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Data summarization is a powerful approach to deal with large-scale data analytics, which has wide applications

in web search, recommendation systems, approximate query processing, etc. It computes a small, compact

summary that preserves vital properties of the original data. In this paper, we study the data summarization

problem of conjunctive query results, i.e., computing a 𝑘-size subset of a conjunctive query output, for any

given 𝑘 > 0, that optimizes a certain objective. More specifically, we are interested in two commonly studied

objectives: cohesion, which measures the maximum distance between a tuple in the query result tuples and

its closest tuple in the summary (𝑘-center clustering); and diversity, which measures the pairwise distances

between the summary items. A simple approach that computes the entire query output and then applies

existing algorithms on top of these materialized tuples suffers from high computational complexity because

the query output can be large, e.g., for a relational database of 𝑁 tuples, the number of result tuples can be

𝑁𝑂 (1)
. We propose 𝑂 (1)-approximation algorithms that compute well-representative summaries of size 𝑘 in

time 𝑂̃ (𝑁 ·𝑘𝑂 (1) ), or even 𝑂̃ (𝑁 +𝑘𝑂 (1) ) in some cases,
1
without computing all result tuples. We also propose

the first efficient (2 + 𝜀)-approximation algorithm for the 𝑘-center clustering problem over relational data.

Our main idea is to formulate a few oracles that enable us to access specific query result tuples with certain

properties, to show how these oracles can be implemented efficiently, and to compute desired summaries with

few invocations of these oracles.
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1 Introduction
Data summarization is a potent strategy in large-scale data analytics, offering a means to compute a

compact yet comprehensive dataset that preserves vital properties of the original data. A multitude

of data summarization techniques have been developed for diverse applications, encompassing

sampling [12, 23, 40, 53], histograms [47, 48], wavelet-based synopses [29, 39], sketching [5, 27, 28],

coresets [6], and more [29]. The objectives on the quality of the data summaries strongly depend on

the downstream application scenarios. Viewing query result tuples as points in a multi-dimensional

space, two common objectives are cohesion, which measures the maximum distance between a

result tuple and its closest tuple in the summary, and diversity, which measures the minimum or

average pairwise distance between tuples in the summary.

Most past data-summarization algorithms assume they are directly given the data to summarize.

However, one often desires to summarize the output of a query, especially when the query output

is large. In such applications, the simple approach of computing all query result tuples and then

applying a known algorithm is ineffective because of its high computational cost when the query

output size is large (which is why we want to compute a summary in the first place). There

is some recent work on computing summaries of query results [3, 11, 27, 57], but this line of

work has focused on simple queries, such as range queries, where data resides in a single table.

In real-world scenarios, more than 70% of the current data sets are relational [1], where data is
stored in multiple tables, and the desired data is obtained by performing conjunctive queries – the

combination of select, project, and join queries – on these tables. Note that the size of the output of

a conjunctive query can be polynomially larger than the size of the tables. Furthermore, user queries

may have very different local selection predicates. Hence, the challenging question is constructing

a well-representative summary for the output of a given conjunctive query without computing

and materializing its entire output. While there are some recent results on clustering in relational

data [31, 54, 55], there is no result on efficiently computing a well-representative summary in

relational data. Hence, in this paper, we take on this challenging question and investigate how to

construct well-representative summaries for conjunctive query results efficiently.

1.1 Problem Definition
Conjunctive query. Let R denote a database schema and A the set of all attributes. R consists of a

set of𝑚 relations {𝑅1, . . . , 𝑅𝑚}, where each relation 𝑅𝑖 has a subset of attributes A𝑖 ⊆ A, satisfying⋃
𝑖∈[𝑚] A𝑖 = A. Let dom(𝐴) denote the domain of attribute 𝐴 ∈ A. For the simplicity of exposition,

we assume that all attributes have the domain R of reals, though our results can be generalized to

other domains. A database instance I consists of the set {𝑅I
𝑖 } of relational instances, where each 𝑅I

𝑖

is a set of tuples over the domain R |A𝑖 |
. Let 𝑡 ∈ R |A𝑖 |

denote a tuple in 𝑅I
𝑖 : for each attribute 𝐴 ∈ A𝑖 ,

we use 𝑡 .𝐴 to denote 𝑡 ’s value for attribute 𝐴; for each subset of attributes 𝑋 ⊆ A𝑖 , we use 𝑡 .𝑋 to

denote 𝑡 ’s projection onto attributes in 𝑋 . When the context is clear, we will drop the superscript I
and simply refer to relation instance 𝑅I

𝑖 as relation 𝑅𝑖 . We consider conjunctive queries (CQs):

Q := 𝜋y
(
(𝜎p1

𝑅1) Z (𝜎p2
𝑅2) Z · · · Z (𝜎p𝑚𝑅𝑚)

)
, (1)

where y ⊆ A defines the set of output attributes, each p𝑖 is a Boolean predicate over A𝑖 , and 𝜋, 𝜎,Z
are relational projection, selection, and natural join operators. By renaming the attributes, we also

allow self-joins in Q, i.e., the same relation can be joined multiple times in Q. Let 𝑑 = |y|. The
output of Q over database instance I is defined as

Q(I) =
{
𝑡 ′ ∈ R𝑑

�� ∃𝑡 ∈ R |A | : 𝑡 .y = 𝑡 ′∧ (∀𝑖 ∈ [𝑚] : 𝑡 .A𝑖 ∈ 𝑅I
𝑖 ∧ p𝑖 (𝑡 .A𝑖 ))

}
.
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Query Q filters relation 𝑅𝑖 by the Boolean predicate p𝑖 , joins filtered tuples (one from each relation)

sharing the same values on common attributes, and then projects the resulting tuples onto y. Each
tuple in Q(I) is essentially a point in R𝑑 .

We say a CQ is full if y = A (i.e., 𝜋y is identity function). A full CQ is also called a join query. In
this paper we mainly focus on acyclic CQs. Recall that a CQ is acyclic [16, 37] if there exists a tree

T , called a join tree of Q, where 1) the nodes of T are 𝑅1, . . . , 𝑅𝑚 ; 2) for each attribute 𝐴 ∈ A, the
set of nodes whose attributes contain 𝐴 form an edge-connected subtree of T . For simplicity, in all

cases we assume all dangling tuples are removed from I.2

Well-representative summaries for CQs. Given a CQ Q of the form (1), a database I, and a

positive integer 𝑘 , we refer to a subset 𝑆 ⊆ Q(I) of 𝑘 distinct tuples from Q(I) as a k-summary of

Q(I). We use two different (though related) objectives to measure the quality of a summary. Let

𝜙 : R |y | × R |y | → R≥0 be a distance function.

• The cohesion of 𝑆 is defined using both Q(I) and 𝑆 :
𝜌 (𝑆,Q(I)) = max

𝑡2∈Q(I)
min

𝑡1∈𝑆
𝜙 (𝑡1, 𝑡2). (2)

Intuitively, cohesiveness ensures that every result tuple is close to some tuple in the sum-

mary. For any 𝑘 > 0, let 𝜌𝑘 (Q(I)) denote the optimal cohesion of any 𝑘-summary of Q(I), i.e.,
𝜌𝑘 (Q(I)) = min

𝑆⊆Q(I), |𝑆 |=𝑘
𝜌 (𝑆,Q(I)). A 𝑘-summary 𝑆∗ is called an optimally cohesive 𝑘-summary if

𝜌 (𝑆∗,Q(I)) = 𝜌𝑘 (Q(I)). For a parameter𝛼 > 1, a𝑘-summary 𝑆 is𝛼-cohesive if 𝜌 (𝑆) ≤ 𝛼 · 𝜌𝑘 (Q(I)).
We note that the definition of cohesion is identical to the definition of the cost in the 𝑘-center

clustering problem. Hence, an 𝛼-cohesive 𝑘-summary 𝑆 is also an 𝛼-approximation of 𝑘-center

clustering of Q(I) (relational 𝑘-center problem).

• The diversity of a set 𝑆 ⊂ R |y | , has two variants:

Sum-diversity: 𝛿 (𝑆) = 1

2

∑︁
𝑥,𝑦∈𝑆×𝑆

𝜙 (𝑥,𝑦); (3)

Min-diversity: 𝛿 (𝑆) = min

𝑥,𝑦∈𝑆×𝑆 :𝑥≠𝑦
𝜙 (𝑥,𝑦). (4)

Diversity seeks to ensure that summary tuples are far away from each other. For any 𝑘 > 0, let

𝜇𝑘 (Q(I)) denote the optimal diversity of any 𝑘-summary ofQ(I), i.e., 𝜇𝑘 (Q(I)) = min

𝑆⊆Q(I), |𝑆 |=𝑘
𝛿 (𝑆).

A 𝑘-summary 𝑆∗ is called an optimally diverse 𝑘-summary if 𝛿 (𝑆∗) = 𝜇𝑘 (Q(I)). Given a parameter

𝛼 ∈ (0, 1), a 𝑘-summary 𝑆 is 𝛼-diverse if 𝛿 (𝑆) ≥ 𝛼 · 𝜇𝑘 (Q(I)).
Our goal is to compute efficiently well-representative summaries for an input CQ Q and database

instance I. We are interested in the data complexity: i.e., the query size𝑚 is a constant, and the

complexity of our algorithms is measured by the input size 𝑁 =
∑

𝑖∈[𝑚] |𝑅I
𝑖 |, and the output size 𝑘 .

1.2 Related Work
Summaries of a given data set. Computing various summaries for a set 𝑃 of data points has

been extensively studied in the literature under different objectives. A summary that maximizes

the sum-diversity (3) is known as remote-clique or max-sum problem [59], and that maximizes the

min-diversity (4) is known as remote-edge or max-min problem [64], which is NP-hard.
3
For the

max-sum problem, there are efficient
1

2
-diverse algorithms that work for any distance function [17,

2
Dangling tuples are those not participating in any result of the underlying join query, which can be done within𝑂 (𝑁 )
time for acyclic join queries. See Appendix A.

3
The NP-hardness of max-min problem implies the NP-hardness of computing an optimally min-diverse summary. See

Appendix A.

Proc. ACM Manag. Data, Vol. 2, No. 5 (PODS), Article 217. Publication date: November 2024.



217:4 Pankaj K. Agarwal et al.

18, 59]. Better algorithms are proposed for the Euclidean distance, either with better approximation

factors [19–21] or with better time complexity [11]. For the max-min problem, Tamir [64] showed

that a greedy algorithm returns a
1

2
-approximation for any metric. A faster algorithm [11] is also

known for the max-min problem the under Euclidean metric. Computing a summary of 𝑃 that

minimize cohesion,
4
known as the k-center problem, is NP-hard.

5
The well-known Gonzalez’s

algorithm [41] returns a 2-cohesive 𝑘-summary of a set 𝑃 in 𝑂 (𝑘 · |𝑃 |) time under any metric. Its

running time was improved to 𝑂 ( |𝑃 | log𝑘) in [38] (see also [44]). All the problems also have been

studied under fairness constraints [2, 4, 18, 49, 51, 52, 56].

Summaries of selection results. There is some work on computing the summaries of range

query outputs of a set of points 𝑃 . A near-linear-size index exists [3, 57] that, given any query

rectangle 𝜓 , computes a (2 + 𝜀)-cohesive summary 𝑘-summary of 𝑃 ∩ 𝜓 in 𝑂 (𝑘 · polylog( |𝑃 |))
time. Subsequently, a similar index was shown to generate 𝑂 (1)-diverse summaries for 𝑃 ∩ 𝜓 .
Additionally, summaries have been extensively studied for statistical queries, such as sampling,

sketching, frequent moments, and embedding. We refer interested readers to [30] for details.

Summaries of join results.Computing summaries of the results for a join query is useful to answer

analytical queries while providing provably accuracy guarantees, such as sampling [24, 26, 34, 50,

66, 67], factorization [58] and witness [46]. Recently, the 𝑘-means and 𝑘-median clustering problems

over relational data have been studied [31, 36, 55]. The coreset for empirical risk minimization

problems over relational data [25] has also been considered. However, the time complexity of their

algorithm for constructing an 𝜀-coreset depends on the diameter of the query results. Merkl et

al. [54] studied the hardness of diversity problems over relational data under the Hamming metric.

Under data complexity, they give an expensive algorithm (computing all query results) to construct

an 𝑂 (𝑘𝑚) (exact) coreset. Arenas et al. [13], also studied the hardness of diversity problems under

the Hamming metric and ultrametrics. Furthermore, they propose polynomial time algorithms for

some diversity problems under ultrametrics (Euclidean and Hamming metrics are not ultrametrics).

1.3 Our Contributions
For a CQ Q with 𝑑 output attributes, a database I of input size 𝑁 , and a parameter 𝑘 , we propose

several 𝑂 (1)-approximation algorithms that compute cohesive and diverse 𝑘-summaries for Q(I)
in 𝑂̃ (𝑁 · 𝑘𝑂 (1) ) or 𝑂̃

(
𝑁 + 𝑘𝑂 (1)

)
time, under the Euclidean or Hamming metric. We include all the

log𝑁 factors in the analyses and theorems in the next sections. All our results for acyclic join queries

are shown in Table 1, and the extended results to cyclic join queries and even join-project queries are

discussed in Section 6. In the next sections we use the notation 𝜙 (·, ·) for the Euclidean distance and

𝜙𝐻 (·, ·) for the Hamming distance. For two tuples 𝑝, 𝑞 ∈ R𝑑 , let 𝜙 (𝑝, 𝑞) = (∑𝐴 𝑗 ∈A (𝑝.𝐴 𝑗 −𝑞.𝐴 𝑗 )2)1/2
and 𝜙𝐻 (𝑝, 𝑞) =

∑
𝐴 𝑗 ∈A 1(𝑝.𝐴 𝑗 ≠ 𝑞.𝐴 𝑗 ), where 1 is the indicator function.

• Cohesive summary (Section 3):
– Euclidean metric (Section 3.1). We design an algorithm to construct a (2 + 𝜀)-cohesive
𝑘-summary in 𝑂̃ (min{𝑘2𝑁,𝑘 ⌈𝑑/2⌉+1} + 𝑘𝑁𝜀−𝑑 ) time. This result also leads to the first efficient

(2 + 𝜀)-approximation algorithm for the relational 𝑘-center clustering problem. The best

previously known algorithm for the relational 𝑘-centering problem has either an additive

approximation factor that depends on the diameter of Q(I) or a relative approximation factor

that depends exponentially on 𝑑 [25]. In order to derive this result, we first construct two𝑂 (1)-
cohesive summaries: (i) a tree-based algorithm that runs in𝑂 (𝑁𝑘2) time using𝑂 (𝑁 +𝑘2) space,

4
For a set 𝑃 of data points, the cohesion for a 𝑘-summary 𝑆 is similarly defined as 𝜌 (𝑆 ) = max

𝑡2∈𝑃
min

𝑡1∈𝑆
𝜙 (𝑡1, 𝑡2 ) .

5
The NP-hardness of the k-center problem implies the NP-hardness of computing an optimally cohesive summary. See

Appendix A.
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Summaries Metric Time Space Approximation Ref.

Cohesive

Euclidean

𝑘2𝑁 + 𝑘𝑁𝜀−𝑑 𝑁 + 𝑘2 + 𝑘𝜀−𝑑 2 + 𝜀 §3.1

𝑘 ⌈𝑑/2⌉+1 + 𝑘𝑁𝜀−𝑑 𝑁 + 𝑘 ⌈𝑑/2⌉+1 + 𝑘𝜀−𝑑 2 + 𝜀 §3.1

Hamming 𝑁𝑘𝑑 𝑁 + 𝑘𝑑 2 §3.2

Min-diverse

Euclidean

𝑘2𝑁 + 𝑘𝑁𝜀−𝑑 𝑁 + 𝑘2 + 𝑘𝜀−𝑑 1

2
− 𝜀 §4.1

𝑘 ⌈𝑑/2⌉+1 + 𝑘𝑁𝜀−𝑑 𝑁 + 𝑘 ⌈𝑑/2⌉+1 + 𝑘𝜀−𝑑 1

2
− 𝜀 §4.1

Hamming 𝑁𝑘𝑑 𝑁 + 𝑘𝑑 1

2
§4.2

Sum-diverse

Euclidean (𝑁 + 𝑘)𝜀−(𝑑−1)/2 𝑁 + 𝑘𝜀−(𝑑−1)/2 1

2
− 𝜀 §5.1

Hamming

𝑁𝑘2 + 𝑘3 𝑁 + 𝑘 1 − 2

𝑘
§5.2

𝑁𝑘 + 𝑘2 𝑁 + 𝑘 1

2
§5.2

Table 1. Summary of our results for acyclic join queries. For simplicity, we hide the 𝑂 (·) notation and
log𝑁 or log

2 𝑁 factors. 𝑁 is the input size of the database, 𝑘 is the size of the summary, 𝜀 ∈ (0, 1) is an error
parameter given as input, and 𝑑 is the number of attributes in the join query.

but whose approximation depends on the number of relations in the join query; (ii) a geometry-

based 6-approximation algorithm that runs in 𝑂
(
𝑁 + 𝑘 ⌈𝑑/2⌉+1

)
time using 𝑂

(
𝑁 + 𝑘 ⌈𝑑/2⌉+1

)
space. We then combine the 𝑂 (1)-approximation algorithms with a grid-based construction to

derive a 𝜀-coreset (formally defined in Section 3.1.3) of 𝑂 (𝜀−𝑑𝑘) centers such that every result

tuple from Q(I) is “near” enough to some center from the coreset. The 𝜀-coreset leads to the

construction of a (2 + 𝜀)-cohesive 𝑘-summary in 𝑂̃
(
min{𝑁𝑘2, 𝑘 ⌈𝑑/2⌉+1} + 𝑘𝑁𝜀−𝑑

)
time.

– Hamming metric (Section 3.2). Using an iterative approach that implicitly excludes tuples

close to the selected tuples in the summary, we present an algorithm that constructs a 2-cohesive

𝑘-summary in 𝑂
(
𝑁 · 𝑘𝑑

)
time using 𝑂 (𝑁 + 𝑘𝑑 ) space.

• Min-Diverse summary (Section 4):
– Euclidean metric (Section 4.1).We first show that any cohesive coreset is also a min-diverse

coreset. Hence, using the ideas for constructing cohesive summaries, we design an algorithm

to construct a ( 1

2
− 𝜀)-min-diverse 𝑘-summary in 𝑂̃

(
min

{
𝑁𝑘2, 𝑘 ⌈𝑑/2⌉+1

}
+ 𝑘𝑁𝜀−𝑑

)
time.

– Hamming metric (Section 4.2). Using ideas for constructing cohesive summaries, we design

an algorithm to construct a
1

2
-min-diverse summary in 𝑂

(
𝑁𝑘𝑑

)
time using 𝑂

(
𝑁 + 𝑘𝑑

)
space.

• Sum-Diverse summary (Section 5):
– Euclidean metric (Section 5.1). We present a geometric approach using the notion of

𝜀-net that can construct an ( 1

2
− 𝜀)-diverse 𝑘-summary in 𝑂̃

(
(𝑁 + 𝑘)𝜀−(𝑑−1)/2)

time using

𝑂
(
𝑁 + 𝑘𝜀−(𝑑−1)/2)

space.

– Hamming metric (Section 5.2). We propose two algorithms to construct sum-diverse sum-

maries. The first one, a local search algorithm, constructs a (1 − 2/𝑘)-sum-diverse 𝑘-summary

in 𝑂̃
(
𝑁𝑘2 + 𝑘3

)
time using 𝑂 (𝑁 + 𝑘) space. The second one, a greedy algorithm, constructs a

1

2
-sum-diverse 𝑘-summary in 𝑂̃ (𝑁𝑘 + 𝑘2) time using 𝑂 (𝑁 + 𝑘) space.

Main ideas. As mentioned, to summarize the output of a CQ, one could compute all result

tuples first and then directly apply existing algorithms developed for computing summaries for

a given dataset [41, 59, 64]. However, materializing the entire query output is expensive. Instead,

our approach is to formulate appropriate oracles that enable us to access some specific query
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result tuples with certain properties—including nearest neighbor, farthest neighbor, top-𝑘 , and

rectangular lookup—and show how to modify existing algorithms or design new algorithms using

as few invocations of these oracles as possible. One key insight is that our computation can be

modeled as ranked enumeration of query answers. Conceptually, given a CQ Q, a set of weight

functions defined on attributes, and a database I, ranked enumeration returns Q(I) in ascending

(or descending) order with respect to their weights, one at a time, with a bounded delay between

consecutive answers. We carefully design weight functions using query and data to apply ranked

enumeration in our settings. We also push selections down as far as possible. Specifically, given a set

of selection predicates, each on an individual attribute, we simply push the selection predicates down

to the base tables first and enumerate all result tuples in Q(I) satisfying the selection predicates

with a bounded delay between consecutive answers.

2 Relational Oracles
We show some relational oracles that will be commonly used throughout the paper.

Ranked enumeration. Let 𝑤𝑖 : R |A𝑖 | → R be a weight function, which takes as input a tuple

𝑡 ∈ 𝑅𝑖 and outputs a real number. Let ®𝑤 = ⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩ be a set of weight functions. For

a CQ Q, a database I, and a pair of results 𝑡1, 𝑡2 ∈ Q(I), we say 𝑡1 ≤ ®𝑤 𝑡2 if

∑
𝑗∈[𝑚] 𝑤 𝑗 (𝑡1.A𝑗 ) ≤∑

𝑗∈[𝑚] 𝑤 𝑗 (𝑡2.A𝑗 ).

Lemma 2.1 ([33]). For an acyclic joinQ, a database I, and a set of weight functions ®𝑤 = ⟨𝑤1,𝑤2,· · ·,𝑤𝑚⟩,
an index of size 𝑂 (𝑁 ) can be constructed in 𝑂 (𝑁 ) time, such that given any value 𝑘 ∈ Z+, the top-𝑘
results of Q(I) can be enumerated in ascending or descending order with respect to ®𝑤 within𝑂 (log𝑁 )
delay using 𝑂 (𝑘) additional space.

By exploiting the variety of weight functions supported by ranked enumeration, we are able to

define the Euclidean-based oracles and the top-𝑘 oracle. For simplicity, let Ā𝑖 = A𝑖 − (
⋃

𝑗<𝑖 A𝑗 ) be
the set of active attributes for 𝑅𝑖 , i.e., the attributes in 𝑅𝑖 that do not appear in a relation 𝑅 𝑗 for 𝑗 < 𝑖 .

Euclidean-based oracles. Let 𝜃 ∈ R𝑑 be a tuple. The nearest (resp. farthest) neighbor oracle finds a
tuple 𝑡 ∈ Q(I) that is closest to 𝜃 under the Euclidean metric. For each relation 𝑅𝑖 and for a tuple

𝑝 ∈ 𝑅𝑖 , we define𝑤𝑖 (𝑝) =
∑︁

𝐴 𝑗 ∈Ā𝑖

(𝑝.𝐴 𝑗 − 𝜃 .𝐴 𝑗 )2. It is easy to see for any query result 𝑡 ∈ Q(I),

∑︁
𝑖∈[𝑚]

𝑤𝑖 (𝑡 .A𝑖 ) =
∑︁

𝑖∈[𝑚]

∑︁
𝐴 𝑗 ∈Ā𝑖

(𝑡 .𝐴 𝑗 − 𝜃 .𝐴 𝑗 )2 =
∑︁
𝐴∈A
(𝑡 .𝐴 − 𝜃 .𝐴)2 = 𝜙2 (𝜃, 𝑡),

thanks to the decomposability of the squared Euclidean distance. The square (and square root)

function is increasing for non-negative values, so the squared Euclidean distance preserves the

ordering of Euclidean distance.

Top-𝑘 oracle. Let 𝑢 = ⟨𝑢1, 𝑢2, . . . , 𝑢𝑑⟩ ∈ R𝑑 be a vector. The top-𝑘 oracle finds the 𝑘 tuples from

Q(I) with the largest inner product with 𝑢. For each relation 𝑅𝑖 and for any 𝑝 ∈ 𝑅𝑖 , we define

𝑤𝑖 (𝑝) =
∑︁

𝐴 𝑗 ∈Ā𝑖

(
𝑝.𝐴 𝑗

)
· 𝑢 𝑗 . It is easy to see that for any query result 𝑡 ∈ Q(I),∑︁

𝑖∈[𝑚]
𝑤𝑖 (𝑡 .A𝑖 ) =

∑︁
𝑖∈[𝑚]

∑︁
𝐴 𝑗 ∈Ā𝑖

(
𝑡 .𝐴 𝑗

)
· 𝑢 𝑗 = ⟨𝑡,𝑢⟩.

Lemma 2.2. Given an acyclic join Q, a database instance I with input size 𝑁 , and a tuple 𝜃 ∈ R𝑑 ,
the nearest (resp. farthest) neighbor of 𝜃 in Q(I), under the Euclidean metric, can be computed in
𝑂 (𝑁 ) time. Each tuple in Q(I) can be enumerated in ascending or descending order with respect to its
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distance from 𝜃 within 𝑂 (log𝑁 ) delay. Furthermore, given a vector 𝑢 ∈ R𝑑 , the 𝑘 tuples in Q(I) with
the highest inner product with 𝑢 can be computed in 𝑂 (𝑁 + 𝑘 log𝑁 ) time.

Rectangular oracle. Next, we focus on counting and enumerating the join results that lie in

a rectangle. Let 𝜓 ⊆ R𝑑 be an axis-parallel rectangle, defined as the product of 𝑑 intervals, i.e.,

𝜓 = 𝜓1 × . . . ×𝜓𝑑 , where𝜓 𝑗 = [𝑎 𝑗 , 𝑏 𝑗 ] and 𝑎 𝑗 , 𝑏 𝑗 ∈ R. A tuple 𝑡 lies in𝜓 if and only if 𝑡 .𝐴 𝑗 ∈ 𝜓 𝑗 ⇔
𝑎 𝑗 ≤ 𝑡 .𝐴 𝑗 ≤ 𝑏 𝑗 , for every 𝐴 𝑗 ∈ A. Hence, a rectangle𝜓 defines a predicate 𝑎 𝑗 ≤ 𝐴 𝑗 ≤ 𝑏 𝑗 for each

attribute 𝐴 𝑗 ∈ A. Given a rectangle𝜓 , we can find all tuples in I that pass the predicate in 𝑂 (𝑁 )
time and then apply Yannakakis algorithm [65] to count the number of result tuples in𝜓 ∩ Q(I), or
apply the index from [15] to enumerate the result tuples in𝜓 ∩ Q(I).

Lemma 2.3. For an acyclic join Q, a database I of input size 𝑁 , and a rectangle𝜓 ∈ R𝑑 , an index of
size 𝑂 (𝑁 ) can be constructed in 𝑂 (𝑁 ) time such that i) the number of result tuples in𝜓 ∩ Q(I) can
be returned in 𝑂 (𝑁 ) time; and ii) all result tuples in𝜓 ∩ Q(I) can be enumerated with 𝑂 (1) delay.

3 Cohesive Summaries
In this section, we present algorithms to construct cohesive 𝑘-summaries for the Euclidean and

Hamming metrics. Recall that any algorithm presented in this section is also an algorithm for the

relational 𝑘-center clustering problem.

3.1 Euclidean Metric
Algorithm1:CohesiveEuclidean(Q, I, 𝑘, 𝜀)
1 (𝑆, 𝑟, 𝛽) ← ConstantApprox(Q, I, 𝑘);
2 𝑃𝜀 ← Coreset(Q, I, 𝑆, 𝑟, 𝛽, 𝜀);
3 𝑆∗ ← FederGreene(𝑃𝜀 , 𝑘) [38];
4 return 𝑆∗;

Our main algorithm for constructing a cohe-

sive summary for Euclidean distance consists

of three steps. In the first step, we compute a 𝛽-

cohesive 𝑘-summary 𝑆 for some constant 𝛽 ≥ 1,

along with a number 𝑟 such that 𝜌𝑘 (Q(I)) ≤ 𝜌 (𝑆,Q(I)) ≤ 𝑟 ≤ 𝛽 · 𝜌𝑘 (Q(I)). Next, 𝑆 is used to

construct a small set 𝑃𝜀 ⊆ Q(I) (called 𝜀-coreset) such that the optimally cohesive 𝑘-summary in 𝑃𝜀
is an (1 + 𝜀)-cohesive 𝑘-summary in Q(I). In the last step, we run a 2-approximation algorithm

(Feder and Greene algorithm [38]) for the cohesive summary (in the non-relational setting) on

𝑃𝜀 , and we derive the final result. Throughout the paper, we use the term non-relational setting to

denote the case where all input data is given in one relation.

The pseudocode of our main algorithm is shown in Algorithm 1. In the next subsections, we show

all three steps in detail. In Subsections 3.1.1 and 3.1.2, we show two different constant approximations

algorithms for the cohesive summary. We can invoke any of them as the ConstantApprox(Q, I, 𝑘)
procedure in Algorithm 1. Even though they both return a constant approximation, we present both

because neither dominates the other in terms of running time. The first one runs in roughly𝑂
(
𝑘2𝑁

)
time while the second one runs in 𝑂

(
𝑘𝑁 + 𝑘𝑂 (𝑑 )

)
time. Next, in Subsection 3.1.3, we present the

Coreset(·) procedure that gets as input the output of the previous constant approximation algorithm

and constructs an 𝜀 coreset 𝑃𝜀 of size𝑂 (𝜀−𝑑𝑘). Finally, in Subsection 3.1.4, we run a 2-approximation

algorithm for the cohesive summary (in the non-relational setting) on 𝑃𝜀 , and show the final result.

All missing proofs in this section are given in Appendix B.1.

3.1.1 Constant cohesive summary: Tree-based approximation.
In this part, we describe a hierarchical approach for constructing a cohesive summary.

Main ideas. Consider an acyclic join Q and a database I. Let A𝑥 ,A𝑦 ⊆ A be two disjoint subsets of

attributes. Let 𝑆𝑥 ⊂ R |A𝑥 |
be a 𝑟𝑥 -cohesive 𝑘-summary of 𝜋A𝑥

Q(I), and 𝑆𝑦 ⊂ R |A𝑦 |
be a 𝑟𝑦-cohesive

𝑘-summary of 𝜋A𝑦
Q(I). We show that a set 𝑆 ⊂ R |A𝑥∪A𝑦 |

of size 𝑘 can be computed efficiently with
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small cohesion with respect to 𝜋A𝑥∪A𝑦
Q(I). Let

𝑆 =

{
𝑡 ∈ 𝑆𝑥 × 𝑆𝑦 : ∃𝑡 ′ ∈ 𝜋A𝑥∪A𝑦

Q(I), 𝜙 (𝑡, 𝑡 ′) ≤
√

2 ·max{𝑟𝑥 , 𝑟𝑦}
}
,

be the set of tuples from the Cartesian product Algorithm2:ConstantApprox_Tree(Q, I, 𝑘)
1 (𝑆𝑣, 𝑟𝑣) ← ComputeRoot(Q, I, 𝑘);
2 𝑆 ← ∅;
3 foreach 𝜃 ∈ 𝑆𝑣 do
4 foreach 𝑖 ∈ [𝑚] do
5 foreach 𝑝 ∈ 𝑅𝑖 do
6 𝑤𝑖 (𝑝)←

∑
𝐴 𝑗 ∈Ā𝑖

(
𝑝.𝐴 𝑗 − 𝜃 .𝐴 𝑗

)
2

;

7 ®𝑤 ← ⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩;
8 𝑍←index built for Q, I, ®𝑤 as Lemma 2.1;

9 𝑡𝜃 ← first result enumerated from 𝑍 ;

10 𝑆 ← 𝑆 ∪ {𝑡𝜃 };
11 while |𝑆 | < 𝑘 do
12 𝑡 ← the next result enumerated from 𝑍 ;

13 if 𝑡 ∉ 𝑆 then 𝑆 ← 𝑆 ∪ {𝑡};
14 return 𝑆 with radius 𝑟 = 2 · 𝑟𝑣 ;

of two summaries that are “near” to some re-

sult tuple in 𝜋A𝑥∪A𝑦
Q(I). If 𝑆 is a 2-cohesive 𝑘-

summary of 𝑆 , a key property we show is that

𝑆 is a 10

√
2 max{𝑟𝑥 , 𝑟𝑦}-cohesive 𝑘-summary

of 𝜋A𝑥∪A𝑦
Q(I). To construct a cohesive sum-

mary for 𝜋A𝑥∪A𝑦
Q(I), it suffices to construct a

cohesive summary for 𝜋A𝑥
Q(I) and 𝜋A𝑦

Q(I)
separately, further select a few representa-

tives from the Cartesian product of these two

summaries carefully, and finally return a 𝑘-

cohesive summary for those representatives.

Our algorithm. Now, we are ready to de-

scribe our relational algorithm, with pseu-

docode given in Algorithm 2 and a running

example in Figure 1. Algorithm 2 first calls Al-

gorithm 3 as a primitive to return a set 𝑆𝑣 ⊂ R𝑑
of size 𝑘 and a value 𝑟𝑣 such that the cohesion

𝜌 (𝑆𝑣,Q(I)) is small and the value 𝑟𝑣 is a sufficiently small upper bound of 𝜌 (𝑆𝑣,Q(I)). Notice that
𝑆𝑣 will not necessarily be a subset of Q(I). Then Algorithm 2 uses 𝑆𝑣 to construct a set 𝑆 ⊆ Q(I) that
is a𝑂 (1)-cohesive 𝑘-summary and a value 𝑟 such that 𝜌𝑘 (Q(I)) ≤ 𝑟 ≤ 𝛼𝜌𝑘 (Q(I)), for a constant 𝛼 .

In Algorithm 3, we first construct a complete binary tree T with𝑚 leaf nodes, where relation

𝑅𝑖 is stored at the 𝑖-th leaf node. For each node 𝑢 ∈ T , we denote Ā𝑢 =
⋃

𝑅𝑖 is a descendant of 𝑢
Ā𝑖 and

Q𝑢 = 𝜋Ā𝑢
Q(I). We visit all nodes in a bottom-up fashion, and for each node 𝑢 ∈ T , we compute i) a

set 𝑆𝑢 of 𝑘 tuples in R |Ā𝑢 |
with small cohesion 𝜌 (𝑆𝑢,Q𝑢 (I)), and ii) a sufficiently small upper bound

𝑟𝑢 of 𝜌 (𝑆𝑢,Q𝑢 (I)); see Lemma 3.4. Next, we show how to compute 𝑆𝑢 and 𝑟𝑢 for each node 𝑢.

If 𝑢 is a leaf node that corresponds to relation 𝑅𝑖 , we compute an approximate 𝑘-summary 𝑆𝑢 for

𝜋Ā𝑖
(𝑅𝑖 ) by invoking the algorithm in [38]. The cohesion of 𝑆𝑢 is denoted as 𝑟𝑢 = 𝜌 (𝑆𝑢, 𝜋Ā𝑖

(𝑅𝑖 )). If
𝑢 is an internal node, let 𝑥,𝑦 be the two children of 𝑢 in T . Let 𝑆𝑥 , 𝑆𝑦 be the subsets of 𝑘 tuples we

got from nodes 𝑥,𝑦, respectively. Let 𝑟 ∗ = max

{
𝑟𝑥 , 𝑟𝑦

}
. We construct an approximate 𝑘-summary

𝑆𝑢 using the tuples in 𝑆𝑥 × 𝑆𝑦 . To check for each tuple 𝜃 ∈ 𝑆𝑥 × 𝑆𝑦 , whether there exists any

tuple in Q𝑢 (I) within distance

√
2 · 𝑟 ∗, we use a nearest-neighbor oracle. For relation 𝑅𝑖 , we define

the weight function𝑤𝑖 (·) as𝑤𝑖 (𝑝) =
∑

𝐴 𝑗 ∈Ā𝑖∩Ā𝑢

(
𝑝.𝐴 𝑗 − 𝜃 .𝐴 𝑗

)
2

, where 𝑝 ∈ 𝑅𝑖 . We instantiate the

index, defined by 𝑍 , for ranked enumeration from Lemma 2.1 with ®𝑤 = ⟨𝑤1, . . . ,𝑤𝑚⟩ as the vector
of weight functions. Let 𝑡𝜃 be the first result tuple enumerated from 𝑍 in ascending order (𝑡𝜃 is

the nearest neighbor of 𝜃 in Q𝑢 (I)). If 𝜙 (𝜃, 𝑡𝜃 ) ≤
√

2 max{𝑟𝑥 , 𝑟𝑦}, then we keep 𝜃 in 𝑆𝑢 ; otherwise,

we skip 𝜃 . Finally, we find a 2-cohesive 𝑘-summary of 𝑆𝑢 by invoking the Feder-Greene algorithm

[38], denoted as 𝑆𝑢 , and we set the upper bound 𝑟𝑢 = 𝜌 (𝑆𝑢, 𝑆𝑢) +
√

2 max{𝑟𝑥 , 𝑟𝑦}. In the end, the

Algorithm 3 returns the set 𝑆𝑣 and the upper bound 𝑟𝑣 , for the root node 𝑣 of T , to Algorithm 2.

Let 𝑣 be the root of T . Recall that 𝑆𝑣 ⊆ Q(I) may not hold. To obtain a valid summary for Q(I),
in Algorithm 2, we visit every tuple 𝜃 ∈ 𝑆𝑣 and find its nearest neighbor in Q(I) using a similar
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Algorithm 3: ComputeRoot(Q, I, 𝑘)
1 Let T be a complete binary tree with𝑚 leaf nodes;

2 foreach leaf node 𝑢 ∈ T do
3 Suppose 𝑢 corresponds to relation 𝑅𝑖 ;

4 𝑆𝑢 ← 𝑘-summary of 𝜋Ā𝑖
𝑅𝑖 by algorithm

in [38];

5 𝑟𝑢 ← 𝜌 (𝑆𝑢, 𝜋Ā𝑖
𝑅𝑖 );

6 foreach internal node 𝑢 ∈ T in bottom-up way do
7 𝑥,𝑦 ← two children of 𝑢 in T , 𝑆𝑢 ← ∅;
8 foreach 𝜃 ∈ 𝑆𝑥 × 𝑆𝑦 do
9 foreach 𝑖 ∈ [𝑚] do
10 foreach 𝑝 ∈ 𝑅𝑖 do
11 𝑤𝑖 (𝑝)←

∑
𝐴 𝑗 ∈Ā𝑖∩Ā𝑢

(
𝑝.𝐴 𝑗 − 𝜃 .𝐴 𝑗

)
2

12 ®𝑤 ← ⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩;
13 𝑍 ← index built for Q𝑢, I, ®𝑤 as Lemma 2.1;

14 𝑡𝜃 ← the first result enumerated from 𝑍 ;

15 if 𝜙 (𝑡𝜃 , 𝜃 ) ≤
√

2 ·max{𝑟𝑥 , 𝑟𝑦} then
16 𝑆𝑢 ← 𝑆𝑢 ∪ {𝜃 };

17 𝑆𝑢 ← 𝑘-summary of 𝑆𝑢 by algorithm in [38];

18 𝑟𝑢 ← 𝜌 (𝑆𝑢, 𝑆𝑢) +
√

2 ·max{𝑟𝑥 , 𝑟𝑦};
19 return (𝑆𝑣, 𝑟𝑣);
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Fig. 1. A running example of Algorithm 3.
Let Q = 𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3) with a
database I as shown. Let 𝑘 = 2. The com-
plete binary tree T is also shown with the
root 𝑣 and two leaf nodes 𝑥,𝑦, corresponding
to 𝑅1, 𝑅2 respectively. In line 4, Algorithm 3
first computes a 2-summary of 𝑅1 as 𝑆𝑥 and
a 2-summary of 𝜋𝐴3

𝑅2 as 𝑆𝑦 , with 𝑟𝑥 = 2

and 𝑟𝑦 = 1. It next investigates all tuples
in 𝑆𝑥 × 𝑆𝑦 , and checks if there exists some
tuple in Q(I) within distance 2

√
2. It is easy

to see 𝑆𝑣 = 𝑆𝑥 × 𝑆𝑦 . In line 17, it computes a
2-summary of 𝑆𝑣 as 𝑆𝑣 . As (2, 1, 2) ∈ Q(I), it
adds (2, 1, 2) to 𝑆 . As (1, 2, 2) ∉ Q(I), it adds
an arbitrary nearest neighbor (1, 2, 1) to 𝑆 .
We observe that 𝜌 (𝑆,Q(I)) = 2

√
2.

nearest-neighbor oracle as we used before, constructing the index 𝑍 . Let 𝑆 be the set of nearest

neighbors we compute. If |𝑆 | < 𝑘 , we add arbitrary 𝑘 − |𝑆 | results from Q(I) to 𝑆 .
Correctness. By Lemma 3.2, and Lemma 3.1, the nearest neighbor queries with any 𝜃 can be

answered correctly.

Lemma 3.1. For ®𝑤 at line 7 of Algorithm 2, ®𝑤 (𝑡) = 𝜙2 (𝑡, 𝜃 ) for every 𝑡 ∈ Q(I).

Lemma 3.2. For ®𝑤 at line 12 of Algorithm 3, ®𝑤 (𝑡) = 𝜙2 (𝑡, 𝜃 ) for every 𝑡 ∈ Q𝑢 (I).

Approximation. We need the following lemma to show the approximation ratio:

Lemma 3.3. For any internal node 𝑢 with children 𝑥,𝑦 in T , 𝜌
(
𝑆𝑢,Q𝑢 (I)

)
≤
√

2 ·max{𝑟𝑥 , 𝑟𝑦}.

Proof. For any node 𝑥 and its parent 𝑢 in T it holds that 𝜌𝑘 (Q𝑥 (I)) ≤ 𝜌𝑘 (Q𝑢 (I)). For any tuple

𝑝 ∈ Q𝑥 (I) there exists a tuple 𝑝𝑡 ∈ Q𝑢 (I) such that 𝑝𝑡 .Ā𝑥 = 𝑝 . By definition, it also holds that

Ā𝑥 ⊆ Ā𝑢 . Hence, 𝜌𝑘 (Q𝑥 (I)) ≤ 𝜌𝑘 (Q𝑢 (I)). Consider an arbitrary tuple 𝑡 ∈ Q𝑢 (I). Let 𝜃𝑥 ∈ 𝑆𝑥 be

the nearest tuple to 𝑡 .Ā𝑥 , and 𝜃𝑦 ∈ 𝑆𝑦 be the nearest tuple to 𝑡 .Ā𝑦 . By definition 𝜙
(
𝑡 .Ā𝑥 , 𝜃𝑥

)
≤ 𝑟𝑥

and 𝜙
(
𝑡 .Ā𝑦, 𝜃𝑦

)
≤ 𝑟𝑦 . We consider tuple 𝜃 as a concatenation of 𝜃𝑥 and 𝜃𝑦 . Then, 𝜙 (𝑡, 𝜃 ) =√︃

𝜙2

(
𝑡 .Ā𝑥 , 𝜃𝑥

)
+ 𝜙2

(
𝑡 .Ā𝑦, 𝜃𝑦

)
≤
√︃
𝑟 2

𝑥 + 𝑟 2

𝑦 ≤
√

2 ·max{𝑟𝑥 , 𝑟𝑦}. In line 8 of Algorithm 3, we consider

the tuple 𝜃 in one of the iterations. Since 𝜙 (𝑡, 𝜃 ) ≤
√

2 ·max{𝑟𝑥 , 𝑟𝑦}, the condition in line 15 holds,

because 𝜙 (𝑡𝜃 , 𝜃 ) ≤ 𝜙 (𝑡, 𝜃 ) ≤
√

2 · max{𝑟𝑥 , 𝑟𝑦}. Hence, 𝜃 is added in 𝑆𝑢 . Overall, for each tuple

𝑡 ∈ Q𝑢 (I) there exists a tuple in 𝑆𝑢 within distance

√
2 ·max{𝑟𝑥 , 𝑟𝑦}, so the result follows. □
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Next, we point out the invariants that are preserved in the execution of our algorithm:

Lemma 3.4. For node 𝑢 ∈ T at level ℓ , 1

2
· 𝜌𝑘 (Q𝑢 (I)) ≤ 𝜌 (𝑆𝑢,Q𝑢 (I)) ≤ 𝑟𝑢 ≤ (10

√
2)ℓ · 𝜌𝑘 (Q𝑢 (I)).

Applying Lemma 3.4 to the root node 𝑣 , we obtain 𝜌 (𝑆𝑣,Q(I)) ≤ 𝑟𝑣 ≤ (10

√
2)log𝑚 · 𝜌𝑘 (Q(I)) and

1

2
· 𝜌𝑘 (Q(I)) ≤ 𝜌 (𝑆𝑣,Q(I)).6 From lines 3-10 in Algorithm 2, we have 𝜌 (𝑆,Q(I)) ≤ 2𝜌 (𝑆𝑣,Q(I)).

Hence, we return a set 𝑆 ⊆ Q(I) and a value 𝑟 such that 𝜌 (𝑆,Q(I)) ≤ 𝑟 ≤ 2(10

√
2)log𝑚 · 𝜌𝑘 (Q(I)).

Complexity. In Algorithm 3, it takes 𝑂 (𝑁 log𝑘) time to invoke the algorithm in [38] at line 4. At

line 8, |𝑆𝑥 × 𝑆𝑦 | = 𝑂 (𝑘2). For each 𝜃 ∈ 𝑆𝑥 × 𝑆𝑦 , it takes 𝑂 (𝑁 ) time to construct 𝑍 at line 13 and get

the first result tuple 𝑡𝜃 within 𝑂 (log𝑁 ) time. It takes 𝑂 (𝑘2
log𝑘) time to invoke the algorithm in

[38] at line 17. The for-loop at lines 6-18 repeats 𝑂 (𝑚) times, since there are 𝑂 (𝑚) nodes in T . In
Algorithm 2, for each tuple 𝜃 ∈ 𝑆𝑣 for the root node 𝑣 , it takes 𝑂 (𝑁 ) time to construct 𝑍 at line 8

and get the first result tuple 𝑡𝜃 within 𝑂 (log𝑁 ) time. Overall, our algorithm runs in 𝑂 (𝑁𝑘2) time

using 𝑂 (𝑁 + 𝑘2) space.

Theorem 3.5. For an acyclic joinQ of𝑚 relations, a database I of input size𝑁 and𝛼 = 2·(10

√
2)log𝑚 ,

an 𝛼-cohesive 𝑘-summary of Q(I) under Euclidean metric can be computed in 𝑂
(
𝑁𝑘2

)
time using

𝑂
(
𝑁 + 𝑘2

)
space, with 𝑟 such that 𝜌𝑘 (Q(I)) ≤ 𝑟 ≤ 𝛼 · 𝜌𝑘 (Q(I)).

3.1.2 Constant cohesive summary: Geometry-based approximation.
Next, we exploit the properties of the Euclideanmetric to obtain a different approximation algorithm.

Algorithm4:ConstantApprox_Geometry(Q, I, 𝑘)
1 foreach 𝐴 𝑗 ∈ A do
2 𝑎 𝑗 ← min

𝑅𝑖
min

𝑥∈𝜋𝐴𝑗
𝑅𝑖
𝑥 and 𝑏 𝑗 ← max

𝑅𝑖
max

𝑥∈𝜋𝐴𝑗
𝑅𝑖
𝑥 ;

3 Γ ← ×𝑗 :𝐴 𝑗 ∈A [𝑎 𝑗 , 𝑏 𝑗 ], ℎ ← 0, 𝑆 ′ ← ∅, B ← ∅;
4 while ℎ ≤ 𝑐𝑑 · 𝑘 do
5 if ℎ = 0 then 𝑞ℎ ← an arbitrary tuple in Γ;

6 else 𝑞ℎ ← the point in Γ farthest from 𝑆 ′;

7 foreach 𝑖 ∈ [𝑚] do
8 foreach 𝑝 ∈ 𝑅𝑖 do
9 𝑤𝑖 (𝑝) ←

∑
𝐴 𝑗 ∈Ā𝑖

(𝑝.𝐴 𝑗 − 𝑞ℎ .𝐴 𝑗 )2;

10 ®𝑤 ← ⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩;
11 𝑍 ← an index built for Q, I, ®𝑤 as Lemma 2.1;

12 𝑠ℎ ← the first result enumerated from 𝑍 ;

13 Bℎ ← a ball centered at 𝑞𝑖 of radius 𝜙 (𝑞ℎ, 𝑠ℎ);
14 𝑆 ′ ← 𝑆 ′ ∪ {𝑠ℎ}, Γ ← Γ −Bℎ , B ← B ∪ {Bℎ};
15 ℎ ← ℎ + 1;

16 𝑆 ← a 𝑘-summary of 𝑆 ′ by algorithm in [38];

17 return 𝑆 ;

Main ideas. Using the intuition from [43],

we design an algorithm in the relational

setting. We compute a summary 𝑆 ′ iter-
atively. Initially, let Γ be a rectangle con-

taining all tuples inQ(I) and let 𝑆 ′ = ∅. In
each iteration, we solve a geometric prob-

lem computing the point 𝑞ℎ ∈ Γ farthest

from the set 𝑆 ′ (in the first iteration, 𝑞1 is

an arbitrary tuple in Γ). We next compute

the tuple 𝑠ℎ ∈ Q(I) closest to 𝑞ℎ and add

it in 𝑆 ′. Then, we implicitly remove from

Γ a ball around 𝑞𝑖 with radius 𝜙 (𝑞ℎ, 𝑠ℎ)
so that no other tuple could be selected

close to 𝑞𝑖 . We note that Γ is not a rectan-

gle after the first iteration. Instead, Γ is

the intersection of a rectangle with the

complement of a set of balls. We use the

nearest-neighbor oracle to compute the

tuple in Q(I) that is closest to 𝑞ℎ .
Our algorithm. We next describe our

algorithm in more detail with the pseu-

docode given in Algorithm 4 and a run-

ning example in Figure 2. We start with a rectangle Γ ∈ R𝑑 that contains all tuples in Q(I), and
incrementally add points to a set 𝑆 ′. Initially 𝑆 ′ = ∅. Let B = ∅ be a set of balls in R𝑑 (initially

empty). We repeat the procedure 𝑐𝑑 · 𝑘 times for a constant 𝑐 . In the first iteration, we choose an

arbitrary point 𝑞1 in Γ. In ℎ-th iteration, for ℎ > 1, we compute the point 𝑞ℎ ∈ Γ with the farthest

6
We use log( ·) for the logarithmic function with base 2.
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Fig. 2. The figure illustrates two iterations of Algo-
rithm 4. Let Q = 𝜋𝐴1,𝐴3

𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3) with
a database I as shown in Figure 1. Even though Algo-
rithm 4 works for join queries, we consider the pro-
jection on 𝐴1 and 𝐴3 to show the main idea of the
algorithm on the plane.

Fig. 3. Coreset construction shown in Algo-
rithm 5. Let Q = 𝜋𝐴1,𝐴3

𝑅1 (𝐴1, 𝐴2) Z 𝑅2 (𝐴2, 𝐴3)
with a database I in Figure 1. Black dashed rect-
angles are non-empty grid cells and red points are
selected tuples in the coreset.

distance from set 𝑆 ′. Next, by assigning weights ®𝑤 (similarly to Algorithm 2) we construct the

ranked enumeration index 𝑍 implementing a nearest-neighbor oracle. We find the nearest tuple in

Q(I) from point 𝑞ℎ , denoted as 𝑠ℎ , and add 𝑠ℎ into 𝑆 ′. Let Bℎ be the ball of radius 𝜙 (𝑞ℎ, 𝑠ℎ) centered
at 𝑞ℎ . Set B = B ∪ {Bℎ} and Γ = Γ − Bℎ . We implicitly remove all result tuples in Q(I) “covered”
by 𝑞ℎ within radius 𝜙 (𝑞ℎ, 𝑠ℎ). After the procedure above, we get a set 𝑆 ′ of 𝑐𝑑 · 𝑘 candidate centers.

At last, we compute a cohesive 𝑘-center 𝑆 of 𝑆 ′ by invoking the algorithm in [38].

Correctness. By Lemma 3.6, the nearest neighbor of every point 𝑞ℎ ∈ Q(I) can be correctly found.

Lemma 3.6. For ®𝑤 at line 10 of Algorithm 4, ®𝑤 (𝑡) = 𝜙2 (𝑡, 𝑞ℎ) for every tuple 𝑡 ∈ Q(I).

The correctness of our algorithm follows from Lemma 3.6 and [43].

Approximation. From [43], we know 𝜌 (𝑆 ′,Q(I)) ≤ 4𝜌𝑘 (Q(I)). From [38], we know that 𝑆 is

a 2-cohesive 𝑘-summary of 𝑆 ′, i.e., 𝜌 (𝑆, 𝑆 ′) ≤ 2𝜌𝑘 (𝑆 ′). Moreover, 𝜌𝑘 (𝑆 ′) ≤ 𝜌𝑘 (Q(I)) since 𝑆 ′ ⊆
Q(I). Together, 𝜌 (𝑆,Q(I)) ≤ 𝜌 (𝑆, 𝑆 ′) + 𝜌 (𝑆 ′,Q(I)) ≤ 2𝜌𝑘 (𝑆 ′) + 4𝜌𝑘 (Q(I)) ≤ 6𝜌𝑘 (Q(I)). Hence,
Algorithm 4 returns a 6-cohesive 𝑘-summary.

Complexity. The initialization phase takes𝑂 (𝑁 ) time. In ℎ-th iteration of the while-loop, it takes

𝑂 (𝑁 ) time to construct 𝑍 and get the first result 𝑠ℎ within 𝑂 (log𝑁 ) time. Furthermore, there are

𝑂 (𝑘) balls Bℎ’s and 𝑂 (𝑘) points in 𝑆 . The point 𝑞ℎ (farthest point from the current 𝑆 ′ in Γ) can
be computed in 𝑂 (𝑘 ⌈𝑑/2⌉+1) time [8]. At last, invoking the algorithm in [38] takes 𝑂 (𝑘 log𝑘) time,

since |𝑆 ′ | = 𝑂 (𝑘). It computes the union of 𝑘 balls in R𝑑 , so the total space is 𝑂 (𝑁 + 𝑘 ⌈𝑑/2⌉).

Theorem 3.7. For an acyclic join Q with 𝑑 attributes and a database I of input size 𝑁 , a 6-cohesive
𝑘-summary in Euclidean metric can be computed in𝑂

(
𝑁𝑘+𝑘 ⌈𝑑/2⌉+1

)
time using𝑂

(
𝑁 +𝑘 ⌈𝑑/2⌉+1

)
space.

3.1.3 Coreset.
Coresets for a set of points have been well studied [9], but these algorithms require direct access to

Q(I), which we do not have. Chen et al. [25] constructed coresets for risk minimization problems

over relational data, but its complexity or utility depends on the diameter of the query results in

Q(I). Below, we show how to improve this result.

Definition 3.8 (Coreset). For an acyclic join Q and a database I, an integer 𝑘 ∈ N+, and a parameter

𝜀 > 0, a subset 𝑃𝜀 ⊆ Q(I) is an 𝜀-coreset for the cohesive summary if 𝜌 (𝑆∗𝜀 ,Q(I)) ≤ (1+𝜀) ·𝜌𝑘 (Q(I)),
where 𝑆∗𝜀 ⊆ 𝑃𝜀 is the optimal cohesive 𝑘-summary for 𝑃𝜀 , i.e., 𝜌 (𝑆∗𝜀 , 𝑃𝜀) = 𝜌𝑘 (𝑃𝜀).

Our algorithm. Let 𝑆 be an 𝑂 (1)-cohesive 𝑘-summary for Q(I) and 𝑟 be a small enough quantity

such that 𝜌 (𝑆,Q(I)) ≤ 𝑟 . We compute a grid over R𝑑 with a sufficiently small diagonal (roughly

𝜀 · 𝑟 ) and find the set of non-empty cells in the grid. For each such cell □, we run the rectangular
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oracle (Lemma 2.3) to get a tuple in □ ∩ Q(I). Finally, we return the set of tuples selected by the

rectangular oracle in the non-empty cells.

Algorithm 5: Coreset(Q, I, 𝑆, 𝑟, 𝛽, 𝜀)
1 𝑃𝜀 ← ∅;
2 𝐺 ← a grid in R𝑑 with cell diagonal

𝜀 ·𝑟
𝛽
;

3 foreach 𝑦 ∈ 𝑆 do
4 B𝑦 ← ball of radius 𝑟 centered at 𝑦;

5 𝐺𝑦 ← {𝜓 ∈ 𝐺 : 𝜓 ∩ B𝑦 ≠ ∅};
6 foreach𝜓 ∈ ⋃𝑦∈𝑆 𝐺𝑦 do
7 if 𝜓 ∩ Q(I) ≠ ∅ then
8 𝑝𝜓 ← arbitrary tuple in𝜓∩Q(I);
9 𝑃𝜀 ← 𝑃𝜀 ∪ {𝑝𝜓 };

10 return 𝑃𝜀 ;

We next describe our algorithm in more detail

with the pseudocode given in Algorithm 5 and

an example in Figure 3. Using Theorem 3.5 (or

Theorem 3.7), we take as input a 𝛽-cohesive 𝑘-

summary 𝑆 for Q(I) for constant 𝛽 > 1, and a

value 𝑟 such that 𝜌𝑘 (Q(I)) ≤ 𝜌 (𝑆,Q(I)) ≤ 𝑟 ≤
𝛽 ·𝜌𝑘 (Q(I)). We first construct a grid𝐺 in R𝑑 with

cell diagonal length
𝜀 ·𝑟
𝛽

and find out all non-empty

cells in 𝐺 , i.e., those contain at least one tuple in

Q(I). Instead of visiting every tuple in Q(I) to
locate non-empty cells, which is too expensive,

we resort to the cohesive summary 𝑆 . Recall that

for every tuple 𝑥 ∈ Q(I), there exists some 𝑦 ∈ 𝑆
such that 𝜙 (𝑥,𝑦) ≤ 𝑟 . For every 𝑦 ∈ 𝑆 , let B𝑦 be

the ball centered at 𝑦 of radius 𝑟 . Let 𝐺𝑦 ⊆ 𝐺 be the set of cells covered or partially intersected by

B𝑦 . At last, we visit every cell in

⋃
𝑦∈𝑆 𝐺𝑦 and include an arbitrary tuple in the non-empty cells

using the rectangular oracle as its representative. The set of all representatives is the coreset.
Correctness. Since 𝜌 (𝑆,Q(I)) ≤ 𝑟 , Q(I) ⊆ ⋃

𝑦∈𝑆 B𝑦 . Hence, every tuple in Q(I) lies in one cell in⋃
𝑦∈𝑆 𝐺𝑦 . As above, let 𝑆

∗
𝜀 ⊆ 𝑃𝜀 be the optimally cohesive 𝑘-summary of 𝑃𝜀 . We have

𝜌 (𝑆∗𝜀 ,Q(I)) ≤ 𝜌 (𝑆∗𝜀 , 𝑃𝜀) +
𝜀𝑟

𝛽
≤ 𝜌𝑘 (Q(I)) +

𝜀𝑟

𝛽
≤ (1 + 𝜀) · 𝜌𝑘 (Q(I)),

where the last inequality follows from the fact that 𝑟 ≤ 𝛽𝜌𝑘 (Q(I)). Hence, 𝑃𝜀 is an 𝜀-coreset of Q(I).
Complexity. As any ball of radius 𝑟 covers and partially intersects𝑂

(
𝜀−𝑑

)
grid cells with diagonal

length 𝜀𝑟/𝛽 , we have |𝑃𝜀 | = 𝑂
(
𝑘𝜀−𝑑

)
. We execute rectangular oracles for𝑂 (𝑘𝜀−𝑑 ) cells. Each query

takes 𝑂 (𝑁 ) time. Hence, Algorithm 5 runs in 𝑂
(
𝑘𝑁𝜀−𝑑

)
time.

Theorem 3.9. For an acyclic join Q with 𝑑 attributes, a database I of input size 𝑁 , and a parameter
𝜀 > 0, an 𝜀-coreset for cohesive summaries under Euclidean distance of𝑂

(
𝜀−𝑑𝑘

)
size can be constructed

in 𝑂
(
min

{
𝑘2𝑁 + 𝑘𝑁 𝜀−𝑑 , 𝑁 log

2 𝑁 + 𝑘𝑁 log(𝑁 )𝜀−𝑑 + 𝑘 ⌈𝑑/2⌉+1
})

time.

Remark 1. The min term in the time complexity in Theorem 3.9 depends on the algorithm used

for computing cohesive summaries (Theorem 3.5 or Theorem 3.7).

Remark 2. We note that if the value 𝑟 is unknown (as in the algorithm of Theorem 3.7), it suffices

to run a binary search on the 𝐿∞ distances of Q(I). For each candidate 𝑟 ′, we check whether the set

of balls {B(𝑦,
√
𝑑𝑟 ′) | 𝑦 ∈ 𝑆} cover all tuples in Q(I) by running rectangular oracles on the grids

intersected by the balls. We repeat this procedure until we find the smallest value 𝑟 ′ that satisfies
the condition. We describe the details in Appendix B.1.

3.1.4 Implications to cohesive summaries and relational 𝑘-center clustering.
Let 𝑃𝜀 be the 𝜀-coreset obtained. We simply invoke the Feder-Greene algorithm [38] on 𝑃𝜀 . Let 𝑆

∗

be the set of 𝑘 centers returned. By definition 𝜌 (𝑆∗,Q(I)) ≤ (2 + 𝜀)𝜌𝑘 (Q(I)). We obtain:

Theorem 3.10. For an acyclic join Q with 𝑑 attributes, a database I of input size 𝑁 , and a pa-
rameter 𝜀 > 0, a (2 + 𝜀)-cohesive 𝑘-summary for Q(I) under Euclidean distance can be computed in
𝑂
(
min

{
𝑘2𝑁 + 𝑘𝑁 𝜀−𝑑 , 𝑁 log

2 𝑁 + 𝑘𝑁 log(𝑁 )𝜀−𝑑 + 𝑘 ⌈𝑑/2⌉+1
})

time. The same guarantees hold for
the relational 𝑘-center clustering problem.
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Remark. The space needed by our algorithms in Theorems 3.9 and 3.10 depends on the 𝑂 (1)-
cohesive 𝑘-summary algorithm used for coreset construction. It is 𝑂

(
𝑁 + 𝑘2 + 𝑘𝜀−𝑑

)
(resp. 𝑂 (𝑁 +

𝑘 ⌈𝑑/2⌉+1 + 𝑘𝜀−𝑑 ) if the algorithm in Section 3.1.1 (resp. Section 3.1.2) is used.

3.2 Hamming Metric

Algorithm 6: CohesiveHamming(Q, I, 𝑘)

1 𝛾 ← 1

2

min

𝐴 𝑗 ∈A
min

𝑥≠𝑦∈I(𝐴 𝑗 )×I(𝐴 𝑗 )
|𝑥 − 𝑦 |;

2 for 𝑟𝐻 ∈ {1, 2, . . . , 𝑑} do
3 R ← ∅, 𝑆 ← ∅;
4 M(R) ← decomposition of R;
5 for 𝑖 ∈ {1, . . . , 𝑘} do
6 𝐶 ← ∅;
7 foreach 𝑐 ∈ M(R) with density 𝑖 do
8 if |𝑐 ∩ Q(I) | ≥ 1 then 𝐶 ← 𝑐 and

break;

9 if 𝐶 = ∅ then break;
10 𝑡←arbitrary tuple in 𝐶 ∩ Q(I);
11 𝑆 ← 𝑆 ∪ {𝑡};
12 R,M(R)←UpdateR(Q, 𝑟𝐻 ,R,M(R), 𝛾);
13 if

∑︁
𝑐∈M(R)with density 𝑘

|𝑐 ∩ Q(I) | = 0 then break;

14 return 𝑆 ;

First, we observe that it is trivial to ob-

tain a 𝑂 (1)-cohesive summary under the

Hamming metric. The maximum Ham-

ming distance between two tuples from

Q(I) is 𝑑 = 𝑂 (1). Hence, an algorithm

that chooses 𝑘 arbitrary tuples from Q(I)
returns a 𝑑-cohesive 𝑘-summary. How-

ever, this approximation ratio is rather

unsatisfactory. The algorithm in Sec-

tion 3.1 does not work for the Hamming

metric mainly because the coreset con-

struction only applies to the Euclidean

metric. Hence, we need separate tech-

niques for constructing a 2-cohesive 𝑘-

summary under the Hamming metric.

Main ideas. Suppose the value of

𝜌𝑘 (Q(I)) is known in advance. We re-

peat the following step for 𝑘 iterations:

we choose an arbitrary tuple 𝑡 ∈ Q(I),
add it to the 𝑘-summary 𝑆 , and remove

all items within distance 2𝜌𝑘 (Q(I)) from
Q(I). The resulting 𝑆 is a 2-cohesive summary forQ(I). However, it is expensive to explicitly remove

tuples in Q(I), which requires materializing Q(I). Instead, we compute a set of non-intersecting

rectangles such that any point selected from these rectangles has a distance greater than 2𝜌𝑘 (Q(I))
(or equivalently at least 2𝜌𝑘 (Q(I)) + 1) from the previously selected tuples 𝑆 . For every new tuple 𝑡

we insert in 𝑆 , we choose a set R (𝑡 ) of 𝑂 (2𝑑 ) = 𝑂 (1) non-intersecting (open) rectangles around

𝑡 such that the union of these rectangles defines the points with distance at least 2𝜌𝑘 (Q(I)) + 1

from 𝑡 . Let R =
⋃

𝑡 ∈𝑆 R (𝑡 ) . In order to decide the next tuple to add in 𝑆 , we only visit the regions in

R𝑑 with distance at least 2𝜌𝑘 (Q(I)) + 1 from all tuples in 𝑆 . One crucial observation is that these

regions are covered by exactly |𝑆 | rectangles in R. We rely on the rectangular oracle in Section 2 to

find tuples from Q(I) that fall into these regions.

Our algorithm. We next describe our algorithm in more detail with the pseudocode given in

Algorithm 6. For an attribute 𝐴 𝑗 ∈ A, let I(𝐴 𝑗 ) = {𝜋𝐴 𝑗
(𝑅𝑖 ) | 𝑅𝑖 ∈ R} and let 𝛾 be half of the

minimum non-zero difference between two values in I(𝐴 𝑗 ). Let R = ∅ be a set of rectangles that
initially is empty. To identify the next tuple to insert in 𝑆 , we construct a rectangular decomposition
of the union of rectangles in R. The rectangular decomposition [10] of R, denotedM(R), is a
partitioning of the union of the rectangles in R into rectangular contiguous regions, called cells,
such that for each cell 𝜏 , every point in 𝜏 lies in the same subset of R.
Since, we do not know the optimum cohesion and 𝜌𝑘 (Q(I)) ∈ {1, . . . , 𝑑}, we try every value

𝑟𝐻 ∈ {1, 2, . . . , 𝑑} as a guess for value 2𝜌𝑘 (Q(I)) + 1. We repeat the following step for (at most) 𝑘

iterations. In the 𝑖-th iteration, we visit every cell inM(R) until we find one with density 𝑖 (a cell

that is contained in exactly 𝑖 rectangles). Let𝐶 be a cell with density 𝑖 such that |𝐶 ∩ Q(I) | ≥ 1. We
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Fig. 4. All tuples have integer values and

𝛾 = 0.5. SetR (𝑡 )
1

contains the 4 gray (open) rect-
angles around 𝑡 , [1.5, 2.5]×(−∞, 1.5], [2.5,∞)×
[1.5, 2.5], [1.5, 2.5] × [2.5,∞), (−∞, 1.5] ×
[1.5, 2.5]. All tuples/points in the rectangles
R (𝑡 )

1
have Hamming distance 1 from 𝑡 .

Algorithm 7: UpdateR(Q, 𝑟𝐻 ,R,M(R), 𝛾)
1 for ℎ ∈ {𝑟𝐻 , 𝑟𝐻 + 1, . . . , 𝑑} do
2 foreach 𝑋 ⊆ A with |𝑋 | = ℎ do
3 foreach 𝐴 𝑗 ∈ A do
4 if 𝐴 𝑗 ∉ 𝑋 then

𝐼 𝑗 ← [𝑡 .𝐴 𝑗 − 𝛾, 𝑡 .𝐴 𝑗 + 𝛾];
5 else
6 𝐼−𝑗 ← (−∞, 𝑡 .𝐴 𝑗 − 𝛾];
7 𝐼+𝑗 ← [𝑡 .𝐴 𝑗 + 𝛾, +∞);

8 R←R∪
[(
×𝐴 𝑗∉𝑋 𝐼 𝑗

)
×
(
×𝐴 𝑗 ∈𝑋 {𝐼−𝑗 , 𝐼+𝑗 }

)]
;

9 UpdateM(R);

10 return R,M(R);

get an arbitrary tuple 𝑡 ∈ 𝐶 ∩ Q(I) using the rectangular oracle. If 𝑖 = 1,𝐶 is a rectangle containing

all tuples inQ(I) and 𝑡 is any arbitrary tuple inQ(I). Next, we construct a setR (𝑡 ) of𝑂 (1) rectangles
that contain points with distance at least 𝑟𝐻 from 𝑡 . This is described by Algorithm 7 as a primitive.

For every ℎ = 𝑟𝐻 , . . . , 𝑑 , we construct the set of rectangles R (𝑡 )ℎ
such that if 𝑝 belongs to a rectangle

in R (𝑡 )
ℎ

then 𝜙𝐻 (𝑝, 𝑡) = ℎ. In particular, for every subset 𝑋 ⊆ A with |𝑋 | = ℎ, we compute a set of

intervals that will be used to create the rectangles in R (𝑡 )
ℎ

. If 𝐴 𝑗 ∉ 𝑋 , let 𝐼 𝑗 = [𝑡 .𝐴 𝑗 − 𝛾, 𝑡 .𝐴 𝑗 + 𝛾];
otherwise, let 𝐼−𝑗 = (−∞, 𝑡 .𝐴 𝑗 −𝛾] and 𝐼+𝑗 = [𝑡 .𝐴 𝑗 +𝛾, +∞) and letR𝑡

𝑋
=

(
×𝐴 𝑗∉𝑋 𝐼 𝑗

)
×
(
×𝐴 𝑗 ∈𝑋 {𝐼−𝑗 , 𝐼+𝑗 }

)
.

We define R (𝑡 )
ℎ

=
⋃

𝑋 ⊆A, |𝑋 |=ℎ R𝑡
𝑋
, and let R (𝑡 ) = ⋃

ℎ=𝑟𝐻 ,...,𝑑 R
(𝑡 )
ℎ

. See an example in Figure 4. We

add the set of rectangles R (𝑡 ) in R, update the decompositionM(R), and proceed with the next

iteration. At the end of Algorithm 6 (line 13), we check whether there is any uncovered point, i.e.,

if a tuple in Q(I) lies in a cell with density 𝑘 . If no, we return 𝑆 ; otherwise, we proceed with the

next value of 𝑟𝐻 . Due to space limit, the analysis is shown in Appendix B.2.

Theorem 3.11. For an acyclic join Q with 𝑑 attributes and a database I of input size 𝑁 , a 2-cohesive
𝑘-summary under Hamming metric can be computed in 𝑂

(
𝑁𝑘𝑑

)
time using 𝑂 (𝑁 + 𝑘𝑑 ) space.

4 Min-diverse Summaries
In this section, we show how our ideas for constructing cohesive summaries can be used to design

algorithms for constructing min-diverse summaries under the Euclidean and Hamming metrics.

4.1 Euclidean Metric
It is known that an 𝜀-coreset for cohesive summaries is also an 𝜀-coreset for min-diverse sum-

maries [64].
7
After constructing an 𝜀-coreset 𝑃𝜀 for cohesive summaries using the algorithm

described in Section 3.1.3, we run the algorithm from [11], in the non-relational setting, to derive a

min-diverse 𝑘-summary over the set 𝑃𝜀 . This algorithm returns a ( 1

2
− 𝜀)-min-diverse 𝑘-summary of

𝑃𝜀 in 𝑂
(
|𝑃𝜀 | log( |𝑃𝜀 |) + 𝑘 (log( |𝑃𝜀 |) + 𝜀−𝑑 )

)
time. Plugging Theorem 3.9 into this result, we obtain:

7
A set 𝑃𝜀 is an 𝜀-coreset for the min-diverse summary problem if the optimal min-diverse 𝑘-summary in 𝑃𝜀 is an (1− 𝜀 )-min

diverse 𝑘-summary in Q(I) .
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Theorem 4.1. For an acyclic join Q of 𝑑 attributes, a database I of input size 𝑁 , and a param-
eter 𝜀 > 0, a

(
1

2
− 𝜀

)
-min-diverse 𝑘-summary of Q(I) under Euclidean metric can be computed in

𝑂
(
min

{
𝑘2𝑁 + 𝑘𝑁 𝜀−𝑑 , 𝑁 log

2 𝑁 + 𝑘𝑁 log(𝑁 )𝜀−𝑑 + 𝑘 ⌈𝑑/2⌉+1
})

time.

As in Section 3.1.3, the space used by the algorithm in Theorem 4.1 depends on the algorithm for

computing a 𝑂 (1)-cohesive summary.

4.2 Hamming Metric
Again, our algorithm in Section 4.1 for the Euclidean metric cannot be applied to the Hamming

metric because the coreset uses properties of the Euclidean metric. However, our algorithm in

Section 3.2 for cohesive summaries under the Hamming metric can be extended to min-diverse

summaries. Let 𝜎𝑘 (Q(I)) be the minimum pairwise distance of the optimum min-diverse summary

on Q(I). For every new tuple 𝑡 we add to the returned set 𝑆 , we compute a set of 𝑂 (1) non-
intersecting rectangles that contain tuples with distance at least 𝜎𝑘 (Q(I))/2 from 𝑡 . There are only

twominor differences with Algorithm 6. i) In line 2, we search for 𝑟ℎ ∈ {⌈𝑑/2⌉+1, ⌈𝑑/2⌉+1−1, . . . , 1}
to find the largest distance that separates the selected tuples. ii) In line 13, instead of checking

whether there is no uncovered tuple, we check whether 𝑆 has size 𝑘 . We obtain the next theorem.

Theorem 4.2. For acyclic join Q with 𝑑 attributes and a database I of input size 𝑁 , a 1

2
-min-diverse

𝑘-summary under Hamming metric can be computed in 𝑂
(
𝑁𝑘𝑑

)
time using 𝑂

(
𝑁 + 𝑘𝑑

)
space.

5 Sum-diverse Summaries
We now describe the algorithms for constructing sum-diverse summaries under the Euclidean and

Hamming metrics.

5.1 Euclidean Metric
Main ideas. In the non-relational setting, the following iterative algorithm described in [45] returns

an
1

2
-sum-diverse 𝑘-summary over a set of points 𝑃 . In each of the 𝑘/2 iterations, compute the

farthest pair (𝑝1, 𝑝2) in 𝑃 , add {𝑝1, 𝑝2} in the summary, remove them from 𝑃 , and continue with the

next iteration. To the best of our knowledge, there is no efficient algorithm to compute the farthest

pair in Q(I) (in the relational setting). Instead, we use the idea proposed in [11] to approximately

compute the farthest pair among a set of points in the Euclidean setting using the notion of 𝜀-net.

Definition 5.1 (𝜀-net). Let S𝑑−1
be the unit sphere in R𝑑 . A centrally symmetric set C ⊆ S𝑑−1

(i.e.,

if 𝑢 ∈ C, then −𝑢 ∈ C) of 𝑟 = 𝑂
(
𝜀−(𝑑−1)/2)

unit vectors in R𝑑 is an 𝜀-net if for every point 𝑣 ∈ S𝑑−1
,

there exists a point 𝑢 ∈ C with angle at most cos−1
(

1

1+𝜀
)
= 𝑂

(√
𝜀
)
.

As shown in [7, 22], for any pair of points 𝑥,𝑦 ∈ R𝑑 , it holds (1− 𝜀)𝜙 (𝑥,𝑦) ≤ max𝑢∈C ⟨𝑢, 𝑥 −𝑦⟩ ≤
𝜙 (𝑥,𝑦). Hence, a (1 − 𝜀)-approximation of the maximum pairwise distance in a set of points can

be found by only checking the top-1 points with respect to the vectors in the 𝜀-net. Agarwal et

al. [11], select the top 𝑘 points in each vector 𝑢 ∈ C, and then run the iterative algorithm [45] on

the union of the selected (top 𝑘) points to return a ( 1

2
− 𝜀)-sum-diverse 𝑘-summary.

Our algorithm. We next describe our algorithm in the relational setting with the pseudocode

given in Algorithm 8 and a running example in Figure 5. Let C be a centrally symmetric 𝜀-net.

We compute the top 𝑘 tuples in Q(I) for every vector 𝑢 ∈ C using our relational top-𝑘 oracle

proposed in Section 2. More specifically, we define the weight function 𝑤𝑖 (·) for tuples in 𝑅𝑖 as

𝑤𝑖 (𝑝) =
∑

𝐴 𝑗 ∈Ā𝑖

(
𝑝.𝐴 𝑗

)
· 𝑢 𝑗 , where 𝑝 ∈ 𝑅𝑖 . We construct the top-𝑘 oracle by defining a ranked

enumeration index 𝑍𝑢 with the vector of weight functions ®𝑤 = ⟨𝑤1, . . . ,𝑤𝑚⟩. Let 𝑃𝑢 be the set of 𝑘

maximal tuples in Q(I) in direction 𝑢, enumerated by 𝑍𝑢 in descending order of their weights. At

last, we invoke the iterative algorithm [45] to find a sum-diverse 𝑘-summary over

⋃
𝑢∈C 𝑃𝑢 .
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Fig. 5. A centrally symmetric set C with
8 vectors. Each point represents a tuple in
Q(I). Assume 𝑘 = 2. The top-2 tuples with
respect to vector 𝑢 ∈ C are 𝑡1, 𝑡2. The set⋃
𝑢∈C 𝑃𝑢 contains the red points/tuples.

Algorithm 8: GeometricSUMDiverse(Q, I, 𝑘)
1 C ← a centrally symmetric 𝜀-net;

2 foreach 𝑢 ∈ C do
3 foreach 𝑖 ∈ [𝑚] do
4 foreach 𝑝 ∈ 𝑅𝑖 do
5 𝑤𝑖 (𝑝) ←

∑
𝐴 𝑗 ∈Ā𝑖

(
𝑝.𝐴 𝑗

)
· 𝑢 𝑗

6 ®𝑤 ← ⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩;
7 𝑍𝑢 ← an index built for Q, I, ®𝑤 as Lemma 2.1;

8 𝑃𝑢 ← the first 𝑘 results enumerated from 𝑍𝑢 ;

9 𝑆 ← sum-diverse 𝑘-summary over

⋃
𝑢∈C 𝑃𝑢 [45];

10 return 𝑆 ;

Correctness. By the definition of the top-𝑘 oracle (Lemma 2.2), the next lemma holds. For

completeness, we also show the straightforward proof in Appendix C.

Lemma 5.2. For ®𝑤 at line 6 of Algorithm 8, ®𝑤 (𝑡) = ⟨𝑢, 𝑡⟩ for every tuple 𝑡 ∈ Q(I).

By Lemma 5.2, for any vector 𝑢 ∈ C, all tuples in Q(I) can be enumerated in a decreasing

ordering of their inner product with 𝑢. The correctness follows from [11] and the discussion above.

Complexity. The 𝜀-net C can be computed in 𝑂 (𝑟 ) time [6]. For each vector 𝑢 ∈ C, we construct
an index 𝑍𝑢 in 𝑂 (𝑁 ) time. In total, we can construct

⋃
𝑢∈C 𝑃𝑢 in 𝑂 (𝑟 (𝑁 + 𝑘 log𝑁 )) time using

𝑂 (𝑁 + 𝑟𝑘) space. Finally, the algorithm in [45] over the set

⋃
𝑢∈C 𝑃𝑢 (as implemented in [11]) runs

in𝑂 (𝑟𝑘 log𝑁 ) time. The algorithm uses𝑂 (𝑟𝑘) space to store the top 𝑘 tuples for every vector in C.

Theorem 5.3. For an acyclic join Q of 𝑑 attributes, a database I of input size 𝑁 , and a parameter
𝜀 ∈ (0, 1

2
), a

(
1

2
− 𝜀

)
-sum-diverse 𝑘-summary of Q(I) under Euclidean metric can be computed in

𝑂
(
(𝑁 + 𝑘 · log𝑁 )𝜀−(𝑑−1)/2) time using 𝑂

(
𝑁 + 𝑘𝜀−(𝑑−1)/2) space.

5.2 Hamming Metric
For the Hamming metric, we propose two algorithms that construct sum-diverse summaries. The

first computes a better sum-diverse 𝑘-summary, while the second is faster by a factor of 𝑘 .

Main ideas. In [21], the authors showed that if a distance is of negative type [62, 63], then a local

search algorithm returns a (1 − 2/𝑘)-sum-diverse 𝑘-summary in the non-relational setting.

Definition 5.4 (Negative Type). Let D ∈ R𝑛×𝑛 be the distance matrix of distance function 𝜎 . The

function 𝜎 is of negative type if for any vector 𝑥 = (𝑥1, . . . , 𝑥𝑛) with
∑𝑛

𝑖=1
𝑥𝑖 = 0, 𝑥⊤D𝑥 ≤ 0.

In Appendix C, we prove that the Hamming distance is of negative type. Hence, we can obtain a

relational version of the local search algorithm. Intuitively, our algorithm starts with a set 𝑆 of 𝑘

arbitrary tuples from Q(I) and then repeats the following step for at most 𝑂 (𝑘 log𝑘) iterations: if
there exists a pair of tuples 𝑥 ∈ 𝑆 and 𝑦 ∈ Q(I) \ 𝑆 such that replacing 𝑥 with 𝑦 in 𝑆 can increase its

diversity, i.e., 𝛿 (𝑆 ∪ {𝑦} \ {𝑥}) > 𝛿 (𝑆), we update 𝑆 accordingly; Otherwise, we just return 𝑆 .

Our algorithm. In the relational setting, it is challenging to find the tuples 𝑥,𝑦 to update the

set 𝑆 . We next describe our algorithm in more detail with the pseudocode given in Algorithm 9.

Initially, we add 𝑘 arbitrary tuples from Q(I) to 𝑆 . For every tuple 𝑡 ∈ 𝑆 , we define its diversity as

𝑢 (𝑡) = ∑
𝑥∈𝑆\{𝑡 } 𝜙𝐻 (𝑥, 𝑡), i.e., its sum of distances with remaining tuples in 𝑆 . Note that the diversity
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Algorithm 9: LocalSearch(Q, I, 𝑘)
1 𝑆 ← 𝑘 arbitrary tuples from Q(I);
2 foreach 𝑡 ∈ 𝑆 do
3 𝑢 (𝑡) ← ∑

𝑥∈𝑆\{𝑡 } 𝜙𝐻 (𝑥, 𝑡);
4 Δ← 1

2

∑
𝑡 ∈𝑆 𝑢 (𝑡);

5 for 𝑗 ∈ {1, 2, · · · ,𝑂 (𝑘 log𝑘)} do
6 (𝑝−, 𝑝+, 𝑀) ← Replace(Q, I, 𝑆);
7 if Δ > 𝑀 then return 𝑆 ;

8 foreach 𝑡 ∈ 𝑆 \ {𝑝−} do
9 𝑢 (𝑡)←

𝑢 (𝑡)−𝜙𝐻 (𝑡, 𝑝−)+𝜙𝐻 (𝑡, 𝑝+);
10 𝑢 (𝑝+) ← ∑

𝑡 ∈𝑆\{𝑝− } 𝜙𝐻 (𝑡, 𝑝+);
11 𝑆 ← 𝑆 ∪ {𝑝+} \ {𝑝−};
12 Δ← 1

2

∑
𝑡 ∈𝑆 𝑢 (𝑡);

13 return 𝑆 ;

Algorithm 10: Replace(Q, I, 𝑆)
1 𝑀 ← −∞, 𝑝− ← null, 𝑝+ ← null;
2 foreach 𝑥 ∈ 𝑆 do
3 foreach 𝑖 ∈ [𝑚] do
4 foreach 𝑝 ∈ 𝑅𝑖 do
5 𝑤𝑖 (𝑝) ←∑

𝑦∈𝑆\{𝑥 } 𝜙𝐻
(
𝑦.Ā𝑖 , 𝑝.Ā𝑖

)
;

6 ®𝑤 ← ⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩;
7 𝑍 ← index built for Q, I, ®𝑤 as Lemma 2.1;

8 while true do
9 𝑦 ← a result enumerated from 𝑍 ;

10 if 𝑦 ∉ 𝑆 then break;

11 Δ𝑥,𝑦 ← Δ − 𝑢 (𝑥) +∑𝑖∈[𝑚] 𝑤𝑖 (𝑦.A𝑖 ) ;
12 if Δ𝑥,𝑦 > 𝑀 then
13 𝑀 ← Δ𝑥,𝑦 , (𝑝−, 𝑝+) ← (𝑥,𝑦);

14 return (𝑝−, 𝑝+, 𝑀);

of 𝑆 is essentially Δ = 1

2

∑
𝑡 ∈𝑆 𝑢 (𝑡). We repeat the following step for at most 𝑂 (𝑘 log𝑘) iterations.8

We call Algorithm 10 as a primitive to compute the pair of tuples 𝑝− ∈ 𝑆, 𝑝+ ∈ Q(I) \ 𝑆 such that

the diversity𝑀 = 𝛿 (𝑆 ∪ {𝑝+} \ {𝑝−}) is maximized. We do it as follows. For each tuple 𝑥 ∈ 𝑆 , we
construct an index 𝑍 from Lemma 2.1 with the following weight function ®𝑤 . More specifically, for

every tuple 𝑝 ∈ 𝑅𝑖 , we define the weight function 𝑤𝑖 (·) as 𝑤𝑖 (𝑝) =
∑

𝑦∈𝑆\{𝑥 } 𝜙𝐻
(
𝑦.Ā𝑖 , 𝑝.Ā𝑖

)
. All

tuples in Q(I) will be enumerated from 𝑍 in the descending ordering to their sum of distances with

tuples in 𝑆 \ {𝑥}, until we encounter some tuple 𝑦 ∉ 𝑆 . In Algorithm 10 we use the notation Δ𝑥,𝑦

to maintain the diversity of the set 𝑆 ∪ {𝑦} \ {𝑥}. If replacing 𝑝− by 𝑝+ in 𝑆 does not increase the

diversity (line 7 of Algorithm 9) we stop and return 𝑆 . Otherwise, we replace 𝑝− by 𝑝+ in 𝑆 and

update 𝑢 (𝑡) for every 𝑡 ∈ 𝑆 \ {𝑝−}. Then, we enter into the next iteration.

Finally, in order to compute𝑤𝑖 (·) efficiently, we build a binary search tree T𝑗 , initially empty, for

every attribute 𝐴 𝑗 ∈ Ā𝑖 , as follows. For every 𝑦 ∈ 𝑆 \ {𝑥}, we check whether the value 𝑦.𝐴 𝑗 exists

in T𝑗 . If not, we add a node 𝑢 to T𝑗 with value 𝑢.value = 𝑦.𝐴 𝑗 along with a counter 𝑢.count = 1.

If yes, then let 𝑢 be the node with 𝑢.value = 𝑦.𝐴 𝑗 . We increase the counter 𝑢.count by 1. After

constructing𝑇𝑗 , for every 𝐴 𝑗 ∈ Ā𝑖 , we visit every tuple 𝑝 ∈ 𝑅𝑖 and we search each T𝑗 with key 𝑝.𝐴 𝑗 .

Let 𝑢 𝑗 be the node such that 𝑢 𝑗 .value = 𝑝.𝐴 𝑗 . We compute𝑤𝑖 (𝑝) as
∑

𝐴 𝑗 ∈Ā𝑖
( |𝑆 | − 𝑢 𝑗 .count).

Correctness. We prove the next lemma.

Lemma 5.5. For ®𝑤 at line 6 of Algorithm 10, ®𝑤 (𝑡) = ∑
𝑦∈𝑆\{𝑥 } 𝜙𝐻 (𝑡, 𝑦) for every tuple 𝑡 ∈ Q(I).

Proof. For 𝑡 ∈Q(I), ∑𝑖∈[𝑚] 𝑤𝑖 (𝑡 .A𝑖 )=
∑

𝑖∈[𝑚]
∑

𝑦∈𝑆\{𝑥 } 𝜙𝐻 (𝑡 .Ā𝑖 , 𝑦.Ā𝑖 ) =
∑

𝑦∈𝑆\{𝑥 } 𝜙𝐻 (𝑡, 𝑦). □

For 𝑥 ∈ 𝑆 , by Lemma 5.5, tuple 𝑦 ∈ Q(I) \𝑆 that maximizes 𝛿 (𝑆 ∪ {𝑦} \ {𝑥}) can always be correctly

found. Following [21] and the fact that Hamming distance is of negative type, our algorithm returns

a (1 − 2

𝑘
)-sum-diverse 𝑘-summary for Q(𝐼 ).

Complexity. Initially, 𝑘 tuples from Q(I) can be retrieved in 𝑂 (𝑁 + 𝑘) time. In every iteration,

for every 𝑥 ∈ 𝑆 , it takes 𝑂 (𝑁 log𝑘) = 𝑂 (𝑁 log𝑁 ) time to assign the weights𝑤𝑖 using the binary

8
The exact number of iterations is shown in the proof of Corollary 2 in [21].
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search trees T𝑗 . The index 𝑍 is constructed in 𝑂 (𝑁 ) time. Each tuple 𝑦 can be enumerated with

𝑂 (log𝑁 ) delay. In the worst case, it may skip at most 𝑘 tuples before finding one that does not

belong to 𝑆 . Overall, for each tuple 𝑥 , we spend 𝑂 (𝑁 log𝑁 + 𝑘 log𝑁 ) time.

Theorem 5.6. For an acyclic joinQ and database I of input size𝑁 , a (1− 2

𝑘
)-sum-diverse𝑘-summary

under Hamming metric can be computed in 𝑂
(
𝑁𝑘2

log
2 𝑁 + 𝑘3

log
2 𝑁

)
time using 𝑂 (𝑁 + 𝑘) space.

Remark 1. The Euclideanmetric is also of negative type. However, due to the square root operations

in the computation of the Euclidean metric, we cannot use the ranked enumeration index to get

the best tuple that improves the diversity in 𝑆 \ {𝑡}, as we did in the Hamming metric. So, this

algorithm does not apply to the Euclidean metric.

Remark 2. The same high-level idea can be extended to another faster algorithm, but its quality

is slightly worse than Theorem 5.6. Intuitively, we begin with a set 𝑆 containing one arbitrary

tuple from Q(I), and apply the following greedy strategy for 𝑘 iterations. In each iteration, we

find the tuple 𝑦 ∈ Q(I) \ 𝑆 that maximizes the sum of all pairwise distances with tuples in 𝑆 ,

i.e., arg max𝑡 ∈Q(I)
∑

𝑝∈𝑆 𝜙𝐻 (𝑝, 𝑡), and add it to 𝑆 . This greedy approach returns a
1

2
-sum-diverse

𝑘-summary for Q(I). Note that the problem of finding the tuple from Q(I) \ 𝑆 with the maximum

sum of distances from tuples in 𝑆 is similar to finding the best tuple 𝑦 ∈ Q(I) \ 𝑆 to replace a tuple

𝑥 ∈ 𝑆 as we had in the local search algorithm above. Due to the space limit, all details can be found

in Appendix C. Hence, using the same machinery from our previous algorithm, we have:

Theorem 5.7. For an acyclic join Q and a database I of input size 𝑁 , a 1

2
-sum-diverse 𝑘-summary

under Hamming metric can be computed in 𝑂
(
(𝑁𝑘 + 𝑘2) log𝑁

)
time using 𝑂 (𝑁 + 𝑘) space.

6 Extensions
From acyclic joins to cyclic joins. All our algorithms can be extended to cyclic join queries by

applying the generalized hypertree decomposition [42], as described in Appendix D. Each cyclic

join is transformed into an acyclic one at the cost of increasing the input size from 𝑁 to 𝑁 fhtw
,

where fhtw is defined as the fractional hypertree width of the input join query which roughly

measures how close is the input query Q from being acyclic (for example, for every acyclic query

fhtw = 1). All our approximation algorithms derived for acyclic joins can be applied without any

modification, but time complexity increases by replacing 𝑁 with 𝑁 fhtw
.

From joins to join-project queries. All our algorithms can be extended to acyclic join-project

queries using indexes for ranked enumeration over join-project queries [32]. Using the generalized

hypertree decomposition [42], the results are also extended to cyclic join-project queries. All ap-

proximation ratios are preserved, but the time complexity for constructing sum-diverse summaries

increases by a factor of 𝑂 (min{𝑘, 𝑁 }), since the index [32] for join-project queries can only sup-

port 𝑂 (𝑁 log𝑁 )-delay enumeration. The running time for constructing a cohesive or min-diverse

summary remains the same for join-project queries. We show the details in Appendix E.

7 Conclusion
In this paper, we designed efficient algorithms for computing cohesive and diverse summaries for

conjunctive query results under the Euclidean or Hamming metric. There are a few interesting

questions left for future work. (1) General metric: In addition to Euclidean and Hamming metrics, it

is unknown how to compute representative summaries for conjunctive query results under general

metrics. (2) Broader quality functions: beyond cohesion and diversity, it remains to investigate a

general framework of computing good summaries under various quality functions. (3) Dynamic
setting: It is unknown how to maintain representative summaries for conjunctive query results in

the dynamic settings, where input tuples can be inserted or deleted.
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A Missing details from Section 1

Dangling Tuples. Given an acyclic join Q and a database I of input size 𝑁 , we give the classic

Algorithm 11: RemoveDangling(Q, I)
1 Let T be an arbitrary join tree of Q with root 𝑟 ;

2 while visit nodes a bottom-up way (excluding 𝑟 ) do
3 foreach node 𝑢 visited do
4 𝑅𝑝𝑢 ← 𝑅𝑝𝑢 ⋉ 𝑅𝑢 for the parent node 𝑝𝑢 of 𝑢;

5 while visit nodes a top-down way (excluding leaves) do
6 foreach node 𝑢 visited do
7 𝑅𝑢′ ← 𝑅𝑢′ ⋉ 𝑅𝑢 for each child node 𝑢′ of 𝑢;

8 return updated I;

Yannakakis algorithm [65] that can

remove dangling tuples that do not

participate in any join result of Q(𝐼 ).
This primitive runs in 𝑂 (𝑁 ) time.

For a CQ Q and a database I of in-
put size 𝑁 , all dangling tuples can

be removed in 𝑂
(
𝑁 fhtw)

time (Ap-

pendix D).

Reduction from plain data. The
hardness of the problems defined on

plain data points can be carried to

a relational data setting via the fol-

lowing reduction. Suppose we are given a set 𝑃 of 𝑛 points in the 𝑑-dimensional space, where

𝑑 = |A|, and each point 𝑝 ∈ 𝑃 is associated with 𝑑 values (coordinates) ⟨𝑝1, 𝑝2, · · · , 𝑝𝑑⟩. Moreover,

we give a distinct label 𝑝id to every point 𝑝 ∈ 𝑃 . We also label the attributes in A, as 𝐴1, 𝐴2, · · · , 𝐴𝑑 .

We construct database I as follows.For every point 𝑝 ∈ 𝑃 , we add a tuple 𝑡
𝑝

𝑖
to 𝑅𝑖 for every relation

𝑅𝑖 , where 𝑡
𝑝

𝑖
.𝐴 𝑗 = (𝑝id, 𝑝 𝑗 ) for every 𝐴 𝑗 ∈ A𝑖 . It can be easily checked that there is a one-to-one

mapping between the query results in the join Q(I) and points in 𝑃 . Let 𝑡𝑝 , 𝑡𝑝′ ∈ Q(I) be the query
results corresponding to 𝑝, 𝑝′ ∈ 𝑃 respectively. The distance between 𝑝 and 𝑝′ is transformed to

the distance between 𝑡𝑝 and 𝑡𝑝′ . This reduction implies the NP-hardness of computing cohesive

and min-diverse summaries.

Optimality. All lower bounds from non-relational settings hold in our relational setting. First,

the dependency on 𝑁 in all our algorithms for acyclic join queries is near linear, which is optimal.

Any algorithm for computing summaries needs to read the entire database at least. For Euclidean

cohesive summary, we give (2 + 𝜀)-approximation algorithms in 𝑂̃ (𝑁𝑘2) or 𝑂̃ (𝑁𝑘 + 𝑘𝑑 ) time

(assuming 𝜀 as a small constant). For the non-relational setting, the best algorithm for 2-cohesive

summary under any general metric runs in 𝑂 (𝑁𝑘) time. Hence, the approximation factor and

complexities of our algorithms are close (by, at most, a factor of 𝑘) to the optimum algorithms in the

non-relational setting. Exactly the same results and lower bounds hold for min-diversity summaries.

For Euclidean sum-diverse summaries, we give a ( 1

2
− 𝜀)-approximation algorithm in 𝑂̃ (𝑁 +𝑘) time.

For general distances in the non-relational setting, the best algorithm returns a
1

2
-approximation in

𝑂 (𝑁𝑘) time, while in the Euclidean metric, the best algorithm returns a ( 1

2
− 𝜀)-approximation in

𝑂̃ (𝑁 + 𝑘) time. Our algorithm for sum-diverse summaries in the Euclidean metric is optimal.

B Missing details from Section 3
B.1 Missing details from Subsection 3.1

Proof of Lemma 3.1.

∑︁
𝑖∈[𝑚]

𝑤𝑖 (𝑡 .A𝑖 ) =
∑︁

𝑖∈[𝑚]

∑︁
𝐴 𝑗 ∈Ā𝑖

(𝑡 .𝐴 𝑗 − 𝜃 .𝐴 𝑗 )2 =
∑︁
𝐴 𝑗 ∈A
(𝑡 .𝐴 𝑗 − 𝜃 .𝐴 𝑗 )2 = 𝜙2 (𝑡, 𝜃 ).

Proof of Lemma 3.2.

∑︁
𝑖∈[𝑚]

𝑤𝑖 (𝑡 .A𝑖 )=
∑︁

𝑖∈[𝑚]

∑︁
𝐴 𝑗 ∈Ā𝑖∩Ā𝑢

(𝑡 .𝐴 𝑗 − 𝜃 .𝐴 𝑗 )2 =
∑︁

𝐴 𝑗 ∈Ā𝑢

(𝑡 .𝐴 𝑗 − 𝜃 .𝐴 𝑗 )2 = 𝜙2 (𝑡, 𝜃 ).

Proof of Lemma 3.4. We will prove by induction on ℓ . In the base case when ℓ = 1, 𝑢 is a leaf

node. Implied by [25] and the fact that we only keep the non-dangling tuples, 𝑆𝑢 is a 2-approximation

of the 𝑘-center problem for Q𝑢 (I). Hence, 𝜌 (𝑆𝑢,Q𝑢 (I)) = 𝑟𝑢 ≤ 2 · 𝜌𝑘 (Q𝑢 (I)) ≤ 10

√
2 · 𝜌𝑘 (Q𝑢 (I)) .
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When ℓ > 1,𝑢 is an internal node. Let 𝑥,𝑦 be the two child nodes at level ℓ−1. Let 𝑟 ∗ = max{𝑟𝑥 , 𝑟𝑦}.
From Algorithm 3, for every tuple 𝜃 ∈ 𝑆𝑢 (after finishing the loop in lines 8-16), there exists a tuple

𝑡 ∈ Q𝑢 (I) such that 𝜙 (𝑡, 𝜃 ) ≤
√

2 · 𝑟 ∗. On the other hand, from Lemma 3.3, for any tuple 𝑡 ∈ Q𝑢 (I),
there exists a tuple 𝜃 ∈ 𝑆𝑢 such that 𝜙 (𝑡, 𝜃 ) ≤

√
2 · 𝑟 ∗. Moreover,

𝑟 ∗ ≤ (10

√
2)ℓ−1 ·max{𝜌𝑘 (Q𝑥 (I)), 𝜌𝑘 (Q𝑦 (I))} ≤ (10

√
2)ℓ−1 · 𝜌𝑘 (Q𝑢 (I)),

where the first inequality holds by our hypothesis on 𝑥,𝑦 and the second inequality follows from

the observation in the proof of Lemma 3.3.

For an item 𝑏 and a set of items 𝐴, let NN(𝑏,𝐴) denote the nearest neighbor of 𝑏 in 𝐴, i.e.,

NN(𝑏,𝐴) = arg min𝑎∈𝐴 𝜙 (𝑏, 𝑎). Let𝑂1 be the optimum cohesive𝑘-summary ofQ𝑢 (I), i.e., 𝜌 (𝑂1,Q𝑢 (I)) =
𝜌𝑘 (Q𝑢 (I)). For each center 𝑝 ∈ 𝑂1, let 𝑝 = NN(𝑝, 𝑆𝑢). From Lemma 3.3, it holds that 𝜙 (𝑝, 𝑝) ≤

√
2𝑟 ∗.

Consider the set of 𝑘 centers 𝑂2 = {𝑝 | 𝑝 ∈ 𝑂1}. For any tuple 𝑥 ∈ 𝑆𝑢 , let 𝑥 = NN(𝑥,Q𝑢 (I)). From
Algorithm 2, it holds that 𝜙 (𝑥, 𝑥) ≤

√
2𝑟 ∗. So, for an arbitrary tuple 𝑠 ∈ 𝑆𝑢 , if 𝑜 = NN(𝑠,𝑂1), it

holds 𝜙 (𝑠, 𝑜) ≤ 𝜙 (𝑠, 𝑠) + 𝜙 (𝑠, 𝑜) + 𝜙 (𝑜, 𝑜) ≤
√

2𝑟 ∗ + 𝜌𝑘 (Q𝑢 (I)) +
√

2𝑟 ∗. Hence, we have 𝜌𝑘 (𝑆𝑢) ≤
𝜌𝑘 (Q𝑢 (I)) + 2 ·

√
2𝑟 ∗ . Implied by [38], 𝜌 (𝑆𝑢, 𝑆𝑢) ≤ 2𝜌𝑘 (𝑆𝑢). Finally, we come to

𝜌 (𝑆𝑢,Q𝑢 (I)) ≤ 𝜌 (𝑆𝑢, 𝑆𝑢) +
√

2𝑟 ∗ = 𝑟𝑢 ≤ (5
√

2(10

√
2)ℓ−1 + 2) · 𝜌𝑘 (Q𝑢 (I)) < (10

√
2)ℓ𝜌𝑘 (Q𝑢 (I)).

To show 𝜌 (𝑆𝑢,Q𝑢 (I)) ≥ 𝜌𝑘 (Q𝑢 (I))/2, we resort to the generalized cohesive 𝑘-summary problem by

relaxing the condition that 𝑆 ⊆ Q𝑢 (I). Let 𝜌𝑘 (Q𝑢 (I)) be the optimal solution of the generalized

cohesive 𝑘-summary problem of Q𝑢 (I). From the triangle inequality,
1

2
· 𝜌𝑘 (Q𝑢 (I)) ≤ 𝜌𝑘 (Q𝑢 (I)) ≤

𝜌𝑘 (Q𝑢 (I)). By definition, 𝜌 (𝑆𝑢,Q𝑢 (I)) ≥ 𝜌𝑘 (Q𝑢 (I)) ≥ 1

2
· 𝜌𝑘 (Q𝑢 (I)) . □

Proof of Lemma 3.6.

∑
𝑖∈[𝑚] 𝑤𝑖 (𝑡 .A𝑖 ) =

∑
𝑖∈[𝑚]

∑
𝐴 𝑗 ∈Ā𝑖

(
𝑡 .𝐴 𝑗 − 𝑞ℎ .𝐴 𝑗

)
2

= 𝜙2 (𝑡, 𝑞ℎ). □

B.1.1 Coreset without having an upper bound on the clustering cost.
Let 𝑆 be a𝑂 (1)-cohesive 𝑘-summary. We do not know the value of 𝑟 , however, we know that the

approximation ratio is 𝛽 , where 𝛽 is a constant. The high-level idea of our algorithm is as follows:

We run a binary search over all possible 𝐿∞ distances in Q(I). For a distance ℓ we check whether

all tuples in Q(I) can be covered with balls having centers the points in 𝑆 and radius

√
𝑑ℓ . In the

end, we find a number 𝑟 such that 𝜌𝑘 (Q(I)) ≤ 𝜌 (𝑆,Q(I)) ≤ 𝑟 ≤ 𝑐 · 𝛽𝜌𝑘 (Q(I)), for a constant 𝑐 ,
and we execute the algorithm from Section 3.1.3. Let 𝐴 be a sorted array of the values among all

the attributes in the database. We run a binary search on the pairwise distances of 𝐴. In [60] the

authors show that the 𝑗-th smallest 𝐿∞ distance (or equivalently 𝐿1 distance in R1
) of 𝑛 points

on a line can be computed in 𝑂 (𝑛 log𝑛) time. Let ℓ be a value we check in the binary search. Let

ℓ̂ =
√
𝑑ℓ . We define the grid 𝐺 ℓ̂ having grid cells with diagonal 𝜇ℓ̂ = 𝜀ℓ̂ . For each center 𝑠 ∈ 𝑆 , we

define the ball 𝐵𝑠 of radius ℓ̂ and center 𝑠 . Let 𝐵ℓ̂ =
⋃

𝑠∈𝑆 𝐵𝑠 . We check whether 𝐵ℓ̂ covers all tuples

in Q(I). Unfortunately, we cannot visit all tuples in Q(I) and the complexity of constructing the

union of 𝑘 balls is large. Instead, we visit each grid cell 𝑔 ∈ 𝐺 ℓ̂ such that 𝑔 is contained or partially

intersected by 𝐵ℓ̂ . Let 𝐺 ℓ̂ be the set of these grid cells. For each 𝑔 ∈ 𝐺 ℓ̂ we run a counting query

using Lemma 2.3 to get 𝑓𝑔 = |𝑔 ∩ Q(I) |. We also run an additional counting query in a rectangle

that contains all tuples to find 𝑓 = |Q(I) |. If ∑𝑔∈𝐺̂ℓ̂
𝑓𝑔 = 𝑓 then we continue the binary search with

smaller values of ℓ . Otherwise, we continue with larger values of ℓ . Let ℓ∗ be the parameter in the

last iteration of the binary search that 𝐺 ℓ̂∗ covered all tuples in Q(I). We set 𝑟 = (1 + 𝜀)
√
𝑑ℓ∗ and

then we follow the same procedure as in Subsection 3.1.3 to construct 𝑃𝜀 .

Lemma B.1. 𝜌𝑘 (Q(I)) ≤ 𝜌 (𝑆,Q(I)) ≤ 𝑟 ≤ (1 + 𝜀)
√
𝑑𝛽𝜌𝑘 (Q(I)).

Proof. For a vector 𝑥 ∈ R𝑑 , let | |𝑥 | |∞ be its 𝐿∞ norm, and let | |𝑥 | |2 be its 𝐿2 norm. By definition,

for two vectors 𝑥,𝑦 ∈ R𝑑 , we have | |𝑥−𝑦 | |2 = 𝜙 (𝑥,𝑦). It is known that for any vector 𝑎 ∈ R𝑑 it holds,
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| |𝑎 | |∞ ≤ ||𝑎 | |2 ≤
√
𝑑 | |𝑎 | |∞. For every tuple 𝑡 ∈ Q(I), it is always true that there exists 𝑠𝑡 ∈ 𝑆 with

| |𝑡 −𝑠𝑡 | |2 ≤ 𝜌 (𝑆,Q(I)) ≤ 𝛽𝜌𝑘 (Q(I)). Let 𝑡 ′ ∈ Q(I) be the tuple such that | |𝑠−𝑠𝑡 ′ | |2 = 𝜌 (𝑆,Q(I)). Let
ℓ = | |𝑠 −𝑠𝑡 ′ | |∞. From above, it follows that | |𝑠 −𝑠𝑡 ′ | |∞ ≥ 𝜌 (𝑆,Q(I) )√

𝑑
. Hence, there exists an 𝐿∞ distance

ℓ𝑎 in 𝐴 satisfying ℓ𝑎 ≥ 𝜌 (𝑆,Q(I) )√
𝑑
⇔
√
𝑑ℓ𝑎 ≥ 𝜌 (𝑆,Q(I)). Hence, for any ℓ ≥ ℓ𝑎 , we have

∑
𝑔∈𝐺̂ℓ̂

𝑓𝑔 = 𝑓 .

So ℓ∗ ≤ ℓ𝑎 . Next, we show that ℓ∗ ≥ 𝜌 (𝑆,Q(I) )
(1+𝜀 )

√
𝑑

by contradiction. Assume ℓ∗ < 𝜌 (𝑆,Q(I) )
(1+𝜀 )

√
𝑑
⇔
√
𝑑ℓ∗ <

𝜌 (𝑆,Q(I) )
1+𝜀 . Our grid-based algorithm for checking whether all points in Q(I) lie in the cells 𝐺 ℓ̂∗ ,

counts all tuples within distance

√
𝑑ℓ∗ from centers 𝑆 and might count some tuples within distance

(1 + 𝜀)
√
𝑑ℓ∗ from centers in 𝑆 . Hence, if (1 + 𝜀)

√
𝑑ℓ∗ < 𝜌 (𝑆,Q(I)), our algorithm will return∑

𝑔∈𝐺̂ℓ̂
𝑓𝑔 < 𝑓 . Overall,

1

1 + 𝜀 · 𝜌 (𝑆,Q(I)) ≤
√
𝑑ℓ∗ ≤

√
𝑑ℓ𝑎 ≤

√
𝑑𝜌 (𝑆,Q(I)) ≤

√
𝑑𝛽𝜌𝑘 (Q(I)). □

Correctness With Lemma B.1 and algorithm in Section 3.1.3, we can construct a desired coreset.

Complexity. For any ℓ , there is at most 𝑂 (𝜀−𝑑 ) grid cells with diagonal 𝜀
√
𝑑ℓ that intersect or

fully contained in a ball of radius

√
𝑑ℓ . Hence, in each iteration of the binary search we spend

𝑂 (𝑘𝑁 𝜀−𝑑 ) to run the counting queries. Using [60] to get the 𝑗-th smallest 𝐿∞ distance among 𝐴,

we need 𝑂 (𝑁 log
2 𝑁 ) additional time to execute the binary search. Overall, given 𝑆 , we construct

an 𝜀-coreset in 𝑂 (𝑁 log
2 (𝑁 ) + 𝑘𝑁 log(𝑁 )𝜀−𝑑 ) time using 𝑂 (𝑁 + 𝑘𝜀−𝑑 ) space.

B.2 Missing details from Subsection 3.2
Correctness. By definition, for a fixed 𝑟𝐻 , all rectangles in R (𝑡 ) are disjoint and 𝑝 ∈ R (𝑡 ) if and
only if 𝜙𝐻 (𝑡, 𝑝) ≥ 𝑟𝐻 . Indeed, if 𝑝 ∈ R (𝑡 )ℎ

, for ℎ ≥ 𝑟𝐻 , then the tuple 𝑝 has different values than

𝑡 in exactly ℎ attributes. Furthermore, for a fixed 𝑟𝐻 , the condition in line 13 is satisfied if and

only if 𝜌 (𝑆,Q(I)) ≥ 𝑟𝐻 . Indeed, a cell 𝜓 inM(R) has density 𝑘 if and only if every point 𝑥 ∈ 𝜓
has distance at least 𝑟𝐻 . Hence, if there is no tuple from Q(I) in these cells, then every tuple in

Q(I) is within distance 𝑟𝐻 from 𝑆 , i.e., 𝜌 (𝑆,Q(I)) ≤ 𝑟𝐻 − 1. We show that 𝜌 (𝑆,Q(I)) ≤ 2𝜌𝑘 (Q(I)).
Equivalently, we show that for 𝑟𝐻 = 2𝜌𝑘 (Q(I)) + 1 the condition in line 13 always holds. Let 𝑆∗

be the optimally cohesive 𝑘-summary of Q(I). For every tuple 𝑡 𝑗 ∈ 𝑆∗, we define the ball B𝑗 with

center 𝑡 𝑗 and radius 𝜌𝑘 (Q(I)). By definition, the union of all such 𝑘 balls covers all tuples in Q(I).
Let 𝑡 be the tuple that is selected in lines 10-11 of Algorithm 6 in an iteration 𝑖 . Without loss

of generality assume that 𝑡 belongs in the ball B𝑗 . The Hamming distance satisfies the triangle

inequality, so for any 𝑝 ∈ B𝑗 ∩ Q(I), it holds 𝜙𝐻 (𝑡, 𝑝) ≤ 𝜙𝐻 (𝑡, 𝑡 𝑗 ) +𝜙𝐻 (𝑡 𝑗 , 𝑝) ≤ 2𝜌𝑘 (Q(I)). In other

words, it holds that for any new tuple 𝑡 we add in 𝑆 , the ball B′𝑡 with center 𝑡 and radius 2𝜌𝑘 (Q(I))
completely covers a ball from the optimally cohesive 𝑘-summary. By definition, the union of the

rectangles in R (𝑡 ) is the complement of ball B′𝑡 . After 𝑘 iterations all optimal 𝑘 balls are covered by

the balls

⋃
𝑡 ∈𝑆 B′𝑡 , so there is no tuple in Q(I) that lies in the complement of

⋃
𝑡 ∈𝑆 B′𝑡 . Equivalently,

there is no tuple in Q(I) that lies in a cell of density 𝑘 in line 13, so the condition is satisfied.

Complexity. The algorithm runs for 𝑘 iterations. In each iteration 𝑖 , we add a tuple 𝑡 in 𝑆 and

we construct |R (𝑡 ) | = 𝑂 (1) rectangles. The decompositionM(R) is updated in 𝑘𝑑 time [10]. The

cells with depth 𝑖 − 1 can also be found in 𝑘𝑂 (𝑑 ) time after updating the decomposition. We run

a rectangular query for every cell of depth 𝑖 − 1. From Lemma 2.3, each rectangular query takes

𝑂 (𝑁 ) time. Overall, our algorithm runs in 𝑂 (𝑁𝑘𝑑 ) time and uses 𝑂 (𝑁 + 𝑘𝑑 ) space.

C Missing details from Section 5

Proof of Lemma 5.2.

∑︁
𝑖∈[𝑚]

𝑤𝑖 (𝑡 .A𝑖 ) =
∑︁

𝑖∈[𝑚]

∑︁
𝐴 𝑗 ∈Ā𝑖

(𝑡 .𝐴 𝑗 ) · 𝑢 𝑗 =
∑︁
𝐴 𝑗 ∈A
(𝑡 .𝐴 𝑗 ) · 𝑢 𝑗 = ⟨𝑢, 𝑡⟩. □
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Lemma C.1. The Hamming metric is of negative type.

Proof. Using [35, 61], any distance function 𝜎 , over a set of 𝑛 items 𝑃 ∈ R𝑑 , is of negative type
if there exists a mapping from 𝑃 to 𝑃 ′ ∈ R𝑑 ′ for a positive integer 𝑑 ′, such that 𝜎 (𝑝, 𝑞) = 𝜎 ′ (𝑝′, 𝑞′),
where 𝑝, 𝑞 ∈ 𝑃 , 𝑝′ is the mapping of 𝑝 (similarly, 𝑞′ is the mapping of 𝑞), and 𝜎 ′ is the squared
Euclidean distance.
For the Hamming metric, we map all points in 𝑃 ∈ R𝑑 to points in 𝑑 ′ ≤ 𝑛 · 𝑑2

dimensions as

follows. Let 𝐿 be the ordered list of all distinct values (coordinates) over the points in 𝑃 . Clearly,

|𝐿 | ≤ 𝑛𝑑 . We use 𝑝 𝑗 to denote the 𝑗-th value of point 𝑝 ∈ 𝑃 . For every 𝑝 ∈ 𝑃 , we create 𝑝′ ∈ R |𝐿 |𝑑
as follows. For each 𝑗 ∈ [𝑑], we create the zero vector ®𝑋 ( 𝑗 ) ∈ R |𝐿 | , such that ®𝑋 ( 𝑗 ) = (0, . . . , 0).
Without loss of generality, assume that 𝑝 𝑗 = 𝐿[𝑖], i.e., the 𝑗-th value of 𝑝 is the 𝑖-th element in list

𝐿. We set ®𝑋 ( 𝑗 )
𝑖

= 1/
√

2, i.e., the 𝑖-th value of ®𝑋 ( 𝑗 ) is set to 1/
√

2. Then 𝑝′ is the concatenation of

all vectors ®𝑋 ( 𝑗 ) , i.e., 𝑝′ = [ ®𝑋 (1) , . . . , ®𝑋 (𝑑 ) ]. By definition, it holds that under the Hamming metric

𝜙𝐻 (𝑝, 𝑞) =
∑

1≤ℎ≤𝑑 |𝐿 | (𝑝′ℎ −𝑞
′
ℎ
)2. Intuitively, if two points have different 𝑗-th value then the squared

Euclidean will sum up the terms (1/
√

2 − 0)2 + (0 − 1/
√

2)2 = 1. □

Algorithm 12: GreedySUMDiverse(Q, I, 𝑘)
1 𝑆 ← {𝑥0} for an arbitrary tuple 𝑥0 ∈ Q(I);
2 while |𝑆 | ≤ 𝑘 do
3 foreach 𝑖 ∈ [𝑚] do
4 foreach 𝑝 ∈ 𝑅𝑖 do
5 𝑤𝑖 (𝑝) =

∑
𝑦∈𝑆 𝜙𝐻

(
𝑝.Ā𝑖 , 𝑦.Ā𝑖

)
;

6 ®𝑤 ← ⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩;
7 𝑍 ← index built for Q, I, ®𝑤 as Lemma 2.1;

8 while true do
9 𝑦 ← a result enumerated from 𝑍 ;

10 if 𝑦 ∉ 𝑆 then break;

11 𝑆 ← 𝑆 ∪ {𝑦};
12 return 𝑆 ;

Greedy algorithm for Sum-Diverse Sum-
maries. In Algorithm 12, we start with

an arbitrary tuple 𝑥0 ∈ Q(I) and add it to

𝑆 . We repeat the following step until the

size of 𝑆 reaches 𝑘 . We construct an in-

dex 𝑍 that enumerates the tuples in Q(I)
in descending order to their sum of dis-

tances with the tuples in 𝑆 . More specifi-

cally, for every tuple 𝑝 ∈ 𝑅𝑖 , we define the
weight 𝑤𝑖 (𝑝) =

∑︁
𝑦∈𝑆

𝜙𝐻
(
𝑝.Ā𝑖 , 𝑦.Ā𝑖

)
. All tu-

ples inQ(I) are enumerated from𝑍 in the de-

scending ordering, until we encounter some

result 𝑦 ∉ 𝑆 . We add 𝑦 to 𝑆 and continue in

the next iteration.

Correctness. For ®𝑤 at line 6 of Algo-

rithm 12, ®𝑤 (𝑡) = ∑
𝑖∈[𝑚] 𝑤𝑖 (𝑡 .A𝑖 ) =

∑
𝑖∈[𝑚]

∑
𝑦∈𝑆 𝜙𝐻

(
𝑡 .Ā𝑖 , 𝑦.Ā𝑖

)
=
∑

𝑦∈𝑆 𝜙𝐻 (𝑡, 𝑦) for every tuple

𝑡 ∈ Q(I). Ravi et al. [59], showed that the greedy algorithm returns a
1

2
-sum-diverse 𝑘-summary in

the non-relational setting. Algorithm 12 implements the greedy algorithm in the relational setting

so it also returns a
1

2
-sum-diverse 𝑘-summary for Q(I).

Complexity. For every tuple 𝑝 ∈ 𝑅𝑖 , it takes 𝑂 (log𝑁 ) time to compute 𝑤𝑖 (𝑝). It takes 𝑂 (𝑁 )
time to construct the index 𝑍 . For every tuple 𝑦 returned by 𝑍 , it takes 𝑂 (log𝑘) = 𝑂 (log𝑁 )
time to check if 𝑦 ∈ 𝑆 . All tuples can be enumerated from 𝑍 within 𝑂 (log𝑁 ) delay. We need to

enumerate at most 𝑘 − 1 results until we find one that does not belong in 𝑆 . Our algorithm runs in

𝑂 (𝑁𝑘 log𝑁 + 𝑘2
log𝑁 ) time and uses 𝑂 (𝑁 + 𝑘) space.

Remark. This algorithm cannot be used for the Euclidean metric because the sum of distances

from a tuple 𝑡 to set 𝑆 is a sum of square roots, so we cannot use the squared Euclidean metric as

we did in the algorithms from Section 3 in the ranked enumeration index.
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D Extension to Cyclic Join
GeneralizedHypertreeDecomposition [42].Weneed the following notions to extend our results

to cyclic joins. We also use a triple (A, E, y) to represent a CQ Q, where E = {A1,A2, · · · ,A𝑚}.
Definition D.1 (Generalized Hypertree Decomposition). Given a join Q = (A, E), a GHD of Q is a

pair (T , 𝜆), where T is a tree as an ordered set of nodes and 𝜆 : T → 2
A
is a labeling function which

associates to each node 𝑢 ∈ T a subset of attributes in A, 𝜆𝑢 , such that the following conditions

are satisfied: (1) For each relation A𝑖 ∈ E, there is a node 𝑢 ∈ T such that A𝑖 ⊆ 𝜆𝑢 ; (2) For each

attribute 𝐴 ∈ A, the set of nodes {𝑢 ∈ T : 𝐴 ∈ 𝜆𝑢} forms a connected subtree of T .
Definition D.2 (Fractional Edge Covering Number of CQ). Given a CQ Q = (A, E, y), a function

𝑊 : [𝑚] → [0, 1] is a fractional edge covering of Q if

∑
𝑖∈[𝑚]:𝐴∈A𝑖

𝑊 (𝑖) ≥ 1 holds for any attribute

𝐴 ∈ A. The weight of𝑊 is defined as

∑
𝑖∈[𝑚]𝑊 (𝑖). The fractional edge covering number of Q is

the minimum weight of all possible fractional edge coverings of Q.
Given a GHD (T , 𝜆) for a join Q, each node 𝑢 derives a subjoin over attributes 𝜆𝑢 and relations

E𝑢 = {𝑒 ∩ 𝑢 : 𝑒 ∈ E}. The width of each node 𝑢 ∈ T is defined as the fractional edge covering

number of (A𝑢, E𝑢). The width of (T , 𝜆) is defined as the maximum width over all nodes in T .
Then, the fractional hypertree width of a join follows:

Definition D.3 (Fractional Hypertree Width [42]). The fractional hypertree width of a join Q,
denoted as fhtw(Q), is fhtw(Q) = min

(T,𝜆)
max

𝑢∈T
𝜌 (𝜆𝑢, E𝑢), i.e., the minimum width over all GHDs.

Basically, 𝑂 (𝑁 fhtw) is an upper bound on the number of join results materialized for each node

in T , as well as the time complexity of computing the join results [14]. Thus, we can generalize all

our results to cyclic joins. If the runtime of an algorithm for the acyclic join was 𝑇 (𝑁,𝑘, 𝜀), it now
becomes 𝑇 (𝑁 fhtw, 𝑘, 𝜀).

E Extension to join-project queries
As we did for join queries, we focus on acyclic join-project queries and then use the well-known

GHD shown in Section 6 and Appendix D that maps any cyclic instance of input size 𝑁 to an

acyclic instance of input size 𝑁 fhtw
. Hence, all our algorithms for acyclic join-project queries can

be extended to cyclic join-project queries with the same approximation guarantees. The running

time changes from 𝑂 (𝑁 · 𝑓 (𝑘)), where 𝑓 (·) is a function of 𝑘 , to 𝑂 (𝑁 fhtw · 𝑓 (𝑘)).
We first describe the high-level idea. Recall that y is the set of the output attributes. Recall that

𝑑 = |y|. A summary 𝑆 should be computed with respect to attributes only in y, i.e., 𝑆 ⊂ R𝑑 . For a
relation 𝑅𝑖 , let 𝑅

′
𝑖 = 𝜋y∩A𝑖

(𝑅𝑖 ), the projection of the tuples in 𝑅𝑖 on the output attributes A′𝑖 = y∩A𝑖 .

All our algorithms run almost verbatim using 𝑅′𝑖 instead of 𝑅𝑖 . Of course, the original relations 𝑅𝑖
are still used to identify the joined tuples. In fact, all our algorithms are straightforwardly extended

to join-project queries if we use a nearest neighbor, farthest neighbor, top-𝑘 , and rectangular oracles

that work on join-project queries. Next, we introduce such oracles.

Ranked enumeration. For simplicity, let Ā′𝑖 = A′𝑖 − (
⋃

𝑗<𝑖 A′𝑗 ) be the set of active attributes for 𝑅′𝑖
i.e., the set of output attributes that do not appear in any relation before 𝑅′𝑖 . Let 𝑤𝑖 : R |A𝑖 | → R
be a weight function, which takes as input a tuple 𝑡 ∈ 𝑅𝑖 and outputs a real number. Let ®𝑤 =

⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩ be a set of weight functions. For a CQ Q, a database I, and a pair of results

𝑡1, 𝑡2 ∈ Q(I), we say 𝑡1 ≤ ®𝑤 𝑡2 if
∑

𝑗∈[𝑚] 𝑤 𝑗 (𝑡1.A′𝑗 ) ≤
∑

𝑗∈[𝑚] 𝑤 𝑗 (𝑡2 .A′𝑗 ). We use [32] instead of [33]

to perform ranked enumeration of join-project queries.

Lemma E.1 ([32]). For an acyclic join-project Q, a database I, and a set of weight functions ®𝑤 =

⟨𝑤1,𝑤2, · · · ,𝑤𝑚⟩, an index of size 𝑂 (𝑁 ) can be constructed in 𝑂 (𝑁 ) time, such that given any value
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𝑘 ∈ Z+, the top-𝑘 results of Q(I) can be enumerated in ascending or descending order with respect to
®𝑤 within 𝑂 (𝑁 log𝑁 ) delay.
We note that the weights in [33] are defined on the attributes rather than on the tuples. However,

from our construction, it is straightforward to also design weight functions on the attributes. Hence,

for simplicity, we follow the definition of weight functions we had in all previous sections.

Euclidean-based oracles. Let 𝜃 ∈ R𝑑 be a tuple. The nearest neighbor oracle finds a tuple 𝑡 ∈ Q(I)
such that 𝜙 (𝜃, 𝑡) is minimized. The farthest neighbor oracle finds a tuple 𝑡 ∈ Q(I) such that 𝜙 (𝜃, 𝑡) is
maximized. For each relation 𝑅𝑖 , we define𝑤𝑖 (·) as:𝑤𝑖 (𝑝.A′𝑖 ) =

∑
𝐴 𝑗 ∈Ā′𝑖 (𝑝.𝐴 𝑗 −𝜃 .𝐴 𝑗 )2,where 𝑝 ∈ 𝑅𝑖 .

If Ā′𝑖 = ∅ then 𝑤𝑖 (𝑝.A′𝑖 ) = 0. Thanks to the decomposability of squared Euclidean distance, for

any query result 𝑡 ∈ Q(I), ∑𝑖∈[𝑚] 𝑤𝑖 (𝑡 .A′𝑖 ) =
∑

𝑖∈[𝑚]
∑

𝐴 𝑗 ∈Ā′𝑖 (𝑡 .𝐴 𝑗 − 𝜃 .𝐴 𝑗 )2 =
∑

𝐴∈y (𝑡 .𝐴 − 𝜃 .𝐴)2 =

𝜙2 (𝜃, 𝑡), The square (and square root) function is increasing for non-negative values, so the order

of the distances with respect to the squared Euclidean distance is the same as the order of the

distances with respect to the Euclidean distance.

Top-𝑘 oracle. Let 𝑢 = ⟨𝑢1, 𝑢2, . . . , 𝑢𝑑⟩ be a vector in R𝑑 . The top-𝑘 oracle finds the 𝑘 tuples in

Q(I) with the largest inner product with respect to 𝑢. For each relation 𝑅𝑖 , we define 𝑤𝑖 (·) as:
𝑤𝑖 (𝑝.A′𝑖 ) =

∑
𝐴 𝑗 ∈Ā′𝑖

(
𝑝.𝐴 𝑗

)
· 𝑢 𝑗 , where 𝑝 ∈ 𝑅𝑖 . It is easy to show that for any query result 𝑡 ∈ Q(I),∑

𝑖∈[𝑚] 𝑤𝑖 (𝑡 .A′𝑖 ) =
∑

𝑖∈[𝑚]
∑

𝐴 𝑗 ∈Ā′𝑖
(
𝑡 .𝐴 𝑗

)
· 𝑢 𝑗 = ⟨𝑡,𝑢⟩.

Lemma E.2. Given an acyclic join-project Q with 𝑑 output attributes, a database instance I with
input size 𝑁 , and a tuple 𝜃 ∈ R𝑑 , a set of weight functions ®𝑤 can be constructed in𝑂 (𝑁 ) time, such that
the nearest (resp. farthest) neighbor of 𝜃 in Q(I), arg min𝑡 ∈Q(I) 𝜙 (𝜃, 𝑡) (resp. arg max𝑡 ∈Q(I) 𝜙 (𝜃, 𝑡)),
can be computed in 𝑂 (𝑁 log𝑁 ) time. Similarly, given a vector 𝑢 ∈ R𝑑 , a set of weight functions ®𝑤
can be constructed in 𝑂 (𝑁 ) time, such that the 𝑘 tuples in Q(I) with the highest inner product with 𝑢
can be computed in 𝑂 (𝑁𝑘 log𝑁 ) time.

Rectangular oracle. Similarly to the rectangular oracle in the join queries, we can find all tuples in

I that pass the predicate, defined by the rectangle, and then apply the index from [32] to enumerate

the query results on the surviving tuples.

Lemma E.3. Given an acyclic join-project Q with 𝑑 output attributes, a database instance I with
input size 𝑁 , and a rectangle𝜓 ∈ R𝑑 , an index of size 𝑂 (𝑁 ) can be constructed in 𝑂 (𝑁 ) time such
that all results in𝜓 ∩ Q(I) can be enumerated with 𝑂 (𝑁 log𝑁 ) delay.
Replacing the oracles we used in the main part with the oracles defined in this section, we

conclude with the following results for cohesive and diverse summaries under the Euclidean metric.

Corollary E.4. For an acyclic join-project Q of 𝑑 output attributes, a database I of input size 𝑁 ,
and a parameter 𝜀 > 0, a (2 + 𝜀)-cohesive 𝑘-summary for Q(I) under the Euclidean metric can be
computed in 𝑂

(
𝑘2𝑁 log𝑁 + 𝑘𝑁 log(𝑁 )𝜀−𝑑

)
time.

Corollary E.5. For an acyclic join-project Q of 𝑑 output attributes, a database I of input size 𝑁 ,
and a parameter 𝜀 > 0, a

(
1

2
− 𝜀

)
-min-diverse 𝑘-summary of Q(I) under the Euclidean metric can be

computed in 𝑂
(
𝑘2𝑁 log𝑁 + 𝑘𝑁 log(𝑁 )𝜀−𝑑

)
time.

Corollary E.6. For an acyclic join-project Q of 𝑑 output attributes, a database I of input size 𝑁 ,
and a parameter 𝜀 ∈ (0, 1

2
), a

(
1

2
− 𝜀

)
-sum-diverse 𝑘-summary of Q(I) under the Euclidean metric can

be computed in 𝑂
(
𝑘𝑁 log(𝑁 )𝜀−(𝑑−1)/2) time.

Equivalently, using the oracles defined in this section, we can derive the results for constructing

cohesive and diverse summaries under the Hamming metric.
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