
Cover or Pack: New Upper and Lower Bounds for Massively
Parallel Joins∗

Xiao Hu

Duke University

Durham, NC, USA

xh102@cs.duke.edu

ABSTRACT
This paper considers the worst-case complexity of multi-round join

evaluation in the Massively Parallel Computation (MPC) model. Un-

like the sequential RAM model, in which there is a unified optimal

algorithm based on the AGM bound for all join queries, worst-case

optimal algorithms have been achieved on a very restrictive class

of joins in the MPC model. The only known lower bound is still

derived from the AGM bound, in terms of the optimal fractional

edge covering number of the query.

In this work, we make efforts towards bridging this gap. We

design an instance-dependent algorithm for the class of α-acyclic
join queries. In particular, when themaximum size of input relations

is bounded, this complexity has a closed form in terms of the optimal

fractional edge covering number of the query, which is worst-case

optimal. Beyond acyclic joins, we surprisingly find that the optimal

fractional edge covering number does not lead to a tight lower

bound. More specifically, we prove for a class of cyclic joins a

higher lower bound in terms of the optimal fractional edge packing

number of the query, which is matched by existing algorithms,

thus optimal. This new result displays a significant distinction for

join evaluation, not only between acyclic and cyclic joins, but also

between the fine-grained RAM and coarse-grained MPC model.

CCS CONCEPTS
• Theory of computation → Massively parallel algorithms;
Database query processing and optimization (theory).

KEYWORDS
query processing, massively parallel algorithms, worst-case optimal

ACM Reference Format:
Xiao Hu. 2021. Cover or Pack: New Upper and Lower Bounds for Mas-

sively Parallel Joins. In Proceedings of the 40th ACM SIGMOD-SIGACT-
SIGAI Symposium on Principles of Database Systems (PODS ’21), June 20–
25, 2021, Virtual Event, China. ACM, New York, NY, USA, 19 pages. https:

//doi.org/10.1145/3452021.3458319

∗
This work has been supported in part by NSF awards IIS-18-14493 and CCF-20-07556.

Permission to make digital or hard copies of all or part of this work for personal or

classroom use is granted without fee provided that copies are not made or distributed

for profit or commercial advantage and that copies bear this notice and the full citation

on the first page. Copyrights for components of this work owned by others than ACM

must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,

to post on servers or to redistribute to lists, requires prior specific permission and/or a

fee. Request permissions from permissions@acm.org.

PODS ’21, June 20–25, 2021, Virtual Event, China
© 2021 Association for Computing Machinery.

ACM ISBN 978-1-4503-8381-3/21/06. . . $15.00

https://doi.org/10.1145/3452021.3458319

1 INTRODUCTION
Evaluating join queries is one of the central problems in relational

databases, both in theory and practice. The worst-case complexity

of join evaluation started to be unraveled, largely thanks to the

work of Atserials, Grohe, and Marx [5], who gave a worst-case

bound on the join size, known as AGM bound. More specifically, the

maximum possible join size is always bounded by O(N ρ∗), where

N is the maximum size of input relations and ρ∗ is the optimal

fractional edge covering number of the join query, which is also

tight with an instance outputting Θ(N ρ∗) join results. This then

led to the worst-case optimal join algorithms [22, 26] in the RAM

model, where all joins display a unified form of the worst-case time

complexity of O(N ρ∗). Ngo, Ré, and Rudra [23] presented a nice

survey of these results, and also gave a simpler and unified proof

for both the AGM bound and the running time of the algorithm.

Meanwhile, massively parallel algorithms have received much

more attention in recent years, due to the rapid development of

massively parallel systems such as MapReduce [10] and Spark [28].

Join evaluation in massively parallel computational model is quite

different from the RAM model, where an efficient algorithm should

make the best use of data locality, i.e., it should strive to send as

many tuples that can be joined as possible to one machine so that it

can produce their join results. Some intriguing questions then arise:

Is there a unified worst-case optimal join algorithm in the massively

parallel computational model? Is the worst-case optimal complexity

only related to the optimal fractional edge covering number of join

query? If not, what other query-dependent quantities? This work

will answer these questions.

1.1 Join Query
A (natural) join is defined as a hypergraph Q = (V, E), where the

verticesV = {x1, . . . ,xn } model the attributes and the hyperedges

E = {e1, . . . , em } ⊆ 2
V

model the relations [1]. Let dom(x) be the
domain of attribute x ∈ V . An instance of Q is a set of relations

R = {R(e) : e ∈ E}, where R(e) is a set of tuples, where each tuple

is an assignment that assigns a value from dom(x) to x for every

x ∈ e . We use N = maxe ∈E |R(e)| to denote the maximum size of

input relations. The join results of Q on R, denoted as Q(R), consist

of all combinations of tuples, one from each R(e), such that they

share common values on their common attributes. We study the

data complexity of join algorithms, i.e., assume that the query size,

namely n andm, are constants. Hence, the total number of input

tuples, denoted as input size, is always O(N).

For a join query Q = (V, E), two query-related quantities noted

as edge covering and edge packing will be commonly used through-

out this paper. Let f be a mapping from E to [0,+∞). Note that f

https://doi.org/10.1145/3452021.3458319
https://doi.org/10.1145/3452021.3458319
https://doi.org/10.1145/3452021.3458319

is a fractional edge covering if∑
e ∈E:v ∈e

f (e) ≥ 1, for all v ∈ V

and a fractional edge packing if∑
e ∈E:v ∈e

f (e) ≤ 1, for all v ∈ V

The quantity

∑
e f (e) is noted as the number of f , where the op-

timal fractional edge covering is the one with minimum number,

denoted as ρ∗, and the optimal fractional edge packing is the one

with maximum number, denoted as τ ∗. Generally, there is no clear

relation between τ ∗ and ρ∗, except for some specific joins.

1.2 The model of computation
We use the Massively Parallel Computation (MPC) model [3, 4, 7,

8, 18–20], which has become the standard model of computation

for studying massively parallel algorithms, especially for join al-

gorithms. In the MPC model, data is initially distributed evenly

over p servers with each server holdingO(Np) tuples. Computation

proceeds in rounds. In each round, each server first sends messages

to other servers, receives messages from other servers, and then

does some local computation. The complexity of an MPC algorithm

is measured by the number of rounds and the load, denoted as L,
which is the maximum size of messages received by any server in

any round. A linear load L = O(Np) is the ideal case (since the initial

load is already
N
p), while if L = O(N), all problems can be solved

trivially in one round by simply sending all data to one server. Initial

efforts were mostly spent on what can be done in a single round of

computation [4, 7, 8, 19, 20], but recently, more interests have been

given to multi-round (but still a constant) algorithms [3, 18, 19],

since new main memory based systems, such as Spark and Flink,

have much lower overhead per round than previous generations

like Hadoop.

We confine ourselves to tuple-based algorithms, i.e., tuples are

atomic elements that must be processed and communicated in

their entirety. The only way to create a tuple is by making a copy,

from either the original tuple or one of its copies. We say that an

MPC algorithm computes the join query Q on instance R if the

following is achieved: For any join result (t1, t2, . . . , tm) ∈ Q(R)

where ti ∈ R(ei), i = 1, 2, . . . ,m, thesem tuples (or their copies)

must all be present on the same server at some point. Then the

server will call a zero-cost function emit(t1, t2, . . . , tm) to report

the join result. Note that since we only consider constant-round

algorithms, whether a server is allowed to keep the tuples it has

received from previous rounds is irrelevant: if not, it can just keep

sending all these tuples to itself over the rounds, increasing the load

by a constant factor. All known join algorithms in the MPC model

are tuple-based and obey these requirements. Our lower bounds are

combinatorial in nature: we only count the number of tuples that

must be communicated in order to emit all join results, while all

other information can be communicated for free. The upper bounds

include all messages, with a tuple and an integer of O(logN) bits

both counted as 1 unit of communication.

Joins One-round Multi-round

α-acyclic

Õ
(

N
p1/ψ ∗

)
O

(
N

p1/ρ∗
)
is achieved for

r-hierarchical join [16] and

all α-acyclic joins [Theorem 16]

[19]

Cyclic

Õ
(

N
p1/ρ∗

)
is achieved for

binary-relation join [18, 19, 25] and

the Loomis-Whitney join [19]

Ω
(

N
p1/τ ∗

)
for ⊟-join [Theorem 17] and

some degree-two joins [Theorem 18]

Table 1: Worst-case complexity of join evaluation in the MPC
model.N is themaximumsize of input relations.p is the num-
ber of servers.ψ ∗ is the optimal fractional edge quasi-packing
number. ρ∗ is the optimal fractional edge covering number. τ ∗

is the optimal fractional edge packing number. It is known
thatψ ∗ ≥ max{ρ∗,τ ∗} [19].

degree-

α-acyclic

berge

cyclic

binary-
relation

two

acyclic

Figure 1: Classification of join queries.

1.3 Worst-case optimal join algorithms
In this work, we will focus on worst-case optimality for algorithm

design, which is the most commonly-used measurement and pro-

vides theoretical guarantees in the worst case. More specifically,

the entire space of input instances is divided into classes, where

instances in the same class share the same input size N . An al-

gorithm is worst-case optimal if its complexity is optimal on the

worst instance for each class. Further subdividing the instance space

leads to more refined analyses, for example, output-optimality takes

both input size N and output size OUT as parameters to divide the

instance space, and instance-optimality pushes this idea to the ex-

treme case that each class contains just one instance. Note that by

definition, an instance-optimal algorithm must be output-optimal,

and an output-optimal algorithm must be worst-case optimal, but

the reserve direction may not be true. We refer interested readers

to [16] for the fine-grained join algorithms in the MPC model. All

results with respect to the worst-case optimality in the MPC model

are put into Table 1 and the relationships between join queries

mentioned in this work are clarified in Figure 1.

Most of previous efforts have been put to understand what can

be done in a single round in the MPC model. Initially, a one-round

hashing-based algorithm [4, 7], named as hypercube, was proposed
for computing all joins on non-skewed input instances with load

Õ(N
p1/τ ∗

)1. Later, an improved algorithm built upon hypercube has

1
The Õ notation suppresses polylog factors.

been proposed for tackling arbitrary input instances [19], but it

incurs a higher load of Õ(N
p1/ψ ∗), whereψ ∗

is the optimal fractional

edge quasi-packing number
2
of the query. This result has been

proved to be optimal (up to a polylog factor) for single-round com-

putation with arbitrary input instances. Note thatψ ∗ ≥ τ ∗ [19].
However, people found that even allowing a constant number of

rounds may bring a significant (polynomially) reduction in the over-

all cost. Consider an example join query Q = R1(A) Z R2(A,B) Z
R3(B), which hasψ ∗ = τ ∗ = 2 by choosing R1,R3 in the fractional

edge packing and ρ∗ = 1 by choosing R2 in the fractional edge cover.

If targeting a single round, it can be computed with load Õ(N√p) [19].

However, if just allowing one more round, it can be computed

through two steps of semi-joins with linear load Õ(Np) (see Sec-

tion 2). The

√
p-gap can be further enlarged to p

n−1
n on the star-dual

join Q = R0(x1,x2, · · · ,xn) Z R1(x1) Z R2(x2) Z · · · Z Rn (xn).
This opens up new door for join evaluation in the MPC model.

The goal of a multi-round worst-case optimal algorithm in the

MPC model is believed to achieve a load of O(N
p1/ρ∗

). The reason

why Ω(N
p1/ρ∗

) is a lower bound can be argued by the following

counting argument: Each server can only produce O(Lρ
∗

) join re-

sults in O(1) rounds with its load limited to L (also implied by the

AGM bound [5]), so all the p servers can produce O(p · Lρ
∗

) join

results. Then, producing Θ(N ρ∗) join results requires L = Ω(N
p1/ρ∗

).

So far, this bound (up to polylog factors) has been achieved on some

specific classes of joins [18, 19, 25], such as binary-relation join

where each relation has at most two attributes, and Loomis-Whitney

join
3
. All these algorithms resort to the heavy-light decomposition

technique for tackling data skew, and then invoke the hypercube

algorithm as primitives for handling non-skewed instances. How-

ever, whether this bound can be achieved for arbitrary joins, or

even just α-acyclic joins, is still open.
Besides, several output-optimal (or output-sensitive) algorithms

have been proposed for join queries in the MPCmodel. For example,

an output-optimal algorithm has been proposed for r-hierarchical

joins [16], which is also worst-case optimal. Note that r-hierarchical

join is a very restrictive class of join queries; for example, the

simplest line-3 join query R1(A,B) Z R2(B,C) Z R3(C,D) is not
r-hierarchical. Meanwhile, the classical Yannakakis algorithm [27]

can be easily parallelized for computing α-acyclic joins with load

complexity O(Np +
OUT

p). Very recently, it has been improved to

O(Np +
√
N ·OUT
p) [16], which is output-optimal if OUT = O(p · N).

However, in the worst-case when OUT approaches the AGM bound

Θ(N ρ∗), this complexity would degenerate to O(N
(ρ∗+1)/2

p), which

is rather far away from our target Ω(N
p1/ρ∗

).

It is remarkable that a reduction from the MPC model to the

external memory (EM) model has been established in [19] in a

2
For a join query Q = (V, E), the edge quasi-packing number is defined as follows. Let

x ⊆ V be any subset of vertices of V . Define the residual hypergraph after removing

attributes x as Qx = (Vx , Ex), where Vx = V − x and Ex = {e − x : e ∈ E }.
The edge quasi-packing number of Q is the maximum optimal fractional edge packing

number over all Qx ’s, i.e.,ψ ∗ = maxx⊆V τ ∗(Qx).
3
A join query Q = (V, E) is a Loomis-Whitney (LW) join if E = {V − {x } : ∀x ∈

V}. Moreover, it has ρ∗ = τ ∗ = n/(n − 1), where n = |V |. As it is a very restrict

class of joins with highly symmetric structures, we omit it in the following discussion.

cost-preserving way, such that any MPC algorithm running in

r rounds with load L(N ,p) can be converted to an EM algorithm

incurring Õ(NB + rp
∗M
B) I/Os4, where p∗ = minp {L(N ,p) ≤ M/r }.

Implied by this reduction, worst-case optimal algorithms can be

automatically obtained for LW join
5
and binary-relation join in

the EM model. It is worth mentioning that a worst-case optimal

algorithm has been proposed [15] for Berge-acyclic join in the

EM model using Õ((NM)ρ
∗

· M
B) I/Os, without a counterpart in

the MPC model. However, Berge-acyclic join is a very restric-

tive sub-class of α-acyclic join; for example, a simple join query

R0(A,B,C) Z R1(A,B,D) Z R2(B,C,E) Z R3(A,C, F) is α-acyclic
but not Berge-cyclic, thus cannot be handled by the algorithm

in [15]. On the other hand, there is no result showing any conver-

sion from the sequential EM model to the parallel MPC model. We

won’t pursue this dimension further.

1.4 Our Results
Our main results are also summarized in Table 1, which can be split

into two parts: new upper bound for α-acyclic joins and new lower

bound for some cyclic joins. We also include a brief connection of

these results from both sides.

New Upper Bound. The primary class of join queries we target

in this work is the α-acyclic join [9], which is the most-commonly

studied class of acyclic
6
joins in database theory. Formally, a join

query Q = (V, E) is α-acyclic if there exists an undirected tree T

whose nodes are in one-to-one correspondence with the edges in

E such that for any vertex v ∈ V , all nodes containing v form a

connected subtree. Such a tree T is called the join tree of Q. An

example of an acyclic
7
join is illustrated in Figure 4.

We propose a generic MPC algorithm for computing any acyclic

join, whose load complexity is related to the choices made by this

non-deterministic algorithm while running. We give a characteri-

zation of “good” choices for this algorithm, such that its load com-

plexity can be bounded with O(N
p1/ρ∗

), achieving the worst-case

optimality, as long as it always makes a good choice in each step.

This result has reduced the complexity for acyclic join evaluation

from O(N
p1/ψ ∗) to O(N

p1/ρ∗
) sinceψ ∗ ≥ ρ∗ [19], only increasing the

number of rounds from 1 to a constant. This improvement could be

significant because of the possibly huge gap betweenψ ∗
and ρ∗, as

we have seen on the example in Section 1.3. In general, we notice

several important sub-classes of acyclic joins on which this gap can

be as large as Θ(m + n), in terms of the query size, including path

join
8
, star-dual join and some tree joins

9
. We refer interested reader

to [19] for details. Moreover, by the MPC-EM reduction, this result

automatically implies an EM algorithm for computing acyclic joins

with Õ(N ρ∗

M ρ∗−1B
) I/Os, shadowing the previous work [12].

4
The EM model has main memory of size M with disk block size B .

5
A worst-case I/O-optimal algorithm for LW join was proposed in [13] independently.

6
Other notions of acyclicity have been proposed, including berge-acyclicity, γ -
acyclicity and β -acyclicity. Moreover, berge-acyclicity implies γ -acyclicity which

implies β -acyclicity which implies α -acyclicity.
7
In the following of this work, “acyclic” always means “α -acyclic” if not specified.

8
A path join Q = (V, E) is defined as V = {x1, x2, · · · , xn } and E = {ei =
{xi , xi+1 } : i ∈ {1, 2, · · · , n − 1}}.
9
A join query Q is a tree join if it is acyclic and each relation contains at most two

relations. A tree join can be decomposed into a set of vertex-disjoint path joins.

A B C

D E F

Figure 2: The hypergraph of ⊟-join.

New Lower Bound. Finally, we turn to cyclic joins. Surprisingly,

we find that O(N
p1/ρ∗

) is not necessarily a correct target for multi-

round worst-case optimal join algorithms, since the existing lower

bound Ω(N
p1/ρ∗

) is not tight any more. We start by answering an

open question posed in [18]: On the ⊟-join Q⊟ = R1(A,B,C) Z
R2(D,E, F) Z R3(A,D) Z R4(B,E) Z R5(C, F), does there exist

a better upper bound than Õ(N
p1/3

), or a better lower bound than

Ω(N
p1/2

)? As shown in Figure 2, Q⊟ has ρ
∗ = 2 by choosing {R1,R2}

in the fractional edge cover and τ ∗ = 3 by choosing {R3,R4,R5} in
the fractional edge packing. We show a probabilistic hard instance

on which any MPC algorithm computing it in O(1) rounds must

incur a load of Ω(N
p1/3

). The intuition is that such an instance has

“dense” join results, which is indeed as large as the AGM bound, but

each server cannot achieve high efficiency in emitting the join re-

sults, no matter which combinations of input tuples it receives. Any

attempts in lowering this bound further would break the counting

argument that every join result must be emitted at least once, thus

violating the correctness of join algorithms. Meanwhile, the existing

algorithm [19] can compute it in a single round with load Õ(N
p1/3

)10,

which is already optimal implied by our new lower bound.

This framework of lower bound proof for Q⊟ can be extended

to a larger class of cyclic join queries, noted as degree-two joins,
in which each attribute appears in two relations. Observe that the

dual
11

of a degree-two join is a binary-relation join, hence enjoying

very nice properties [24]. More specifically, we characterize the

edge-packing-provable condition, under which there exists a better

(at least not worse) lower bound in terms of Ω(N
p1/τ ∗

) for computing

any degree-two join in the MPC model.

Cover or Pack. From the lower bound side, we know that the

worst-case complexity of join evaluation is Ω(N
p1/ρ∗

) for binary-

relation joins, LW join and acyclic joins, and Ω(N
p1/τ ∗

) for some

class of cyclic joins, including the ⊟-join. However, there is no clear
distinction on the relative ordering between ρ∗ and τ ∗, at least for
acyclic joins and binary-relation joins. A natural question arises:

cover or pack, which one is the correct quantity in determining the

worst-case complexity of join evaluation?

To clarify this question, we first introduce the notion of reduced
join. A reduce procedure on a hypergraph (V, E) is to remove an

edge e ∈ E if there exists another edge e ′ ∈ E such that e ⊆ e ′.
We can repeatedly apply the reduce procedure until no more edge

can be removed, and the resulting hypergraph is said to be reduced.
10
The Q⊟ has optimal fractional edge quasi-packing numberψ ∗ = 3.

11
The dual of a join query Q = (V, E) is define as Q′ = (V′, E), where each vertex

v ∈ V is an hyperedge in E′
and each hyperedge e ∈ E in a vertex in V′

. Vertex

e ∈ V′
is included by edge v ∈ E′

if v ∈ e in Q.

cyclic (unclear)

binary-relation

[18]

degree-two

τ∗ ≤ ρ∗ ρ∗ < τ∗

berge-acyclic

(conjectured)

α-acyclic

[Lemma A.3] [Lemma 7]

Figure 3: Relationship between optimal fractional edge cov-
ering number ρ∗ and optimal fractional edge packing num-
ber τ ∗ of reduced join queries.

From the upper bound side, a join query can be reduced in O(1)
rounds with linear load (see Section 2), thus the hardness of multi-

round computation comes from the reduced join.

Now, we can draw some distinction for the reduced join queries:

(1) τ ∗ ≤ ρ∗ holds for reduced berge-acyclic joins (see Lemma A.3)

and reduced binary-relation joins [18]
12
; and (2) ρ∗ ≤ τ ∗ holds for

reduced degree-two joins (see Lemma 21), as shown in Figure 3.

Moreover, we conjecture that τ ∗ ≤ ρ∗ holds for reduced α-acyclic
joins, but the formal proof is currently open. At last, we come to

the following conjecture. The worst-case complexity of computing

a join query Q in O(1) rounds is conjectured to be Θ(N
p1/max{ρ∗,τ ∗}),

where ρ∗,τ ∗ are the optimal fractional edge covering and packing

numbers of the reduced join of Q. This conjecture can be verified

by existing results, but is still open for general cyclic joins.

1.5 Outline
This paper is organized as follows. In Section 2, we review some

basic primitives that will be commonly used in our MPC algorithm.

In Section 3 and 4, we present the new results from upper bound side.

More specifically, we introduce a generic algorithm for acyclic joins

in Section 3.1, analyze its complexity in Section 3.2, and identify the

worst-case optimal run in Section 4. In Section 5, we move to the

lower bound for cyclic joins. We first prove an edge-packing-based

lower bound for the ⊟-join in Section 5.1, and then extend it to

degree-two joins in Section 5.2.

2 MPC PRELIMINARIES
We first mention the following deterministic primitives in the MPC

model, which can be computed with load O(Np) in O(1) rounds.

Assume N > p1+ϵ where ϵ > 0 is any small constant.

Reduce-by-key [14]. Given N pairs in terms of (key, value), com-

pute the “sum” of values for each key, where the “sum” is defined

by any associative operator. This primitive will also be frequently

used to compute data statistics, for example the degree. The degree
of value a ∈ dom(x) in relation R(e) is defined as the number of

tuples in R(e) having this value in attribute x , i.e., |σx=aR(e)|. Each
tuple t ∈ R(e) is considered to have “key” πx t and “value” 1.

Semi-Join [16]. Given two relations R1 and R2 with a common

attribute v , the semi-join R1 ⋉ R2 returns all the tuples in R1 whose
value on v matches that of at least one tuple in R2. For any acyclic

join, all dangling tuples, i.e., those that will not participate in the

full join results, can be removed by a series of semi-joins [27].

12
In [18], the term “simple” is used as equivalent to “reduced”.

Parallel-packing [16]. Given N numbers x1,x2, · · · ,xN where

0 < xi ≤ 1 for i ∈ [N], group them into m sets Y1,Y2, · · · ,Ym
such that

∑
i ∈Yj xi ≤ 1 for all j, and

∑
i ∈Yj xi ≥

1

2
for all but one j.

Initially, the N numbers are distributed arbitrarily across all servers,

and the algorithm should produce all pairs (i, j) if i ∈ Yj when done.

Note thatm ≤ 1 + 2
∑
i xi .

3 UPPER BOUND FOR ACYCLIC JOINS
In this section, we study how to compute the class of acyclic joins

efficiently in the MPC model. Before dividing into the algorith-

mic details, we first define the following notions to simplify our

description (notations used by the algorithm are in Table 2).

In a join query Q = (V, E), denote Ex = {e ∈ E : x ∈ e} as
the set of relations containing attribute x ∈ V . Recall that in an

acyclic join, its relations can be organized into a join tree T such

that for each attribute, the nodes containing this attribute form a

connected subtree in T . An example is illustrated in Figure 4. To be

more general, T could be a forest consisting a set of node-disjoint

connected subtrees, such that each one is a valid single join tree, and

the union of nodes over all subtrees is exactly the set of relations E.

In this way, if there exists some relation e ∈ E which doesn’t share

any common attributes with other relations, then we just treat it as

a single connected component of T . In a join tree T , an attribute

is unique if it only appears in one node.

ABCH

ABD BCE

ABHJ

AHI

ACF AIK

e1 e2 e3

e0

e4

e6 e7

e5

AIG

Figure 4: A join tree T of join query Q = (V, E), where
V = {A,B,C,D,E, F ,G,H , I , J ,K} and E = {e0(ABCH), e1(ABD),
e2(BCE), e3(ACF), e4(ABH J), e5(AHI), e6(AIK), e7(AIG)}.

3.1 Generic Join Algorithm
We describe our generic algorithm for computing the result Q(R)

on the input join tree T . The high-level idea is to recursively de-

compose the join into multiple subqueries based on data statistics,

and apply a different join strategy for each subquery. For a clean

presentation, we only focus on the algorithmic description now

and delay its analysis to Section 3.2 and Section 4.2.

Our algorithm chooses a fixed threshold L, whose value will be

determined later. Moreover, we introduce S(E) ⊆ 2
E
as a set of

subsets of relations, and a quantity Ψ(T ,R, S,L) for each subset

of relations S ⊆ E, which together determine the complexity of

our algorithm. We give more details in Section 3.2 and Section 4.2.

Note that S(E) ⊆ 2
E
can be computed locally since the query has

constant size. Intuitively, Ψ(T ,R, S,L) is the number of servers

required for computing the join query induced by relations in S
with load complexity O(L).

Base Case. When there is only one relation in Q, say E = {e}, we
just let all servers emit tuples in R(e) directly.

Q(V, E) join query Q with attributesV and relations E

R instance

Q(R) join results of R for query Q

e, e ′, ei relations

R(e) relation defined over attributes e
x,A,B,C attributes

dom(x) domain of attribute x
Ex

the set of relations in E containing attribute x
Sx

a subset of relations containing attribute x
defined by the generic join algorithm

H (x, Sx) a set of heavy values over attribute x from

relation(s) in Sx

T join tree of an acyclic join

S(E) a set of subsets of relations in E

Qx(Vx, Ex) residual join after removing attribute x
Qy(Vy, Ey) residual join after removing relations in Ex

and their unique attributes

Qi (Vi , Ei) the i-th connected subquery of Q = (V, E)

Ra instance induced by heavy value a
RIj instance induced by light values in group Ij
Ri instance induced for Qi (Vi , Ei)

N input size of instance

p number of servers

L load complexity of an MPC algorithm

Table 2: Notations used in Section 3.1

General Cases. In general, we distinguish an input acyclic join Q

with its join tree T into two cases.

Case I: T is a single join tree. We first remove dangling tuples.

If there is a pair of nodes e, e ′ ∈ E such that e ⊆ e ′, we just apply
the semi-join R(e ′) ⋉ R(e) and remove e from the join query. We

recursively apply this procedure until the join is reduced.

On a reduced join, we start with an arbitrary leaf node e1 in T .

Denote its parent as e0. Let x ∈ e1 ∩e0 be an arbitrary join attribute

between e1 and e0. The algorithm chooses a subset of relations

Sx ⊆ Ex
with e1 ∈ Sx

to tackle in this case.

example 1. Consider the reduced join query in Figure 4. Assume
e1 is the chosen leaf node, with e0 as its parent. If x = A, then Ex =
{e1, e0, e3, e4, e5, e6, e7}. If x = B, then Ex = {e1, e2, e0, e4}.

Step (1): Compute data statistics. For each value a over attribute
x, we compute its degree in every relation R(e) for e ∈ Sx

, using the

reduce-by-key primitive. A value a over attribute x is heavy if its
degree in R(e) is greater than L for any e ∈ Sx

, and light otherwise.
Denote the set of heavy value as

H (x, Sx) = {a ∈ dom(x) : ∃e ∈ Sx, |σx=aR(e)| ≥ L}.

Note that |H (x, Sx)| ≤
∑
e ∈Sx

|R(e) |
L . Moreover, for all light values

over attribute x, we run the parallel-packing primitive to put them

into k = O(
∑
e ∈Sx

|R(e) |
L) groups I1, I2, · · · , Ik , where the values in

each group have a total degree of O(L) in ∪e ∈SxR(e).

Step (2): Decompose the join query. In this way, we can decom-

pose the original join query into multiple subqueries:

Q?(R) =Ze ∈E σ?R(e)

where ? is either x = a for some a ∈ H (x, Sx) or x ∈ Ij for some

j ∈ {1, 2, · · · ,k}. There are O(
∑
e ∈Sx

|R(e) |
L) subqueries in total.

We introduce a residual join query Qx = (Vx, Ex) by removing

x from all relations, whereVx = V − {x} and Ex = {e − x : e ∈ E}.

Each heavy value a ∈ H (x, Sx) derives an instance Ra = {σx=aR(e) :
e ∈ E} for the subquery Qx. Similarly, each light group Ij derives
an instance RIj = {σx∈IjR(e) : e ∈ E} for the join query Q. Note

that all subqueries have disjoint results and their union is exactly

the result of original join, i.e.,

Q(R) =
(
∪a∈H (x,Sx)Qx(Ra)

)
∪

(
∪j ∈{1,2, · · · ,k }Q(RIj)

)
thus, the completeness is guaranteed.

Step (3): Compute all subqueries in parallel. The next step is

to allocate appropriate number of servers to each subquery and

compute them in parallel. For each subquery Qx with input in-

stance Ra, we allocate pa = maxS ⊆S(Ex) ⌈Ψ(T ,Ra, S,L)⌉ servers,
and invoke the whole algorithm for computing Qx(Ra) recursively.

Let y be the set of unique attributes contained by any relation

in Sx
. We introduce a residual query Qy = (Vy, Ey) by removing

all attributes in y and relations in Sx
, where Vy = V − y and

Ey = E − Sx
. Let T ′

be the resulting join tree by removing nodes

in Sx
from T , which may contain multiple connected subtrees.

For each subquery Q with input instance RIj , we allocate pj =

maxS ⊆S(Ey)

⌈
Ψ(T ′,RIj , S,L)

⌉
servers. To compute Q(RIj), we first

broadcast all tuples in ∪e ∈Sxσx∈IjR(e) to the pj servers and then

compute Qy(RIj) by running the whole algorithm recursively. At

last, each server just emits the combination (t1, t2) for each join

result t1 ∈Ze ∈Sx σx∈IjR(e) and each join result t2 ∈ Qy(RIj) if

they can be joined by local computation.

example 2. Continue with the example in Figure 4. Assume e1 is
the leaf node with e0 as its parent. If x = A and Sx = {e1, e0}, Figure 5
shows the join trees for residual join queries in step (2).

Case II: T consists ofmultiple connected subtrees. Let T1,T2,
. . . ,Tk be the connected subtrees in T and E1, E2, . . . ,Ek be the

corresponding set of relations in each subtree. Define Ri = {R(e) :
e ∈ Ei }, and Qi = (Vi , Ei), where Vi =

⋃
e ∈Ei e . In this case,

it computes a Cartesian product Q1(R1) × · · · × Qk (Rk), where

computing each Qi (Ri) is captured by Case I.

We arrange servers into a p1 × p2 × · · · × pk hypercube, where

pi = max

S ∈S(Ei)
⌈Ψ(Ti ,Ri , S,L)⌉ .

Each server is identified with coordinates (c1, c2, · · · , ck), where
ci ∈ [pi]. For every combination c1, . . . , ci−1, ci+1, . . . , ck , the pi
servers with coordinates (c1, · · · , ci−1, ∗, ci+1, · · · , ck) form a group

to compute Qi (Ri) (using the algorithm under Case I). Consider a

particular server (c1, c2, . . . , ck). It participates in k groups, one for

each Qi (Ri), i = 1, . . . ,k . For each Qi (Ri), it emits a subset of its

join results, denoted Qi (Ri , c1 . . . , ck). Then the server computes

the Cartesian product Q1(R1, c1 . . . , ck) × · · · × Qk (Rk , c1 . . . , ck)
locally and emit the join results if the participating tuples can be

truly joined. Note that for each group of servers computing Qi (Ri),

the pi servers in the group emit Qi (Ri) with no redundancy, so

there is no redundancy in emitting the join result.

BCH

BD BCE

BHJ

HI

CF IK

e1 e2 e3

e0

e4

e6 e7

e5

IG

BCE

ABHJ

AHI

AIK

e2

e4

e6 e7

e5

AIGACF

e3

Heavy subquery:

Light subquery:

Figure 5: A running example of Case I. Assume x = A and
Sx = {e1, e0}. Then, y = {D}. In step (2), Qx = (Vx, Ex)
where Vx = {B,C,D,E, F ,G,H , I , J ,K} and Ex = {e0(BCH),
e1(BD), e2(BCE), e3(CF), e4(BH J), e5(HI), e6(IK), e7(IG)}, and
Qy = (Vy, Ey) where Vy = {A,B,C,E, F ,G,H , I , J ,K} and Ey =
{e2(BCE), e3(ACF), e4(ABH J), e5(AHI), e6(AIK), e7(AIG)}.

3.2 Analysis
In this part, we analyze the complexity of the generic algorithm.

To illustrate the key idea, we present a detailed analysis for one

simple class of runs. The analysis for other runs follows the same

framework, but users can choose more complicated functions of

Ψ(T ,R, S,L) and S(E), as long as they satisfy the recurrence for-

mulas implied by the generic algorithm.

As an example, we will focus on the most conservative run if

the generic algorithm always chooses Sx = {e1} in Case I. Before

diving into the details, we introduce the notion of subjoin first.

Definition 1 (Subjoin). For a join query Q = (V, E) with join
tree T , and instance R, the subjoin of a subset of relations S ⊆ E is

⊕(T ,R, S) = ×Si ∈T[S] Ze ∈Si R(e)

where T[S] is the set of maximally connected components of S on T .

example 3. Let’s take two examples in Figure 4 for illustration.
S1 = {e1, e3, e7} is a single connected component since all share the
common attribute A; however, they are not directly connected on the
join tree T , so T[S1] = {{e1}, {e3}, {e7}}. Adding one more edge e0
to S1 yields S2 = {e0, e1, e3, e7}. Note that S2 is still a single connected
component, but e0, e1, e3 form a connected component on the join
tree T , so T[S2] = {{e0, e1, e3}, {e7}}. The subjoin of S1 is defined
as ⊕(T ,R, S1) = R(e1) × R(e3) × R(e7) and that of S2 is defined as
⊕(T ,R, S2) = (R(e0) Z R(e1) Z R(e3)) × R(e7).

From Example 3, we can see the difference between subjoin of S
and the join result of relations in S , or even the projection of final

join results on attributes appearing in any relation of S , i.e.,

πSQ(R) ⊆ Ze ∈S R(e) ⊆ ⊕(T ,R, S)

Moreover, we mention an important observation for acyclic join

as follows, which will be used in our analysis.

Lemma 2. For an acyclic join Q = (V, E) with its join tree T ,
consider an arbitrary leaf node e1 and its parent e0. For any e ∈

E − {e0, e1}, (e ∩ e1) − e0 = ∅.

Proof. By contradiction, assumev ∈ (e∩e1)−e0. Implied by the

definition of join tree T , all edges containing v form a connected

subtree of T . As e1 is only connected to e0, v ∈ e0 if v ∈ e ∩ e1,
coming to a contradiction. □

Theorem 3. For a join query Q = (V, E) with join tree T , an
instance R and a parameter L, the Q(R) can be computed using

O
(
maxS ⊆S(E) Ψ(T ,R, S,L)

)
servers in O(1) rounds with load com-

plexity O(L), where Ψ(T ,R, S,L) = | ⊕(T,R,S) |
L |S | and S(E) = 2

E .

Proof. We first prove the complexity of the generic algorithm

in Theorem 3 by induction on the size of Q, and then show how to

compute Ψ(T ,R, S,L) efficiently at last.

In the base case when there is only one relation, say E = {e},

emitting all tuples inR(e)with |R(e) |
L servers achieves a load ofO(L),

matching the bound in Theorem 3, sinceΨ(T ,R, {e},L) = |R(e) |
L . In

general, we first point out that all primitives can be computed using

O(maxe ∈E
|R(e) |
L) servers inO(1) roundswith load complexityO(L).

As
|R(e) |
L = Ψ(T ,R, {e},L), the complexity of these primitives can

be bounded by Theorem 3. Next we will analyze the complexity for

two cases separately.

Case I. Recall that the algorithm only peels a leaf e1 from its parent

node e0, where e1 ∩ e0 , ∅. In this case, a single join tree won’t be

broken except at e1. We have the following hypotheses for handling

the subqueries Qx and Qy separately, which will be used later.

Hypothesis 1. For a join query Qx with join tree T , an input

instance Ra, and a pre-determined parameter L, the result can be

computed using O(
∑
S ⊆Ex Ψ(T ,Ra, S,L)) servers in O(1) rounds

with load complexity O(L).

Hypothesis 2. For a join query Qy with join tree T , an instance

RIj and a pre-determined parameter L, the result Qy(RIj) can be

computed using O(
∑
S ⊆Ey Ψ(T ,RIj , S,L)) servers in O(1) rounds

with load complexity O(L).

Complexity of computing heavy subqueries. Implied by hy-

pothesis 2, it remains to bound the number of servers allocated over

all heavy values as follows:∑
a∈H (x, {e1 })

pa =
∑

a∈H (x, {e1 })

max

S ⊆Ex
⌈Ψ(T ,Ra, S,L)⌉

≤
∑
S ⊆Ex

∑
a∈H (x, {e1 })

Ψ(T ,Ra, S,L)

+2 |E | · Ψ(T ,R, {e1},L)

where the second inequality is implied by the fact that each heavy

value in H (x, {e1}) has degree more than L in relation R(e1). We

distinguish each S ⊆ Ex into two cases. If e0 < S and e1 < S , the
term induced on S can be bounded by∑

a∈H (x, {e1 })

Ψ(T ,Ra, S,L) ≤ Ψ(T ,R, {e1},L) · Ψ(T ,R, S,L)

≤ Ψ(T ,R, S ∪ {e1},L)

where the first inequality is implied by the fact that there are at

most O(|R(e1) |L) heavy values and the second one is implied by the

fact that e1 forms a single connected component in T[S ∪ {e1}]
from Lemma 2. Otherwise, e0 < S and e1 < S . This term induced on

S can be directly bounded by

∑
a Ψ(T ,Ra, S,L) ≤ Ψ(T ,R, S,L).

Complexity of computing light subqueries. In Step 3 of com-

puting Q(RIj), each server receives at most L input tuples from

σx∈IjR(e1) and O(L) tuples in computing Qy(RIj) by hypothesis.

So this step has a load of O(L). It remains to bound that the total

number of servers allocated to all light groups as follows:∑
j
pj≤

∑
j

∑
S ⊆Ey

⌈
Ψ(T ,RIj , S,L)

⌉
≤ 2

|E | · Ψ(T ,R, {e1},L) +
∑
S ⊆Ey

∑
j
Ψ(T ,RIj , S,L)

Recall that e1 < Ey by definition. We distinguish each S ⊆ Ey into

two cases: e0 ∈ S and e0 < S . If e0 < S , this term induced on S can

be bounded by∑
j
Ψ(T ,RIj , S,L) ≤ Ψ(T ,R, {e1},L) · Ψ(T ,R, S,L)

= Ψ(T ,R, S ∪ {e1},L)

where the first inequality is implied by the fact that there are at

most O(|R(e1) |L) light groups and the second one is implied by the

fact that e1 forms a single connected component in T[S ∪ {e1}]
from Lemma 2. when e0 < S . Otherwise, e0 ∈ S . This term induced

on S can be directly bounded by

∑
j Ψ(T ,Rj , S,L) ≤ Ψ(T ,R, S,L).

Over all subqueries, the total number of servers allocated in total

can be bounded by (big-Oh of)∑
S ⊆Ex:e1,e0<S

Ψ(T ,R, S ∪ {e1},L) +
∑

S ⊆Ex:e1∈S,or e0∈S

Ψ(T ,R, S,L)

+
∑

S ⊆Ey:e0<S

Ψ(T ,R, S ∪ {e1},L) +
∑

S ⊆Ey:e0∈S

Ψ(T ,R, S,L)

≤ 4·
∑
S ⊆E

Ψ(T ,R, S,L)

where the last inequality is implied by the following facts:

• S ∪ {e1} ⊆ E for each S ⊆ Ex but e0, e1 < S ;
• S ∪ {e1} ⊆ E for each S ⊆ Ey but e0 < S ;
• S ⊆ E for each S ⊆ Ex and S ⊆ Ey,

thus completing the induction proof for Case I.

Case II. Recall that the algorithm computes the Cartesian product

of Q1(R1) × · · · × Qk (Rk) over all connected subtrees of Q.

Hypothesis 3. For a join query Qi with join tree T , an input

instance Ri , and a pre-determined parameter L, the result Qi (Ri)

can be computed using O(
∑
S ⊆Ei Ψ(T ,Ri , S,L)) servers in O(1)

rounds with load complexity O(L).

In computing the Cartesian product, each server receives at most

O(L) tuples from each Qi by hypothesis. So, each server has a load

of O(L). It remains to bound the total number of servers used in

this step. Note that the number of servers allocated is (big-Oh of)∏
i
pi ≤

∏
i

∑
S ⊆Ei

⌈Ψ(Ti ,Ri , Si ,L)⌉

=
∑

(S1,S2, · · · ,Sk)⊆E1×E2×···Ek

∏
i

Ψ(Ti ,Ri , Si ,L)

≤
∑

S ⊆E1×E2×···Ek

Ψ(T ,R, S,L) ≤
∑
S ⊆E

Ψ(T ,R, S,L)

where the second last inequality is implied by the definition of ⊕

and the last inequality is implied by E1 × E2 × · · · × Ek ⊆ E, thus

completing the induction proof for Case II.

At last, we show how to compute Ψ(T ,R, S,L) efficiently. Given

the value of L, it boils down to computing a set of subjoins. In Case

I, for each S ⊆ Ee1 or S ⊆ Ey, we use O(maxS ∈E ⌈
|R(e) |
L ⌉) servers

to compute |⊕(T ,Ra, S)|’s over all heavy values or |⊕(T ,RIj , S)|’s
over all light groups. Computing these statistics can be captured

by a free-connex join-aggregate query
13∑

V−x
×Si ∈T[S] Ze ∈Si R(e),

where each tuple has weight/annotation as 1. We invoke the algo-

rithm in [16] to compute this query inO(1) rounds, whose result is
in forms of (t ,w(t)) for each value t ∈ dom(x), with size bounded

by O(|R(e1)|). If a ∈ H (x, {e1}), |⊕(T ,Ra, S)| = w(a); otherwise,
we run the reduce-by-key primitive to compute |⊕(T ,RIj , S)| =∑

a∈Ij w(a) for all light groups. As there are O(1) subsets of rela-
tions, this step can be done in O(1) rounds. In Case II, the values

of pi ’s can be computed similarly. Together, this step can be done

using O(
∑
e ∈E Ψ(T ,R, {e},L)) servers, thus completing the whole

proof for Theorem 3. □

3.3 Choosing L
Theorem 3 displays a full trade-off between the number of servers

available and the load complexity. A natural question arises, if we

are only given p servers, what’s the smallest load complexity that

can be achieved for computing an acyclic join query inO(1) rounds.
We choose the value of L as below:

L = max

S ⊆E

(
|⊕(T ,R, S)|

p

) 1

|S |
,

where S is taken over all subsets of E. It can be easily checked that

for each S ⊆ E, Ψ(T ,R, S,L) ≤ p holds, thus this is feasible. More-

over, the value of L can also be computed through a join-aggregate

query similarly using p servers inO(1) rounds with load complexity

O(
∑
e ∈E

|R(e) |
p), which is also bounded byO(L). Together, we come

to the following result directly.

Theorem 4. For an acyclic join query Q = (V, E) with a join tree
T , and an instance R, the join result Q(R) can be computed using p

servers in O(1) rounds with load O
(
maxS ⊆E (

| ⊕(T,R,S) |
p)

1

|S |
)
.

So far we have obtained an acyclic join algorithm whose load

complexity is in terms of a set of subjoins. However, we observe a

gap between Theorem 4 and our target O(N
p1/ρ∗

). Next, we use two

examples to discuss the reasons behind this intrinsic gap.

13
The definitions of join-aggregate query and free-connex query are provided in

Appendix A.3. In short, for join-aggregate query

∑
z Q, if Q is acyclic and V − z is

contained by one relation, this query is free-connex.

ABCD BCDE CDEF DEFG EFGH

Figure 6: A join tree of join query Q = (V, E), where V =

{A,B,C,D,E, F ,G,H } and E = {e1(ABCD), e2(BCDE), e3(CDEF),
e4(DEFG), e5(EFGH)}.

example 4. Let’s consider the example query in Figure 4, which
has ρ∗ = 6 by choosing {e1, e2, e3, e4, e6, e7}. Consider a hard in-
stance constructed as below. There are N distinct values in the do-
main of attributes D,E, F ,H , J ,K ,G and a single value in the do-
main of remaining attributes. Relation R4(ABH J) is a one-to-one
mapping over attributes H , J , and every remaining relation is a
Cartesian product over its all attributes, containing N tuples in to-
tal. Also, this instance has its join size matching the AGM bound
as O(N 6). On S3 = {e1, e2, e3, e0, e5, e6, e7}, its subjoin has size as
large as N 7 since |R(e1) Z R(e2) Z R(e3) Z R(e0)| = N 4 and
|R(e5) Z R(e6) Z R(e7)| = N 3. Thus, our (conservative) generic al-
gorithm computes this hard instance with load complexity Θ(N

p1/7
),

which is worse than the optimal target by a factor of O(p7/6).
Careful inspection reveals that not every subset S ⊆ E appears

in the cost formula of Theorem 4, depending on which choices the
algorithmmakes while running. A key observation is that join query is
always reduced before going into recursion. For example, after peeling
e1, e2, e3 off by choosing attribute x = A,B,C sequentially, relation
e0 could be reduced since e0 − e1 ∪ e2 ∪ e3 ⊆ e4. In this way, e0 won’t
appear together with any of e5, e6, e7, and S3 does not contributes to
the cost formula of Theorem 3. Thus, this example implies that the
gap partly comes from our non-tight analysis.

example 5. Let’s consider another join query in Figure 6. This
query has ρ∗ = 2 by choosing {e1, e5}. Consider a hard instance
constructed as below. There are N distinct values in the domain of
all attributes and each relation is a one-to-one mapping over its at-
tributes. This instance only has O(N) join results, but our (conser-
vative) generic algorithm computes it with load complexity Θ(N

p1/3
)

since ⊕(T ,R, {e1, e3, e5}) = N 3, which is worse than our target by a
factor of O(p3/2). More specifically, this is tight when our (conserva-
tive) algorithm first (1) chooses e1 as the leaf node with its parent e2,
and x = B with Sx = {e1}; and then (2) chooses e5 as the leaf node
with its parent e4, and x = G with Sx = {e5}.

This example motivates us to seek for more aggressive choices for
this generic algorithm in the next section.

4 WORST-CASE OPTIMALITY FOR ACYCLIC
JOINS

In this section, we take a further investigation of the generic algo-

rithm presented in Section 3 and focus on the worst-case complexity.

We identify a characterization of “good” choices that the algorithm

can follow in each step and show that such a supervised run can

achieve worst-case optimality on acyclic joins.

4.1 Characterization of A Good Run
Assume the input join query is reduced. Now, we describe how to

tackle a reduced acyclic join with its join tree through two steps: (1)

1

2 3

4

5

6

nodes not in the edge covernodes in the edge cover

r r

Figure 7: The left is a decomposition of a join tree T into 6 twigs and a possible valid ordering of these twigs is (2, 3, 5, 6, 4, 1).
The right is an example of linear covering of twig 4 rooted at r .

decompose the join tree into a set of subtree and define an ordering

on these connected subtrees; (2) tackle subtrees one by one follow-

ing the ordering defined in (1), and invoke the generic algorithm in

Section 3 for each one, following our specified algorithmic choices.

We next present each step in more detail.

Step 1: Decompose a join tree. We start with an important prop-

erty on the optimal fractional edge covering for acyclic joins.

Lemma 5. An acyclic join admits an integral solution for the opti-
mal fractional edge covering number.

The proof of Lemma 5 is left to Appendix A.1. Intuitively, given

a join tree T for an acyclic join Q, such an optimal covering can

be obtained through a greedy strategy by always choosing leaves

(containing unique attributes) in T . Denote ρ : E → {0, 1} as the

optimal edge covering for Q and Eρ = {e ∈ E : ρ(e) = 1} as the

set of relations chosen by ρ. Moreover, ρ∗ = |Eρ |. As the query has

constant size, ρ as well as Eρ can be computed locally. Based on ρ,
we first identify an important subclass of acyclic joins as below.

Definition 6 (Twig Join). a reduced join Q is a twig if it has a
join tree T such that the set of leaves is an edge covering for Q.

For an acyclic join Q with a join tree T and an optimal integral

edge covering ρ, we next break the join tree at every internal node

e ∈ Sp . This decomposes the join tree into a number of twigs,
denoted as G. Observe that in each twig, all the leaves are exactly

the relations in Sρ (see Figure 7). Moreover, each pair of twigs share

at most one common node in E, and they are incident if sharing
exactly one node. Later, we will see that relations in the same twig

will be handled as a whole. Moreover, twigs in G will be tackled

following some specific ordering, defined as below.

Definition 7 (Ordering of Twigs in A Join Tree). An ordering
of a set of twigs G is defined as follows: (1) it always chooses a twig
Gi if it is incident to at most one twig in G − {Gi }; (2) it removes Gi
from G and apply this procedure recursively.

Note that there could be multiple valid orderings. An example is

given in Figure 7. The correctness of the recursion in Definition 7

is guaranteed by the underlying tree hierarchy across twigs in G.

We further define the root for each twig of G in this ordering.

Definition 8 (Root of A Twig). For an acyclic join with the
join tree T and a set of twigs G:

• If |G| = 1, T is a twig and an arbitrary leaf of T is the root;
• Otherwise, for each twig Gi ∈ G, its root is the unique non-leaf
node in Eρ when it is chosen by (1) in Definition 7.

Step 2: Decompose a twig. Now, we focus on handling a single

twig join Q with its join tree T inherited from last step, which

enjoy very nice properties: (1) Q is reduced; (2) the set of leaves of

T is a valid edge covering for Q, which is also optimal. Let r be the
root of Q. Note that r ∈ Eρ only has one child in T ; otherwise, this

twig will be further decomposed, coming to a contradiction. Let c be
the child of r . To abuse notations, we also use r , c to denote the sets
of attributes contained by the corresponding relations separately.

We next show how the generic algorithm in Section 3 proceeds

on a twig. As the join tree of a twig join is a single connected com-

ponent, the algorithm goes into Case I directly. Then, the question

comes: Which attribute should be chosen to tackle first?

We introduce the notion of first attribute in Definition 9. As Q is

reduced, c−r , ∅. The algorithm chooses an arbitrary first attribute
of T as x and a leaf node e containing x. Note that such a leaf node

always exists; otherwise, x will only appear in nodes of T − Eρ ,

contradicting the fact that ρ is a valid edge covering. Let path(c, e)
be the set of nodes lying on the path from c to e . The algorithm
then chooses Sx = path(c, e).

Definition 9 (First Attribute in A Twig). In a twig join T

rooted at r with the child c , the first attribute is defined as an arbitrary
one in c − r .

In step 2, the generic algorithm defines a set of heavy subqueries

Qx and light subqueriesQy. Note thatQx is also a twig join rooted at
r , thus can be handled by invoking the whole algorithm recursively.

For Qy, the join tree will be decomposed into a set of subtrees

after removing all nodes in path(c, e). Consider an arbitrary node

e ′ ∈ path(c, e). For each children c ′ of e ′ but c ′ < path(c, e), the
subtree rooted at c ′ together with e ′ form a twig join, with its

root as e ′, and can be handled by invoking the whole algorithm

recursively. Computing the join results of these subtrees fall into

Case II, which is done by enumerating the Cartesian product of

their individual join results first and then emitting true join results

after checking join conditions locally.

example 6. Consider the example in Figure 8, which is an in-
stantiation of twig 4 in Figure 7. The root is (EFG) with its child as
(CEF). The first attribute is C , leaf node e is (ABC), and path(c, e) =
{(ABC), (BCD), (CDE), (CEF)}. Qx is the residual join by replacing
(ABC) by (AB), (BCD) by (BD), (CDE) by (DE) and (CEF) by (EF)
in T , which is a twig join. Qy is the residual join by removing (ABC),
(BCD), (CDE) and (CEF) from T . Computing Qy degenerates to com-
puting the Cartesian product of (1) {(EFG)}; (2) {(FM)}; (3) {(DU)};
(4) {(BK)}; and (5) {(FH J), (FHZ), (WZ), (I JX), (HY)}. Note that

CEF

EFG

CDE

BCD

ABC

FHJ

FM

IJX

FHZ HY

WZ
BK

DU

EF

EFG

DE

BD

AB

FHJ

FM

IJX

FHZ HY

WZ
BK

DU

CEF

EFG

CDE

BCD

ABC

FHJ

FM

IJX

FHZ HY

WZ
BK

DU

Figure 8: A running example of Step 2 on join query Q = (V, E) where V = {A,B,C,D,E, F ,G,H , I , J ,K ,M,U ,W ,X ,Y ,Z } and
E = {(ABC), (BCD), (CDE), (CEF), (EFG), (FH J), (FM), (BK), (DU), (FHZ), (WZ), (I JX), (HY)}. The left is the join tree of Q (left), the
middle is Qx, and the right is Qy.

(5) together with (CEF) is a twig join rooted at (CEF), which can be
recursively decomposed.

4.2 Analysis
Next, we show the complexity for the generic algorithm following

the choice in Section 4.1. Before diving into details, we first define

Ψ(T ,R, S,L) =
∏
e ∈S

|R(e)|

L
.

Obviously, the value of Ψ(T ,R, S,L) can be computed locally, since

the query has constant size. As we tackle an acyclic join by decom-

posing it into a set of twig joins, we will start with the complexity

for twig join and present the general result for acyclic join at last.

Complexity of Linear join. We first identify a special case of

twig join, which only contains two leaves.

Definition 10 (Linear join). A reduced join Q = (V, E) is
linear if it has a join tree T with relations being arranged in a line
staring at e1 and ending at ek , such that e ∈ e1 ∪ ek for any e ∈

E − {e1, ek }.

Moreover, it can be easily shown that (ei ∩ ek) ⊆ (ei+1 ∩ ek)
and (ei+1 ∩ e1) ⊆ (ei ∩ e1) for any i ∈ {1, 2, · · · ,k − 1}. Applying

the rule in Definition 9 recursively will yield two valid orderings

of attributes for a linear join, corresponding to the root being e1
and ek separately. Surprisingly, a linear join can be computed very

efficiently following the first-attribute-based orderings, as stated in

Lemma 11.

Lemma 11. For a linear join Q = (V, E) with its join tree T , an
instance R and a parameter L, the join result Q(R) can be computed

using O
(∑

S ∈S (E) Ψ(T ,R, S,L)
)
servers in O(1) rounds with load

O(L), where

S(E) = {{e, r } : e ∈ E − {r }} ∪ {{e} : e ∈ E}

for r ∈ {e1, ek } and e1, ek being the two leaves in T .

example 7. An example of linear join Q = (V, E) is in Figure 6,
whereV = {A,B,C,D,E, F ,G,H } and E = {e1(ABCD), e2(BCDE),
e3(CDEF), e4(DEFG), e5(EFGH)}. Two orderings of attributes are
D,C,B,A if root is e5 and E, F ,G,H if root is e1. Let Ni = |R(ei)| for
i ∈ {1, 2, 3, 4, 5}. If e5 is the root, we have S(E) = {{e1, e5}, {e2, e5},
{e3, e5}, {e4, e5}, {e1}, {e2}, {e3}, {e4}, {e5}}. Implied by Lemma 11,

it can be computed usingO(1

L2 · N5 · (N1 +N2 +N3 +N4) +
1

L (N1 +

N2 + N3 + N4 + N5)) servers in O(1) rounds with load O(L).

Complexity of Twig Join. Next, we move to a general twig join.

To better describe the result, we introduce the notion of linear cover
for a twig join first.

Definition 12 (Linear-covering of A Twig). For a twig join
Q with its join tree T , a linear-covering for T denoted as P(T), is
defined as follows:

• If T has at most two leaves (i.e., a linear join), P(T) = {T };

• Otherwise, P(T) = {L} ∪

(⋃ℓ
i=1 P(Ti)

)
where L is an arbi-

trary root-to-leaf path of T and {T1,T2, · · · ,Tℓ} is the set of
connected subtrees by removing L from T .

An example of linear-covering of a twig join is shown in Figure 7.

In Lemma 13, we use the linear cover to define the complexity of

the first-attribute-based generic algorithm. Note that computing

the cartesian product of node/relation-disjoint paths in the linear-

covering has the similar complexity form as that in Lemma 13, but

each path in the linear-covering may not be a linear join, thus may

lead to much higher complexity. Our first-attribute-based generic

algorithm is totally different from it.

Lemma 13. For a twig join Q = (V, E) with its join tree T rooted
at r , an instance R and a parameter L, the join result Q(R) can be

computed using O
(∑

P(T)

∑
S ∈S(E) Ψ(T ,R, S,L)

)
servers in O(1)

rounds with load O(L), where P(T) is over all linear coverings of T ,
and

S(E) ={{S} : S ⊆ (L1 − {r }) × L2 × · · · × Lℓ × {r }}

∪{{S} : S ⊆ {r } × L2 × · · · × Lℓ}

for P(T) = {L1,L2, · · · ,Lℓ}.

example 8. Continue the example of twig join query in Figure 8.
One of its linear coverings is {L1,L2,L3,L4,L5,L6,L7}, where
L1 = {(EFG), (CEF), (CDE), (BCD), (ABC)}, L2 = {(FH J), (I JX)},
L3 = {(FHZ), (WZ)}, L4 = {(HY)}, L5 = {(DU)}, L6 = {(BK)}
andL7 = {(FM)}. By the definition ofS(E), then S = {(ABC), (BK),
(DU), (HY), (I JX), (WZ), (FM), (EFG)} belongs toS(E), but any su-
perset of S doesn’t belongs to S(E).

Complexity of Acyclic Join. By reassembling a set of twigs into

the original join tree, we obtain the complexity result in Theorem 14.

Theorem 14. For an acyclic join Q = (V, E) with join tree T ,
an instance R and a parameter L, the result Q(R) can be computed

using O
(∑

S ∈S(E) Ψ(T ,R, S,L)
)
servers in O(1) rounds with load

O(L), where

Ψ(T ,R, S,L) =
∏
e ∈S

|R(e)|

L

and S(E) is recursively defined on T as follows:

(1): If there is a pair of nodes e1, e0 such that e1 ⊆ e0, then
S(E) = S(E) ∪ {{e1}}. It should be noted that T is updated
by removing e1 from T and putting every child of e1 as a new
child of e1 if e1 is not a leaf in T .

(2): T is decomposed into a set of twigs G1,G2, · · · ,Gℓ as defined
in Definition 7,

S(E) = {{S} : S ⊆ S(E1) × S(E2) × · · · × S(Eℓ)}

where Ei = Gi −Gj if there exists j > i such that Gi ∩Gj , ∅

and Ei = Gi otherwise.
(3): T is a twig join with a linear covering P = {L1,L2, · · · ,Lℓ}.

If T includes the root r ,

S(E) = {{S} : S ⊆ L1 × L2 × · · · × Lℓ}

Otherwise,

S(E) ={{S} : S ⊆ (L1 − {r }) × L2 × · · · × Lℓ × {r }}

∪{{S} : S ⊆ {r } × L2 × · · · × Lℓ}.

example 9. With respect to rule (2) in Theorem 14, we use the ex-
ample in Figure 7 for clarification. Assume the join tree is decomposed
into 6 twigs following the ordering of (G2,G3,G5,G6,G4,G1). Under
rule (2), twigs G2,G3,G5,G6,G4 exclude their root and twig G1 in-
cludes its root in the computation, since G2 ∩ G1 , ∅, G3 ∩ G1 , ∅,
G4 ∩ G1 , ∅, G5 ∩ G4 , ∅, G6 ∩ G4 , ∅.

The proof of Theorem 14, together with that of Lemma 11 and

Lemma 13 are given in Appendix A.2.

4.3 Worst-case Optimality
We run the generic algorithm following choices according to Sec-

tion 4.1, but using a different value of L defined as below:

L = max

S ∈S(E)

(∏
e ∈S |R(e)|

p

) 1

|S |
.

Since the join query has constant complexity, S(E) as well as the

value of L can be computed locally.

Theorem 15. For an α-acyclic join Q with a join tree T , and an
instance R, the join result Q(R) can be computed using p servers in

O(1) rounds with load O
(∑

S ∈S(E)(
∏

e∈S |R(e) |
p)

1

|S |
)
.

Moreover, when each relation has at most N input tuples, such

a complicated bound has a clean form as stated in Theorem 16.

A more fine-grained analysis of the optimality of Theorem 15 in

terms of arbitrary input sizes N (e)’s would be an interesting and

challenging open question. We won’t go into this direction further.

Theorem 16. For an α-acyclic join Q and an instance R where
each relation contains at most N tuples, there is an algorithm comput-

ing Q(R) inO(1) rounds with loadO
(

N
p1/ρ∗

)
, where ρ∗ is the optimal

fractional edge covering number of Q, which is worst-optimal.

Note that the optimality of Theorem 16 is shown on a hard in-

stance implied by the AGM bound [5], where each relation contains

O(N) input tuples and the join size is as large as Θ(N ρ∗). Here we

give a sketch proof of Theorem 16.

Proof of sketch. To prove Ψ(T ,R, S,L) ≤ (NL)ρ
∗

for any S ∈

S(E), it suffices to show that |S | ≤ ρ∗ for any S ∈ S(E). Recall

that the join tree T is decomposed into a set of twigs as G. Let

(G1,G2, · · · ,Gℓ) be a valid ordering of twigs in G. Observe that

we also obtain a partition of S as S1, S2, · · · , Sℓ such that (1) Si =
(Gi∩S)−Gj if there exists j > i such thatGi∩Gj , ∅ ; (2) Si = Gi∩S
otherwise. It can be easily checked that S = S1 ∪ S2 ∪ · · · ∪ Sℓ and
Si ∩ Sj = ∅ for any pair of i , j. Implied by the definition of S(E),

the number of relations in Si is at most the number of leaves in Gi
minus 1, i.e., |Si | ≤ |Gi ∩ Eρ | − 1. In this way, we can bound the

number of relations in S as

|S | =
ℓ∑
i=1

|Si | ≤
ℓ∑
i=1

|Gi ∩ Eρ | − 1 = |Eρ | = ρ
∗,

where the second last equality is implied by Definition 7. □

5 LOWER BOUNDS FOR CYCLIC JOINS
In this section, we first prove a lower bound Ω(N

p1/3
) for the Q⊟

query, as stated in Theorem 17, which is matched by the existing

upper bound O(N
p1/3

) [19], thus being optimal. We then identify

the class of degree-two joins, as well as the edge-packing-provable

conditions, such that the edge-packing-dependent lower bound

Ω(N
p1/τ ∗

) can be proved for any degree-two join, as long as it satisfies

the edge-packing-provable conditions, as stated in Theorem 18.

Theorem 17. For any N /log6 N ≥ p6, there exists an instance R
for Q⊟ where each relation has N input tuples such that any tuple-
based algorithm computing Q⊟(R) in O(1) rounds must incur a load

of Ω
(
N
p1/3

)
, which is optimal.

Theorem 18. On any edge-packing-provable degree-two join Q,
for any N /logc N ≥ pc with some constant c, there exists an instance
R for Q where each relation has N input tuples such that any tuple-
based algorithm computing Q(R) inO(1) rounds must incur a load of

Ω
(

N
p1/τ ∗

)
, where τ ∗ is the optimal fractional edge packing number.

The high-level idea of our lower bound proof is to show that

with positive probability, an instance R for Q can be constructed

with bounded J (L), the maximum number of join results a server

can produce, if it loads at most L tuples from each relation. We

again resort to the counting argument that each join result must be

emitted by at least one server. Setting p · J (L) = Ω(|Q(R)|) yields a

lower bound on L.

5.1 ⊟-Join
We now prove Theorem 17. Assume N ≥ p3. Note that L ≥ N /p ≥

N 2/3
in this case. Our hard instance R is constructed as follows.

Hard Instance. Each one of the attributesA,B,C hasN 1/3
distinct

values and each of the attributes D,E, F has N 2/3
distinct values.

Relations R1(A,B,C), R3(A,D), R4(B,E) and R5(C, F) are Cartesian
products, each with exactly N tuples. Relation R2(D,E, F) is con-
structed in a probabilistic way. For R2(D,E, F), each combination

(d, e, f) ∈ dom(D) × dom(E) × dom(F) has a probability of 1/N to

form a tuple in R2(D,E, F). In this way, relation R2(D,E, F) have
N tuples in expectation. The join result of this instance can be

represented as the Cartesian product of R1(A,B,C) × R2(D,E, F).
So, this instance has input size as 5N and output size as N 2

in

expectation. By the Chernoff bound, the probability that the input

size and output size deviate from their expectation by more than a

constant factor is at most exp(−Ω(N)).

Step 1: Make a reasonable restriction on loading tuples.
To bound J (L), we first argue that on any instance constructed

as above, we can limit the choice of the L tuples loaded from

R1(A,B,C), R3(A,D), R4(B,E) and R5(C, F) by any server in the

form of LA × LB × LC , LA × LD , LB × LD , and LC × LF for LA ⊆

dom(A), LB ⊆ dom(B), LC ⊆ dom(C), LD ⊆ dom(D), LE ⊆ dom(E)
and LF ⊆ dom(F), i.e., the algorithm should load tuples from

R1(A,B,C), R3(A,D), R4(B,E) and R5(C, F) in the form of Carte-

sian product. More precisely, we first prove this result for attribute

A as stated in Lemma 19. The similar argument can be applied for

attributes B and C .

Lemma 19. Restricting loading tuples from R3(A,D) in a form of
LA×LD and those from R1(A,B,C) in a form of LA×LBC where LBC
are the assignments over attributes B,C , will not make J (L) smaller
by more than a constant factor.

Proof. Suppose a server has loaded L tuples from R2(D,E, F),
R4(B,E) and R5(C, F). Then the server needs to decide which L tu-

ples from R1(A,B,C) and R3(A,D) to load to maximize the number

of join results produced. This is a combinatorial optimization prob-

lem that can be formulated as an integer program (IP). Introduce a

variable xabc for each triple (a,b, c) ∈ dom(A) × dom(B) × dom(C),
yad for each pair (a,d) ∈ dom(A) × dom(D). Let Idef = 1 if tuple

(d, e, f) ∈ R2(D,E, F) is loaded by the server, and 0 otherwise. The

similar definition applies for Ibe and Icf . Then IP1 below defines

this optimization problem, where a always ranges over dom(A), b
over dom(B), c over dom(C), d over dom(D), e over dom(E), f over

dom(F) unless specified otherwise.

(IP1) max

∑
a,b,c,d,e,f

Idef · Ibe · Icf · xabc · yad

s.t. max{
∑
abc

xabc ,
∑
ad

yad } ≤ L

Idef , Ibe , Icf ,xabc ,yad ∈ {0, 1},∀a,b, c,d, e, f
However, it seems very difficult to dig out any structural property of

the optimal solution of IP1. Instead, we introduce a relaxed version

of IP1, shown as IP3 below.

(IP3) max

∑
a

∆(wa)

s.t.

∑
a

wa ≤ 2L

wa ∈ {1, 2, · · · ,L},∀a

Note that IP3 uses a function ∆(w), which denotes the optimal

solution of IP2 defined as below:

(IP2) max

∑
b,c,d,e,f

Idef · Ibe · Icf · xabc · yad

s.t. max{
∑
bc

xabc ,
∑
d

yad } ≤ w

Idef , Ibe , Icf ,xabc ,yad ∈ {0, 1},∀a,b, c,d, e, f
IP2 is parameterized byw and a, which finds the maximum number

of join results that can be formed by tuples loaded from R2(D,E, F),
R4(B,E) and R5(C, F), subject to the constraint that at mostw tuples

containing value a are loaded from R1(A,B,C) and R3(A,D).
Since all values in the domain of attribute A are structurally

equivalent, the optimal solution of IP2 does not depend on the

particular choice of a, which is why we write the optimal solution

of IP2 as ∆(w). Also, it is obvious that ∆(.) is a non-decreasing

function. Then, IP3 tries to find the optimal allocation of the L
tuples to different values a ∈ dom(A) so as to maximize the total

number of join results formed. Let the optimal solutions of IP1, IP3
be OPT1, OPT3, respectively. Because IP3 only restricts the server

to load at most 2L tuples from R1(A,B,C) and R3(A,D) in total,

any feasible solution to IP1 is also a feasible solution to IP3, so
OPT1 ≤ OPT3. Next we construct a feasible solution of IP3 with
the Cartesian product restriction above, and show that it is within

a constant factor from OPT3, hence OPT1.
Regarding to the function ∆(.), we define

w∗ = arg max

L/N 1/3≤w ≤L

L

w
· ∆(w).

We choose
L
w∗ distinct values arbitrarily from dom(A) and allocate

w∗
tuples to each value a ∈ A. For each a, we use the optimal

solution of IP2 to find the w∗
tuples to load from R1(A,B,C) and

R3(A,D). Note that the optimal solution is the same for every a,
so each a will choose the same sets of (b, c)’s and d’s. Thus, this
feasible solution loads tuples from R1(A,B,C) and R3(A,D) in the

form of Cartesian products. The number of join results that can be

produced isW = L
w∗ · ∆(w∗). We show thatW is a constant-factor

approximation of OPT3, as stated in Lemma 20, thus completing

the whole proof. □

Lemma 20. W ≥ 1

3
OPT3 ≥ 1

3
OPT1.

Proof. Suppose OPT3 chooses a set of values A
∗ ⊆ A, and each

a ∈ A∗
haswa tuples loaded from R1(A,B,C) and R3(A,D). A value

a ∈ A∗
is efficient if ∆(wa)

wa
≥

∆(w∗)
w∗ , and inefficient otherwise. Let

A∗
1
,A∗

2
be the set of efficient, inefficient values separately. Note that

for every efficient value a,wa ≤ L
N 1/3 by the definition ofw∗

.

We relateW and OPT3 by showing how to cover all the join

results reported by OPT3 with the feasible solution constructed

above. First, we use

∑
a∈A∗

2

wa

3w∗ values of A each withw∗
tuples from

R1(A,B,C) and R3(A,D) to cover the join results reported by A∗
2
.

The total number of tuples needed is at most
2

3

∑
a∈A∗

2

wa ≤ 4

3
L.

The number of join results that can be reported is∑
a∈A∗

2

wa

3w∗
· ∆(w∗) ≥

1

3

∑
a∈A∗

2

wa ·
∆(wa)

wa
=

1

3

∑
a∈A∗

2

∆(wa).

Next, we use
L

3w∗ values each with w∗
tuples from R1(A,B,C)

and R3(A,D) to cover the join results reported by A∗
1
. The total

number of tuples needed is
2

3
L. Recall that wa ≤ L

N 1/3 for each

a ∈ A∗
1
. The number of join results that can be reported is

L

3w∗
· ∆(w∗) ≥

L

3

·
∆(L

N 1/3)

L
N 1/3

=
N 1/3

3

· ∆(
L

N 1/3
) ≥

1

3

∑
a∈A∗

1

∆(wa),

where the rationale behinds the last inequality is that there are at

most N 1/3
values in A∗

1
and there is ∆

(
L

N 1/3

)
≥ ∆(wa) for each

a ∈ A∗
1
by the non-decreasing property of ∆(.).

Combining the two parts for the optimal solutionA∗
, our alterna-

tive solution loads at most 2L tuples from R1(A,B,C) and R3(A,D),
and can report at least

1

3
·OPT3 join results. □

Note that Lemma 19 implies that LAB = LA × LB and LAC =
LA × LC in relation R1(A,B,C). Applying a similar argument to

attribute B, we get LBC = LB × LC . Together, we come to LABC =
LA × LB × LC , i.e., tuples in relation R1(A,B,C) should be loaded

in form of Cartesian product over all attributes.

Step 2: Prove a upper bound on J (L).
Next, we show that with positive probability (actually high prob-

ability), we obtain an instance on which J (L) is bounded, no matter

which L tuples are loaded. By the analysis above, we only need to

consider the case where tuples from R1(A,B,C), R3(A,D), R4(B,E),
R5(C, F) are loaded in the form of Cartesian products. Denote the

number of distinct values in dom(A), dom(B) loaded by the server as
α , β respectively. The number of distinct values in dom(C), dom(D),

dom(E), dom(F) loaded by the server are
L
α β ,

L
α ,

L
β ,αβ . Moreover,

L
N 2/3 ≤ α , β ≤ N 1/3

.

There are L3 combinations in terms of (a,b, c,d, e, f) in total.

Each one is a valid join result if and only if (d, e, f) ∈ R2(D,E, F),
which happens with probability

1

N . By the linearity of expectation,

the expected number of join results can be produced by the L tuples

is
L3
N . More careful inspection reveals that the L3 combinations are

not independent; instead we can divide them into L2 independent
groups where each one is associated to one distinct triple (d, e, f).
Implied by the Chernoff bound, the probability that this server

produces more than 2 · L
3

N join results is at most exp(−Ω(L
2

N)).

ForA, there are
(N 1/3

α
)
= O(N

α
3) choices of loading α distinct val-

ues from dom(A). Similar argument can be applied to B,C,D,E, F .
Over all values of α , β , the number of choices in total is

N 1/3∑
α= L

N 2/3

N 1/3∑
β= L

N 2/3

N
1

3
·(α+β+ L

α β) · N
2

3
·(Lα +

L
β +α β)

= exp

(
Õ(αβ +

L

α
+

L

β
)

)
= exp

(
Õ(N

2

3)

)
By the union bound, the probability that any of the choice produces

more than
2L3
N join results is at most

exp(−Ω(
L2

N
) + Õ(N

2

3)),

which is exponentially small if

L2

N
≥ c1 · N

2

3 · logN

for some sufficiently large constant c1. Rearranging, we get

L2 ≥ c1 · N
5

3 · logN .

We know that L = Ω(Np), so this is true as long as

(
N

p
)2 ≥ c2 · N

5

3 · logN ,

for some sufficiently large constant c2, or N /log6 N ≥ c2 · p
6
.

Step 3: Apply counting argument.
So far, we have shown that with exponentially high probability

each server produces no more than 2 · L
3

N join results in each round.

Over p servers, the total number of join results that can be produced

inO(1) rounds isO(L
3

N). Each of the N 2
join results must be emitted

at least once, so we will have p · L
3

N ≥ N 2
, i.e., L ≥ N /p1/3.

We have completed the whole proof for Theorem 17.

5.2 Degree-two Joins
Our lower bound proof for the ⊟-join can be extended to a larger

class of join queries, named as degree-two join, where every ver-

tex appears in exactly two edges. As mentioned, degree-two joins

enjoy several nice properties, as stated in Lemma 21. The proof of

Lemma 21 is given in Appendix A.4.

Lemma 21. For any reduced degree-two join Q = (V, E), the
following holds: (1) τ ∗ ≥

|E |
2

≥ ρ∗; (2) τ ∗ + ρ∗ = |E |; (3) The opti-
mal fractional edge packing/covering admits half-integral solution;
(4) if there exists no odd-length cycle14, the optimal fractional edge
packing/covering admits an integral solution.

However, not all degree-two joins fit for the lower bound frame-

work, two additional conditions are captured in Definition 22. Be-

fore describing the conditions, we introduce some notions first.

In a hypergraph Q = (V, E), let Γ(e) be the set of neighbors of

edge e ∈ E, i.e., Γ(e) = {e ′ ∈ E : e ∩ e ′ , ∅}. A fractional vertex
covering for Q = (V, E) is a mapping x fromV [0,+∞) such that∑
v ∈V:v ∈e xv ≥ 1 holds for each edge e ∈ E; and the optimal

solution is to minimize the quantity

∑
v ∈V xv . In addition, a vertex

covering x is constant-small if maxv xv ≤ 1 − ϵ for some constant

0 < ϵ < 1.

Definition 22 (Edge-packing-provable Degree Two Join).

A degree-two join Q = (V, E) is edge-packing-provable if (1) it is
reduced; (2) there is no odd-length cycle; (3) there exists an optimal
fractional constant-small vertex covering x , such that |Γ(e) ∩ E ′ | ≤ 1

for every e ∈ E, where E ′ = {e ∈ E :

∑
v :v ∈e xv > 1}.

Note that Q⊟ is an edge-packing-provable degree-two join. Obvi-

ously, Q⊟ is reduced, there is no odd-length cycle in Q⊟, and a valid

vertex covering x with xA = xB = xC =
1

3
and xD = xE = xF =

2

3

is constant-small, which is also used in the lower bound proof

of Theorem 17. Some other examples of edge-packing-provable

degree-two joins are given in Figure 9.

14
A cycle (V, E) is defined as V = {v1, v2, · · · , vn } ⊆ V and E = {ei =

{vi , v(i+1) mod n } : i ∈ {1, 2, ·, n }. The length of a cycle (V, E) is defined as |E |.

(a) (b)

Figure 9: Examples of edge-packing-provable joins.

The detailed proof of Theorem 18 is deferred to Appendix A.5.

Here, we only give some intuition why the three conditions can be

put together for generalizing this framework to degree-two joins.

In Definition 22, if there is no odd-length cycle inQ, it admits inte-

gral optimal edge packing τ ∗ and covering ρ∗, implied by Lemma 21.

More specifically, there exists a partition (Eα , Eβ) of E: Eα = {e ∈

E : ρ∗(e) = 1,τ ∗(e) = 0} and Eβ = {e ∈ E : ρ∗(e) = 0,τ ∗(e) = 1},

for example, Eα = {e1, e2} and Eβ = {e3, e4, e5} in Q⊟. Moreover,

all edges in Eα are vertex-disjoint, as well as edges in Eβ , due to

the fact that each vertex appears in at most two edges.

Consider any optimal fractional vertex covering x satisfying (2)

in Definition 22. Note that x defines a partition (E ′, E ′′) of E:

E ′ ={e ∈ E :

∑
v ∈V:v ∈e

xv > 1},

E ′′ ={e ∈ E :

∑
v ∈V:v ∈e

xv = 1}

for example, E ′ = {e2} and E ′′ = {e1, e3, e4, e5} in Q⊟. Note

that the fractional edge packing and vertex covering are prime-

dual. Implied by the slackness theorem, E ′ ⊆ Eα . Edges in E ′

are also vertex-disjoint. The hard instance is constructed by x .
More specifically, the domain of each attribute v contains N xv

distinct values. Relations in E ′′
are deterministically constructed

as Cartesian products, containing N tuples exactly, while those in

E ′
are probabilistically constructed. As |Γ(e) ∩ E ′ | ≤ 1 holds for

every e ∈ E, each edge in e ∈ E ′
derives a connected components

C(e) = {e ′ ∈ E ′′
: e ′∩ e , ∅}. More importantly,C(e1) ∩C(e2) = ∅

for any pair of e1, e2 ∈ E ′
. We then apply a similar argument for

Q⊟ to each such component.

At last, the notion of “constant-small” is used to prove a upper

bound on J (L)with exponentially high probability; and more details

can be found in Appendix A.5.

Remark. We only give a sufficient condition in Theorem 18. Sev-

eral questions remain to be answered, for example, (1) what is a

complete characterization of cyclic queries on which our frame-

work can be applied? and (2) is there any matching upper bound on

the degree-two joins? It is still unclear whetherψ ∗ = τ ∗ holds for a

degree-two join satisfying the edge-packing-provable conditions.

If this is the case, then the lower bound Ω
(

N
p1/τ ∗

)
will be matched

by the existing one-round algorithm [19].

REFERENCES
[1] S. Abiteboul, R. Hull, and V. Vianu. Foundations of databases: the logical level.

Addison-Wesley Longman Publishing Co., Inc., 1995.

[2] M. Abo Khamis, H. Q. Ngo, and A. Rudra. Faq: questions asked frequently. In

PODS, pages 13–28, 2016.
[3] F. Afrati, M. Joglekar, C. Ré, S. Salihoglu, and J. D. Ullman. GYM: A multiround

join algorithm in MapReduce. In ICDT, 2017.
[4] F. N. Afrati and J. D. Ullman. Optimizing multiway joins in a map-reduce envi-

ronment. TKDE, 23(9):1282–1298, 2011.
[5] A. Atserias, M. Grohe, and D. Marx. Size bounds and query plans for relational

joins. SIAM Journal on Computing, 42(4):1737–1767, 2013.
[6] G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and

constant delay enumeration. In CSL, pages 208–222. Springer, 2007.
[7] P. Beame, P. Koutris, and D. Suciu. Communication steps for parallel query

processing. In PODS, 2013.
[8] P. Beame, P. Koutris, and D. Suciu. Skew in parallel query processing. In PODS,

2014.

[9] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On the desirability of acyclic

database schemes. JACM, 30(3):479–513, 1983.

[10] J. Dean and S. Ghemawat. Mapreduce: simplified data processing on large clusters.

CACM, 51(1):107–113, 2008.

[11] T. J. Green, G. Karvounarakis, and V. Tannen. Provenance semirings. In PODS,
2007.

[12] X. Hu, P. Koutris, and K. Yi. The relationships among coarse-grained parallel

models. Technical report, HKUST, 2016.

[13] X. Hu, M. Qiao, and Y. Tao. Join Dependency Testing, Loomis-Whitney Join, and

Triangle Enumeration. In PODS, 2015.
[14] X. Hu, K. Yi., and Y. Tao. Output-optimal massively parallel algorithms for

similarity joins. TODS, 2019.
[15] X. Hu and K. Yi. Towards a worst-case I/O-optimal algorithm for acyclic joins.

In PODS, 2016.
[16] X. Hu and K. Yi. Instance and output optimal parallel algorithms for acyclic joins.

In PODS, pages 450–463, 2019.
[17] M. R. Joglekar, R. Puttagunta, and C. Ré. AJAR: Aggregations and joins over

annotated relations. In PODS, 2016.
[18] B. Ketsman and D. Suciu. A worst-case optimal multi-round algorithm for parallel

computation of conjunctive queries. In PODS, 2017.
[19] P. Koutris, P. Beame, and D. Suciu. Worst-case optimal algorithms for parallel

query processing. In ICDT, 2016.
[20] P. Koutris and D. Suciu. Parallel evaluation of conjunctive queries. In PODS,

2011.

[21] G. L. Nemhauser and L. E. Trotter. Properties of vertex packing and independence

system polyhedra. Mathematical programming, 6(1):48–61, 1974.
[22] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. In

PODS, pages 37–48, 2012.
[23] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: New developments in the

theory of join algorithms. ACM SIGMOD Record, 42(4):5–16, 2014.
[24] E. R. Scheinerman and D. H. Ullman. Fractional graph theory: a rational approach

to the theory of graphs. Courier Corporation, 2011.
[25] Y. Tao. A simple parallel algorithm for natural joins on binary relations. In ICDT,

2020.

[26] T. Veldhuizen. Leapfrog triejoin: A simple, worst-case optimal join algorithm. In

ICDT, 2014.
[27] M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, pages 82–94,

1981.

[28] M. Zaharia, M. Chowdhury, T. Das, A. Dave, J. Ma, M. McCauley, M. J. Franklin,

S. Shenker, and I. Stoica. Resilient distributed datasets: A fault-tolerant abstraction

for in-memory cluster computing. In NSDI, 2012.

A OMITTED PROOFS
A.1 Acyclic joins
An equivalent definition for α-acyclicity is based on the GYO re-

duction [1]: (1) if there is a vertex v ∈ V only appearing in edge e ,
then remove v from e; (2) if there is a pair of edges e, e ′ ∈ E such

that e ⊆ e ′, then remove e from E. A join query Q = (V, E) is

α-acyclic if the GYO reduction results in an empty hypergraph.

A join tree can be built by the GYO reduction recursively. If some

unique attribute is removed from e , we add e as a leaf node if it does
not exist. If e is removed by (2), we put e as a child of e ′. We show

some nice properties for acyclic join in Lemma A.1, A.2, and A.3.

For short, we use “acyclic” to denote “α-acyclic” below.

Lemma A.1. For any acyclic join Q = (V, E) and an attribute
x ∈ V , the residual join Qx = (Vx, Ex) is also acyclic.

Proof. Recall that Qx is the residual query by removing at-

tribute x from all relations in E. Let T be the join tree of Q, such

that (1) there is a one-to-one correspondence between edges in E

and nodes in T ; (2) for any attribute x ∈ V , all nodes containing x
form a connected subtree. We derive another tree T ′

by removing

attributes x from each node in T . It can be easily checked that T ′

is a valid join tree for Qx, thus Qx is acyclic. □

Lemma A.2. Acyclic join has integral optimal edge covering.

Proof. Let ρ∗(Q) be the optimal edge covering for hypergraph

Q = (V, E). An edge cover of Q can be obtained along with its

GYO reduction. More specifically, if Q is emptyset, we set ρ∗ = 0.

In general, we apply the following two procedures: (1) If attribute

x ∈ V only appears in e , then assign e with weight 1 and remove

all attributes in e from V; (2) if e, e ′ ∈ E are distinct edges such

that e ⊆ e ′, then assign e with weight 0 and remove e from E.

Next we will prove its optimality. The base case is trivial. In

general, we prove it for these two cases separately.

If Q is reduced through (1), let Qe = (V − e, Ee) be the residual
join by removing attributes in e from all relations in E. By hypoth-

esis, let ρ∗(Qe) be the integral optimal edge covering of Qe . Note

that ρ∗(Q) = ρ∗(Qe) + 1, which is optimal since any edge cover

require to assign ρ∗(e) = 1 to cover attribute v . Moreover, ρ∗(Q)

also admits integral optimal edge covering, since ρ∗(Qe) admits

integral optimal edge covering.

If Q is reduced through step (2), let Q ′ = (V, E − {e}) be the
residual join by removing edge e . Obviously, Q ′

is also acyclic. By

hypothesis, let ρ∗(Qe) be the integral optimal edge covering of Qe .

Note that ρ∗(Q) = ρ∗(Q ′), which is optimal since we can always

shift any weight assigned to e to e ′ while maintaining its optimality.

Thus, ρ∗(Q) is an optimal integral edge covering for Q. □

We next introduce the berge-acyclic joins. For a join query

Q = (V, E), consider the bipartite graph G, in which V corre-

sponds to vertices on one side and E to vertices on the other side.

There is an edge between v ∈ V and e ∈ E if v ∈ e . Then the

hypergraph (V, E) is berge-acyclic if this bipartite graph is acyclic.

This notion of acyclicity preserves many natural properties in ordi-

nary acyclic graphs. For example, there is only one path between

any two vertices u,v ∈ V , and any subgraph of (V, E) is still

acyclic. Note that this definition of berge-acyclicity does not allow

two relations to have two or more common attributes. But if these

attributes always appear together in any relation, then they can be

simply considered as one “combined” attribute. In a berge-acyclic

join Q = (V, E), a relation e is called a leaf if it contains at least
one unique attribute and exactly one join attribute, and non-leaf
otherwise.

Lemma A.3. For any reduced berge-acyclic join Q, τ ∗ ≤ ρ∗ where
τ ∗, ρ∗ are the optimal fractional edge packing and covering number
of Q respectively.

Proof. We will prove this by induction for a berge-acyclic join

Q = (V, E). The base case is trivial that when E contains a single

relation, with ρ∗ = τ ∗ = 1. In general, we consider two more cases:

Case 1. If Q is disconnected, let Q1,Q2, · · · ,Qk be its connected

components. As Qi is also berge-acyclic for any i ∈ {1, 2, · · · ,k},
by hypothesis we have τ ∗(Qi) ≤ ρ∗(Qi). Observe that τ ∗(Q) =∑
i τ

∗(Qi) and ρ
∗(Q) =

∑
i ρ

∗(Qi). Thus, τ
∗(Q) ≤ ρ∗(Q).

Case 2. Otherwise, Q is connected. First, we can always find a

non-leaf e0 such that removing all leaves in Q would turn it into a

new leaf. Let Γ(e0) be the set of leaves connected with e0. Note that
each relation in Γ(e0) include one attribute in e0. Let Ex = {e ∈ E :

x ∈ e} be the set of relations containing attribute x . Define

V ′ = {v ∈ e0 : Ev ⊆ {e0} ∪ Γ(e0)}

Note that |V ′ | = 1; otherwise, e0 is not a new leaf after removing

all leaves in Γ(e0). Define

S = {e ∈ Γ(e0) : e ∩ e0 ∈ V ′}

We further distinguish it into two more cases:

Case 2.1. If e0 contains unique attributes, let Q
′
be the residual

query by removing all edges in S . By hypothesis, ρ∗(Q ′) ≥ τ ∗(Q ′)

since Q ′
is also a reduced berge-acyclic join. Note that ρ∗(Q) =

ρ∗(Q ′) + |S | and τ ∗(Q) ≤ τ ∗(Q ′) + |S |. Thus, ρ∗(Q) ≥ τ ∗(Q).

Case 2.2. Otherwise, let Q ′
be the residual query by removing all

edges of {e0} ∪ S . By hypothesis, ρ∗(Q ′) ≥ τ ∗(Q ′) since Q ′
is also

a reduced berge-acyclic join. Note that ρ∗(Q) = ρ∗(Q ′) + |S | and
τ ∗(Q) ≤ τ ∗(Q ′) + |S |. Thus, ρ∗(Q) ≥ τ ∗(Q). □

Lemma A.4. For a join query Q, the following properties hold:
(1) If Q is both binary-relation and α-acyclic, then Q is berge-

acyclic.
(2) If Q is degree-two and α-acyclic but not binary-relation, it

may or may not be berge-acyclic.

Proof. For (1), if a join query Q is both binary-relation and

α-acyclic, the hypergraph of Q is a tree, which is berge-acyclic. For

(2), R1(A,B,C) Z R2(A,B,D) Z R3(C,E) is not berge-acyclic, and
R1(A,B,C) Z R2(A,D) Z R3(B,E) Z R4(C, F) is berge-acyclic. □

A.2 Missing Proofs in Section 4
Proof of Lemma 11. Without loss of generality, assume r = ek .

The base case with k = 1 always holds. Let x ∈ ek−1 − ek be the

first attribute. Note that Sx = {e1, e2, · · · , ek−1}.
The residual join Qx will be reduced first and then tackled by in-

voking the whole algorithm recursively. By hypothesis, each heavy

instance Ra can be computed using O(
∑
S ∈S(Ex) ⌈Ψ(T ,Ra, S,L)⌉)

servers in O(1) rounds with load O(L). The total number of servers

allocated for all heavy assignments is∑
a

∑
S ∈S(Ex)

⌈Ψ(T ,Ra, S,L)⌉

≤
∑

S ∈S(Ex)

∑
a

Ψ(T ,Ra, S,L) + 2
|E | ·

∑
i ∈[k−1]

|R(ei)|

L

≤
∑

i ∈[k−1]

|R(ek)|

L
·
|R(ei)|

L
+ (2 |E | + 1)

∑
i ∈[k−1]

|R(ei)|

L

≤
∑

S ∈S(E)

Ψ(T ,R, S,L)

where the first inequality is implied by the fact that there are

O(
∑
i ∈[k−1]

|R(ei) |
L) heavy assignments, the second inequality is

implied by distinguishing S ∈ S(Ex) into two cases, depending

on whether S ∩ {e1, e2, · · · , ek−1} = ∅, and the last inequality is

implied by the definition of S(E).

The residual join Qy degenerates to the base case with one re-

lation ek . Then, for each light group Ij , Qy(Rj) can be computed

usingO(⌈ |R(ek) |L ⌉) servers inO(1) rounds with loadO(L). The total
number of servers allocated for all light groups is∑

j
⌈
|R(ek)|

L
⌉ ≤

∑
j

(
|R(ek)|

L
+ 1

)
≤

©­«
∑

i ∈[k−1]

(
|R(ei)|

L
+ 1)

ª®¬ ·
(
|R(ek)|

L
+ 1

)
≤

∑
S ∈S(E)

Ψ(T ,R, S,L)

where the second last inequality is implied by the fact that there are

O(
∑
i ∈[k−1] ⌈

|R(ei) |
L ⌉) light groups ad the last inequality is implied

by the definition of S(E).

Combining the analysis for heavy and light subqueries, we com-

plete the whole proof for Lemma 11. □

Proof of Lemma 13. We will prove the following complexity

for a twig join excluding its root r :

S(E) = {{S} : S ⊆ (L1 − {r }) × L2 × · · · × Lℓ}

Let c be the child of r . Let x ∈ c − r be the first attribute, and e be
the leaf node with x ∈ e . Let path(c, e) as the set of nodes lying
on the path from c to e . The residual join Qx is reduced first and

then tackled by invoking the algorithm recursively. By hypothesis,

each heavy instance Ra induced by heavy value a ∈ H (x, Sx) can
be computed using O(

∑
S ∈S(Ex) ⌈Ψ(T ,Ra, S,L)⌉) servers in O(1)

rounds with load O(L). The total number of servers allocated for

all heavy assignments is∑
a

∑
S ∈S(Ex)

⌈Ψ(T ,Ra, S,L)⌉

≤
∑

S ∈S(Ex)

∑
a

Ψ(T ,Ra, S,L) + 2
|E | ·

∑
e ′∈path(c,e)

|R(e ′)|

L

≤
∑

P={L1, · · · ,Lℓ }

∑
S1

∑
e ′∈path(c,e)

Ψ(T ,R, S1 ∪ {e ′},L)

+
∑

P={L1, · · · ,Lℓ }

∑
S2

Ψ(T ,R, S2,L)

+2 |E | ·
∑

e ′∈path(c,e)

|R(e ′)|

L
≤

∑
P′

∑
S ∈S(E)

Ψ(T ,R, S,L)

for all linear coverings P,P ′
over T , S1 ⊆ (L1 − {r }) × L2 ×

· · · × Lℓ with S1 ∩ path(c, e) = ∅, and S2 ⊆ (L1 − {r }) × L2 ×

· · · × Lℓ with S2 ∩ path(c, e) , ∅. Note that the first inequality

is implied by the fact that there are O(
∑
e ′∈path(c,e)

|R(e ′) |
L) heavy

assignments, the second inequality is implied by distinguishing S
into two cases, depending on whether S ∩path(c, e) = ∅ or not, and

the last inequality is implied by Lemma A.5.

Lemma A.5. For a twig join Q with its join tree T , consider an
arbitrary linear covering P = {L1,L2, · · · ,Lℓ}, and an arbitrary
root-to-leaf path P of T , where P could be different from L1. Then,
{L1 − P ,L2 − P , · · · ,Lℓ − P} is a linear covering of T − P .

Proof. We first observe that ifL1 = P , {L1−P ,L2−P , · · · ,Lℓ−

P} = {L2,L3, · · · ,Lℓ} is a linear covering of T − L1, by the

definition of P. It remains to consider the case with L1 , P . Note
that L1 − P is a root-to-leaf path of T − P . By induction, assume

{L2−P ,L3−P , · · · ,Lℓ−P} is a valid linear covering of T −P−L1.

As (Li − P) ∩ (L1 − P) = ∅ for any i ∈ {2, 3, · · · , ℓ}, then L1 − P
together with {L2−P ,L3−P , · · · ,Lℓ−P} is a valid linear covering
of T − P . □

Let {T1,T2, · · · ,Th } be the set of connected subtrees by remov-

ing path(c, e) from T . Let Qi = (Vi , Ei) be the twig join defined

on the subtree Ti , excluding its root in L1. For each light group Ij ,
computing Qy(Rj) degenerates to computing the cartesian prod-

ucts over Qi (Rj)’s. By hypothesis, Qi (Rj) can be computed using

O(
∑
S ∈S(Ei) ⌈Ψ(T ,Rj , S,L)⌉) servers inO(1) rounds with loadO(L).

The total number of servers allocated for all light groups is∑
j

∑
i

∑
S ∈S(Ei)

⌈Ψ(T ,Rj , S,L)⌉

≤
∑
i

∑
S ∈S(Ei)

∑
j
Ψ(T ,Rj , S,L) +

∑
e ′∈path(c,e)

|R(e ′)|

L

≤
∑

e ′∈path(c,e)

∑
S ∈S(E1)×S(E2)×···×S(Eh)

Ψ(T ,R, S ∪ {e ′},L)

+
∑

e ′∈path(c,e)

|R(e ′)|

L
≤

∑
S ∈S(E)

Ψ(T ,R, S,L)

where the first inequality is implied by the fact that there are

O(
∑
e ′∈path(c,e)

|R(e ′) |
L) light groups and the last inequality is im-

plied by the fact that the union of linear-covers of T1,T2, · · · ,Th
together with path(c, e) is still a valid linear-cover of T .

When this twig join Q includes root r , it degenerates to com-

pute the Cartesian product between r and the residual twig join

excluding r . Thus, the complexity in Lemma 13 follows. □

The proof of Theorem 14 follows directly from the primitive of

reducing a join, the Case II of the generic algorithm in Section 3,

and Lemma 13 sequentially.

A.3 Join-Aggregate Query
We consider join-aggregate queries over annotated relations [2, 11,
17] with one semiring. Let (R, ⊕, ⊗) be a commutative semiring. We

assume that every tuple t is associated with an annotationw(t) ∈ R.
The annotation of a join result t ∈ Q(R) is

w(t) := ⊗te ∈R(e),πe t=te ,e ∈Ew(te).

Let y ⊆ V be a set of output attributes (a.k.a. free variables) and
ȳ = V − y the non-output attributes (a.k.a. bound variables). A
join-aggregate query Qy(R) asks us to compute ⊕ȳQ(R) ={

(ty,w(ty)) : ty ∈ πyQ(R),w(ty) = ⊕t ∈Q(R):πyt=tyw(t)
}
.

In plain language, a join-aggregate query first computes the

join Q(R) and the annotation of each join result, which is the ⊗-

aggregate of the tuples comprising the join result. Then it partitions

Q(R) into groups by their projection on y. Finally, for each group,

it computes the ⊕-aggregate of the annotations of the join results.

Many queries can be formulated as special join-aggregate queries.

For example, if we take R to be the domain of integers, ⊕ to be

addition, ⊗ to be multiplication, and set w(t) = 1 for all t , then it

becomes the COUNT(*) GROUP BY y query; in particular, if y = ∅,

the query computes |Q(R)|. The join-project query πyQ(R), also

known as a conjunctive query, is a special join-aggregate query by

discarding the annotations.

With respect to join-aggregate queries, free-connex queries [6]
are an important subclass. To define a free-connex query, we intro-

duce the notion of a width-1 GHD, which can be considered as a

generalized join tree. A width-1 GHD of a hypergraph Q = (V, E)

is a tree T , where each node u ∈ T is a subset ofV , such that (1)

for each attribute x ∈ V , the nodes containing x are connected in

T ; (2) for each hyperedge e ∈ E, there exists a node u ∈ T such

that e ⊆ u; and (3) for each node u ∈ T , there exists a hyperedge

e ∈ E such that u ⊆ e .
Given a set of output attributes y, T is free-connex if there is a

subset of connected nodes of T , denoted as T ′
(such a T ′

is said

to be a connex subset), such that y =
⋃
u ∈T′ u. A join-aggregate

query Qy is free-connex if it has a free-connex width-1 GHD.

A.4 Proof of Lemma 21
The proof directly follows the fact that the dual of any reduced

degree-two join is a reduced binary-relation join [18, 24]. We can

show more details for each property in Lemma 21.

For (1), let f be the mapping from E to [0,+∞). Let f (e) = 1

2

for every e ∈ E. In the reduced degree-two join Q, each vertex

appears in exactly two hyperedges. In this way, f is both a valid

fractional edge packing and edge covering. Implied by the maxi-

mization of fractional edge packing and minimization of fractional

edge covering, we get τ ∗ ≥
|E |
2

≥ ρ∗.
For (2), let f be a valid fractional edge packing for Q. It can be

easily checked that д = {1 − f (e) : e ∈ E} is a valid fractional edge

covering for Q. Thus, we get ρ∗ = |E | − τ ∗.
A similar result has been proved for optimal fractional vertex

covering for an ordinary graph [21], that the vertex packing for an

ordinary graph admits half-integral solution, and the set of vertices

with value
1

2
form a set of vertex-disjoint odd-length cycles. Thus,

(3) and (4) follow.

A.5 Proof of Theorem 18
We first point out several important properties for degree-two joins

satisfying edge-packing-provable conditions.

If there is no odd-length cycle in Q, it admits integral optimal

edge packing τ ∗ and covering ρ∗, implied by Lemma 21. More

specifically, there exists a partition (Eα , Eβ) of E: Eα = {e ∈ E :

ρ∗(e) = 1,τ ∗(e) = 0} and Eβ = {e ∈ E : ρ∗(e) = 0,τ ∗(e) = 1}.

Consider any vertex v incident to two edges e, e ′. There must be

e ∈ Eα , e
′ ∈ Eβ , or e ∈ Eβ , e

′ ∈ Eα . This also implies that all

edges in Eα are vertex-disjoint, as well as edges in Eβ .

Let x be an optimal fractional vertex covering for Q. An edge

e is denoted as deterministic if
∑
v :v ∈e xv = 1, and probabilistic

otherwise. Let E ′
be the set of probabilistic edges, i.e. {e ∈ E :∑

v :v ∈e xv > 1}. Note that vertex covering and edge packing are

prime-dual problems. The following result is directly implied by

the complementary slackness.

Lemma A.6. Let E ′ = {e ∈ E :

∑
v :v ∈e xv > 1}. For any e ∈ E ′,

τ ∗(e) = 0 and ρ∗(e) = 1.

For each edge e ∈ E, let ϒ(e) be the set of vertices appearing in
the neighbor of e , i.e., ϒ(e) = ∪e ′∈Γ(e)e

′ − e . Two nice properties

on the edges in E ′
are stated in Lemma A.7 and Lemma A.8.

Lemma A.7. Let E ′ = {e ∈ E :

∑
v :v ∈e xv > 1}. For any edge

e ∈ E ′,
∑
v :v ∈e xv +

∑
v :v ∈ϒ(e) xv = |Γ(e)|.

Proof. As τ ∗(e) = 0 and ρ∗(e) = 1, we have τ ∗(e ′) = 1 and

ρ∗(e) = 0 for every edge e ′ ∈ Γ(e). This also implies that for any

pair of edges e1, e2 ∈ Γ(e), e1∩e2 = ∅. Moreover, each edge e ′ ∈ Γ(e)
is deterministic implied by Lemma A.6, thus

∑
v :v ∈e ′ xv = 1. We

also observe that e ∪
(
∪e ′∈Γ(e)e

′ − e
)
= ∪e ′∈Γ(e)e

′
. Thus, the left-

hand-side of the target equation can be rewritten as∑
v :v ∈∪e′∈Γ(e)e ′

xv =
∑

e ′∈Γ(e)

∑
v :v ∈e

xv = |Γ(e)|

thus yielding the desired result. □

Lemma A.8. Let E ′ = {e ∈ E :

∑
v :v ∈e xv > 1}. ρ∗ − τ ∗ =

|E ′ | −
∑
e :e ∈E′

∑
v :v ∈e xv .

Proof. By the duality theorem, τ ∗ =
∑
v :v ∈V xv . In this way,

we can rewrite

∑
e ∈E′

∑
v :v ∈e xv as∑

e ∈E′

∑
v :v ∈e

xv =
∑
v ∈V

xv −
∑

e ∈Eα−E′

∑
v :v ∈e

xv = τ
∗ − (ρ∗ − |E ′ |)

thus yielding the desired result. □

Now, we are able to prove Theorem 18. As it follows the same

framework as Section 5.1, we will focus on addressing the difference

in this non-trivial extension. Similarly, we will show that with

positive probability, an instance constructed this way will have a

bounded J (L), the maximum number of join results a server can

produce, if it loads at most L tuples from each relation. Then setting

p · J (L) = Ω(|Q(R)|) yields a lower bound on L.

Hard instance construction. There are N xv
distinct values in

the domain of attribute v . Namely, a deterministic relation R(e) is
a Cartesian product over all attributes in e , with

∏
v :v ∈e N

xv =

N
∑
v :v∈e xv = N tuples in total; and a probabilistic relation R(e)

is constructed in a probabilistic way, such that each combination

t ∈ ×v :v ∈edom(v) has a probability of p(e) = 1/N
∑
v :v∈e xv−1 to

form a tuples in R(e), with
∏
v :v ∈e N

xv · p(e) = N tuples in ex-

pectation. Moreover, each relation has its input size deviates from

its expectation by a constant factor is at most exp(−Ω(N)). Taking

all relations in the edge covering, they together form N ρ∗
results

while remaining relations are deterministic Cartesian product. So

this instance has its output size deviating from its expectation by a

constant factor is at most exp(−Ω(N)).

Step 1: Making a reasonale restriction on loading tuples.

Lemma A.9. For any deterministic edge e , if |Γ(e) ∩ E ′ | ≤ 1, then
assuming that tuples loaded from R(e) should be in forms of Cartesian
products over all attributes, doesn’t decrease the maximum number
of join results that can be produced per server by a constant factor.

Proof. Note that for any vertexv ∈ V , if the two edges incident

to it are deterministic, the same argument in Lemma 19 can be

applied to v , i.e., loading tuples in R(e) for v ∈ e in terms of Lv ×

Le−{v } will not decrease the optimal solution by a constant factor.

Moreover, if Le = Lv × Le−{v } , then Luv = Lv × Lu for any u ∈

e − {v}. To prove this result, it suffices to show that Luv = Lv × Lu
for every pair of vertices u,v ∈ e . We distinguish e into two cases.

If Γ(e) ∩ E ′ = ∅, Lemma 19 can be applied to all vertices to e ,
thus Luv = Lv × Lu for every pair of vertices u,v ∈ e . Otherwise,
|Γ(e) ∩ E ′ | = 1, say Γ(e) ∩ E ′ = {e ′′}. Applying Lemma 19 can

be applied to every attribute v ∈ e − e ′′, we have Luv = Lv × Lu
for every u ∈ e,v ∈ e − e ′′. Note that when |e ′′ ∩ e | = 1, we are

done. The remaining case is when |e ′′ ∩ e | ≥ 2, we can assume that

the optimal edge covering x could shift all weights on vertices in

e − e ′′ to one specific vertex in e − e ′′, and assign 0 for remaining

vertices in e − e ′′, without changing its optimality and property in

Definition 22. In this way, the condition is also satisfied. □

Step 2: Prove an upper bound on J (L).
Assume the number of distinct values from attribute v loaded by

the server is zv . Observe that 1 ≤ zv ≤ N xv
for each vertex v ∈ V .

Moreover,

∏
v :v ∈e zv = L for each deterministic relation e .

Recall that relations in Eβ are vertex-disjoint. After loading L

tuples from all deterministic relations, there are Lτ
∗

combinations

of results in total, where each of them has a probability of∏
e ∈E′

p(e) =
∏
e ∈E′

1

N
∑
v :v∈e xv−1

= N |E′ |−
∑
e :e∈E′

∑
v :v∈e xv = N ρ∗−τ ∗

to form a valid join result, implied by Lemma A.8. The expected

number of join results that can be produced by one server is Lτ
∗

·

N ρ∗−τ ∗
. Next, we will show that this number of join results deviates

from its expectation by a constant factor is exponentially small.

For each relation e ∈ E ′
, we introduce a random variable Yt

for each combination t ∈ ×v :v ∈eLv , which follows the bernoulli

distribution with parameter p(e). Denote Y (e) =
∑
t Yt . Observe

that there are L |Γ(e) |−
∑
v∈ϒ(e) xv

independent random variables in

the space ×v :v ∈eLv . So,

E[Y (e)] = L |Γ(e) |−
∑
v∈ϒ(e) xv · p(e) = N · (

L

N
) |Γ(e) |−

∑
v∈ϒ(e) xv

where the last inequality is implied by Lemma A.7. By Chernoff

bound, the probability that Y (e) deviates from its expectation by a

constant factor is at most exp (−Ω(E[Y (e)]).

Let Y =
∏

e ∈E2
Y (e). As mentioned, these Lτ

∗

combinations are

not fully independent, as long as they share any same variableYt . In

fact, the number of independent combinations is Lτ
∗−ρ∗+ |E′ |

, since

all combinations can be put into disjoint groups by the random

variables shared and each group has exactly Lρ
∗−|E′ |

combinations.

Thus, the probability that the server produces more than 2
|E′ | ·

Lτ
∗−ρ∗

N τ ∗−ρ∗−|E′ | join results is at most

Pr

(
Y ≥ 2

|E′ | ·
Lτ

∗−ρ∗+ |E′ |

N τ ∗−ρ∗

)
≤

∑
e ∈E′

Pr (Y (e) ≥ 2 · E[Y (e)])

≤ exp

(
−Ω(min

e ∈E′
E[Y (e)])

)
Consider an arbitrary attribute v ∈ V . Note that there are(N xv

zv

)
= O(N xv ·zv)) choices of loading zv distinct values from

the domain of attribute v . Over all possible values of zv , the num-

ber of choices over all attributes in total is∏
v :v ∈V

N xv∑
Lv=1

exp

(
O(N xv ·Lv)

)
= exp

(
Õ(max

v
N xv)

)
By the union bound, the probability that any of the choices produces

more than 2
|E′ | · Lτ

∗−ρ∗

N τ ∗−ρ∗−|E′ | join results is at most

exp

(
−Ω(min

e ∈E′
E[Y (e)]) + Õ(max

v ∈V
N xv)

)
which is exponentially small if

min

e ∈E′
E[Y (e)] ≥ c1 · max

v ∈V
N xv · logN

for some sufficiently large constant c1, or

N · (
L

N
)λ(Q) ≥ c1 · max

v ∈V
N xv · logN

where λ(Q) = mine ∈E′ |Γ(e)| −
∑
v ∈ϒ(e) xv ≤ |E|. Rearranging it,

Lλ(Q) ≥ c1 · N
λ(Q)−1 · max

v ∈V
N xv · logN

We know that L ≥ Ω(Np), so this is true as long as

(
N

p
)λ(Q) ≥ c2 · N

λ(Q)−1 · max

v ∈V
N xv · logN

for some sufficiently large constant c2, or

N ≥ c3 · p
λ(Q)

1−maxv :v∈V xv · (logN)
1

1−maxv :v∈V

for some sufficiently large constant c3. Note that x is constant-small,

so
λ(Q)

1−maxv xv = O(|E |) is still a constant.

Step 3: Apply counting argument.
So far, we have shown that with exponentially high probability

each server produces no more than O(Lτ
∗

· N ρ∗−τ ∗) join results in

each round. Over p servers, the number of join results produced in

total isO(pLτ
∗

·N ρ∗−τ ∗)with high probability. As there areΘ(N ρ∗)

join results, we must have pLτ
∗

· N ρ∗−τ ∗ ≥ N ρ∗
, which leads to a

lower bound L ≥ N /p1/τ
∗

.

	Abstract
	1 Introduction
	1.1 Join Query
	1.2 The model of computation
	1.3 Worst-case optimal join algorithms
	1.4 Our Results
	1.5 Outline

	2 MPC Preliminaries
	3 Upper Bound for Acyclic Joins
	3.1 Generic Join Algorithm
	3.2 Analysis
	3.3 Choosing L

	4 Worst-Case Optimality for Acyclic Joins
	4.1 Characterization of A Good Run
	4.2 Analysis
	4.3 Worst-case Optimality

	5 Lower Bounds for Cyclic Joins
	5.1 -Join
	5.2 Degree-two Joins

	References
	A Omitted Proofs
	A.1 Acyclic joins
	A.2 Missing Proofs in Section 4
	A.3 Join-Aggregate Query
	A.4 Proof of Lemma 21
	A.5 Proof of Theorem 18

