
117

Towards Update-Dependent Analysis ofQuery Maintenance
XIAO HU, University of Waterloo, Canada

QICHEN WANG, Hong Kong Baptist University, China

This paper studies the hardness of maintaining self-join-free conjunctive queries over a dynamic database,

where tuples can be inserted or deleted. The worst-case complexity of this problem under arbitrary updates

has been well understood. It is known that most practical queries require Ωp
a

|𝐷|q maintenance time for

each update to ensure 𝑂p1q-delay enumeration, barring a very restricted class of queries (known as “q-

hierarchical” queries). Nonetheless, most real-world update sequences are not arbitrary, far away from the

worst-case scenario; instead, they are so “nice” that queries can greatly benefit from their inherent structure

in query maintenance. In this paper, we aim to understand the hardness of query maintenance under different

update sequences, in particular, the insertion-only (or deletion-only), first-in-first-out (FIFO), arbitrarily worse

sequences, as well as their “mixed” sequences. We first provide a comprehensive characterization of queries

that can be maintained in 𝑂p1q time for 𝑂p1q-delay enumeration over FIFO sequences. Then, we address

mixed sequences, which may exhibit insertion-only or FIFO patterns on subqueries but lack a specific pattern

in totality, and introduce a structural dichotomy for determining whether the input query can be maintained

in 𝑂p1q time for 𝑂p1q-delay enumeration over mixed sequences.

CCS Concepts: • Theory of computation Ñ Database query processing and optimization (theory).

Additional Key Words and Phrases: conjunctive query, insertion-only updates, FIFO updates, mixed updates

ACM Reference Format:
Xiao Hu and Qichen Wang. 2025. Towards Update-Dependent Analysis of Query Maintenance. Proc. ACM
Manag. Data 3, 2 (PODS), Article 117 (May 2025), 25 pages. https://doi.org/10.1145/3725254

1 INTRODUCTION
Dynamic query processing is a challenging problem that has been extensively investigated [4, 7, 8,

11, 13, 16, 18–20, 22, 23, 25, 26], which studies how to maintain the query results over a dynamic

database, where tuples can be inserted or deleted. Instead of computing query results from scratch

each time, a common approach is to design a data structure that can be updated efficiently while

the query answers can be retrieved with a delay guarantee. The worst-case complexity of this

problem has been well understood [7, 16], but only a limited class of queries can admit an efficient

index, and the large remaining queries only have a very expensive index. More importantly, the

worst-case update sequence rarely occurs in practice. These observations motivate us to investigate

more instance-dependent complexity of this problem, such as insertion-only and FIFO sequences.

Furthermore, practical update sequences usually exhibit patterns (insertion-only, FIFO, or arbi-

trary) over subqueries but lack a specific pattern in total. Let’s look at the TPC-H benchmark [1],

which has broad industry-wide relevance. There are 8 individual relations in the schema – NATION
and REGION are public as well as static, which can be modeled as a special insertion-only sequence

before any update from other relations; PART, SUPPLIER and CUSTOMER are insertion-only, as

these entities are not deleted from database once inserted; in contrast, LINEITEM, ORDER, and

Authors’ addresses: Xiao Hu, xiaohu@uwaterloo.ca, University of Waterloo, 200 University Ave W, Waterloo, Ontario,

Canada, N2L 3G1; Qichen Wang, qcwang@hkbu.edu.hk, Hong Kong Baptist University, China.

This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License.

© 2025 Copyright held by the owner/author(s).

2836-6573/2025/5-ART117

https://doi.org/10.1145/3725254

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.

HTTPS://ORCID.ORG/0000-0002-7890-665X
HTTPS://ORCID.ORG/
https://doi.org/10.1145/3725254
https://orcid.org/0000-0002-7890-665X
https://orcid.org/
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://creativecommons.org/licenses/by-nc-sa/4.0/legalcode
https://doi.org/10.1145/3725254


117:2 Xiao Hu and Qichen Wang

PARTSUPP are subject to frequent updates, which could be FIFO or even arbitrary. Consider a

simplified query in this benchmark that finds all parts and supplier information:

PART(PK) ’ PARTSUPP(PK, SK) ’ SUPPLIER(SK)

From our previous knowledge [7], this query is very costly to maintain as it is non-q-hierarchical.

However, if updates in PART and SUPPLIER are insertion-only, this query becomes easy to maintain,

even if updates in PARTSUPP are arbitrary [25]. To bridge the gap between existing theory and

practical applications, we aim for a more fine-grained analysis of maintaining CQs over mixed

sequences that display specific patterns (insertion-only or FIFO) on sub-queries.

1.1 Problem Definition
Conjunctive Query. Let R be a database schema with𝑚 relations 𝑅1, 𝑅2, ¨ ¨ ¨ , 𝑅𝑚 and 𝑛 attributes

V “ t𝑥1, 𝑥2, ¨ ¨ ¨ , 𝑥𝑛u. Each relation 𝑅𝑖 is defined on a subset of attributes 𝑒𝑖 Ď V . Let domp𝑥q be

the domain of attribute 𝑥 . Let domp𝑋 q “
ś

𝑥P𝑋 domp𝑥q be the domain of a subset of attributes

𝑋 . Let 𝐷 be a given instance of R, and the corresponding instances of 𝑅1, ¨ ¨ ¨ , 𝑅𝑚 be 𝑅𝐷
1
, ¨ ¨ ¨ , 𝑅𝐷

𝑚 ,

where 𝑅𝐷
𝑖 is a finite set of tuples from domp𝑒𝑖q. When the context is clear, we drop the superscript

and use 𝑅𝑖 for relation and instance.

In this paper, we consider the class of self-join-free conjunctive queries (CQs) formally defined as
1

Q :“ 𝜋y p𝑅1p𝑒1q ’ 𝑅2p𝑒2q ’ ¨ ¨ ¨ ’ 𝑅𝑚p𝑒𝑚qq ,

where y Ď V denotes the output attributes. Let ȳ “ V ´ y denote the non-output attributes. Each
𝑅𝑖 in Q is distinct, i.e., the CQ does not have a self-join. If y “ t𝑥1, 𝑥2, ¨ ¨ ¨ , 𝑥𝑛u, such a CQ is a full
join, i.e., the natural join of underlying relations. For simplicity,

acyclic

weak-q-hierarchical

q-hierarchical

free-connex

Figure 1. Classification of CQs.

we omit 𝜋y for a full join. If y “ H, such a CQ is known as

a Boolean CQ, which indicates whether there exists any result

of the underlying join query. We also use a triple pV, E, yq to

represent Q, where E “ t𝑒1, 𝑒2, ¨ ¨ ¨ , 𝑒𝑚u.

We use Figure 1 to illustrate the relationship between different

classes of CQs to be discussed throughout the paper and defer

their formal definitions to Section 2.

Updates and Update Sequence. In the dynamic setting, we model each update as a quadruple

p𝑡, 𝑠, +{-, 𝑅𝑖q for 𝑠 P Z, indicating that tuple 𝑡 is inserted into p+q or deleted from p-q relation 𝑅𝑖 at

timestamp 𝑠 . Let 𝑆 be a sequence of updates ordered by their timestamp, where only a single update

occurs at any given timestamp. An enumeration procedure may be invoked after any timestamp.

Rather than specifying a separate preprocessing step, the initial database state may be simulated by

using an insertion-only update sequence concatenated as the prefix of an arbitrary update sequence.

Suppose the initial database contains 𝑛 tuples and that the current timestamp is 0. Each tuple 𝑡 P 𝑅𝑖
will be assigned a distinct timestamp 𝑠 within the range r´𝑛,´1s. Consequently, for each tuple 𝑡 ,

the update sequence includes the quadruple p𝑡, 𝑠, +, 𝑅𝑖q for each tuple 𝑡 . For the remainder of this

discussion, we assume the initial database is (logically) empty, with all pre-existing tuples inserted

at negative timestamps.

Under set semantics, inserting 𝑡 into 𝑅𝑖 has no effect if 𝑅𝑖 already contains 𝑡 , and likewise, deleting

𝑡 has no effect if 𝑡 is not present in 𝑅𝑖 . For a given update sequence 𝑆 , the lifespan of a tuple 𝑡

is an interval r𝑡`, 𝑡´s, where 𝑡`
denotes the timestamp when 𝑡 is inserted, and 𝑡´

denotes the

timestamp when 𝑡 is deleted. For any tuple 𝑡 not deleted by the end of 𝑆 , we set 𝑡´ “ `8 to

indicate its persistence beyond the scope of the considered timestamp. Moreover, we treat two `8

1
Hence, “self-join-free CQ” is simplified as “CQ” in the remaining of this paper.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:3

values as incomparable, thereby ensuring that the single-update assumption is maintained. It is

possible for the same tuple to be inserted and subsequently deleted multiple times. For simplicity,

these instances are regarded as logically distinct tuples, with each one possessing a unique lifespan.

These lifespans, corresponding to the same physical tuple, are assumed to be disjoint under set

semantics. The dynamic database 𝐷 is defined by the update sequence 𝑆 in such a way that for

every timestamp 𝑠 P Z, the set of tuples 𝑡 for which 𝑠 P r𝑡`, 𝑡´s constitutes a snapshot of 𝐷 . The

size of the dynamic database 𝐷 is then defined as the maximum number of tuples that coexist at

any given timestamp.

We are particularly interested in two classes of update sequences that are practically important:

‚ First-in-first-out (FIFO). An update sequence 𝑆 is FIFO if, for any pair of tuples 𝑡1, 𝑡2, if 𝑡
`
1

ă 𝑡`
2
,

then 𝑡´
1

ă 𝑡´
2

or 𝑡´
2

“ `8, and not FIFO otherwise. FIFO sequences are commonly used in

sliding-window or tumbling-window models applied to streaming data.

‚ Insertion-only or Deletion-only. An update sequence 𝑆 is insertion-only if for every tuple 𝑡 ,

𝑡´ “ `8, and not insertion-only otherwise. By definition, insertion-only sequences are inherently
FIFO. Symmetrically, an update sequence 𝑆 is deletion-only if for every tuple 𝑡 , 𝑡` ă 0, and not
deletion-only otherwise. In subsequent discussions, we will focus on the insertion-only case,

whereas an analysis of the deletion-only case is deferred to Appendix C.

For a CQ Q “ pV, E, yq and an update sequence 𝑆 , the projection of 𝑆 to a subset E1 Ď E of

relations is defined as 𝜋E1
𝑆 “ tp˚, ˚, +{-, 𝑅𝑒q P 𝑆 : 𝑒 P E1u, that is, it consists solely of those updates

in 𝑆 that pertain to relations from E1. We define a pattern 𝜎 : 2
E Ñ tinsertion-only, FIFO, arbitraryu

to characterize update sequences for Q. An update sequence 𝑆 is said to be consistent with the

pattern 𝜎 , if for every subset E1 Ď E of relations, the projection 𝜋E1
𝑆 adheres to the update

behavior specified by 𝜎pE1q. Furthermore, 𝑆 is called a 𝜎-sequence if it is consistent with 𝜎 . The

projection of the pattern 𝜎 onto a subset E1 Ď E of relations is defined as p𝜋E1
𝜎q : 2

E1 Ñ

tinsertion-only, FIFO, arbitraryu, such that for every subset E2 Ď E1, p𝜋E1
𝜎qpE2q “ 𝜎pE2q.

Enumeration. We focus on 𝑂p1q-delay enumeration, such that the time from the start of the

enumeration to the first result, the time between any consecutive pair of results, and the time

from the last result to the termination of the enumeration process, are 𝑂p1q. In this paper, we aim

to understand the maintenance complexity of CQs over update sequences consistent to a given

pattern 𝜎 , if targeting 𝑂p1q-delay enumeration. For simplicity, “Q can (resp. cannot) be maintained

in 𝛼 time over a set S of update sequences” should be translated as “there exists an index (resp.

there doesn’t exist an index) that can be maintained over an arbitrary update sequence 𝑆 P S in

amortized 𝛼 time per update, and support 𝑂p1q-delay enumeration for Q whenever needed”.

Model of Computation. We use the standard RAM model under the uniform cost measure. For

an input of size 𝑁 , every register is assumed to have a length𝑂plog𝑁 q. Any arithmetic operation –

such as addition, subtraction, multiplication, division – as well as the concatenation of the values

of two registers, can be performed in𝑂p1q time. Moreover, retrieving the content of any register by

its unique address is also achievable in 𝑂p1q time.

1.2 Previous Results
Maintaining CQs under arbitrary updates. In 2017, two independent papers [7, 16] investigated

the worst-case complexity of dynamically maintaining CQs under arbitrary updates. Their results

establish the following dichotomy: Any q-hierarchical CQ can be maintained in 𝑂p1q time under

arbitrary updates, while for non-q-hierarchical CQs, a polynominal lower bound on the update

time has been demonstrated, assuming the OMv and OuMv conjectures.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:4 Xiao Hu and Qichen Wang

Theorem 1.1 ([7, 16]). A CQ Q can be maintained in 𝑂p1q time over arbitrary updates if Q is q-

hierarchical, and cannot be maintained in𝑂
´

a

|𝐷|
1´𝜖

¯

time for arbitrary 𝜖 ą 0 otherwise, assuming
the OMv and OuMv conjectures.

Conjecture 1.2 (OMv Conjecture [15]). The following problem cannot be solved in 𝑂p𝑛3´𝜖q

time for any constant 𝜖 ą 0: Given an 𝑛 ˆ 𝑛 Boolean matrix 𝑀 and a sequence of 𝑛-dimensional
Boolean vectors 𝑣1, 𝑣2, ¨ ¨ ¨ , 𝑣𝑛 , it is required to output𝑀𝑣𝑖 before seeing 𝑣𝑖`1, for every 𝑖 P r𝑛s.

Conjecture 1.3 (OuMv Conjecture [15]). The following problem cannot be solved in 𝑂p𝑛3´𝜖q

time for any constant 𝜖 ą 0: Given an𝑛ˆ𝑛 Boolean matrix𝑀 and a sequence of𝑛-dimensional Boolean
vector pairs p𝑢1, 𝑣1q, p𝑢2, 𝑣2q, ¨ ¨ ¨ , p𝑢𝑛, 𝑣𝑛q, it is required to output 𝑢𝑇𝑖 𝑀𝑣𝑖 before seeing p𝑢𝑖`1, 𝑣𝑖`1q, for
every 𝑖 P r𝑛s.

Later, this Ωp
a

|𝐷|q lower bound was matched for certain specific non-q-hierarchical CQs, such

as the triangle [18] and the length-4 cycle [14]. Moreover, any free-connex CQ can be maintained in

𝑂p|𝐷|q time under arbitrary updates [16, 25]. Consequently, a

a

|𝐷|-gap exists between the lower

and upper bounds for general non-q-hierarchical CQs. In addition, the tradeoff between update

time and enumeration delay has also been investigated for specific queries, including the triangle

query [18] and hierarchical CQs [19]. However, the derived theoretical lower bounds typically

require only the identification of a single hard instance among all possible update sequences, which

results in particularly loose lower bounds for many simple update sequences. Recently, people have

investigated the instance-dependent complexity of maintaining CQs based on the enclosureness of

update sequences [26] for foreign-key acyclic joins. Building on this idea, Wang et al. [25] recently

extended the notion of enclosureness to free-connex CQs, and demonstrated that such CQs can be

maintained in time proportional to the enclosureness of the update sequence. The formal definition

of enclosureness will be presented in Section 2. This concept constitutes a significant aspect of our

dichotomy results, as it helps establish the optimality of our lower bounds.

Lemma 1.4 ([25], Lemma 6.6). For a free-connex CQ Q with a free-connex join tree T , there is an
index that can be updated in 𝑂p𝜆q amortized time over an update sequence of enclosureness 𝜆 under
T , while supporting 𝑂p1q-delay enumeration for Q.

Enumerating CQs over static databases. Enumerating CQs over static databases can be simulated

by an insertion-only sequence as follows: (i) the initial database is assumed to be empty; (ii) input

tuples are inserted sequentially, one by one; and (iii) after all tuples have been inserted into the

database, an enumeration procedure is invoked to generate the query results.

Lemma 1.5 ([16]). For any CQ Q, if Q can be maintained in 𝛼 time over insertion-only sequences,
then for an arbitrary database 𝐷 , an index can be built in 𝑂p𝛼 ¨ |𝐷|q preprocessing time, from which
all query results of Qp𝐷q can be enumerated with 𝑂p1q delay.

From Lemma 1.4, Wang et al. [25] also obtained the following results:

Corollary 1.6 ([25], Theorem 6.11). A free-connex CQ Q can be maintained in 𝑂p1q time over
insertion-only update sequences.

On the other hand, any lower bound for enumerating CQs over static databases implies a lower

bound for maintaining CQs over insertion-only sequences. Bagan et al. [5] and Brault-Baron [9]

showed that after𝑂p|𝐷|q preprocessing time, a CQ Q over any static database 𝐷 can be enumerated

with 𝑂p1q delay, if and only if Q is free-connex. Putting everything together, we have:

Theorem 1.7. A CQ Q can be maintained in 𝑂p1q time over insertion-only updates if Q is free-
connex and cannot be maintained in𝑂p1q time otherwise, assuming the Boolean Matrix Multiplication,
Triangle Detection, and HyperClique conjectures.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:5

Conjecture 1.8 (Triangle Detection conjecture [2]). Given a graph with𝑚 edges, no algo-
rithm can decide whether a triangle exists in 𝑂p𝑚q time.

Conjecture 1.9 (Boolean Matrix Multiplication [24] Conjecture). Given two Boolean
matrices of size 𝑛 ˆ 𝑛, no algorithm can compute their product in 𝑂p𝑛2q time.

Conjecture 1.10 (HyperCliqe Conjecture [21]). Given a 𝑘-uniform hypergraph (for 𝑘 ě 3),
no algorithm can decide whether a hyper-clique of size 𝑘 ` 1 exists or not in 𝑂p𝑚q time, i.e., a set of
𝑘 ` 1 vertices where every subset of size 𝑘 forms a hyperedge, where𝑚 is the number of edges in the
hypergraph.

Enumerating CQs under other updates. In an independent work, Kara et al. [17] studied

the enumeration of CQs over databases where some relations remain static while others undergo

arbitrary updates. Their goal is to characterize the class of CQs for which an index can be maintained

with𝑂p1q amortized update time while supporting𝑂p1q-delay enumeration. They further refine this

characterization by considering three cases based on whether the preprocessing time is restricted

to linear, polynomial, or exponential. In contrast, our work investigates a more general setting

where updates in each relation — or even a subset of relations — may follow different patterns,

including insertion-only, FIFO, or arbitrary. However, we implicitly restrict the preprocessing time

to be linear complexity. As the settings considered in these other works differ fundamentally from

our framework, direct comparisons are not feasible. Meanwhile, Abo Khamis et al. [3] investigate

the difference in the amortized update time for maintaining general queries under insertion-only

versus arbitrary update sequences, an investigation that diverges from our focus on characterizing

queries maintainable within which are different from our target for characterizing 𝑂p1q amortized

update time.

1.3 Our Results
Due to the inherent difficulty of maintaining non-free-connex CQs even over insertion-only se-

quences, we concentrate our attention in this paper to self-join-free free-connex CQs. Our lower

bound results are derived under well-known conjectures, including the OMv and OuMv conjec-

tures [15]. We discuss the optimality of our lower bounds, each of which is either an implication or

an adaption of Lemma 1.4.

Maintaining CQs over FIFO sequences. We first address the problem of maintaining CQs over

FIFO sequences. In this context, we identify a class of queries, termed weak-q-hierarchical CQs,
which lies strictly between free-connex queries and q-hierarchical queries (see Figure 1). Our first

main result is a structural dichotomy that determines the hardness of maintaining CQs over FIFO

sequences.

Theorem 1.11. A free-connex CQ Q can be maintained in 𝑂p1q time over FIFO sequences if Q is
weak-q-hierarchical and cannot be maintained in𝑂p

a

|𝐷|
1´𝜖

q time for any 𝜖 ą 0 otherwise, assuming
the OMv and OuMv conjectures.

Maintaining CQs over mixed update sequences.We next consider mixed update sequences,
in which a specific pattern - either insertion-only or FIFO - is exhibited by a subset of relations.

To characterize the complexity of maintaining CQs under such mixed sequences, we introduce

a procedural dichotomy formalized in the procedureMixDetect (see Algorithm 2). Notably, this

result perfectly unifies all the previously known results for arbitrary and insertion-only update

sequences together with our new findings for FIFO sequences.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:6 Xiao Hu and Qichen Wang

Theorem 1.12. For a free-connex CQ Q “ pV, E, yq and a pattern 𝜎 of update sequences, Q can be
maintained in 𝑂p1q time over any 𝜎-sequence if MixDetect returns true, and cannot be maintained
in 𝑂p

a

|𝐷|
1´𝜖

q time for any 𝜖 ą 0 otherwise, assuming the OMv and OuMv sconjectures.

1.4 Organization of This Paper
This paper is organized as follows. In Section 2, we introduce the preliminary concepts essential for

understanding both upper and lower bounds. In Section 3, we focus on maintaining CQs over FIFO

sequences. We then extend our discussion to maintaining CQs over mixed sequences in Section 4.

Finally, we conclude this paper and outline potential directions for future research in Section 5.

2 PRELIMINARIES
2.1 Classification of CQs
We introduce several important classes of CQs that are widely studied in the literature. We start

with some commonly used terminology. In a CQ Q “ pV, E, yq, let E𝑥 “ t𝑒 P E : 𝑥 P 𝑒u be the

set of relations containing attribute 𝑥 P V . An attribute 𝑥 P V is unique if it only appears in one

relation, i.e., |E𝑥 | “ 1. Let V‚ be the set of unique attributes in Q. For a subset E1 Ď E of relations,

the E1
-induced CQ refers to QrE1s :“ p

ď

𝑒PE1

𝑒, E1,
ď

𝑒PE1

p𝑒 X yqq.

Acyclic CQ [6, 12, 16]. There are some equivalent definitions of acyclic CQs, and we adopt

one based on a generalized join tree as it naturally captures different classes of queries with

the height of the tree. A generalized relation 𝑅𝑒 is defined on a subset 𝑒 Ď V of attributes such

that there exists some input relation 𝑒 1 P E with 𝑒 Ď 𝑒 1
, and is distinguished from the input

relations. A CQ Q “ pV, E, yq is acyclic if there exists a tree T in which each node corresponds

to a distinct input relation in E or generalized relation while satisfying the following properties:

r𝑥3s

r𝑥2, 𝑥3s 𝑅8p𝑥3, 𝑥8q 𝑅9p𝑥3, 𝑥9q

𝑅1p𝑥1, 𝑥2, 𝑥3q

𝑅2p𝑥1, 𝑥2q𝑅3p𝑥1, 𝑥4q 𝑅5p𝑥2, 𝑥3q

𝑅4p𝑥4, 𝑥5q 𝑅6p𝑥2, 𝑥6q 𝑅7p𝑥3, 𝑥7q

Figure 2. A free-connex join tree
for Q1. r¨s is a generalized relation.

r𝑥3s

r𝑥2, 𝑥3s

𝑅1p𝑥1, 𝑥2, 𝑥3q

𝑅3p𝑥3, 𝑥5q

𝑅2p𝑥2, 𝑥3, 𝑥4q

Figure 3. A height-1 free-connex
join tree for Q2. r¨s denotes a gen-
eralized relation.

‚ (cover property) each input relation corresponds to a node in

T ; and each leaf node of T corresponds to an input relation;

‚ (connect property) for each attribute 𝑥 P V , all nodes of T
containing 𝑥 form a connected subtree of T ;

T is called a generalized join tree ofQ. If all nodes inT correspond

to input relations in E, T is called a traditional join tree.
Free-connex CQ [5, 25]. An acyclic CQ Q “ pV, E, yq is free-
connex if the derived CQ pV, E Y tyu, yq is also acyclic. Equiva-

lently, an acyclic CQQ “ pV, E, yq is free-connex if there exists a

tree T in which each node corresponds to a distinct input relation

or generalized relation while satisfying the following properties

(in addition to the cover and connect property for acyclic CQs):

‚ (above property) no node corresponding to an input relation

is an ancestor of a node corresponding to a generalized relation;

‚ (guard property) if node 𝑒 corresponds to a generalized rela-

tion, 𝑒 Ď 𝑒 1
holds for every child node 𝑒 1

of 𝑒;

‚ (connex property) a subset Econ of nodes exist such that (i)

Econ forms a connected subtree including the root of T ; (ii) for

any 𝑒 P Econ with its parent 𝑒 1
, 𝑒 X 𝑒 1 Ď y; (iii) y Ď

Ť

𝑒PEcon
𝑒 .

T is called a free-connex join tree of Q, and T𝑒 is the subtree of T rooted at 𝑒 . The height of T is the

maximum number of relations on any leaf-to-root path, without counting generalized relations.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:7

Example 2.1. Figure 2 shows a free-connex join tree for CQ Q1 “ 𝑅1p𝑥1, 𝑥2, 𝑥3q ’ 𝑅2p𝑥1, 𝑥2q ’

𝑅3p𝑥1, 𝑥4q ’ 𝑅4p𝑥4, 𝑥5q ’ 𝑅5p𝑥2, 𝑥3q ’ 𝑅6p𝑥2, 𝑥6q ’ 𝑅7p𝑥3, 𝑥7q ’ 𝑅8p𝑥3, 𝑥8q ’ 𝑅9p𝑥3, 𝑥9q. It has

height as 3 with the path r𝑥3s - r𝑥2, 𝑥3s - 𝑅1 - 𝑅3 - 𝑅4.

q-hierarchical CQ [7].ACQQ “ pV, E, yq is q-hierarchical if for any pair of attributes 𝑥1, 𝑥2 P V ,

either E𝑥1
Ď E𝑥2

or E𝑥2
Ď E𝑥1

or E𝑥1
X E𝑥2

“ H; and if 𝑥1 P y and E𝑥1
Ĺ E𝑥2

, then 𝑥2 P y. We

mention two important structural properties of q-hierarchical CQs:

Lemma 2.2 ([25]). A CQ is q-hierarchical if and only if it has a height-1 free-connex join tree.

Lemma 2.3. In a q-hierarchical CQ Q“pV, E, yq with E1 Ď E, QrE1s is also q-hierarchical.

Proof of Lemma 2.3. Let T be a height-1 free-connex join tree of the q-hierarchical CQ Q. For

any subset E1 Ď E of relations, we remove all leaf nodes corresponding to relations in E ´ E1
. We

also recursively remove any generalized relation that is a leaf node. The resulting tree is a height-1

free-connex join tree for the E1
-induced CQ. Hence, the E1

-induced CQ is q-hierarchical. □

Example 2.4. Consider a q-hierarchical CQ Q2 :“ 𝜋𝑥2,𝑥3
𝑅1p𝑥1, 𝑥2, 𝑥3q ’ 𝑅2p𝑥2, 𝑥3, 𝑥4q ’ 𝑅3p𝑥3, 𝑥5q

with its height-1 free-connex join tree with Econ “ tr𝑥3s, r𝑥2, 𝑥3su in Figure 3.

2.2 Upper Bounds
Due to the high time and space costs of the classic change propagation framework [11] for main-

taining queries, Wang et al. [25] proposed an improved approach that eliminates the join operator

in change propagation [11]. Given a free-connex CQ, the method first organizes each input relation

at the leaf level, connecting them via relational operators at all internal nodes. Rather than main-

taining subqueries directly, it decomposes each subquery into a semi-join view (𝑉𝑠 ) and a projection

view (𝑉𝑝 ) of linear size. Intuitively, the semi-join view of a relation 𝑅 contains all tuples in 𝑅 that

can successfully join with tuples in its descendant nodes, while the projection views facilitate the

efficient maintenance of these semi-join views. These two views are defined recursively over the

join tree. Example 2.5 is used to illustrate these concepts, and additional details can be found in [25].

𝑉𝑠p𝑅2q :“ 𝑅2

𝑅1
𝑉𝑝p𝑅2q :“ 𝜋𝑥1

𝑉𝑠p𝑅2q

𝑉𝑠p𝑅1q :“ 𝑅1 ˙𝑉𝑝p𝑅2q

𝑉𝑝p𝑅1q :“ 𝜋𝑥2
𝑉𝑠p𝑅1q 𝑅3

𝑉𝑠p𝑅3q :“ 𝑅3 ˙𝑉𝑝p𝑅1q

𝑅2

Figure 4. Maintaining Qhier by the frame-
work proposed in [25]. Input relations are in
black, semi-join views are in blue, and pro-
jection views are in red.

Example 2.5. Consider a non-q-hierarchical CQ

Qhier “ 𝜋H𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥1q ’ 𝑅3p𝑥2q. Figure 4 il-

lustrates the query plan designed for Qhier [25]. In this

query plan, each node 𝑒 is associated with a semi-join

view𝑉𝑠p𝑅𝑒q that stores those tuples in 𝑅𝑒 that can be suc-

cessfully joined with all relations in the subtree rooted

at 𝑒 . For instance, we define the semi-join views as fol-

lows: 𝑉𝑠p𝑅1q :“ 𝑅1 ˙ 𝑅2, 𝑉𝑠p𝑅2q :“ 𝑅2 and 𝑉𝑠p𝑅3q :“

𝑅3 ˙ p𝑅1 ˙ 𝑅2q. Each node 𝑒 is further associated with a

projection view 𝑉𝑝p𝑅𝑒q that stores the projection of the

corresponding semi-join view onto the join attributes

between 𝑒 and its parent node. For instance, we define

the projection-views as follows: 𝑉𝑝p𝑅1q :“ 𝜋𝑥2
𝑉𝑠p𝑅1q,

𝑉𝑝p𝑅2q :“ 𝜋𝑥1
𝑉𝑠p𝑅2q and 𝑉𝑠p𝑅3q :“ 𝜋H𝑉𝑝p𝑅3q. It is note-

worthy that the series of semi-joins within the subtree

rooted at any node 𝑒 can be compactly represented by the

semi-joins between the node 𝑒 and the projection views of its child nodes. Consequently, the simpli-

fied expressions for the semi-join views become:𝑉𝑠p𝑅1q :“ 𝑅1 ˙𝑉𝑝p𝑅2q and𝑉𝑠p𝑅3q :“ 𝑅3 ˙𝑉𝑝p𝑅1q.

This method guarantees both linear space usage andmaintenance time in the worst case; however,

the worst-case complexity may not manifest for every update sequence. To provide a more nuanced

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:8 Xiao Hu and Qichen Wang

cost analysis, [25] introduced the notion of enclosureness for update sequences to quantify the

amortized update time required. Intuitively, the “status” of a tuple 𝑡 , i.e., whether 𝑡 is present in

𝑉𝑠p𝑅𝑒q, can change multiple times during its lifespan as a result of insertions or deletions of tuples

in descendant nodes. Notably, successive insertions (when 𝑡 is present in 𝑉𝑠p𝑅𝑒q) or successive

deletions (when 𝑡 is absent from 𝑉𝑠p𝑅𝑒q) in descendant nodes do not further change its status.

For example, if an insertion of a tuple 𝑡 1
in the subtree rooted at 𝑒 triggers a change in the status

of 𝑡 , then 𝑡 will remain in the semi-join view 𝑉𝑠p𝑅𝑒q until the first subsequent deletion in the

subtree occurs. Consequently, the concept of a tuple’s minimal lifespan is introduced to capture the

minimum temporal interval over which a tuple can effect a change in the status of another tuple.

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

(a4)

(a3)

(a2)

(a1)

R2

(a4, b1)

(a3, b1)

(a2, b1)

(a1, b1)

R1

(b1)R3

Vs

Figure 5. An update sequence for Qhier. Red
intervals are lifespans of tuples in 𝑅1. Blue
intervals are lifespans of tuples in 𝑅2. Purple
intervals are lifespans of tuples in 𝑅3. Green
intervals are minimal lifespans for tuples in
𝑅1 and 𝑅2. Black intervals are the insertions
and deletions of p𝑏1q P 𝑉𝑠p𝑅3q.

Definition 2.6 (Minimal lifespan). Given a free-connex

query Q, a free-connex T of Q, an update sequence 𝑆 ,

and a tuple 𝑡1 in an input relation 𝑅𝑒 , the two minimal
lifespans of 𝑡1 with respect to its lifespan 𝐼p𝑡1q “ r𝑡`

1
, 𝑡´

1
s

are defined as:

p𝐼p𝑡1q“

«

𝑡`
1
,min

˜

𝑡´
1
, min

𝑡2P𝑅𝑒1 :𝑒1PT𝑒´t𝑒u,𝑡
´

2
ą𝑡

`

1

𝑡´
2

¸ff

;

q𝐼p𝑡1q“

«

max

˜

𝑡`
1
, max

𝑡2P𝑅𝑒1 :𝑒1PT𝑒´t𝑒u,𝑡
`

2
ă𝑡

´

1

𝑡`
2

¸

, 𝑡´
1

ff

Definition 2.7 (Enclosureness). Given a free-connex CQ

Q, a free-connex join treeT ofQ, and an update sequence

𝑆 , for a node 𝑒 P T and a tuple 𝑡 P 𝑅𝑒 , its enclosureness is

𝜆Tp𝑡q “ max

For all 𝑡 1PJ, there exists 𝑒1PT𝑒´t𝑒u,𝑡 1P𝑅𝑒1

For all 𝑡1PJ, 9𝐼p𝑡1qĎ𝐼p𝑡q

For all 𝑡2,𝑡3PJ, 9𝐼p𝑡2qX 9𝐼p𝑡3q“H

|J |,

where each 9𝐼 is either p𝐼 or q𝐼 , i.e., the largest number of

disjoint minimal lifespans of tuples in the descendants

of 𝑒 , which are contained in the lifespan of 𝑡 . Then, the

enclosureness of the update sequence is still average:

𝜆Tp𝑆q :“ max

´
ř

𝑡P𝑆 𝜆Tp𝑡q

|𝑆|
, 1

¯

.

This concept enables a more refined analysis of update sequences that exhibit varying patterns.

For instance, in an insertion-only sequence, the enclosureness is 1 on a free-connex join tree.

Consequently, any free-connex conjunctive query can be maintained in 𝑂p1q time over insertion-

only update sequences.

Example 2.8. Consider the example of maintaining Qhier “ 𝜋H𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥1q ’ 𝑅3p𝑥2q

under an update sequence as shown in Figure 5. The relevant views to be maintained are shown

in Figure 4. Observe that tuple p𝑏1q is inserted into 𝑅3 at timestamp 1 and deleted from 𝑅3 at

timestamp 16. It is first inserted into 𝑉𝑠p𝑅3q at timestamp 5 due to the insertion of tuple p𝑎1q P 𝑅2,

and subsequently deleted from 𝑉𝑠p𝑅3q at timestamp 9 following the deletion of tuple p𝑎1, 𝑏1q P 𝑅1.

Consequently, the tuple p𝑎1q P 𝑅2 has a minimal lifespan as r5, 9s. Moreover, although tuple p𝑏1q

can also join with tuple p𝑎2q P 𝑅2 and tuple p𝑎1, 𝑏1q P 𝑅1 during the period r6, 8s, the insertion of

tuple p𝑎2, 𝑏1q won’t change the status of p𝑏1q in 𝑉𝑠p𝑅3q, as the successive insertion or deletion do

not trigger additional changes to its status. Subsequently, tuple p𝑏1q is reinserted into 𝑉𝑠p𝑅3q at

timestamp 10 and removed at timestamp 12. During this phase, the tuple p𝑎3, 𝑏1q P 𝑅1 has a minimal

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:9

Algorithm 1: TrimpQ “ pV, E, yqq

1 V‚ Ð t𝑥 P V : |E𝑥 | “ 1u;

2 while true do
3 if there exists 𝑒, 𝑒 1 P E s.t. 𝑒 ´ V‚ Ď 𝑒 1 and 𝑒 X V‚ Ď ȳ then E Ð E ´ t𝑒u;

4 if there exists 𝑒, 𝑒 1 P E s.t. 𝑒 ´ V‚ Ď 𝑒 1 X y then E Ð E ´ t𝑒u ;

5 if E does not change then break;

6 return E;

lifespan as r10, 11s, as it is inserted at timestamp 10 and its status is changed by the deletion of

tuple p𝑎1q P 𝑅2 at timestamp 11. Finally, tuple p𝑏1q is inserted into 𝑉𝑠p𝑅3q once more at timestamp

14 due to the insertion of p𝑎4q P 𝑅2, and it is ultimately removed from 𝑉𝑠p𝑅3q at timestamp 16 as a

result of the deletion of p𝑏1q itself. Taken together, the enclosureness of p𝑏1q is 3, with one possible

disjointed set of minimal lifespans being tr5, 9s, r10, 11s, r14, 15su.

3 MAINTAIN CQS OVER FIFO SEQUENCES
3.1 Weak-q-hierarchical CQs
We begin by introducing two key concepts for CQs: reducible relations and skeleton. These no-
tions play a crucial role in characterizing the class of weak-q-hierarchical CQs. In particular, by

understanding how relations within a query can be reduced relative to one another and how the

remaining non-reducible relations form a skeleton, we can gain further insight into the properties

and efficient maintenance of these queries.

Definition 3.1 (Reducible Relation). In a free-connex CQ Q “ pV, E, yq, a relation 𝑒 P E is

reducible if there exists another relation 𝑒 1 P E such that (i) 𝑒 ´ V‚ Ď 𝑒 1
and 𝑒 X V‚ Ď ȳ; or (ii)

𝑒 ´ V‚ Ď 𝑒 1 X y. In this context, 𝑒 1
is called an anchor of 𝑒 .

It is worth noting that one relation could have multiple anchors, and one relation could serve as

an anchor for multiple other relations. Moreover, the anchor ordering is transitive. Specifically, if 𝑒 1

is an anchor of 𝑒 , and 𝑒2
is an anchor of 𝑒 1

, then 𝑒2
is an anchor of 𝑒 .

Lemma 3.2. If 𝑒1 is reducible by 𝑒2, and 𝑒2 is reducible by 𝑒3, then 𝑒1 is reducible by 𝑒3.

Proof. We distinguish the following four cases. Case 1: 𝑒1 ´ V‚ Ď 𝑒2, 𝑒1 X V‚ Ď ȳ, and
𝑒2 ´ V‚ Ď 𝑒3, 𝑒2 X V‚ Ď ȳ: from 𝑒1 ´ V‚ Ď 𝑒2, 𝑒2 ´ V‚ Ď 𝑒3, and 𝑒1 X p𝑒2 X V‚q “ H, we have

𝑒1 ´ V‚ Ď 𝑒2 ´ V‚ Ď 𝑒3, therefore 𝑒1 and 𝑒3 satisfies the condition (i) in Definition 3.1. Case 2:
𝑒1 ´V‚ Ď 𝑒2, 𝑒1 XV‚ Ď ȳ, and 𝑒2 ´V‚ Ď 𝑒3 Xy: similarly, from 𝑒1 ´V‚ Ď 𝑒2 and 𝑒2 ´V‚ Ď 𝑒3 Xy,
we can get 𝑒1 ´V‚ Ď 𝑒2 ´V‚ Ď 𝑒3 Xy, therefore 𝑒1 and 𝑒3 satisfies the condition (ii) in Definition 3.1.

Case 3: 𝑒1 ´ V‚ Ď 𝑒2 X y, and 𝑒2 ´ V‚ Ď 𝑒3, 𝑒2 X V‚ Ď ȳ: since 𝑒2 X V‚ Ď ȳ, 𝑒2 X y Ď 𝑒2 ´ V‚.

Therefore, 𝑒1 ´ V‚ Ď 𝑒2 X y Ď 𝑒2 ´ V‚ Ď 𝑒3, which leads to 𝑒1 ´ V‚ Ď 𝑒3 X y that satisfies

the condition (ii) in Definition 3.1. Case 4: 𝑒1 ´ V‚ Ď 𝑒2 X y, and 𝑒2 ´ V‚ Ď 𝑒3 X y: similarly,

𝑒1 ´V‚ Ď 𝑒2 X y Ď 𝑒2 ´V‚ Ď 𝑒3 X y, making 𝑒1 and 𝑒3 satisfies condition (ii) in Definition 3.1. □

We next introduce the Trim procedure, as described in Algorithm 1, which takes as input a CQ

Q “ pV, E, yq and returns a subset of relations, referred to as the skeleton of Q. This procedure
iteratively identifies a reducible relation and its anchor in the remaining relations (if possible), and

removes this reducible relation. When no more relations can be removed, the remaining subset of

relations is returned. The skeleton returned (denoted as E♣) may not be unique. Below, we use Q♣
to denote the CQ induced by E♣.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:10 Xiao Hu and Qichen Wang

Example 3.3. Consider a CQ Q5 “ 𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥1, 𝑥2, 𝑥3q ’ 𝑅3p𝑥2, 𝑥3, 𝑥4q ’ 𝑅4p𝑥2, 𝑥3, 𝑥5q ’

𝑅5p𝑥4, 𝑥6q.We haveV‚ “ t𝑥5, 𝑥6u. A skeleton is t𝑒2, 𝑒3u, since 𝑒1 Ĺ 𝑒2, 𝑒4´V‚ Ĺ 𝑒2, and 𝑒5´V‚ Ĺ 𝑒3.

On the other hand, consider another CQ Q6 “ 𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥2, 𝑥3q ’ 𝑅3p𝑥2, 𝑥4q. We have

V‚ “ t𝑥1, 𝑥3, 𝑥4u. One possible skeleton is t𝑒1, 𝑒2u and the other possible skeleton is t𝑒1, 𝑒3u.

r𝑥2s

𝑅1p𝑥1, 𝑥2q

𝑅4p𝑥1q

𝑅2p𝑥2, 𝑥3q

𝑅5p𝑥3, 𝑥6q𝑅3p𝑥2, 𝑥4, 𝑥5q

Figure 6. A height-2 free-
connex join tree for Q3.

Definition 3.4 (weak-q-hierarchical). A free-connex CQ Q is weak-

q-hierarchical if it has a skeleton that induces a q-hierarchical CQ.

Example 3.5. For a weak-q-hierarchical CQ Q3 “ 𝜋𝑥2
𝑅1p𝑥1, 𝑥2q ’

𝑅2p𝑥2, 𝑥4q ’ 𝑅3p𝑥2, 𝑥5q ’ 𝑅4p𝑥1q ’ 𝑅5p𝑥3, 𝑥6q, Algorithm 1 removes 𝑅4,

which is reducible with 𝑅1 as its anchor and 𝑅5, which is reducible with

𝑅2 as its anchor. Remaining relations 𝑅1, 𝑅2, 𝑅3, form the skeleton and

induce a q-hierarchical CQ 𝜋𝑥2
𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥2, 𝑥4q ’ 𝑅3p𝑥2, 𝑥5q.

3.2 Maintaining Weak-q-hierarchical CQs
Next, we demonstrate that weak-𝑞-hierarchical CQs can be efficiently maintained over FIFO update

sequences. Before introducing the algorithm, we establish two key structural properties of weak-𝑞-

hierarchical CQs with respect to their free-connex join trees.

Lemma 3.6. For a free-connex CQ Q “ pV, E, yq with its free-connex join tree T , for any leaf node
𝑒 with its parent node 𝑒 1, 𝑒 is reducible, with 𝑒 1 serving as its anchor.

Proof of Lemma 3.6. The connect property implies 𝑒 ´V‚ “ 𝑒 X𝑒 1
. If 𝑒 XV‚ “ H, condition (i)

follows. Below, assume 𝑒XV‚ ‰ H. If p𝑒XV‚qXy “ H, condition (i) follows. If p𝑒XV‚qXy ‰ H,

we must have 𝑒 P Econ; otherwise, no relation in Econ contains the output attribute(s) in p𝑒XV‚qXy.
As 𝑒 P Econ, we must have 𝑒 1 P Econ; otherwise, Econ does not form a connected subtree including

the root of T . Implied by the property of Econ, 𝑒 X 𝑒 1 Ď y, and condition (ii) follows. □

From Lemma 3.6, when constructing a free-connex join tree, a reducible relation can always be

placed as a leaf node and thus, a child node of any of its anchors.

Lemma 3.7. A CQ is weak-q-hierarchical if and only if it has a free-connex join tree of height ď 2.

Proof. Only-If Direction. Let Q be a weak-q-hierarchical CQ. As Q♣ is q-hierarchical, it has a

height-1 free-connex join tree T♣, with a one-to-one correspondence between leaf nodes in T♣ and

relations in E♣. For each relation 𝑒 P E ´ E♣, it is always feasible to find some 𝑒 1 P E♣ such that

one of the two conditions of reducible relations is satisfied by the transitive property of anchor. We

add 𝑒 as a child of 𝑒 1
. The resulting tree T is a height-2 free-connex join tree for Q.

If Direction. Let T be a free-connex join tree of Q. If T has a height of 1, Q is q-hierarchical by

Lemma 2.2. Implied by Lemma 2.3, the E♣-induced CQ is q-hierarchical. We next focus on the case

when T has a height of 2, with the connex subset Econ. Let V‚ be the set of unique attributes in Q.

Implied by Lemma 3.6, each leaf node 𝑒 is reducible with its parent node 𝑒 1
as the anchor. Let T 1

be

the residual tree by removing all leaf nodes of T . Let E1 Ď E be the set of input relations in T 1
. As

T has height 2, T 1
has height 1. From Lemma 2.2, QrE1s is 𝑞-hierarchical. Let E♣ be the skeleton of

E1
by invoking Trim to QrE1s. As every leaf node 𝑒 P T is reducible with its parent as an anchor,

E♣ is also a skeleton of E. From Lemma 2.3, Q♣ is also q-hierarchical, since E♣ Ď E1
. □

We highlight a critical observation regarding the enclosureness of FIFO update sequences in

Lemma 3.8. Combining it with Lemma 3.7, we prove the first half of Theorem 1.11.

Lemma 3.8 ([25], Lemma 6.8). For a free-connex CQ Q with a height-2 free-connex join tree T ,
every FIFO sequence for Q has enclosureness as 1 under T .

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:11

3.3 Hardness of Maintaining Non-Weak-q-hierarchical CQs
To demonstrate the difficulty of maintaining non-weak-q-hierarchical CQs, we begin by considering

two small queries that fall into this class:

Qhook “ 𝜋𝑥1
p𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥2, 𝑥3q ’ 𝑅3p𝑥3qq

Qpath “ 𝜋H p𝑅1p𝑥1q ’ 𝑅2p𝑥1, 𝑥2q ’ 𝑅3p𝑥2, 𝑥3q ’ 𝑅4p𝑥3, 𝑥4q ’ 𝑅5p𝑥4qq

We prove the hardness for maintaining Qhook over FIFO sequences in Theorem 3.9 and Qpath in

Theorem 3.10 separately.

Theorem 3.9. No index for Qhook can be updated in 𝑂p
a

|𝐷|
1´𝜖

q amortized time over FIFO se-
quences while supporting 𝑂p

a

|𝐷|
1´𝜖

q-delay enumeration for any 𝜖 ą 0, assuming OMv conjecture.

Mv1 Mv2

MR1

v1

v2
R2

1
2

R3

...

...

Time

Figure 7. A reduction from an OMv
instance to a 𝜎-sequence for Qhook,
where 𝜎pt𝑒uq is FIFO for every 𝑒 .

Proof. Given an arbitrary OMv-instance, we encode the

matrix 𝑀 by 𝑅1p𝑥1, 𝑥2q and the vectors x𝑣𝑖 : 𝑖 P r𝑛sy by a

subquery 𝜋𝑥2
p𝑅2p𝑥2, 𝑥3q ’ 𝑅3p𝑥3qq. See Figure 7. We construct

an update sequence 𝑆 for Qhook as follows: (1) we first add a

tuple 𝑡 “ p𝑖, 𝑗q into 𝑅1 with lifespan r𝑛2 ` 𝑖𝑛 ´ 𝑗, 3𝑛2 ` 𝑖𝑛 ´ 𝑗s

if𝑀𝑖 𝑗 ‰ 0; (2) we add a tuple 𝑡 “ p𝑖q with lifespan r𝑖𝑛, 𝑖𝑛` 2𝑛2s

into 𝑅3, for each 𝑖 P r𝑛s; (3) after receiving vector 𝑣𝑖 , we add a

tuple 𝑡 “ p 𝑗, 𝑖q into 𝑅2 with lifespan r2𝑛2 `𝑖𝑛´ 𝑗, 4𝑛2 `𝑖𝑛´ 𝑗s if

p𝑣𝑖q𝑗 ‰ 0; (4) we issue the enumeration query at time 𝑖𝑛 ` 2𝑛2
:

for each result 𝑗 enumerated for Qhook, we set p𝑀𝑣𝑖q𝑗 “ 1; (5)

we repeat (3)-(4) for the next 𝑣𝑖`1 until 𝑛 vectors are processed.

Each tuple has the same lifespan; hence, 𝑆 is a FIFO sequence.

If an index can be updated in𝑂p𝑛1´𝜖q time while supporting𝑂p𝑛1´𝜖q-delay enumeration for Qhook
over FIFO sequences, the OMv problem can be solved in 𝑂p𝑛2 ¨ 𝑛1´𝜖 ` 𝑛2 ¨ 𝑛1´𝜖q “ 𝑂p𝑛3´𝜖q time.

As |𝐷| “ 𝑂p𝑛2q, we have 𝑛 ě
a

|𝐷|.

Theorem 3.10. No index for Qpath can be updated in 𝑂p
a

|𝐷|
1´𝜖

q time over FIFO sequences while

supporting 𝑂p
a

|𝐷|
2´𝜖

q-delay enumeration for any 𝜖 ą 0, assuming the OuMv conjecture.

u1Mv1 u2Mv2

MR3

u1, v1

u2, v2
R2/R4

1
2

R1/R5

...

...

Time

Figure 8. A reduction from an OuMv
instance to a 𝜎-sequence for Qpath,
where 𝜎pt𝑒uq is FIFO for every 𝑒 .

Proof. Given an arbitrary OuMv-instance, we encode the

matrix 𝑀 by 𝑅3p𝑥2, 𝑥3q and the pairs of vectors xp𝑢𝑖 , 𝑣𝑖q :

𝑖 P r𝑛sy by two subqueries 𝜋𝑥2
p𝑅2p𝑥2, 𝑥1q ’ 𝑅1p𝑥1qq and

𝜋𝑥3
p𝑅4p𝑥3, 𝑥4q ’ 𝑅5p𝑥4qq. See Figure 8. We construct an up-

date sequence 𝑆 for Qpath as follows: (1) add a tuple 𝑡 “ p𝑖, 𝑗q

into 𝑅3 with lifespan r2𝑛2 ` 𝑖𝑛 ´ 𝑗, 6𝑛2 ` 𝑖𝑛 ´ 𝑗s, for each pair

p𝑖, 𝑗q P r𝑛s ˆ r𝑛s if𝑀𝑖 𝑗 ‰ 0; (2) add a tuple 𝑡 “p𝑖q with lifespan

rp2𝑖 ´ 1q𝑛, p2𝑖 ´ 1q𝑛 ` 4𝑛2s into 𝑅1 and r2𝑖𝑛, 2𝑖𝑛 ` 4𝑛2s into

𝑅5; (3) for each pair of vectors p𝑢𝑖 , 𝑣𝑖q, add a tuple 𝑡 “ p𝑖, 𝑗q

into 𝑅2 with lifespan rp2𝑖 ´ 1q𝑛 ` 4𝑛2 ´ 𝑗, p2𝑖 ´ 1q𝑛 ` 8𝑛2 ´ 𝑗s

if p𝑢𝑖q𝑗 ‰ 0, and similarly add a tuple 𝑡 “ p 𝑗, 𝑖q into 𝑅4 with

lifespan r2𝑖𝑛 ` 4𝑛2 ´ 𝑗, 2𝑖𝑛 ` 8𝑛2 ´ 𝑗s if p𝑣𝑖q𝑗 ‰ 0; (4) issue the

enumeration query at time 2𝑖𝑛 ` 4𝑛2
: if the result is true for

Qpath, we output true for 𝑢
𝑇
𝑖 𝑀𝑣𝑖 , and false otherwise; (5) repeat (3)-(4) for the next pair p𝑢𝑖`1, 𝑣𝑖`1q,

until 𝑛 pairs of vectors are processed. Each tuple has the same lifespan; hence 𝑆 is a FIFO sequence. If

an index for Qpath can be updated in 𝑂p𝑛1´𝜖q time over FIFO sequences while supporting 𝑂p𝑛2´𝜖q-

delay enumeration, OuMv can be solved in𝑂p𝑛2 ¨𝑛1´𝜖 `𝑛 ¨𝑛2´𝜖q “ 𝑂p𝑛3´𝜖q time. As |𝐷| “ 𝑂p𝑛2q,

we have 𝑛 ě
a

|𝐷|.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:12 Xiao Hu and Qichen Wang

Algorithm 2:MixDetectpQ “ pV, E, yq, 𝜎q

1 if D a reducible relation 𝑒 with its anchor 𝑒 1 s.t. 𝜎pt𝑒uq and 𝜎pt𝑒 1uq are insertion-only then
2 return MixDetectpQrE ´ t𝑒us, 𝜋E´t𝑒u𝜎q;

3 else if Q is non-weak-q-hierarchical then return false;
4 else if Q does not have a free-connex join tree compatible with 𝜎 then return false;
5 return true;

We can extend the hardness result to general free-connex but non-weak-q-hierarchical CQs, as

established in Theorem 3.12. The proof leverages two key structures identified by Lemma 3.11. All

omitted proofs are given in Appendix A.

Lemma 3.11. For any free-connex but non-weak-q-hierarchical CQ Q “ pV, E, yq, it must contain
at least one of the following structures:
‚ (hook core) three attributes 𝑥1 P y, 𝑥2, 𝑥3 P ȳ and three relations 𝑒1, 𝑒2, 𝑒3 P E such that 𝑥1 P

𝑒1, 𝑥2 P 𝑒1 X 𝑒2 ´ 𝑒3, 𝑥3 P 𝑒2 X 𝑒3, and no relation 𝑒 P E contains both 𝑥1, 𝑥3.
‚ (path core) four attributes 𝑥1, 𝑥2, 𝑥3, 𝑥4 PV and five relations 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5 P E such that 𝑥1 P

𝑒1 X 𝑒2, 𝑥2 P 𝑒2 X 𝑒3, 𝑥3 P 𝑒3 X 𝑒4, 𝑥4 P 𝑒4 X 𝑒5, and no relation 𝑒 PE contains 𝑥𝑖 , 𝑥 𝑗 with | 𝑗 ´ 𝑖| ą 1.

Theorem 3.12. For any free-connex but non-weak-q-hierarchical CQ and any 𝜖 ą 0, no index can
be updated in 𝑂p

a

|𝐷|
1´𝜖

q amortized time over FIFO sequences while supporting 𝑂p
a

|𝐷|
1´𝜖

q-delay
enumeration, assuming the OuMv and OMv conjectures.

4 MAINTAIN CQS OVER MIXED SEQUENCES
This section presents a procedure, MixDetect, which determines the hardness of maintaining a CQ

Q over 𝜎-sequences, as described in Algorithm 2. Note that when MixDetectpQ, 𝜎q returns true,

Q can be maintained in 𝑂p1q amortized time over 𝜎-sequences; otherwise, it cannot be maintained

in 𝑂p
?
𝑁

1´𝜖
q amortized time for any 𝜖 ą 0. All missing proofs are given in Appendix B.

𝑅1 𝑅5

𝑅8 𝑅9

𝑅2 𝑅3 𝑅6 𝑅7

r𝑥2, 𝑥3s

r𝑥3s

Figure 9. A compatible free-connex
join tree for Q4.

As described in Algorithm 2, the high-level idea is to iteratively

simplify the input CQ and update sequences until a base case is

reached. First, a reducible relation 𝑒 is removed if it has an anchor

𝑒 1
such that both 𝜎pt𝑒uq and 𝜎pt𝑒 1uq are insertion-only (lines

1-2, Lemma 4.3). Next, the procedure returns false if Q is not

weak-q-hierarchical (line 3, Lemma 4.4) or does not have a free-

connex join tree compatible with 𝜎 (line 4, Lemma 4.8). If neither

condition is met, the procedure returns true (line 4, Lemma 4.16).

Although different orderings may be used for removing reducible

relations, they always yield the same final result.

Definition 4.1 (Compatible Free-Connex Join Tree). For a weak-q-hierarchical CQ Q “ pV, E, yq

and a pattern 𝜎 of update sequences, a free-connex join tree T for Q is compatible with 𝜎 if for

each leaf node 𝑒 in T with its parent node 𝑒 1
(where both 𝑒 and 𝑒 1

correspond to input relations of

E), the following conditions hold: (1) 𝑒 1
is an anchor of 𝑒 ; and (2) either 𝜎pt𝑒uq is insertion-only, or

𝜎pt𝑒, 𝑒 1uq is FIFO.

Example 4.2. Consider Example 2.1 with a pattern 𝜎 of update sequences where 𝜎pt𝑒1uq, 𝜎pt𝑒8uq

and 𝜎pt𝑒9uq are arbitrary, 𝜎pt𝑒2, 𝑒3, 𝑒4uq is insertion-only and 𝜎pt𝑒5, 𝑒6, 𝑒7uq is FIFO. We remove

𝑒4 since 𝑒4 is reducible with 𝑒3 serving as an anchor, and 𝜎pt𝑒3uq, 𝜎pt𝑒4uq are insertion-only. The

resulting CQ Q4 “ 𝑅1p𝑥1, 𝑥2, 𝑥3q ’ 𝑅2p𝑥1, 𝑥2q ’ 𝑅3p𝑥1, 𝑥4q ’ 𝑅5p𝑥2, 𝑥3q ’ 𝑅6p𝑥2, 𝑥6q ’ 𝑅7p𝑥3, 𝑥7q ’

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:13

𝑅8p𝑥3, 𝑥8q ’ 𝑅9p𝑥3, 𝑥9q is weak-q-hierarchical with a compatible free-connex join tree, as illustrated

in Figure 9. Consequently, Algorithm 2 returns true.
Let’s continue with Example 4.2 by considering a different pattern 𝜎 of update sequences, with

the only exception being that 𝜎pt𝑒4uq is arbitrary. In this case, the simplification step is not applied,

and the resulting query is not weak-q-hierarchical. As a result, Algorithm 2 returns false.

The remainder of this section is organized as follows. In Section 4.1, we prove the correctness

of lines 1-2 in Algorithm 2, i.e., the simplification step does not change the problem’s hardness.

We then prove the correctness of three base cases of Algorithm 2: line 3 in Section 4.2, line 4 in

Section 4.3 and line 5 in Section 4.4.

4.1 Simplification Preserves Hardness: Lines 1-2 of Algorithm 2
Lemma 4.3. For a free-connex CQ Q “ pV, E, yq and a pattern 𝜎 of update sequences, for any

reducible relation 𝑒 and its anchor 𝑒 1, if both 𝜎pt𝑒uq and 𝜎pt𝑒 1uq are insertion-only, then Q can be
maintained in 𝑂p1q time over 𝜎-sequences if and only if QrE ´ t𝑒us can be maintained in 𝑂p1q time
over 𝜋E´t𝑒u𝜎-sequences.

Proof. We give a running example in Appendix B to help illustrate the algorithms used in the

proof below. For simplicity, let Q1 “ QrE ´ t𝑒us.

If Direction. LetA1
be an algorithmmaintainingQ1

in𝑂p1q time over 𝜋E´t𝑒u𝜎-sequences. For a 𝜎-

sequence 𝑆 for Q, we construct a sequence 𝑆 1
for Q1

as follows. For every update 𝑢 “ p𝑡, 𝑠,`, 𝑅𝑒2 q P

𝑆 , if 𝑒2 P E ´ t𝑒, 𝑒 1u, we add it to 𝑆 1
. We maintain the results of 𝑅𝑒1 ˙ 𝑅𝑒 on the update sequence

𝜋𝑒,𝑒1𝑆 . For every delta result 𝑡 P 𝑅𝑒1 ˙𝑅𝑒 that is generated at timestamp 𝑠 , we insert 𝑢 “ p𝑡, 𝑠,`, 𝑅𝑒1 q

into the 𝑆 1
. As all updates to 𝑅𝑒1 are insertion-only, 𝑆 1

is a 𝜋E´t𝑒u𝜎-sequence. We run algorithm A1

for Q1
over 𝑆 1

. For each result 𝑡 enumerated by A1
, we enumerate all results in 𝜋y p𝑅𝑒 ’ 𝑡q for Q

within 𝑂p1q delay if 𝑒 X y X V‚ ‰ H, and enumerate 𝑡 directly otherwise. As both 𝜋𝑒𝑆 and 𝜋𝑒1𝑆

are insertion-only, the delta of 𝑅𝑒1 ˙ 𝑅𝑒 can be maintained in𝑂p1q amortized time, and enumerated

within 𝑂p1q delay. Hence, Q can be maintained in 𝑂p1q time over 𝜎-sequences.

Only-If Direction. Let A be an algorithm that can maintain Q in 𝑂p1q time over any 𝜎-sequence.

We next show another algorithm A1
for Q1

. Given a 𝜋E´t𝑒u𝜎-sequence 𝑆
1
for Q1

, we construct

a sequence 𝑆 for Q as follows. For every update 𝑢 P 𝑆 1
, we add it to 𝑆 . For every update 𝑢 “

p𝑡, 𝑠,`, 𝑅𝑒1 q P 𝑆 1
, we add an update𝑢1 “ p𝑡 1, 𝑠,`, 𝑅𝑒q to 𝑆 , such that 𝜋𝑒X𝑒1𝑡 1 “ 𝜋𝑒X𝑒1𝑡 and 𝜋𝑥𝑡

1 “ t˚u

for every attribute 𝑥 P 𝑒 ´ 𝑒 1
. All updates to 𝑅𝑒 are insertion-only, hence, 𝑆 is a 𝜎-sequence. We run

algorithm A for Q over 𝑆 . For every result 𝑡 enumerated for Q by A, we output 𝑡 1 “ 𝜋y´𝑒XV‚
𝑡 for

Q1
. As 𝜋𝑒XV‚

𝑡 “ t˚u (if 𝑒 X V‚ ‰ H) for every tuple 𝑡 enumerated for Q, and there is no pair of

identical tuples enumerated for Q, all tuples enumerated for Q1
are also distinct. Putting everything

together, A1
can maintain Q1

in 𝑂p1q time over any 𝜋E´t𝑒u𝜎-sequence. □

4.2 Base Case 1: Line 3 of Algorithm 2
Lemma 4.4. For a free-connex CQ and a pattern 𝜎 of update sequences, to which no simplification

step can be applied, if Q is non-weak-q-hierarchical, Q cannot be maintained in 𝑂
´

a

|𝐷|
1´𝜖

¯

time
over 𝜎-sequences, assuming the OuMv and OMv conjectures.

Let’s start by revisiting two simplest free-connex but non-weak-q-hierarchical CQs, Qhook and

Qpath. In Theorems 3.9 and 3.10, we already have demonstrated the difficulty of maintaining Qhook
and Qpath over 𝜎-sequences when 𝜎pEq is FIFO. Recall that E is the set of all relations. The condition

that 𝜎pEq is FIFO also implies that 𝜎pE1q is FIFO for an arbitrary subset E1 Ď E of relations. We

now extend this hardness condition in Examples 4.5 and 4.6.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:14 Xiao Hu and Qichen Wang

Mv1 Mv2

MR1

v1

v2
R2

1
2

R3

...

...

Time

Figure 10. A reduction from an OMv in-
stance to a𝜎-sequence forQhook, where
𝜎pt𝑒3uq is not insertion-only.

Mv1 Mv2

MR1

v1

v2
R2

1
2

R3

...

...

Time

Figure 11. A reduction from an OMv in-
stance to a𝜎-sequence forQhook, where
𝜎pt𝑒2uq is not insertion-only.

u1Mv1 u2Mv2

MR3

v1

v2
R4

u1

u2
R2

1
2

R5

1
2

R1

...

...

...

...

Time

Figure 12. A reduction from an OuMv
instance to a 𝜎-sequence for Qpath,
where 𝜎pt𝑒1uq and 𝜎pt𝑒4uq are not
insertion-only.

Example 4.5. For Qhook “ 𝜋𝑥1
𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥2, 𝑥3q ’

𝑅3p𝑥3q, and a pattern 𝜎 of update sequences where either

𝜎pt𝑒3uq or 𝜎pt𝑒2uq is not insertion-only, no index can be

updated in 𝑂p
a

|𝐷|
1´𝜖

q amortized time over 𝜎-sequences

while supporting 𝑂p
a

|𝐷|
1´𝜖

q-delay enumeration for any

𝜖 ą 0, assuming the OMv conjecture [7]. Given an OMv

instance, we use 𝑅1 to encode the matrix and the following

subquery 𝑅4 “ 𝜋𝑥2
𝑅2p𝑥2, 𝑥3q ’ 𝑅3p𝑥3q to encode vectors. We

essentially maintain Qqcore“𝜋𝑥1
𝑅1p𝑥1, 𝑥2q ’ 𝑅4p𝑥2q over 𝜎 1

-

sequences, where 𝜎 1pt𝑒4uq is arbitrary. The hardness result

follows [7]. See Figures 10 - 11 for illustrations.

Example 4.6. For Qpath “ 𝜋H𝑅1p𝑥1q ’ 𝑅2p𝑥1, 𝑥2q ’

𝑅3p𝑥2, 𝑥3q ’ 𝑅4p𝑥3, 𝑥4q ’ 𝑅5p𝑥4q, and a pattern 𝜎 of up-

date sequences such that either 𝜎pt𝑒1uq or 𝜎pt𝑒2uq is not

insertion-only, and either 𝜎pt𝑒4uq or 𝜎pt𝑒5uq is not insertion-

only, no index can be updated in𝑂p
a

|𝐷|
1´𝜖

q amortized time

over 𝜎-sequences while supporting 𝑂p
a

|𝐷|
2´𝜖

q-delay enu-

meration for any 𝜖 ą 0, assuming the OuMv conjecture.

Given an instance of OuMv, we use 𝑅3 to encode the matrix,

and use the following two subqueries 𝑅6 “ 𝜋𝑥2
𝑅1p𝑥1q ’

𝑅2p𝑥1, 𝑥2q, 𝑅7 “ 𝜋𝑥3
𝑅4p𝑥3, 𝑥4q ’ 𝑅5p𝑥4q to encode pairs

of vectors separately. We essentially maintain Qhier “

𝜋H p𝑅6p𝑥2q ’ 𝑅3p𝑥2, 𝑥3q ’ 𝑅7p𝑥3qq over 𝜎 1
-sequences, where

𝜎 1pt𝑒6uq and 𝜎 1pt𝑒7uq are arbitrary. The hardness result fol-

lows [7]. For an illustration, see Figure 12 which handles

the case when 𝜎p𝑒1q and 𝜎p𝑒4q are not insertion-only. The

remaining cases can be proved similarly; additional details

are given in Appendix B.

We can now extend these hardness results to general free-

connex but non-weak-q-hierarchical CQs falling in this case,

by reducing either Qhook or Qpath to the given query with the

help of Lemma 3.11. See an example below:

Example 4.7. Let’s continue with the CQ Q1 as illustrated

in Figure 2, with a pattern 𝜎 of update sequences where

𝜎p𝑒4q and 𝜎p𝑒7q are arbitrary. Even if the update patterns

for all remaining relations are insertion-only, we can still

identify the following subquery 𝑅4p𝑥5, 𝑥4q ’ 𝑅3p𝑥4, 𝑥1q ’

𝑅1p𝑥1, 𝑥2, 𝑥3q ’ 𝑅5p𝑥2, 𝑥3q ’ 𝑅7p𝑥3, 𝑥7q to simulate Qpath,

after removing 𝑒2, 𝑒6, 𝑒8, 𝑒9 during the simplification step.

Similar to Example 4.6, for any given instance of OuMv,

we encode the matrix by 𝑅1 and all pairs of vectors using two subqueries 𝜋𝑥1
𝑅4p𝑥5, 𝑥4q ’ 𝑅3p𝑥4, 𝑥1q

and 𝜋𝑥2
𝑅5p𝑥2, 𝑥3q ’ 𝑅7p𝑥3, 𝑥7q, respectively. We set the domains of 𝑥1 and 𝑥3 to r𝑛s, and set the

domain of any remaining attributes to t˚u for a special value ˚. For all the remaining relations, we

insert all possible tuples across their domains at the beginning. Consequently, there is a one-to-one

correspondence between the query result of Q1 and that of Qpath. Hence, the hardness result for

Q1 follows Example 4.6.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:15

4.3 Base Case 2: Line 4 of Algorithm 2
Lemma 4.8. For a weak-q-hierarchical CQ Q and a pattern 𝜎 of update sequences, to which no

simplification step can be applied if Q is weak-q-hierarchical but does not have a free-connex join
tree compatible with 𝜎 , Q cannot be maintained in 𝑂

´

a

|𝐷|
1´𝜖

¯

time over 𝜎-sequences for arbitrary
𝜖 ą 0, assuming the OuMv and OMv conjectures.

Mv1 Mv2

M
R1

v1

v2
R2

...

Time

Figure 13. A reduction from an OMv
instance to a 𝜎-sequence for Qqcore,
where 𝜎pt𝑒2uq is not insertion-only and
𝜎pt𝑒1, 𝑒2uq is not FIFO.

u1Mv1 u2Mv2

MR1

v1

v2
R2

u1

u2
R3

...

...

Time

Figure 14. A reduction from an
OuMv instance to a 𝜎-sequence
for Qhier, where 𝜎pt𝑒2uq, 𝜎pt𝑒3uq

are not insertion-only, and
𝜎pt𝑒1, 𝑒2uq, 𝜎pt𝑒1, 𝑒3uq are not FIFO.

u1Mv1 u2Mv2

1
2

R1

v1

v2
R2

M
R3

u1

u2
R4

...

...

...

Time

Figure 15. A reduction from an
OuMv instance to a 𝜎-sequence for
Qswing, where 𝜎pt𝑒1uq, 𝜎pt𝑒4uq are
not insertion-only and 𝜎pt𝑒1, 𝑒2uq,
𝜎pt𝑒3, 𝑒4uq are not FIFO.

If Q is q-hierarchical, it has a height-1 free-connex join tree

T in which each leaf node has its parent as a generalized rela-

tion. Consequently, T is compatible with an arbitrary update

sequence. In what follows, we focus on weak-q-hierarchical

but non-q-hierarchical CQs.We now revisit the three simplest

example CQs whose update sequences follow the pattern

falling into base case 2.

Example 4.9. For Qqcore “ 𝜋𝑥1
𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥2q and

a pattern 𝜎 of update sequences, such that 𝜎pt𝑒2uq is not

insertion-only and 𝜎pt𝑒1, 𝑒2uq is not FIFO, no index can be

updated in 𝑂p
a

|𝐷|
1´𝜖

q amortized time over 𝜎-sequences,

while supporting 𝑂p
a

|𝐷|
1´𝜖

q-delay enumeration for any

𝜖 ą 0, assuming the OMv conjecture. Qqcore only has one

free-connex join tree T where 𝑅1 is the root with 𝑅2 as the

child node. As T is not compatible with 𝜎 , 𝜎pt𝑒2uq could be

FIFO or arbitrary while 𝜎pt𝑒1, 𝑒2uq is arbitrary. The hardness

follows [7]. See Figure 13 for an illustration.

Example 4.10. For Qhier “ 𝜋H𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥2q ’

𝑅3p𝑥1q and a pattern 𝜎 of update sequences such that

𝜎pt𝑒2uq and 𝜎pt𝑒3uq are not insertion-only; and 𝜎pt𝑒1, 𝑒2uq

and 𝜎pt𝑒1, 𝑒3uq are not FIFO, no index can be updated in

𝑂p
a

|𝐷|
1´𝜖

q amortized time over 𝜎-sequences, while sup-

porting 𝑂p
a

|𝐷|
2´𝜖

q-delay enumeration for arbitrary 𝜖 ą 0,

assuming the OuMv conjecture. Note thatQhier only has three

free-connex join trees: (1) T1 is rooted at 𝑅1 with 𝑅2, 𝑅3 as its

child node; (2) T2 is rooted at 𝑅2 with 𝑅1 as the child node

of 𝑅2, and 𝑅3 as the child node of 𝑅1; (3) T3 is rooted at 𝑅3

with 𝑅1 as the child node of 𝑅3, and 𝑅2 as the child node of 𝑅1.

As none of T1,T2,T3 is not compatible with 𝜎 , it must be that

𝜎pt𝑒2uq and 𝜎pt𝑒3uq are FIFO or arbitrary; and 𝜎pt𝑒1, 𝑒2uq and

𝜎pt𝑒1, 𝑒3uq are arbitrary. The hardness result then follows [7].

See Figure 14 for an illustration.

Example 4.11. Consider Qswing “ 𝜋H𝑅1p𝑥1q ’ 𝑅2p𝑥1, 𝑥2q

’ 𝑅3 p𝑥2, 𝑥3q ’ 𝑅4p𝑥3q and a pattern 𝜎 of update sequences

such that both 𝜎pt𝑒1uq, 𝜎pt𝑒4uq are not insertion-only, and

𝜎pt𝑒1, 𝑒2uq is not FIFO; and (2) both 𝜎pt𝑒1, 𝑒2uq, 𝜎pt𝑒3, 𝑒4uq are

not FIFO. We first point out that no simplification step can be

applied, i.e., no relation can be removed. In any free-connex

join tree for Qswing, we observe that either 𝑅2 must be the

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:16 Xiao Hu and Qichen Wang

Algorithm 3: CompatibleTreepQ, 𝜎q

1 H Ð the query-update graph for Q and 𝜎 ;

2 E˝ Ð the set of nodes with in-degree 0 in H ;

3 T Ð a height-1 free-connex join tree for E˝-induced CQ;

4 All nodes inH are marked as non-visited;

5 while there exists some node in E˝ non-visited do
6 Visit an arbitrary non-visited node 𝑒 in E˝;

7 𝑍 Ð t𝑒u;

8 while 𝑍 changes from last iteration do
9 if Dp𝑒1, 𝑒2q P H , 𝑒1 P 𝑍 and 𝑒2 is non-visited then
10 Add 𝑒2 as a child of 𝑒1 in T ;

11 Mark 𝑒2 as visited;

12 𝑍 Ð 𝑍 Y t𝑒2u;

13 return T ;

R1 R2

R3 R8

R5 R6

R9 R7

Fig. 16. Query-update graph of Q4.

𝑅1 𝑅5

𝑅8 𝑅9r𝑥2, 𝑥3s

r𝑥3s

Fig. 17. The height-1 free-connex
join tree for E0.

parent of 𝑅1, or 𝑅3 must be the parent of 𝑅4. Thus, there exists no free-connex join tree compatible

with 𝜎 and no index can be updated in 𝑂p
a

|𝐷|
1´𝜖

q amortized time over 𝜎-sequences, while

supporting 𝑂p
a

|𝐷|
2´𝜖

q-delay enumeration for any 𝜖 ą 0, assuming the OuMv conjecture.

Given an instance of OuMv, we use 𝑅3 to encode the matrix and use 𝑅5 “ 𝜋𝑥2
𝑅1p𝑥1q ’ 𝑅2p𝑥1, 𝑥2q

and 𝑅4 to encode all pairs of vectors. We essentially maintain Qhier “ 𝜋H𝑅5p𝑥2q ’ 𝑅3p𝑥2, 𝑥3q ’

𝑅4p𝑥3q over 𝜎 1
-sequences, where 𝜎 1pt𝑒5uq and 𝜎 1pt𝑒4uq are not insertion-only; and 𝜎 1pt𝑒5, 𝑒3uq

and 𝜎 1pt𝑒4, 𝑒3uq are not FIFO since 𝜎pt𝑒3uq is insertion-only. Hence, the hardness result follows

Example 4.10. See Figure 15 for an illustration.

By gaining some intuition, we proceed to the general case. We begin by introducing the concept

of a query-update graphH for a weak-q-hierarchical CQ Q and a pattern 𝜎 of update sequences.

Let E♣ be a skeleton of Q. In a (directed) query-update graphH , every relation 𝑒 P E is a node, and

there is an edge from 𝑒 1
to 𝑒 if the following conditions hold: (1) 𝑒 P E ´ E♣, (2) 𝑒 1

is an anchor of 𝑒 ,

and (3) either 𝜎pt𝑒uq is insertion-only or 𝜎pt𝑒, 𝑒 1uq is FIFO. Let E˝ denote the set of relations with

in-degree as 0 inH . Suppose we are given a weak-q-hierarchical CQ Q and a pattern 𝜎 of update

sequences, to which no simplification step can be applied. Moreover, Q is weak-q-hierarchical but

does not have a free-connex join tree compatible with 𝜎 . Below, we prove Lemma 4.8 through two

steps: (1) the E˝-induced CQ is not q-hierarchical (as shown in Lemma 4.12); and (2) Q cannot be

maintained in 𝑂

´

a

|𝐷|
1´𝜖

¯

time over 𝜎-sequences for any 𝜖 ą 0 (as shown in Lemma 4.14).

Lemma 4.12. E˝-induced CQ is not q-hierarchical.

We prove Lemma 4.12 by contradiction. More specifically, if E˝-induced CQ is q-hierarchical, then

Q has a free-connex join tree compatible with 𝜎 , leading to contradiction. We present a procedure

in Algorithm 3 to construct a free-connex compatible join tree with 𝜎 for Q. We begin by building a

height-1 free-connex join tree T for E˝ (lines 2-3), which is always feasible from Lemma 2.2. Next,

we incrementally add relations from E ´ E˝ to T . Initially, all relations are non-visited (line 4). We

first visit an arbitrary relation 𝑒 P E˝ (lines 6-7) and then explore all non-visited nodes reachable

from 𝑒 inH (lines 8-12). If a node 𝑒 1
is visited for the first time from 𝑒2

, we add 𝑒 1
as a child of 𝑒2

.

Once all nodes reachable from 𝑒 have been visited, we proceed to the next unvisited relation in E˝,

repeating this process until all nodes in E˝ have been traversed. For each 𝑒 P E˝, the subtree of T

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:17

rooted at 𝑒 satisfies the following condition: for any node 𝑒 1 P E ´ t𝑒u, its parent node 𝑒2
, must be

an anchor of 𝑒 1
, and either 𝜎pt𝑒 1uq is insertion-only, or 𝜎pt𝑒 1, 𝑒2uq is FIFO. Consequently, T is a

free-connex join tree compatible with 𝜎 .

Example 4.13. Figure 16 illustrates the query-update graph of Q4 from Example 4.2. E˝ “

t𝑅1, 𝑅5, 𝑅8, 𝑅9u induces a q-hierarchical CQ 𝑅1p𝑥1, 𝑥2, 𝑥3q ’ 𝑅5p𝑥2, 𝑥3q ’ 𝑅8p𝑥3, 𝑥8q ’ 𝑅9p𝑥3, 𝑥9q. We

first construct a height-1 free-connex join tree for E˝, shown in Figure 17. As we traverseH , we

incrementally add relations: 𝑅2 and 𝑅3 are attached as child nodes of 𝑅1, while 𝑅6 and 𝑅7 are added

as two child nodes of 𝑅5. The final free-connex join tree for Q is depicted in Figure 9.

Lemma 4.14. If E˝-induced CQ is not q-hierarchical, Q cannot be maintained in 𝑂

´

a

|𝐷|
1´𝜖

¯

time over 𝜎-sequences for any 𝜖 ą 0.

Lemma 4.15 ([7]). Any non-q-hierarchical CQ Q “ pV, E, yq must contain one of the following
structures:
‚ (q-core) relations 𝑒1, 𝑒2 P E and attributes 𝑥1 P y X p𝑒1 ´ 𝑒2q, 𝑥2 P ȳ X 𝑒1 X 𝑒2.
‚ (hierarchical core) relations 𝑒1, 𝑒2, 𝑒3 P E and attributes 𝑥1 P p𝑒2 ´ 𝑒3q X 𝑒1, 𝑥2 P p𝑒3 ´ 𝑒2q X 𝑒1.

Proof of Lemma 4.14. As the E˝-induced CQ is not q-hierarchical, it contains either a q-core

or a hierarchical core by Lemma 4.15. We first assume a q-core with relations 𝑒1, 𝑒2 and attributes

𝑥1 P yX p𝑒1 ´ 𝑒2q, 𝑥2 P ȳX 𝑒1 X 𝑒2. As Q♣ is q-hierarchical, the case with 𝑒1, 𝑒2 P E♣ cannot happen.
We further distinguish the following three cases:

‚ Case 1.1: 𝑒1 P E♣ and 𝑒2 P E˝ ´ E♣. There must exist a relation 𝑒3 P E♣ that is an anchor of 𝑒2

and contains both attributes 𝑥1, 𝑥2. If no such relation exists, for any anchor 𝑒3 P E♣ of 𝑒2, we

have 𝑥2 P 𝑒1 ´ V‚ Ď 𝑒3 and therefore 𝑥1 P 𝑒1 ´ 𝑒3, which together forms a q-core with relations

𝑒1, 𝑒3 and attributes 𝑥1, 𝑥2 in Q♣. This contradicts the fact that Q♣ is q-hierarchical. After finding

such a relation 𝑒3 with 𝑥1, 𝑥2 P 𝑒3, we identify another q-core with relations 𝑒2, 𝑒3 and attributes

𝑥1 P y X p𝑒3 ´ 𝑒2q, 𝑥2 P ȳ X 𝑒2 X 𝑒3. As there is no edge between 𝑒2, 𝑒3 in H , 𝜎pt𝑒2uq is not

insertion-only and 𝜎pt𝑒2, 𝑒3uq is not FIFO. The hardness follows Example 4.9.

‚ Case 1.2: 𝑒1, 𝑒2 P E˝ ´E♣. For any anchor 𝑒3 P E♣ of 𝑒1, as 𝑒1 is reducible by 𝑒3, 𝑥2 P 𝑒1 ´V˝ Ď 𝑒3.

Moreover, 𝑥2 P ȳ, hence 𝑥1 P y X 𝑒1 Ď 𝑒3. We can apply the same argument as Case 11. with
relations 𝑒2, 𝑒3 and attributes 𝑥1, 𝑥2.

‚ Case 1.3: 𝑒1 P E˝ ´E♣ and 𝑒2 P E♣. By applying the same argument as Case 1.1, we can identify

an anchor 𝑒3 P E♣ of 𝑒1 with 𝑥1, 𝑥2 P 𝑒3. Now, we have identified a q-core in Q♣ with relation

𝑒3, 𝑒2 and attributes 𝑥1, 𝑥2, contradicting the fact that Q♣ is q-hierarchical.

Alternatively, we assume a hierarchical core in the E˝-induced CQ with relations 𝑒1, 𝑒2, 𝑒3 and

attributes 𝑥1 P p𝑒2 ´ 𝑒3q X 𝑒1, 𝑥2 P p𝑒3 ´ 𝑒2q X 𝑒1. If 𝑒1 R E♣, we find an arbitrary anchor 𝑒 1
1

P E♣ of

𝑒1. As 𝑒1 is reducible by 𝑒
1
1
, we have 𝑒1 ´V‚ Ď 𝑒 1

1
and furthermore 𝑥1, 𝑥2 P 𝑒 1

1
. We replace 𝑒1 with 𝑒

1
1
.

As Q♣ is q-hierarchical, the case with 𝑒2, 𝑒3 P E♣ cannot happen. We further distinguish two cases:

‚ Case 2.1: 𝑒2 P E˝ ´ E♣ and 𝑒3 P E♣ (the case with 𝑒3 P E˝ ´ E♣ and 𝑒2 P E♣ is symmetric). As

𝑒1, 𝑒3 P E♣, we must have 𝑒3 ´𝑒1 ‰ H. We can always identify an attribute 𝑥3 P 𝑒3 ´𝑒1 satisfying

the following two properties:

– E𝑥3
´ E♣ ‰ H: By contradiction, assume each attribute 𝑥3 P 𝑒3 ´ 𝑒1 satisfying E𝑥3

´ E♣ “ H,

which must be a joint attribute. For each such attribute 𝑥3 P 𝑒3 ´ 𝑒1 ´ V‚, as E𝑥3
Ď E♣, there

exists a relation 𝑒 1
𝑥3

P E♣ such that 𝑥3 Ď 𝑒 1
𝑥3

. Now, if there exists a pair of 𝑥3, 𝑥4 P 𝑒3 ´ 𝑒1 ´ V‚

such that 𝑒 1
𝑥3

‰ 𝑒 1
𝑥4

, we have 𝑒3 P E𝑥3
X E𝑥4

X E♣ ‰ H, 𝑒 1
𝑥3

P E𝑥3
X E♣ ´ E𝑥4

and 𝑒 1
𝑥4

P

E𝑥4
X E♣ ´ E𝑥3

, contradicting the fact that Q♣ is q-hierarchical. Hence, there is a relation 𝑒 1

such that 𝑒3 ´ 𝑒1 ´ V‚ Ď 𝑒 1
. For each attribute 𝑥5 P 𝑒3 X 𝑒1, 𝑥5 P 𝑒 1

must hold; otherwise, we

have 𝑒3 P E𝑥5
XE𝑥3

XE♣ ‰ H, 𝑒 1 P E𝑥3
XE♣´E𝑥5

and 𝑒1 P E𝑥5
XE♣´E𝑥3

, again contradicting

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:18 Xiao Hu and Qichen Wang

the fact that Q♣ is q-hierarchical. Hence, 𝑒3 ´ V‚ Ď 𝑒 1
, i.e., 𝑒3 is reducible, contradicting that

fact that 𝑒3 P E♣.
– E𝑥1

X E𝑥3
“ H: Suppose there exists any 𝑒 P E♣ X E𝑥1

X E𝑥3
, then we identify a hierarchical

core with relations 𝑒1, 𝑒3, 𝑒 and attributes 𝑥1 P p𝑒1 ´𝑒3q X𝑒, 𝑥2 P p𝑒3 ´𝑒1q X𝑒 , contradicting the

fact that Q♣ is q-hierarchical. Otherwise, suppose there exists some 𝑒 P E˝ ´ E♣ X E𝑥1
X E𝑥3

.

For any anchor 𝑒 1 P E♣ of 𝑒 , 𝑥1, 𝑥3 P 𝑒 ´ V‚ Ď 𝑒 1
. However, E♣ X E𝑥1

X E𝑥3
“ H by our

assumption. Hence, 𝑒 does not have an anchor, violating the condition that 𝑒 is reducible.

Let 𝑒4 P E˝ ´ E♣ X E𝑥3
be any relation. We can reduce Qswing to Q with attributes 𝑥1, 𝑥2, 𝑥3 and

relations 𝑒1, 𝑒2, 𝑒3, 𝑒4. As there is no edges p𝑒1, 𝑒2q and p𝑒3, 𝑒4q inH , either 𝜎pt𝑒1uq or 𝜎pt𝑒4uq is not

insertion-only, and 𝜎pt𝑒1, 𝑒2uq and 𝜎pt𝑒3, 𝑒4uq are not FIFO. The hardness follows Example 4.11.

‚ Case 2.2: 𝑒2, 𝑒3 P E˝ ´ E♣. Let 𝑒4 P E♣ be an arbitrary anchor of 𝑒2 and 𝑒5 P E♣ be an arbitrary

anchor of 𝑒3. Hence, 𝑥1 P 𝑒2 ´ V‚ Ď 𝑒4 and 𝑥2 P 𝑒3 ´ V‚ Ď 𝑒5. Additionally, either 𝑥2 P 𝑒4 or

𝑥1 P 𝑒5; otherwise, we identify a hierarchical core, contradicting the fact that Q♣ is q-hierarchical.
Moreover, if 𝑥2 P 𝑒4 but 𝑥1 R 𝑒5 (the case with 𝑥1 P 𝑒5 but 𝑥2 R 𝑒4 is symmetric), we can reduce

𝑒4, 𝑒2, 𝑒5 to Case 2.1. Below, we assume 𝑥2 P 𝑒4, 𝑥1 P 𝑒5, and further distinguish the following two

cases:

– Case 2.2.1: 𝑒4 “ 𝑒5. In this case, we identify a hierarchical core 𝑒4, 𝑒2, 𝑒3. Here, 𝜎pt𝑒2uq and

𝜎pt𝑒3uq are not insertion-only, and 𝜎pt𝑒4, 𝑒2uq and 𝜎pt𝑒4, 𝑒3uq are not FIFO, as there is no edge

between p𝑒4, 𝑒2q and p𝑒4, 𝑒3q inH . The hardness follows Example 4.10.

– Case 2.2.2: 𝑒2, 𝑒3 don’t share a common anchor.We can find 𝑥3 P 𝑒2´V‚´𝑒5 and 𝑥4 P 𝑒3´V‚´

𝑒4. We can reduce Qswing to Q with attributes 𝑥3, 𝑥1, 𝑥4 and relations 𝑒2, 𝑒4, 𝑒5, 𝑒3. As there is no

edge p𝑒4, 𝑒2q and p𝑒5, 𝑒3q inH , either𝜎pt𝑒2uq or𝜎pt𝑒3uq is not insertion-only, and𝜎pt𝑒2, 𝑒4uq and

𝜎pt𝑒5, 𝑒3uq are not FIFO. The hardness follows Example 4.11. □

4.4 Base Case 3: Line 7 of Algorithm 2
Lemma 4.16. For a CQ Q and a pattern 𝜎 of update sequences, to which no simplification step can

be applied if Q is weak-q-hierarchical and has a free-connex join tree T compatible with 𝜎 , Q can be
maintained in 𝑂p1q amortized time over 𝜎-sequences.

In Appendix B, we show that for a CQ Q and a pattern 𝜎 of update sequences, if Q is weak-q-

hierarchical and has a free-connex join tree T compatible with 𝜎 , any 𝜎-sequence 𝑆 has enclosure-

ness 𝑂p1q under T . Together with Lemma 1.4, we complete the proof of Lemma 4.16.

5 CONCLUSION
In this paper, we study the lower bounds of query maintenance over different classes of update

sequences. There are a few exciting open questions in this direction:

‚ Single update v.s. Batch update. So far, we have focused on the maintenance complexity for

single-tuple updates. In practice, it is more likely that updates arrive in batch, and query answers

are only required to be ready to be enumerated after each batch. A strawman approach is to drop

the single-update assumption for updates and update sequences, then apply the current upper

bounds. It would be very interesting to study the tradeoff between maintenance complexity,

delay, and batch size beyond such an approach.

‚ Preprocessing. So far, we simulate the preprocessing steps with an insertion-only update sequence

prior to time 0. The absence of strict update ordering at the start allows for linear-time pre-

processing for free-connex queries (also shown by [17]). For non-free-connex or cyclic queries,

strategically assigning preprocessing order could improve performance, and exploring the corre-

sponding upper and lower bounds would be an interesting direction for future work.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:19

‚ Better update-independent quantity beyond enclosureness. The current notion of enclosureness is

sometimes too loose to capture the hardness of update sequences. In Appendix B, we have to

slightly modify the data structure in [25] to derive a tighter analysis. It is open whether one can

find a better quantity than enclosureness to characterize the hardness of query maintenance.

‚ The effect of self-joins. It has been observed [10] in static query enumeration that self-joins will

change the existing complexity results established for a long time. As mentioned, there is a

natural connection between static query enumeration and query maintenance under insertion-

only updates. In general, it remains to investigate how self-joins would change the problem

hardness of query maintenance.

ACKNOWLEDGEMENT
This work was supported by NSERC – Discovery Grant and Hong Kong RGC Grants (Project No.

12200524, C2004-21GF, and C2003-23Y).

A MISSING PROOFS IN SECTION 3
Lemma A.1. For a free-connex but non-weak-q-hierarchical CQ Q “ pV, E, yq with a skeleton E♣,

if the E♣-induced CQ contains a q-core, then Q must contain a hook core.

Proof of Lemma A.1. By definition, there must exist a pair of distinct attributes 𝑥1 P y, 𝑥2 P ȳ
and a pair of distinct relations 𝑒1, 𝑒2 Ď E♣ such that 𝑥1 P 𝑒1 ´ 𝑒2 and 𝑥2 P 𝑒1 X 𝑒2. Consider

an arbitrary free-connex tree T for Q, whose internal (original) nodes are E♣. Let Econ be the

connex subtree of T . We first show that 𝑒2 cannot be the ancestor of 𝑒1. If this is the case, all nodes

containing 𝑥1 must be a subtree of 𝑥2. Let 𝑒 be the child node of 𝑒2 lying on the path from 𝑒2 to

𝑒1. Hence, 𝑒2, 𝑒 P Econ; otherwise, no node in Econ contains 𝑥1. However, 𝑥2 P 𝑒2 X 𝑒 “ keyp𝑒q R y,
coming to a contradiction of the definition of Econ. Let 𝑒5 be the parent node of 𝑒2. We claim that

𝑥2 P 𝑒5; otherwise, 𝑒1 must be a descendent of 𝑒2, contradicting our observation above. Also, 𝑥1 P 𝑒5;

otherwise, the connect property of 𝑥1 does not hold. As 𝑒2 X 𝑒5 X ȳ ‰ H, then 𝑒2 R Econ. Then,

p𝑒2 ´𝑒5qXy “ H; otherwise, the connect property of any output attribute 𝑥 P p𝑒2 ´𝑒5qXy does not
hold. As 𝑒2 P E♣ and p𝑒2 ´𝑒5qXy “ H, we must have p𝑒2 ´V‚ ´𝑒5qX ȳ ‰ H; otherwise, 𝑒2 can be

removed from E♣, due to the existence of 𝑒5. Let 𝑥3 P p𝑒2 ´V‚ ´ 𝑒5q X ȳ be an arbitrary non-output

attribute. As 𝑥3 R V‚, there must exist a child node of 𝑒2 say 𝑒3 in T , such that 𝑥3 P 𝑒2 X 𝑒3. As

𝑥1 R 𝑒2, 𝑥1 R 𝑒3. As 𝑥3 R 𝑒5, 𝑥3 R 𝑒1. Also, there exists no relation containing both 𝑥1, 𝑥3. Hence, we

have identified a hook core with 𝑥1, 𝑥2, 𝑥3 and 𝑒1, 𝑒2, 𝑒3 as desired. □

Lemma A.2. For a free-connex CQ Q “ pV, E, yq, if it does not contain a q-core,V‚ Ď ȳ or ȳ Ď V‚.

Proof of Lemma A.2. It suffices to show that if 𝑦 XV‚ “ H, thenV‚ Ď ȳ. Suppose 𝑥 P yXV‚

with 𝑥 P 𝑒 for the unique 𝑒 P E. We start with relation 𝑒 , and add it to 𝑋 . We keep adding any

relation 𝑒 1
that shares some common attribute with any 𝑒 P 𝑋 to 𝑋 , until we find some 𝑒 1

with

𝑒2 X 𝑒 1 X ȳ ‰ H for any 𝑒2 P 𝑋 , or all relations in E have been added to 𝑋 . Suppose all relations

have been added without finding such a relation 𝑒 1
. Then,V ´ V‚ Ď y, i.e., ȳ Ď V‚. Suppose such

a relation 𝑒 1
is identified. Let 𝑒2 P 𝑋 be such a relation that 𝑒 1 X𝑒2 X ȳ ‰ H. Let 𝑥1 P 𝑒2 Xy´𝑒 1

and

𝑥2 P 𝑒 1 X 𝑒2 X ȳ. Then, we have found a q-core with 𝑥1, 𝑥2 and 𝑒
2, 𝑒 1

, coming to a contradiction. □

Lemma A.3. For a free-connex but non-weak-q-hierarchical CQ Q with a skeleton E♣, if the E♣-
induced CQ does not contain a q-core but a hierarchical core, Q must contain a path core.

Proof of Lemma A.3. As Q contains a hierarchical core, there must exist a pair of attributes

𝑥2, 𝑥3 and three relations 𝑒2, 𝑒3, 𝑒4 P E♣ such that 𝑥2 P 𝑒2 X𝑒3 ´𝑒4 and 𝑥3 P 𝑒3 X𝑒4 ´𝑒2. Consider an

arbitrary free-connex T for Q, whose internal (original) nodes exactly correspond to E♣. Let Econ

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:20 Xiao Hu and Qichen Wang

be the connex subtree of T . We start with two critical observations: If 𝑒2 is not the root of T , let 𝑒 1
2

be the parent of 𝑒2. We argue that 𝑒2 ´ 𝑒 1
2

´ V‚ ‰ H by distinguishing the following two cases:

‚ if 𝑒2 X V‚ Ď ȳ, then 𝑒2 ´ 𝑒 1
2

´ V‚ ‰ H; otherwise, 𝑒2 can be removed from E♣ due to 𝑒 1
2
;

‚ if 𝑒2 X V‚ X y ‰ H, then 𝑒 1
2
, 𝑒2 P Econ; otherwise, no relation in Econ contains attributes in

𝑒2 X V‚ X y, contradicting the property of Econ. From the facts that 𝑒 1
2
, 𝑒2 P Econ, we observe

𝑒 1
2

X 𝑒2 Ď y and therefore 𝑒2 ´ 𝑒 1
2

´V‚ ‰ H; otherwise, 𝑒2 ´V‚ Ď 𝑒 1
2

X y and 𝑒2 can be removed

from E♣ due to the existence of 𝑒 1
2
.

Similarly, if 𝑒4 is not the root of T , let 𝑒 1
4
be the parent of 𝑒4. We argue that 𝑒4 ´ 𝑒 1

4
´ V‚ ‰ H. We

are ready to prove Lemma A.3 by distinguishing two cases: (Case 1) 𝑒2 is not the ancestor of 𝑒4,

nor 𝑒4 is not the ancestor of 𝑒2. (Case 2) 𝑒2 is the ancestor of 𝑒4 or 𝑒4 is the ancestor of 𝑒2.

In (Case 1), neither 𝑒2 nor 𝑒4 is the root of T . In that case, 𝑒3 must not be a decedent of 𝑒2 or 𝑒4;

otherwise, the connect property of 𝑥2 or 𝑥3 is violated. Let 𝑒
1
2
, 𝑒 1

4
be the parent of 𝑒2, 𝑒4 respectively.

Implied by the connect property of 𝑥2 and 𝑥3 again, 𝑥2 P 𝑒 1
2
and 𝑥3 P 𝑒 1

4
. After establishing

𝑒2 ´ 𝑒 1
2

´ V‚ ‰ H, we identify 𝑥1 P 𝑒2 ´ 𝑒 1
2

´ V‚ as such an arbitrary attribute. Noted that 𝑥1 ‰ 𝑥2

as 𝑥2 P 𝑒 1
2
. Some child node 𝑒1 of 𝑒2 must contain 𝑥1. The 𝑒5 and 𝑥4 can be identified similarly. As

𝑥3 R 𝑒2, no relation contains both 𝑥1, 𝑥3. As 𝑥4 R 𝑒3, no relation contains both 𝑥1, 𝑥4, or both 𝑥2, 𝑥4.

Hence, we have identified a path core with 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5.

In (Case 2), assume 𝑒4 is an ancestor of 𝑒2 wlog. Implied by the property of free-connex tree

T , 𝑒4 is an ancestor of 𝑒3, and 𝑒3 is an ancestor of 𝑒2. Let 𝑒
1
2
be the parent of 𝑒2. Again, we have

𝑒2 ´ 𝑒 1
2

´ V‚ ‰ H, and identify 𝑥1, 𝑒1 as (Case 1). We next focus on how to identify 𝑒5 and 𝑥4. Let

𝑒 1
4
be the child node of 𝑒4 lying on the path from 𝑒4 to 𝑒2. Note that 𝑒

1
4
may be the same as 𝑒3.

We next argue that 𝑒4 ´𝑒 1
4
´V‚ ‰ H. If 𝑒4 XV‚ Ď ȳ, we must have 𝑒4 ´𝑒 1

4
´V‚ ‰ H; otherwise,

𝑒4 can be removed from E♣ due to the existence of 𝑒 1
4
. Then, it suffices to consider the case with

𝑒4 XV‚ X y ‰ H. Implied by Lemma A.2, 𝑥2 P y. As 𝑥2 R 𝑒4, we must have 𝑒4, 𝑒
1
4

P Econ; otherwise,

no relation in Econ contains attribute 𝑥2, coming to a contradiction. Implied by the definition of

Econ, 𝑒4 X 𝑒 1
4

Ď y. Hence, 𝑒4 ´ 𝑒 1
4

´ V‚ ‰ H; otherwise, 𝑒4 ´ V‚ Ď 𝑒 1
4

X y, and 𝑒4 can be removed

from E♣, due to the existence of 𝑒 1
4
, coming a contradiction.

After establishing 𝑒4 ´ 𝑒 1
4

´V‚ ‰ H, we identify 𝑥4 P 𝑒4 ´ 𝑒 1
4

´V‚ as such an arbitrary attribute.

There must exist some child node 𝑒5 of 𝑒4, or the parent node of 𝑒4 that contains 𝑥4. Noted that

𝑥2 R 𝑒5, since 𝑥2 P 𝑒2 X 𝑒3 ´ 𝑒4, together with the connect property of 𝑥2. As 𝑥3 R 𝑒2 and 𝑥1 only

appear in relations that are descendants of 𝑒2, no relation contains both 𝑥1, 𝑥3. As 𝑥4 R 𝑒 1
4
, we have

𝑥4 R 𝑒3, and no relation contains both 𝑥1, 𝑥4, or both 𝑥2, 𝑥4. Hence, we have identified a path core

with 𝑥1, 𝑥2, 𝑥3, 𝑥4 and 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5. □

Proof of Lemma 3.11. Let E♣ be the skeleton of E. Consider a free-connex tree T for Q, where

E♣ is exactly the set of internal nodes of T . As Q is free-connex but not weak-q-hierarchical, the

E♣-induced CQ Q♣ is not q-hierarchical. If Q♣ contains a q-core, Q must contain a hook core,

implied by Lemma A.1. If Q♣ does not contain a q-core but a hierarchical core, Q must contain a

path core, implied by Lemma A.3. □

Proof of Theorem 3.12. For any FIFO sequence 𝑆 , we denote 𝜏r𝑆, 𝜃 s as the first deletion of any

tuple inserted after timestamp 𝜃 . More specially, there exists some tuple 𝑡 such that p𝑡, 𝑠1, +, ˚q P 𝑆

and p𝑡, 𝜏r𝑆, 𝜃 s, -, ˚q P 𝑆 with 𝜃 ď 𝑠1, but there exists no tuple 𝑡 1
such that p𝑡 1, 𝑠2, +, ˚q P 𝑆 with

𝜃 ď 𝑠2 ă 𝜏r𝑆, 𝜃 s. If no tuple is inserted after timestamp 𝜃 , we set 𝜏r𝑆, 𝜃 s “ `8. Implied by

Lemma 3.11, a free-connex but non-weak-q-hierarchical query must contain Case (1) a path core

or Case (2) a hook core.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:21

Case (1.1): 𝑥2 R 𝑒1 and 𝑥3 R 𝑒5. Given an arbitrary FIFO sequence 𝑆 1
for Qpath, we construct a

FIFO sequence 𝑆 for Q. For every relation 𝑒 P E, we assign 𝑖 as the unique integer in advance to

ensure that at each timestamp, there can be at most one update, and

‚ if 𝑒 X t𝑥1, 𝑥2, 𝑥3, 𝑥4u “ H, we add a tuple p˚q at timestamp 𝑡0 “ ´8 and delete it at timestamp

𝑡1 “ 𝜏r𝑆 1,´8s ` 𝑖𝜖 . We reinsert p˚q at timestamp 𝑡1 and delete it at timestamp 𝑡2 “ 𝜏r𝑆 1, 𝑡1s ` 𝑖𝜖 .

Again, we reinsert p˚q at timestamp 𝑡2 and delete it at timestamp 𝑡3 “ 𝜏r𝑆 1, 𝑡2s ` 𝑖𝜖 . We repeat

this procedure until 𝜏r𝑆 1, 𝑡𝑘 s “ `8. There are at most |𝐷| tuples in 𝑅𝑒 .

‚ If 𝑒 X t𝑥1, 𝑥2, 𝑥3, 𝑥4u ‰ H, we apply the same updates as 𝑆 1
does for 𝑅𝑒1 , where 𝑒 1 “ 𝑒 X

t𝑥1, 𝑥2, 𝑥3, 𝑥4u. Suppose 𝑒 1 “ t𝑥1u. When a tuple 𝑡 is inserted into 𝑅1 at timestamp 𝑡`
and deleted

at timestamp 𝑡´
in 𝑆 1

, we insert a tuple 𝑡 1
such that 𝜋𝑥1

𝑡 1 “ 𝑡 and 𝜋𝑥𝑡
1 “ t˚u for any attribute

𝑥 P 𝑒 ´ t𝑥1u, into 𝑅𝑒 at timestamp 𝑡` ` 𝑖𝜖 and delete at timestamp 𝑡´ ` 𝑖𝜖 in 𝑆 .

It remains to show that 𝑆 is a FIFO sequence. For tuples in relations 𝑅𝑒 with 𝑒 X t𝑥1, 𝑥2, 𝑥3, 𝑥4u “ H,

adding these updates won’t violate the FIFO property, since during the lifespan r𝑡𝑖 , 𝑡𝑖`1s, there

exists no tuple 𝑡 1
such that p𝑡 1, 𝑠1, +, ˚q P 𝑆 1

and p𝑡 1, 𝑠2, -, ˚q P 𝑆 1
with 𝑡𝑖 ă 𝑠𝑖 ă 𝑠2 ă 𝑡𝑖`1; otherwise

𝜏r𝑆 1, 𝑡𝑖s “ 𝑠2, coming to a contradiction. Whenever an enumeration query is issued to Qpath, we

ask an enumeration query to Q. It can be easily checked that there is a one-to-one correspondence

between Qpath and Q at any timestamp.

Case (1.2): 𝑥2 P 𝑒1 or 𝑥3 P 𝑒5. If 𝑥2 P 𝑒1, we select an arbitrary relation 𝑒 P Et𝑒2u with

𝑒 X t𝑥1, 𝑥2, 𝑥3, 𝑥4u “ t𝑥1, 𝑥2u to simulate 𝑒1, by applying all updates that 𝑆
1
does for 𝑅1 to 𝑅𝑒 ; similar

modification will be applied if 𝑥3 P 𝑒5.

Case (2.1): 𝑥2 R 𝑒3. Given an arbitrary FIFO sequence 𝑆 1
for Qhook, we construct a FIFO sequence

𝑆 for Q. For every relation 𝑒 P E,
‚ If 𝑒 X t𝑥1, 𝑥2, 𝑥3u “ H, we add a tuple p˚q at timestamp 𝑡0 “ ´8 and delete it at timestamp

𝑡1 “ 𝜏r𝑆 1,´8s ` 𝑖𝜖 . We reinsert p˚q at timestamp 𝑡1 and delete it at timestamp 𝑡2 “ 𝜏r𝑆 1, 𝑡1s ` 𝑖𝜖 .

Again, we reinsert p˚q at timestamp 𝑡2 and delete it at timestamp 𝑡3 “ 𝜏r𝑆 1, 𝑡2s ` 𝑖𝜖 . We repeat

this procedure until 𝜏r𝑆 1, 𝑡𝑘 s “ `8. There are at most |𝐷| tuples in 𝑅𝑒 .

‚ If 𝑒 X t𝑥1, 𝑥2, 𝑥3u ‰ H, we apply the same updates as 𝑆 1
does for 𝑅𝑒1 , where 𝑒 1 “ 𝑒 X t𝑥1, 𝑥2, 𝑥3u.

Suppose 𝑒 1 “ t𝑥1, 𝑥2u. When a tuple 𝑡 is inserted into 𝑅1 at timestamp 𝑠 in 𝑆 1
, we insert a tuple

𝑡 1
such that 𝜋𝑥1,𝑥2

𝑡 1 “ 𝑡 and 𝜋𝑥𝑡
1 “ t˚u for any attribute 𝑥 P 𝑒 ´ t𝑥1, 𝑥2u, into 𝑅𝑒 at timestamp

𝑠 ` 𝑖𝜖 in 𝑆 and delete accordingly.

It can be proved similarly that 𝑆 is a FIFO sequence. Whenever an enumeration query is issued

to Qhook, we ask an enumeration query to Q. It can be easily checked that there is a one-to-one

correspondence between Qhook and Q at any timestamp.

Case (2.2): 𝑥2 P 𝑒3. If 𝑥2 P 𝑒3, similar to case (1.2), we select an arbitrary relation 𝑅𝑒 with

𝑒 X t𝑥1, 𝑥2, 𝑥3u “ t𝑥2, 𝑥3u, and apply all updates that 𝑆 1
does for 𝑅3 to 𝑅𝑒 . □

B MISSING DETAILS OF SECTION 4
The other three cases for Example 4.6 are illustrated in Figures 18 - 20.

Lemma B.1. Algorithm 2 always returns the same answer no matter which ordering is applied to
remove reducible relations.

Proof of Lemma B.1. The reducible relationship can be modeled as a directed graph, where each

vertex represents a relation 𝑒 , and there exists a direct edge from 𝑒1 to 𝑒2 if 𝑒1 is reducible with 𝑒2 as

the anchor, and both 𝜎p𝑒1q, 𝜎p𝑒2q are insertion-only. If the graph is acyclic, by running Algorithm 2,

the residual query (after removing all possible reducible relations) is unique, with a determined

final output. On the other hand, if there exist two relations 𝑒1, 𝑒2 that can be reducible by each

other as an anchor, we must have 𝑒1 ´ V‚ “ 𝑒2 ´ V‚, and both 𝜎p𝑒1q and 𝜎p𝑒2q are insertion-only.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:22 Xiao Hu and Qichen Wang

u1Mv1 u2Mv2

MR3

v1

v2
R4

u1

u2
R2

1
2

R5

1
2

R1

...

...

...

...

Time

Fig. 18. A reduction from an
OuMv instance to a 𝜎-sequence
for Qpath, where 𝜎pt𝑒2uq and
𝜎pt𝑒5uq are not insertion-only.

u1Mv1 u2Mv2

MR3

v1

v2
R4

u1

u2
R2

1
2

R5

1
2

R1

...

...

...

...

Time

Fig. 19. A reduction from an
OuMv instance to a 𝜎-sequence
for Qpath, where 𝜎pt𝑒2uq and
𝜎pt𝑒4uq are not insertion-only.

u1Mv1 u2Mv2

MR3

v1

v2
R4

u1

u2
R2

1
2

R5

1
2

R1

...

...

...

...

Time

Fig. 20. A reduction from an
OuMv instance to a 𝜎-sequence
for Qpath, where 𝜎pt𝑒1uq and
𝜎pt𝑒5uq are not insertion-only.

We can further distinguish two more cases. If an anchor 𝑒3 exists for both 𝑒1 and 𝑒2, such that

𝜎p𝑒3q is also insertion-only. In this case, 𝑒1 and 𝑒2 will be removed by 𝑒3, no matter in which order,

without making any difference to the final output. Otherwise, either 𝑒1 or 𝑒2 remains in the residual

query. In this case, the remaining relation will appear as a leaf node of any join tree. As both 𝜎p𝑒1q

and 𝜎p𝑒2q are insertion-only and 𝑒1 ´ V‚ “ 𝑒2 ´ V‚, this remaining relation won’t change the

if-condition of Algorithm 2. Hence, Algorithm 2 returns the same answer. □

Proof of Lemma 4.4. Let E♣ be the skeleton of E. Let T♣ be the free-connex join tree of E♣-
induced CQ. We construct a free-connex join tree T for Q as follows. For every relation 𝑒 P E ´E♣,
some relation 𝑒 1 P E♣ must exist such that 𝑒 1

is an anchor of 𝑒 . We just add 𝑒 as a child of 𝑒 1
. From

Lemma 3.11, as Q is not weak-q-hierarchical, we can always find a path core or hook core. In
addition, we aim to identify either a path core where 𝑒1 and 𝑒5 are leaf or root nodes in the join

tree T , or a hook corewhere 𝑒3 is a leaf node in T . Since no simplification steps can be applied, for

such a path core, either 𝜎p𝑒1q or 𝜎p𝑒2q, and either 𝜎p𝑒4q or 𝜎p𝑒5q are not insertion-only. Similarly,

for such a hook core, either 𝜎p𝑒2q or 𝜎p𝑒3q is not insertion-only.

(Path core).We first consider the path core of five relations 𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5 P E and four attributes

𝑥1, 𝑥2, 𝑥3, 𝑥4 P V with 𝑥1 P 𝑒1 X 𝑒2, 𝑥2 P 𝑒2 X 𝑒3, 𝑥3 P 𝑒3 X 𝑒4, 𝑥4 P 𝑒4 X 𝑒5, such that there exists no

relation 𝑒 P E containing both 𝑥𝑖 , 𝑥 𝑗 with | 𝑗 ´ 𝑖| ą 1. We identify a relation 𝑒 1
1

P E as follows:

‚ If 𝑒1 is reducible, then 𝑒1 is identified as 𝑒 1
1
;

‚ If there exists a leaf node 𝑒 P E with t𝑒2, 𝑒3, 𝑒4, 𝑒5u X pathp𝑒1, 𝑒q ‰ H, then 𝑒 is identified as 𝑒 1
1
;

‚ Otherwise, the root 𝑟 of T is identified as 𝑒 1
1
. For an arbitrary leaf node 𝑒 P E, if t𝑒2, 𝑒3, 𝑒4, 𝑒5u X

pathp𝑒1, 𝑒q ‰ H, we observe that t𝑒2, 𝑒3, 𝑒4, 𝑒5u Ď pathp𝑒1, 𝑒q. Suppose not, t𝑒2, 𝑒3, 𝑒4, 𝑒5u Ę

pathp𝑒1, 𝑒q. There must exist some 𝑖 P t2, 3, 4, 5u such that 𝑒𝑖 P pathp𝑒1, 𝑒q but 𝑒𝑖`1 R pathp𝑒1, 𝑒q

or 𝑒𝑖´1 R pathp𝑒1, 𝑒q. Wlog, assume 𝑒𝑖`1 R pathp𝑒1, 𝑒q. Then, 𝑒1 P pathp𝑒𝑖 , 𝑒𝑖`1q, violating the

connect property of 𝑥𝑖 . As t𝑒2, 𝑒3, 𝑒4, 𝑒5u Ď pathp𝑒1, 𝑒q for every leaf node 𝑒 P E, then 𝑒 must only

have one child, as well as the root 𝑟 . Hence, 𝑟 is also a reducible relation with its unique child as

the anchor. Moreover, t𝑒2, 𝑒3, 𝑒4, 𝑒5u X pathp𝑒1, 𝑟q “ H.

Note that 𝑒 1
1
is reducible and t𝑒2, 𝑒3, 𝑒4, 𝑒5uXpathp𝑒1, 𝑒

1
1
q “ H. We similarly find a reducible relation

𝑒 1
5

P E such that t𝑒1, 𝑒2, 𝑒3, 𝑒4u X pathp𝑒5, 𝑒
1
5
q “ H. Moreover, pathp𝑒1, 𝑒

1
1
q X pathp𝑒5, 𝑒

1
5
q “ H. Let

𝐼 Ď V be the set of join attributes appearing in any pair of relations in pathp𝑒1, 𝑒
1
1
q, and let 𝐽 Ď V

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:23

be the set of join attributes appearing in any pair of relations in pathp𝑒5, 𝑒
1
5
q. For every attribute

𝑥 P V ´ 𝐼 ´ 𝐽 ´ t𝑥1, 𝑥2, 𝑥3, 𝑥4u, we set a special value t˚u in its domain.

After identifying the path core and 𝑒 1
1
, 𝑒 1

5
, we can use Q to simulate Qpath. If Q can be maintained

in 𝑂p1q, then we can maintain Qpath under 𝜎pt𝑒1, 𝑒2, 𝑒3, 𝑒4, 𝑒5uq, which contradicts to Example 4.6.

(Hook core). We consider the hook core of three relations 𝑒1, 𝑒2, 𝑒3 and three distinct attributes

𝑥1 P y, 𝑥2, 𝑥3 P ȳ, with 𝑥1 P 𝑒1 ´ 𝑒2 ´ 𝑒3, 𝑥2 P 𝑒1 X 𝑒2 ´ 𝑒3, 𝑥3 P 𝑒2 X 𝑒3 ´ 𝑒1 such that there exists

no relation 𝑒 P E both 𝑥1 and 𝑥3. Note that 𝑒3 must be a descendent of 𝑒1. Suppose not, we consider

𝑒 1
as the lowest common ancestor of 𝑒1 and 𝑒3. Note that 𝑥2 P 𝑒 or 𝑥3 P 𝑒 . It could be the case that

𝑒 1 “ 𝑒3. Let 𝑒 be the child of 𝑒
1
that is also an ancestor of 𝑒1. If 𝑥2 P 𝑒 1

, 𝑥2 P 𝑒 ; otherwise, the connect

property of 𝑥2 is not preserved in T . Similarly, if 𝑥3 P 𝑒 1
, 𝑥3 P 𝑒; otherwise, the connect property

of 𝑥3 is not preserved in T . As 𝑒 X 𝑒 1 X ȳ ‰ H, 𝑒 R Econ. Hence, no relation in Econ contains 𝑥1,

coming to a contradiction. We identify a relation 𝑒 1
3

P E as follows:

‚ If 𝑒3 is reducible, then 𝑒3 is identified as 𝑒 1
3
;

‚ If there exists a leaf node 𝑒 P E with t𝑒1, 𝑒2u X pathp𝑒3, 𝑒q ‰ H, then 𝑒 is identified as 𝑒 1
3
.

Let 𝐼 Ď V be the set of join attributes appearing in any pair of relations in pathp𝑒3, 𝑒
1
3
q,

After identifying the hook core and 𝑒 1
3
, we can use Q to simulate Qhook. If Q can be maintained

in 𝑂p1q, then we can maintain Qhook under 𝜎pt𝑒1, 𝑒2, 𝑒3uq, which contradicts to Example 4.5. □

Proof of Lemma 4.16. We start with the case when the height of T is 2. By Definition 2.7, for

any leaf node 𝑒 P T and tuple 𝑡 P 𝑅𝑒 , 𝜆Tp𝑡q “ 1. Conversely, for any non-leaf node 𝑒 P T , for any

𝑡 P 𝑅𝑒 , given that T is compatible, then for any child node 𝑒 1
of 𝑒 on T , if 𝜎pt𝑒 1uq is insertion-only

or 𝜎pt𝑒, 𝑒 1uq is FIFO, we can select only one disjoint effective lifespan in 9𝐼p𝑡q, making 𝜆Tp𝑡q also

equal to 1 for all non-child nodes of T . Therefore, the enclosureness 𝜆T “ 1 for all 𝜎-sequences. If

the height of T is ě 2, by Definition 2.7, 𝜆T may be larger than 𝑂p1q on some 𝜎-sequence 𝑆 . Let

𝑃 :“ x𝑒1, 𝑒2, ¨ ¨ ¨ , 𝑒𝑛y be a path on T , such that: (1) 𝑒𝑖 P E : 𝑖 P r𝑛s; (2) 𝑒𝑖 is the parent node of 𝑒𝑖`1

on T for all 1 ď 𝑖 ă 𝑛; (3) 𝑒1 is the root of T , or 𝑝p𝑒1q is a generalized relation; (4) 𝑒𝑛 is a leaf node.

Given any path 𝑃 on T with 𝑛 ě 2, only 𝜎pt𝑒2uq can be insertion-only, as if 𝑒𝑖 , 𝑒 𝑗 exist that

are both insertion-only, one node can be removed because the reducible conditions are transitive.

Meanwhile, for 𝑒𝑖 : 𝑖 P r3, 𝑛s, 𝜎pt𝑒𝑖´1, 𝑒𝑖uq is FIFO , as the requirement of a compatible join tree.

Lemma B.2. For any relation 𝑒 , let Q :“ 𝜋𝑥𝑅𝑒 for some attribute 𝑥 Ď 𝑒 and let 𝑡 be a result of Q
with lifespan r𝑡`, 𝑡´s. For any 𝑡 1 P 𝑅𝑒 such that 𝜋𝑥𝑡 1 “ 𝑡 and 𝑡 1` ě 𝑡`, then 𝑡´ ě 𝑡 1´.

The correctness follows that the projection operator only extends the lifespan of any input tuple.

First, we assume that 𝜎pt𝑒2uq is not insertion-only. For any 𝑡1 P 𝑒1 with a lifespan of r𝑡`
1
, 𝑡´

1
s,

there can be at most one tuple 𝑡𝑖 in 𝑒𝑖 ´ V‚ for any 𝑖 P r2, 𝑛s that can join with 𝑡1, as 𝑒𝑖 ´ V‚ is

a subset of 𝑒1. Let’s denote 𝑡𝑖 P 𝑒𝑖 ´ V‚ as the tuple that can join with 𝑡1. The tuple 𝑡1 belongs to

𝑉𝑠p𝑅1q only if 𝑡2, ¨ ¨ ¨ , 𝑡𝑛 exist in 𝑒2 ´V‚, ¨ ¨ ¨ , 𝑒𝑛 ´V‚ and are not in𝑉𝑠p𝑅1q if one or more 𝑡𝑖 missed

from 𝑒𝑖 ´ V‚. The tuple 𝑡2 can be inserted into or deleted from 𝜋𝑒2´V‚
multiple times, resulting

in multiple disjoint lifespans. However, there cannot be a lifespan for 𝑡2 such that 𝑡`
2

ě 𝑡`
1
and

𝑡´
2

ď 𝑡´
1
. According to Lemma B.2 and the fact that 𝜎pt𝑒1, 𝑒2uq is FIFO. Moreover, within the time

interval r𝑡`
2
, 𝑡´

1
s, there cannot exist two disjoint lifespans for 𝑡3 that are fully covered by the time

interval. Otherwise, we could find three tuples 𝑡1, 𝑡2, 𝑡3 from 𝑅1, 𝑅2, 𝑅3, such that 𝑡`
1

ď 𝑡`
2

ď 𝑡`
3
, and

𝑡´
1

ě 𝑡´
3
, but it must be 𝑡´

1
ď 𝑡´

2
and 𝑡´

2
ď 𝑡´

3
to ensure the FIFO property on both 𝜎pt𝑒1, 𝑒2uq and

𝜎pt𝑒2, 𝑒3uq, which cannot exist.

Following the same idea, we can ascertain that there cannot exist any disjoint lifespans created

by 𝑡𝑖 P 𝑒𝑖 ´ V‚ within the lifespan r𝑡`
1
, 𝑡´

1
s. Consequently, the status of 𝑡1 can only change 𝑂p1q

times in a 𝜎-sequence. A similar conclusion can be made for each 𝑡𝑖 P 𝑒𝑖 , by considering the time

interval r𝑡`
𝑖
, 𝑡´
𝑖

s resulting in 𝜆T “ 𝑂p1q for any 𝜎-sequence.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



117:24 Xiao Hu and Qichen Wang

On the other hand, if 𝜎pt𝑒2uq is insertion-only and let’s consider 𝑡2 as the first insertion on 𝑅2

with insertion time 𝑡`
2
, then for any tuple 𝑡𝑖 P 𝑒𝑖 , 𝑖 P r3, 𝑛s such that 𝑡𝑖 is inserted after time 𝑡`

2
, 𝑡𝑖

won’t be deleted from 𝑒𝑖 , otherwise the FIFO property breaks. Additionally, the status of 𝑡1 won’t

change until a corresponding 𝑡2 is inserted. Therefore, once 𝑡1 is inserted into 𝑉𝑠p𝑅1q, it will never

be deleted from 𝑉𝑠p𝑅1q until 𝑡1 itself is removed from 𝑅1. This results in 𝜆Tp𝑡q “ 𝑂p1q for all 𝑡 P 𝑒1.

Similarly, as there won’t be any deletion in 𝑒 𝑗 for the tuples that are inserted after 𝑡𝑖 with any 𝑗 ą 𝑖 ,

the enclosureness of any 𝑡 P 𝑒𝑖 will be 1, making the total enclosureness for 𝜆T “ 𝑂p1q. □

C DELETION-ONLY UPDATE SEQUENCES
In [25], it is observed that for any insertion-only update sequence 𝑆 , we can construct a deletion-

only update sequence 𝑆 1
symmetrically: (1) initializing the database as 𝐷8 at negative timestamp

with an arbitrary order, where 𝐷8 is the database at timestamp `8 defined by 𝑆 ; and (2) changing

every update 𝑢 “ p𝑡, 𝑠, +, 𝑅𝑖q to 𝑢1 “ p𝑡,´𝑠, -, 𝑅𝑖q. Note that 𝑆 1
has the same enclosureness as 𝑆 , so

it can be maintained with the same cost as 𝑆 using the algorithm from [25]. Below, we focus on the

hardness of deletion-only update sequences.

Theorem C.1. For any 𝜖 ą 0, there is no data structure for Q7 :“ 𝜋𝑥1,𝑥3
p𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥2, 𝑥3qq

that can be updated in 𝑂p1q time while supporting 𝑂p1q-delay enumeration over any deletion-only
update sequences, assuming the BMM conjecture.

Proof. Given an instance of BMM 𝑀 ˆ 𝑀 1
, where the two matrices 𝑀,𝑀 1

has size 𝑛 ˆ 𝑛, we

can create the following deletion-only update sequence on Q6 as follows: (1) we insert all tuples

p𝑖, 𝑗q P r𝑛s ˆ r𝑛s into 𝑅1 and 𝑅2 at negative timestamps; (2) for any p𝑖, 𝑗q where𝑀𝑖 𝑗 “ 0, we delete

p𝑖, 𝑗q from 𝑅1; similarly, for any p𝑖, 𝑗q where𝑀 1
𝑖 𝑗 “ 0, we delete p𝑖, 𝑗q from 𝑅2; (3) after all deletions

are done, we enumerate the query result. It is clear that if this CQ can be updated in𝑂p1q time while

supporting 𝑂p1q-delay enumeration over any deletion-only update sequence, then by the BMM

problem in time at most 𝑂p𝑛2 ˆ 1 ` 𝑛2 ˆ 1q “ 𝑂p𝑛2q, which contradicts to BMM conjecture. □

Theorem C.2. For any 𝜖 ą 0, there is no data structure for Q8 :“ 𝑅1p𝑥1, 𝑥2q ’ 𝑅2p𝑥2, 𝑥3q ’

𝑅3p𝑥3, 𝑥1q that can be updated in 𝑂p1q time while supporting 𝑂p1q-delay enumeration over any
deletion-only update sequences, assuming HC conjecture.

Proof. Given an instance of p3, 2q-HC problem, a special case of p𝑘 ` 1, 𝑘q-HC problem, which

tries to find all triangles from a graph. A conjecture is derived from the p𝑘 ` 1, 𝑘q-HC conjecture on

this special problem: We can create the following deletion-only update sequence on Q8 to simulate

the triangle problem: (1) we initial 𝑅1, 𝑅2 and 𝑅3 with all tuples p𝑖, 𝑗q P r𝑛s ˆ r𝑛s; (2) if p𝑖, 𝑗q R 𝐺 ,

we delete p𝑖, 𝑗q from 𝑅1, 𝑅2, 𝑅3; (3) after all the absent entries are deleted, we enumerate the query

result. If any results exist, then a triangle is detected from 𝐺 . For the construction above, there are

at most 𝑂p𝑛2q updates, making the total running time of 𝑂p𝑛2q if the query can be maintained in

𝑂p1q time, which is a contradiction to the triangle conjecture as well as the HC conjecture. □

Theorem C.3. For any non-free-connex CQ, no index can be updated in 𝑂p1q amortized time while
supporting 𝑂p1q-delay enumeration over any deletion-only update sequence, assuming the Boolean
Matrix Multiplication, Triangle Detection, and HyperClique conjectures.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.



Towards Update-Dependent Analysis of Query Maintenance 117:25

REFERENCES
[1] TPC-H Benchmark. http://www.tpc.org/tpch/

[2] Amir Abboud and Virginia Vassilevska Williams. 2014. Popular conjectures imply strong lower bounds for dynamic

problems. In 2014 IEEE 55th Annual Symposium on Foundations of Computer Science. IEEE, 434–443.
[3] Mahmoud Abo Khamis, Ahmet Kara, Dan Olteanu, and Dan Suciu. 2024. Insert-Only versus Insert-Delete in Dynamic

Query Evaluation. Proceedings of the ACM on Management of Data 2, 5 (2024), 1–26.
[4] Yanif Ahmad, Oliver Kennedy, Christoph Koch, and Milos Nikolic. 2012. DBToaster: Higher-order delta processing for

dynamic, frequently fresh views. Proceedings of the VLDB Endowment 5, 10 (2012), 968–979.
[5] Guillaume Bagan, Arnaud Durand, and Etienne Grandjean. 2007. On Acyclic Conjunctive Queries and Constant Delay

Enumeration. In Computer Science Logic. Springer Berlin Heidelberg, Berlin, Heidelberg, 208–222.

[6] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. 1983. On the desirability of acyclic database schemes. JACM 30, 3

(1983), 479–513.

[7] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2017. Answering Conjunctive Queries under Updates. In

PODS. 303–318.
[8] Christoph Berkholz, Jens Keppeler, and Nicole Schweikardt. 2018. Answering UCQs under Updates and in the Presence

of Integrity Constraints. In ICDT.
[9] Johann Brault-Baron. 2013. On the relevance of énumération: complexitye in propositional and first order logics. Ph. D.

Dissertation. University of Caen.

[10] Nofar Carmeli and Luc Segoufin. 2023. Conjunctive Queries With Self-Joins, Towards a Fine-Grained Enumeration

Complexity Analysis. In PODS. 277–289.
[11] Rada Chirkova and Jun Yang. 2012. Materialized views. Foundations and Trends® in Databases 4, 4 (2012), 295–405.
[12] R. Fagin. 1983. Degrees of acyclicity for hypergraphs and relational database schemes. JACM 30, 3 (1983), 514–550.

[13] Ashish Gupta, Inderpal Singh Mumick, and Venkatramanan Siva Subrahmanian. 1993. Maintaining views incrementally.

In ACM SIGMOD Record, Vol. 22. ACM, 157–166.

[14] Kathrin Hanauer, Monika Henzinger, and Qi Cheng Hua. 2022. Fully Dynamic Four-Vertex Subgraph Counting. In 1st
Symposium on Algorithmic Foundations of Dynamic Networks.

[15] Monika Henzinger, Sebastian Krinninger, Danupon Nanongkai, and Thatchaphol Saranurak. 2015. Unifying and

Strengthening Hardness for Dynamic Problems via the Online Matrix-Vector Multiplication Conjecture. In STOC.
21–30.

[16] Muhammad Idris, Martin Ugarte, and Stijn Vansummeren. 2017. The Dynamic Yannakakis Algorithm: Compact and

Efficient Query Processing Under Updates. In SIGMOD. 1259–1274.
[17] Ahmet Kara, Zheng Luo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2024. Tractable conjunctive queries over

static and dynamic relations. In 28th International Conference on Database Theory.
[18] Ahmet Kara, Hung Q. Ngo, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020. Maintaining Triangle Queries under

Updates. ACM Trans. Database Syst. 45, 3, Article 11 (aug 2020), 46 pages.
[19] Ahmet Kara, Milos Nikolic, Dan Olteanu, and Haozhe Zhang. 2020. Trade-offs in static and dynamic evaluation of

hierarchical queries. In Proceedings of the 39th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database
Systems. 375–392.

[20] Christoph Koch. 2010. Incremental query evaluation in a ring of databases. In Proc. ACM SIGMOD International
Conference on Management of Data. ACM, 87–98.

[21] Andrea Lincoln, Virginia Vassilevska Williams, and Ryan Williams. 2018. Tight hardness for shortest cycles and paths

in sparse graphs. In Proceedings of the Twenty-Ninth Annual ACM-SIAM Symposium on Discrete Algorithms. SIAM,

1236–1252.

[22] Milos Nikolic, Mohammad Dashti, and Christoph Koch. 2016. How to win a hot dog eating contest: Distributed

incremental view maintenance with batch updates. In Proc. ACM SIGMOD International Conference on Management of
Data. ACM, 511–526.

[23] Milos Nikolic and Dan Olteanu. 2018. Incremental view maintenance with triple lock factorization benefits. In Proc.
ACM SIGMOD International Conference on Management of Data. ACM, 365–380.

[24] Amir Shpilka. 2003. Lower bounds for matrix product. SIAM J. Comput. 32, 5 (2003), 1185–1200.
[25] Qichen Wang, Xiao Hu, Binyang Dai, and Ke Yi. 2023. Change Propagation Without Joins. Proceedings of the VLDB

Endowment 16, 5 (2023), 1046–1058.
[26] Qichen Wang and Ke Yi. 2020. Maintaining Acyclic Foreign-Key Joins under Updates. In Proceedings of the 2020 ACM

SIGMOD International Conference on Management of Data. 1225–1239.

Proc. ACM Manag. Data, Vol. 3, No. 2 (PODS), Article 117. Publication date: May 2025.

http://www.tpc.org/tpch/

	Abstract
	1 Introduction
	1.1 Problem Definition
	1.2 Previous Results
	1.3 Our Results
	1.4 Organization of This Paper

	2 Preliminaries
	2.1 Classification of CQs
	2.2 Upper Bounds

	3 Maintain CQs over FIFO Sequences
	3.1 Weak-q-hierarchical CQs
	3.2 Maintaining Weak-q-hierarchical CQs
	3.3 Hardness of Maintaining Non-Weak-q-hierarchical CQs

	4 Maintain CQs over Mixed Sequences
	4.1 Simplification Preserves Hardness: Lines 1-2 of Algorithm 2
	4.2 Base Case 1: Line 3 of Algorithm 2
	4.3 Base Case 2: Line 4 of Algorithm 2
	4.4 Base Case 3: Line 7 of Algorithm 2

	5 Conclusion
	A Missing Proofs in Section 3
	B Missing Details of Section 4
	C Deletion-only update sequences
	References

