size (×103)

10−1

100

101

102

103

A
ve

ra
ge

de
la

y
in

se
c

Average Delay

MMJoin

Non-MMJoin

(d) Image

2 3 4 5 6
overlap value c

10−1

100

101

102

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ

MMJoin

SizeAware++
SizeAware

(e) DBLP - single core

2 3 4 5 6
overlap value c

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ

MMJoin

SizeAware++
SizeAware

(f) Jokes - single core

2 3 4 5 6
overlap value c

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ

MMJoin

SizeAware++
SizeAware

(g) Image - single core

2 3 4 5 6
number of cores

10−1

100

101

102

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ c = 2 - Parallel
MMJoin

SizeAware++
SizeAware

(h) DBLP - multi core

2 3 4 5 6
overlap value c

10−1

100

101

102

R
un

ni
ng

ti
m

e
in

se
c

Ordered SSJ

MMJoin

SizeAware++
SizeAware

(i) DBLP - single core

2 3 4 5 6
overlap value c

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Ordered SSJ

MMJoin

SizeAware++
SizeAware

(j) Jokes - single core

2 3 4 5 6
number of cores

101

102

103

104
R

un
ni

ng
ti

m
e

in
se

c
Unordered SSJ c = 2 - Parallel

MMJoin

SizeAware++
SizeAware

(k) Jokes - multi core

2 3 4 5 6
number of cores

102

103

104

R
un

ni
ng

ti
m

e
in

se
c

Unordered SSJ c = 2 - Parallel
MMJoin

SizeAware++
SizeAware

(l) Image - multi core

Figure 2: Ordered SSJ and minimizing average delay (row 1); Unordered and Ordered SSJ (row 2 and 3).

Once again, matrix multiplication performs better than its
combinatorial counterpart across all experiments.

6.3 Set Similarity
In this section, we look at the set similarity join (SSJ). For both
settings below, we switch on the prefix tree optimizations at
all nodes.

Unordered SSJ. Figure 2e, Figure 2f and Figure 2g show the
running time of MMJoin, SizeAware and SizeAware++ on a
single core for the DBLP, Jokes, and Image datasets respec-
tively. Since DBLP is a sparse dataset with small set sizes,
MMJoin is the fastest and both SizeAware and SizeAware++
are marginally slower due to the optimizer cost. For Jokes
and Image datasets, SizeAware is the slowest algorithm. This
is because both the light and heavy processing have dedu-
plication to perform. SizeAware++ is an order of magnitude
faster than SizeAware, since it uses matrix multiplication but
is slower thanMMJoin because it still needs to enumerate
the c-subsets before using matrix multiplication. MMJoin is

the fastest as it is output sensitive and performs the best in
a setting with many duplicates. Next, we look at the parallel
version of unordered SSJ. Figure 2h, Figure 2k and Figure 2l
show the results for multi-core settings. For each experiment,
we fix the overlap to c = 2. BothMMJoin and SizeAware++
are more scalable than SizeAware: this is because the light
sets processing of SizeAware cannot be done in parallel while
matrix multiplication-based deduplication can be performed
in parallel.

Ordered SSJ. Recall that for ordered SSJ, our goal is to enu-
merate the set pairs in descending order of set similarity.
Thus, once the set pairs and their overlap is known, we
need to sort the result using overlap as the key. Figure 2i
and Figure 2j show the running time for a single-threaded im-
plementation. Compared to the unordered setting, the extra
overhead of materializing the output and sorting the result
increases the running time for all algorithms. For SizeAware,
there is an additional overhead of finding the true overlap

for all light set pairs as well. Both MMJoin and SizeAware++
maintain their advantage similar to the unordered setting.
Impact of optimizations. Recall that SizeAware++ contains
three optimizations: processing heavy sets using MMJoin,
processing light sets via MMJoin and using prefix based
materialization for computation sharing. Figure 3 shows the
effect of switching on various optimizations.NO-OP denotes
all optimizations switched off. The running time is shown
as a percentage of the NO-OP running time (100%). Light
denotes using two-path join on only light sets identified
by SizeAware but not using the prefix optimizations. Heavy
includes the Light optimizations switched on plus two-path
join processing on the heavy sets. Finally, Prefix switches on
materialization of the output in the prefix tree. Both Light
and Heavy optimizations improve the running time by an
order of magnitude, while Prefix further improves by a factor
of 5×. We defer the experiments for SCJ to the full version
of the paper [19].

Prefix Heavy Light NO-OP

Optimizations

100

101

102

T
im

e
pe

rc
en

ta
ge

(%
)

Optimizations in SizeAware++ on Words dataset

Prefix

Heavy

Light

NO-OP

Figure 3: SSJ - Impact of optimizations on Words

6.4 Boolean Set Intersection
In this part of the experiment, we look at the boolean set
intersection. The arrival rate of the queries is set to B = 1000
queries per second and our goal is to minimize the average
delay metric as defined in Section 3.3. The workload is gen-
erated by sampling each set pair uniformly at random. We
run this experiment for 300 seconds for each batch size and
report the mean average delay metric value. Figure 2b, Fig-
ure 2c and Figure 2d show the average delay for the three
datasets at different batch sizes. Recall that the smaller batch
the size we choose, the larger is the number of processing
units required. For the Jokes dataset, Non-MMJoin has the
smallest average delay of ≈ 1s when S = 10. In that time, we
collect a further 1000 requests, which means that there is a
need for 100 parallel processing units. On the other hand,
MMJoin achieves a delay of ≈ 2s at batch size 900. Thus, we
need only 3 parallel processing units in total to keep up with
the workload while paying only a small penalty in latency.
For the Image dataset, MMJoin can achieve average delay of
1s at S = 1000 queries while Non-MMJoin achieves 50s at
the same batch size. This shows that matrix multiplication

is useful for achieving a smaller latency using less resources,
in line with the theoretical prediction. For the Words dataset,
most of the sets have a small degree. Thus, the optimizer
chooses to evaluate the join via the combinatorial algorithm.

7 RELATEDWORK
Theoretically, [13] and [11] are the most closely related
works to our considered setting (as discussed in Section 2.3).
In practice, most of the previous work has considered join-
project query evaluation by pushing down the projection
operator in the query plan [14, 16, 23, 24]. LevelHeaded [8]
and EmptyHeaded [9] are general linear algebra systems that
use highly optimzed set intersections to speed up evaluation
of cyclic joins, counting queries and support projections over
them which is a more expressive set of queries compared to
what our framework can handle. Since Intel MKL is also a
linear algebra library, one can also use EmptyHeaded as the
underlying framework for performing matrix multiplication.
Very recently, [28] showed that for any hierarchical query
(including star) with k relations, there exists an algorithm
that pre-processes in time T = O (N 1+(k−1)ϵ) such that it is
possible to enumerate the join-project result without duplica-
tions with worst-case delay guarantee δ = O (N 1+ϵ) for any
ϵ ∈ [0, 1], which implies a total running time of δ · |OUT|. For
group-by aggregate queries, [37] also used worst-case opti-
mal join algorithms to avoid evaluating binary joins one at a
time andmaterializing the intermediate results. However, the
running time of their algorithm is not output-sensitive with
respect to the final projected result and could potentially be
improved upon by using our proposed ideas.

8 CONCLUSION AND FUTUREWORK
In the paper, we study the evaluation of join queries with pro-
jections. This is useful for a wide variety of tasks including
set similarity, set containment and boolean query answering.
We describe an algorithm based on fast matrix multiplication
that allows for theoretical speedups. Empirically, we also
demonstrate that the framework is practically useful and
can provide speedups of up to 50× for some datasets. There
are several promising future directions that remain to be
explored. The first key direction is to extend our techniques
to arbitrary acyclic queries with projections. Second, it re-
mains unclear if the same techniques can also benefit cyclic
queries or not. For example, the AYZ algorithm is applicable
to counting cycles in graph using matrix multiplication. It
would be interesting to extend the algorithm to enumerate
the output of join-project queries when the user can choose
arbitrary projection variables.

Acknowledgements. This research was supported in part
by NSF grants CRII-1850348 and III-1910014.

REFERENCES
[1] DBLP. https://dblp.uni-trier.de/.
[2] image. https://cs.stanford.edu/~acoates/stl10/.
[3] Jokes. https://goldberg.berkeley.edu/jester-data/.
[4] protein. https://string-db.org/cgi/download.pl?sessionId=

IBdaKPtZGbl2.
[5] RoadNet. https://snap.stanford.edu/data/roadNet-PA.html.
[6] words. https://archive.ics.uci.edu/ml/datasets/bag+of+words.
[7] I. Abdelaziz, R. Harbi, S. Salihoglu, P. Kalnis, and N. Mamoulis. Spartex:

A vertex-centric framework for rdf data analytics. Proceedings of the
VLDB Endowment, 8(12):1880–1883, 2015.

[8] C. Aberger, A. Lamb, K. Olukotun, and C. Ré. Levelheaded: A unified
engine for business intelligence and linear algebra querying. In 2018
IEEE 34th International Conference on Data Engineering (ICDE), pages
449–460. IEEE, 2018.

[9] C. R. Aberger, A. Lamb, S. Tu, A. Nötzli, K. Olukotun, and C. Ré. Emp-
tyheaded: A relational engine for graph processing. ACM Transactions
on Database Systems (TODS), 42(4):20, 2017.

[10] P. Afshani and J. A. S. Nielsen. Data structure lower bounds for
document indexing problems. In ICALP 2016Automata, Languages
and Programming. Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
GmbH, 2016.

[11] R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix
multiplications. In Proceedings of the 12th International Conference on
Database Theory, pages 121–126. ACM, 2009.

[12] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for
relational joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.

[13] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries
and constant delay enumeration. In Computer Science Logic, 21st
International Workshop, CSL 2007, 16th Annual Conference of the EACSL,
Lausanne, Switzerland, September 11-15, 2007, Proceedings, pages 208–
222, 2007.

[14] G. Bhargava, P. Goel, and B. R. Iyer. Enumerating projections in sql
queries containing outer and full outer joins in the presence of inner
joins, Nov. 11 1997. US Patent 5,687,362.

[15] P. Bouros, N. Mamoulis, S. Ge, and M. Terrovitis. Set containment join
revisited. Knowledge and Information Systems, 49(1):375–402, 2016.

[16] S. Ceri and G. Gottlob. Translating sql into relational algebra: Opti-
mization, semantics, and equivalence of sql queries. IEEE Transactions
on software engineering, (4):324–345, 1985.

[17] H. Cohen and E. Porat. Fast set intersection and two-patterns matching.
Theoretical Computer Science, 411(40-42):3795–3800, 2010.

[18] H. Cohen and E. Porat. On the hardness of distance oracle for sparse
graph. arXiv preprint arXiv:1006.1117, 2010.

[19] S. Deep, X. Hu, and P. Koutris. Fast join project query evaluation using
matrix multiplication. https://arxiv.org/abs/2002.12459.

[20] S. Deep and P. Koutris. Compressed representations of conjunctive
query results. arXiv preprint arXiv:1709.06186, 2017.

[21] D. Deng, Y. Tao, and G. Li. Overlap set similarity joins with theoretical
guarantees. In Proceedings of the 2018 International Conference on
Management of Data, pages 905–920. ACM, 2018.

[22] F. L. Gall and F. Urrutia. Improved rectangular matrix multiplication
using powers of the coppersmith-winograd tensor. In Proceedings of the
Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms,
pages 1029–1046. SIAM, 2018.

[23] A. Gupta, V. Harinarayan, and D. Quass. Aggregate-query processing
in data warehousing environments. 1995.

[24] A. Gupta, V. Harinarayan, and D. Quass. Generalized projections: a
powerful approach to aggregation. Technical report, Stanford InfoLab,
1995.

[25] J. E. Hopcroft, J. D. Ullman, and A. Aho. The design and analysis of
computer algorithms, 1975.

[26] X. Huang and V. Y. Pan. Fast rectangular matrix multiplication and
applications. Journal of complexity, 14(2):257–299, 1998.

[27] R. Jampani and V. Pudi. Using prefix-trees for efficiently computing
set joins. In International Conference on Database Systems for Advanced
Applications, pages 761–772. Springer, 2005.

[28] A. Kara, M. Nikolic, D. Olteanu, and H. Zhang. Trade-offs in static
and dynamic evaluation of hierarchical queries. arXiv preprint
arXiv:1907.01988, 2019.

[29] A. Kunkel, A. Rheinländer, C. Schiefer, S. Helmer, P. Bouros, and
U. Leser. Piejoin: towards parallel set containment joins. In Pro-
ceedings of the 28th International Conference on Scientific and Statistical
Database Management, page 11. ACM, 2016.

[30] Y. Luo, G. H. Fletcher, J. Hidders, and P. De Bra. Efficient and scalable
trie-based algorithms for computing set containment relations. In 2015
IEEE 31st International Conference on Data Engineering, pages 303–314.
IEEE, 2015.

[31] S. Misra, R. Barthwal, and M. S. Obaidat. Community detection in
an integrated internet of things and social network architecture. In
2012 IEEE Global Communications Conference (GLOBECOM), pages
1647–1652. IEEE, 2012.

[32] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join
algorithms. In Proceedings of the 31st ACM SIGMOD-SIGACT-SIGAI
symposium on Principles of Database Systems, pages 37–48. ACM, 2012.

[33] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new developments
in the theory of join algorithms. SIGMOD Record, 42(4):5–16, 2013.

[34] M. Patrascu and L. Roditty. Distance oracles beyond the thorup-zwick
bound. In Foundations of Computer Science (FOCS), 2010 51st Annual
IEEE Symposium on, pages 815–823. IEEE, 2010.

[35] T. Veldhuizen. Leapfrog triejoin: a worst-case optimal join algorithm,
icdt,(2014).

[36] K. Xirogiannopoulos and A. Deshpande. Extracting and analyzing
hidden graphs from relational databases. In Proceedings of the 2017
ACM International Conference on Management of Data, pages 897–912.
ACM, 2017.

[37] K. Xirogiannopoulos and A. Deshpande. Memory-efficient group-by
aggregates over multi-way joins. arXiv preprint arXiv:1906.05745, 2019.

[38] K. Xirogiannopoulos, U. Khurana, and A. Deshpande. Graphgen: Ex-
ploring interesting graphs in relational data. Proceedings of the VLDB
Endowment, 8(12):2032–2035, 2015.

[39] K. Xirogiannopoulos, V. Srinivas, and A. Deshpande. Graphgen: Adap-
tive graph processing using relational databases. In Proceedings of the
Fifth International Workshop on Graph Data-management Experiences &
Systems, GRADES’17, pages 9:1–9:7, New York, NY, USA, 2017. ACM.

[40] J. Yang, W. Zhang, S. Yang, Y. Zhang, X. Lin, and L. Yuan. Efficient
set containment join. The VLDB Journal—The International Journal on
Very Large Data Bases, 27(4):471–495, 2018.

https://dblp.uni-trier.de/
https://cs.stanford.edu/~acoates/stl10/
https://goldberg.berkeley.edu/jester-data/
https://string-db.org/cgi/download.pl?sessionId=IBdaKPtZGbl2
https://string-db.org/cgi/download.pl?sessionId=IBdaKPtZGbl2
https://snap.stanford.edu/data/roadNet-PA.html
https://archive.ics.uci.edu/ml/datasets/bag+of+words
https://arxiv.org/abs/2002.12459

	Abstract
	1 Introduction
	2 Problem Setting
	2.1 Problem Definitions
	2.2 Matrix Multiplication
	2.3 Known Results

	3 Computing Join-Project
	3.1 The 2-Path Query
	3.2 The Star Query
	3.3 Boolean Set Intersection

	4 Speeding Up SSJ and SCJ
	5 Cost-Based Optimization
	6 Experimental Evaluation
	6.1 Datasets
	6.2 Join Processing
	6.3 Set Similarity
	6.4 Boolean Set Intersection

	7 Related Work
	8 Conclusion and Future Work
	References

