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ABSTRACT
Massively parallel join algorithms have received much at-

tention in recent years, while most prior work has focused

on worst-optimal algorithms. However, the worst-case op-

timality of these join algorithms relies on hard instances

having very large output sizes, which rarely appear in prac-

tice. A stronger notion of optimality is output-optimal, which
requires an algorithm to be optimal within the class of all

instances sharing the same input and output size. An even

stronger optimality is instance-optimal, i.e., the algorithm is

optimal on every single instance, but this may not always

be achievable.

In the traditional RAMmodel of computation, the classical

Yannakakis algorithm is instance-optimal on any acyclic join.

But in the massively parallel computation (MPC) model, the

situation becomes much more complicated. We first show

that for the class of r-hierarchical joins, instance-optimality

can still be achieved in the MPC model. Then, we give a

new MPC algorithm for an arbitrary acyclic join with load

O( IN

p +
√

IN·OUT

p ), where IN,OUT are the input and output

sizes of the join, and p is the number of servers in the MPC

model. This improves the MPC version of the Yannakakis

algorithm by anO(
√

OUT

IN
) factor. Furthermore, we show that

this is output-optimal when OUT = O(p · IN), for every

acyclic but non-r-hierarchical join. Finally, we give the first

output-sensitive lower bound for the triangle join in the

MPC model, showing that it is inherently more difficult than

acyclic joins.
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1 INTRODUCTION
A (natural) join is defined as a hypergraphQ = (V, E), where
the vertices V = {x1, . . . , xn} model the attributes and the

hyperedges E = {e1, . . . , em} ⊆ 2
V
model the relations. Let

dom(x) be the domain of attribute x ∈ V . An instance of Q
is a set of relations R = {R(e) : e ∈ E}, where R(e) is a set of
tuples, where each tuple is an assignment that assigns a value

from dom(x) to x for every x ∈ e . We use IN =
∑

e ∈E |R(e)|
to denote the size of R. The join results of Q on R, denoted

as Q(R), consist of all combinations of tuples, one from each

R(e), such that they share common values on their common

attributes. Let OUT = |Q(R)| be the output size. We study

the data complexity of join algorithms, i.e., we assume that

the query size, namely n andm, are constants. In this paper,

we focus on acyclic joins, i.e., when the hypergraph Q is

acyclic (formal definition given later).

1.1 The model of computation
The problem gets much more interesting in the parallel set-

ting. In this paper, we consider the massively parallel compu-
tation (MPC) model [1, 2, 6, 7, 21, 23, 25], which has become

the standard model of computation for studying massively

parallel algorithms, especially for join algorithms.

In the MPC model, data is initially distributed evenly over

p servers with each server holding IN/p tuples. Computa-

tion proceeds in rounds. In each round, each server first

sends messages to other servers, receives messages from

other servers, and then does some local computation. The

complexity of the algorithm is measured by the number of

https://doi.org/10.1145/3294052.3319698
https://doi.org/10.1145/3294052.3319698
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rounds and the load, denoted as L, which is the maximum

message size received by any server in any round. A lin-
ear load L = O( IN

p ) is the ideal case (since the initial load is

already
IN

p ), while if L = O(IN), all problems can be solved

trivially in one round by simply sending all data to one server.

Initial efforts were mostly spent on what can be done in a

single round of computation [2, 6, 7, 23, 25, 25], but recently,

more interest has been given to multi-round (but still a con-

stant) algorithms [1, 21, 23], since new main memory based

systems, such as Spark and Flink, have much lower overhead

per round than previous generations like Hadoop.

The MPC model can be considered as a simplified version

of the BSP model [31], but it has enjoyed more popularity in

recent years. This is mostly because the BSP model takes too

many measures into consideration, such as communication

costs, local computation time, memory consumption, etc.

The MPC model unifies all these costs with one parameter L,
which makes the model much simpler. Meanwhile, although

L is defined as the maximum incoming message size of a

server, it is also closely related with the local computation

time and memory consumption, which are both increasing

functions of L. Thus, L serves as a good surrogate of these

other cost measures. This is also why the MPC model does

not limit the outgoing message size of a server, which is less

relevant to other costs.

All our algorithms work under the mild assumption IN ≥

p1+ϵ
where ϵ > 0 is any small constant. This assumption

clearly holds on any reasonable values of IN andp in practice;
theoretically, this is the minimum requirement for the model

to be able to compute some almost trivial functions, like

the “or” of IN bits, in O(1) rounds. Our lower bounds hold
under IN ≥ pc for some constant c , which may depend on

the particular lower bound construction.

We confine ourselves to tuple-based join algorithms, i.e.,

the tuples are atomic elements that must be processed and

communicated in their entirety. The only way to create a

tuple is by making a copy, from either the original tuple

or one of its copies. We say that an MPC algorithm com-

putes the join Q on instance R if the following is achieved:

For any join result (t1, . . . , tm) ∈ Q(R) where ti ∈ R(ei ),
i = 1, . . . ,m, these m tuples (or their copies) must all be

present on the same server at some point. Then the server

will call a zero-cost function emit(t1, . . . , tm) to report the

join result. Note that since we only consider constant-round

algorithms, whether a server is allowed to keep the tuples

it has received from previous rounds is irrelevant: if not,

it can just keep sending all these tuples to itself over the

rounds, increasing the load by a constant factor. All known

join algorithms in the MPC model are tuple-based and obey

these requirements. Our lower bounds are combinatorial

in nature: we only count the number of tuples that must

be communicated in order to emit all join results, while all

other information can be communicated for free. The upper

bounds include all messages, with a tuple and an integer of

O(log IN) bits both counted as 1 unit of communication.

1.2 Instance and output optimality
In worst-case analysis, the entire space of instances is divided

into classes by the input size IN, and the running time is

measured on the worst instance in each class. For many

important computational problems, this is too coarse-grained

and cannot accurately characterize the performance of the

algorithm. For the join problem, no algorithm can do better

thanO(IN1/ρ ) time in theworst case, where ρ is the fractional
edge cover number of the hypergraph Q [28, 32]. This bound

drastically overestimates the running time on most typical

instances.

A more refined approach is parameterized analysis, which
further subdivides the instance space into smaller classes by

introducing more parameters that supposedly better charac-

terize the difficulty of each class. For the join problem, the

output size OUT is a commonly used parameter, and each

class of instances share the same input and output size. Let

R(IN,OUT) be the class of instances with input size IN and

output size OUT. Then the load of an MPC algorithm A is

thus a function of both IN and OUT, defined as

LA(IN,OUT) = max

R∈R(IN,OUT)
LA(R),

where LA(R) denotes the load of A on R. Algorithm A is

output-optimal if

LA(IN,OUT) = O(LA′(IN,OUT)),

for every algorithm A ′
.

Further subdividing the instance space leads to more re-

fined analyses. In extreme case when each class contains just

one instance, we obtain instance-optimal algorithms. More

precisely, an algorithm A is instance-optimal if

LA(R) = O(LA′(R)),

for every instance R and every algorithm A′
. Note that by

definition, an instance-optimal algorithm must be output-

optimal, and an output-optimal algorithmmust beworst-case

optimal, but the reserve direction may not be true.

In the traditional RAM model of computation, the clas-

sical Yannakakis algorithm [33] can compute any acyclic

join in time O(IN + OUT), which is both output-optimal

and instance-optimal, because on any instance R, any algo-

rithm has to spend at least Ω(IN) time to read all the inputs
1

and Ω(OUT) time to enumerate the outputs. Thus, the two

1
To formally prove this claim, one will have to be more careful with the

family of algorithms under consideration. In particular, if OUT = 0, then

the algorithm may not have to do anything. One possible approach is to ask

the algorithm to produce a certificate in addition to the join results [27]. We
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notions of optimality coincide (but both are stronger than

worst-case optimality). Fundamentally, this is because the

difficulty of any instance R is precisely characterized by its

input size and output size, and all instances in R(IN,OUT)

have exactly the same complexity O(IN + OUT).

1.3 Join algorithms in the MPC model
The situation becomes much more interesting in the MPC

model. First, it has been observed that the Yannakakis algo-

rithm can be easily implemented in the MPC model with a

load ofO( IN

p +
OUT

p ) [1]2, but this is not optimal. In particular,

it is known that the binary join R1(A,B) Z R2(B,C) can be

computed with load O( IN

p +
√

OUT

p ) [7, 16]. This is optimal

by the following simple lower bound argument: Each server

can only produce O(L2) join results in a constant number of

rounds with the load limited to L, so all the p servers can pro-

duce at mostO(p ·L2) join results. Thus, producing OUT join

results needs at least a load of L = Ω(
√

OUT

p ). Meanwhile,

since L ≥ IN/p by definition, theO( IN

p +
√

OUT

p ) bound is opti-

mal. Note that this argument can be applied on a per-instance

basis, which means that the load complexity of any instance

is still precisely captured by IN and OUT, andO( IN

p +
√

OUT

p )

is both an instance-optimal and output-optimal bound.

However, when the join involves three relations, the situ-

ation becomes subtler, and we start to see a separation be-

tween the two notions of optimality, meaning that the load

complexity of an instance may not depend only on IN and

OUT. Let us start with the simplest 3-relation join R1(A) Z
R2(B) Z R3(C), i.e., computing the Cartesian product of 3

sets of tuples. Consider a particular class R(IN,OUT) when

OUT = IN
2
. Suppose the 3 relations have sizes N1,N2,N3,

respectively. Then R(IN,OUT) consists of all instances with

N1 + N2 + N3 = IN and N1N2N3 = OUT = IN
2
. Consider the

following two instances: (1) N1 = N2 = Θ(
√

IN),N3 = Θ(IN),

applying the same argument above except that each server

now can produceO(L3) join results, i.e., p ·L3 = Ω(OUT), we

have L = Ω((OUT

p )1/3); (2) if N1 = 1,N2 = N3 = Θ(IN), then

the problem boils down to computing the Cartesian product

of two sets, which has a lower bound of L = Ω((OUT

p )1/2).

The reason why instance (2) has a higher lower bound than

instance (1) is that it has a higher skew, which causes more

difficulty for the MPC model. Note that this phenomenon

does not exist in the RAMmodel, in which both instances (in

will not digress to this direction since this paper is only concerned about

MPC algorithms.

2
The bound stated in [1] is actually O (

(IN+OUT)2

p ), because they used a

sub-optimal binary join algorithm as the subroutine. Replacing it with

the optimal binary join algorithm in [7, 16] yields the claimed bound, as

observed in [24].

fact all instances in R(IN,OUT)) have the same complexity

of O(IN + OUT). Fundamentally, this is because the MPC

model is all about locality: An MPC algorithm should strive

to bring all related tuples to one server so as to produce as

many join results as possible, while a higher skew reduces

locality.

We can extend this argument to computing the Carte-

sian product ofm sets of sizes N1, . . . ,Nm . Any algorithm

computing the full Cartesian product obviously must also

compute the Cartesian product of any subset of the n sets,

thus the load must be at least

LCartesian(p,R) := max

S ⊆{1, ...,m }

(∏
i ∈S Ni

p

) 1

|S |

. (1)

It has been shown that the HyperCube algorithm [2] incurs a

load of LCartesian(p,R) · log
O (1) p on any instance R [7]. Thus,

it can be considered as an instance-optimal algorithm for

computing Cartesian products, with an optimality ratio of

log
O (1) p.
The binary join and Cartesian products are the simplest

joins. Then the obvious question is, do instance-optimal al-

gorithms exist for larger classes of joins? If not, how about

output-optimal algorithms? These are the main questions

we wish to address in this paper.

1.4 Classification of acyclic joins
Before describing our results, we first define some sub-classes

of acyclic joins.

Acyclic joins [8]. We use the common notion of acyclicity,

which is also known as α-acyclicity. A join Q = (V, E) is
acyclic if there exists an undirected treeT whose nodes are in

one-to-one correspondence with the edges in E such that for

any vertex v ∈ V , all nodes containing v form a connected

subtree. Such a tree T is called the join tree of Q. Note that

the join tree may not be unique for a given Q.

Hierarchical joins [11]. A join Q = (V, E) is hierarchical
if for every pair of vertices x,y, there is Ex ⊆ Ey , or Ey ⊆ Ex ,

or Ex ∩ Ey = ∅, where Ex = {e ∈ E : x ∈ e} is the set of
hyperedges containing attribute x . Thus, all attributes can
be organized into a forest, such that x is a descendant of y iff

Ex ⊆ Ey . Hierarchical joins have been enjoyed nice proper-

ties in probabilistic databases [11, 12] and query answering

under updates [9], but their role in the MPC model has not

been studied so far.

r-hierarchical joins. We consider a slightly larger class

of hierarchical joins. A reduce procedure on a hypergraph

(V, E) is to remove an edge e ∈ E if there exists another edge

e ′ ∈ E such that e ⊆ e ′. We can repeatedly apply the reduce

procedure until no more edge can be reduced, and the result-

ing hypergraph is said to be reduced. A join is r-hierarchical
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Joins

Instance-optimal Output-optimal

one-round multi-round one-round multi-round

tall-flat

( IN

p + Linstance(p,R)) log
O (1) p [7]

Θ
(

IN

p + Linstance(p,R)
) -r-hierarchical

w/o dangling tuples

r-hierarchical

ω
(

IN

p + Linstance(p,R)
)

ω
(

IN

p +
OUT

p

)
[25]

-

w/ dangling tuples

acyclic

ω
(

IN

p + Linstance(p,R)
) Θ

(
IN

p +
√

IN·OUT

p

)
LB holds for OUT ≤ O(p · IN)

triangle Ω̃
(
min

{
IN

p +
OUT

p ,
IN

p2/3

})
Table 1: Summary of results.

tall-flat

hierarchical

r-hierarchical

acyclic

Figure 1: Relationships of joins.

if its reduced join hypergraph is hierarchical. A hierarchical

join must be r-hierarchical, but not vice versa. For example,

the join R1(A) Z R2(A,B) Z R3(B) is r-hierarchical but not
hierarchical. On the other hand, an r-hierarchical join must

be acyclic.

Tall-flat joins [25]. A join Q = (V, E) is tall-flat if one can
order the attributes as x1, x2, · · · , xh,y1,y2, · · · ,yl such that

(1) Ex1
⊇ Ex2

⊇ · · · ⊇ Exh ; (2) Exh ⊇ Eyj for j = 1, 2, · · · , l ;
and (3) |Eyj | = 1 for j = 1, 2, · · · , l . Obviously, a tall-flat join
must be hierarchical.

The relationships of these joins are illustrated in Figure 1.

1.5 Our results
This paper gives an almost complete characterization of

acyclic joins with respect to instance-optimality and output-

optimality in the MPC model. Our results are summarized

in Table 1, and we explain them below in more detail.

Instance-optimality. First, we extend the Cartesian prod-

uct lower bound (1) to a general join Q = (V, E). For any
subset of relations S ⊆ E, define

Q(R, S) := (Ze ∈S R(e))⋉ Q(R),

i.e., the join results of relations in S that are part of a full

join result. Clearly, any algorithm computing Q(R) must

implicitly also compute Q(R, S) for every S . Because each
join result in Q(R, S) consists of |S | tuples, one from each

relation in S , a server can emit at most O(L |S |) join results

of Q(R, S), so we must have p · L |S | = Ω(|Q(R, S |). Thus, we

obtain the following per-instance lower bound on the load:

Linstance(p,R) := max

S ⊆E

(
|Q(R, S)|

p

) 1

|S |

. (2)

The BinHC algorithm [7] is a generalization of the Hy-

perCube algorithm to general joins. The load of the BinHC

algorithm is parameterized by the degrees of all subsets of

attribute values (more detail given in Section 3). Beame et

al. [7] show that BinHC is optimal (up to polylog factors)

within the class of instances sharing the same degrees, among

all one-round MPC algorithms. In this paper, we strengthen

this result by giving a new analysis of the BinHC algorithm,

showing that it is actually instance-optimal (up to polylog

factors) for (1) all tall-flat joins, and (2) all r-hierarchical joins

provided that the instance does not contain dangling tuples
(a dangling tuple is one that does not appear in the join re-

sults). Furthermore, because the per-instance lower bound

(2) also holds for multi-round algorithms, these instance-

optimality results extend to multi-round algorithms as well.

For r-hierarchical joins with dangling tuples, one-round al-

gorithms cannot achieve O( IN

p + Linstance(p,R)) load, but we

can remove the dangling tuples in O(1) rounds with O( IN

p )

load [33], and then run then BinHC algorithm. This gives

a multi-round, ( IN

p + Linstance(p,R)) log
O (1) p-load algorithm,

where the O(1) exponent depends on the query size, and is

at least m, the number of relations. Then we give a new

multi-round algorithm for r-hierarchical joins with load

O( IN

p +Linstance(p,R)), i.e., improving the instance-optimality

ratio from log
O (1) p to O(1).

The instance-optimal load O( IN

p + Linstance(p,R)) is not

achievable beyond r-hierarchical joins
3
. More precisely, we

show that for every acyclic join that is not r-hierarchical,

there is an instance R with Linstance(p,R) = O( IN

p ) but any

3
But instance-optimal algorithms are still possible, if some higher per-

instance lower bound can be derived.
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multi-round algorithm must incur a load of
4 Ω̃( IN

p1/2
) on R.

This is actually a corollary following our output-sensitive

lower bound, which is described next.

Output-optimality. One-round algorithms have severe

limitations with respect to OUT: As shown in [25], any non-

tall-flat joins must incur load ω( IN

p +
OUT

p ) if only one round

is allowed. On the other hand, as mentioned, the classical

Yannakakis algorithm is a multi-round MPC algorithm that

works for all acyclic joins and has a load of O( IN

p +
OUT

p )

[1, 24]. Thus, our focus will be on multi-round algorithms

and see if this result can be improved. An instance-optimal

algorithm must also be output-optimal, so we have automat-

ically obtained output-optimal algorithms for r-hierarchical

joins. In fact, we show that Linstance(p,R) = O( IN

p +
√

OUT

p )

for all r-hierarchical joins, so this is already an asymptotic

improvement over the Yannakakis algorithm. But the more

important question is, how about acyclic joins that are not

r-hierarchical?

Our main output-optimal result is a new MPC algorithm

for acyclic joins achieving a load ofO( IN

p +
√

IN·OUT

p ), which is

an O(
√

OUT

IN
)-factor improvement from the Yannakakis algo-

rithm. Interestingly enough, we observe that while the join

order does not change the running time of the Yannakakis al-

gorithm by more than a constant factor in the RAMmodel, it

does have asymptotic consequences in the MPC model. How-

ever, there are instances on which no join order is good, in

which case we recursively decompose the join into multiple

parts, and choose a good join order for each part. The number

of parts is exponential in the query size but constant in terms

of data size. To achieve this result, we first give a simple al-

gorithm on the line-3 join R1(A,B) Z R2(B,C) Z R3(C,D)
(Section 4), and then extend it to arbitrary acyclic joins (Sec-

tion 5).

We also give a matching lower bound (up to a log factor),

thereby establishing the output-optimality of the algorithm.

However, the lower bound only holds when OUT = O(p ·

IN). This restriction on OUT is actually inherent, because

the O( IN

p +
√

IN·OUT

p ) bound cannot be optimal for all values

of OUT. When OUT is large enough, a worst-case optimal

algorithm will take over. For example, on the line-3 join, the

worst-case optimal algorithm, which has loadO( IN√
p ) [17, 23],

becomes better when OUT > p ·IN. Our lower bound actually

indicates that the O( IN√
p ) bound is output-optimal (though

it does not depend on OUT) for all OUT > p · IN. Thus, we

now have a complete understanding of the line-3 join with

respect to output-optimality. For more complicated joins,

their worst-case optimal algorithms have a higher load, and

4
The Õ and Ω̃ notation suppresses polylog factors.

the output-optimality for OUT values in the middle is still

unclear.

Next, we extend these results to join-aggregate (including
join-project) queries that are free-connex (formal definition

given in Section 6). More precisely, we give an MPC algo-

rithm with linear load that removes all the non-output at-

tributes of the query, converting it into an acyclic join. Then

we apply our instance-optimal or output-optimal algorithm

on the resulting acyclic join.

Finally in Section 7, we turn to the triangle join R1(B,C) Z
R2(A,C) Z R3(A,B), which is the simplest cyclic join, and

give the first output-sensitive lower bound Ω̃(min{ IN

p +
OUT

p ,
IN

p2/3
}) in theMPCmodel. Previously, only a worst-case bound

of Ω( IN

p2/3
) is known [23, 29] and that construction uses an

instance with the maximum possible output size OUT =

IN
3/2

. Note that the second term in the lower bound is smaller

as long as OUT = Ω(IN · p1/3), which means that under

this parameter range, the Õ( IN

p2/3
)-load algorithm [23] is not

only worst-case optimal but also output-optimal. For OUT =

o(IN ·p1/3), the lower bound becomes Ω̃( IN

p +
OUT

p ) while we

do not have a matching upper bound yet (some explanation

on why this is difficult is given below). But at least, this

shows a separation from acyclic joins, i.e., cyclic joins are

harder than acyclic ones by at least a factor of Ω̃(
√

OUT

IN
).

1.6 Other related results
Most existing work on join algorithms in the MPC model has

focused on the worst case. Here, the goal is to achieve a load

of O( IN

p1/ρ ), where ρ is the fractional edge cover number of

the hypergraph Q. So far, this bound has been achieved on

Berge-acyclic joins
5
[17], joins where each relation has two

attributes (i.e., Q is an ordinary graph) [21], and LW joins

[23]
6
. Whether this bound can be achieved for arbitrary joins,

or even just α-acyclic joins, is still open. Assuming this is

achievable, our output-sensitive algorithm is still better when

OUT = O(p2−2/ρ · IN).

Joglekar et al. [19] described a multi-round MPC algo-

rithm for arbitrary joins, whose load complexity depends on

IN,OUT, as well as the degrees of the values. However, the

load of their algorithm is at least Ω( IN

p +
OUT

p ), i.e., no better

than the Yannakakis algorithm on acyclic joins.

In the RAM model, output-sensitive join algorithms have

been extensively studied. The running time of most algo-

rithms is in form of O(INw + OUT), where w is certain no-

tion of width of the hypergraph Q [13, 15, 22, 26]. However,

it is not clear if this is optimal. Even for the triangle join,

5
A sub-class of α -acyclic joins.

6
The LW join algorithm presented in [23] has a mistake, but it can be fixed,

although non-trivially.
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it is not known what the output-optimal bound is. For the

triangle join, any notion of width hasw ≥ 1.5, thus these al-
gorithms are no better than theworst-case optimal algorithm,

which has running time O(IN1.5). Recently, an improved tri-

angle algorithm has been developed with a running time of

O(IN1.408 + IN
1.222

OUT
0.186) [10], which is better than the

worst-case optimal algorithm when OUT < IN
1.495

. On the

lower bound side, it is known that when OUT ≥ IN, at least

Ω(IN4/3−o(1)) time is needed, assuming the 3SUM conjecture

[30]. Thus, output-optimal algorithms for cyclic joins still

remain a wide open problem.

2 MPC PRIMITIVES
Assume IN > p1+ϵ

where ϵ > 0 is any small constant. We

first introduce the following primitives in the MPC model,

all of which can be computed with linear load O( IN

p ) in O(1)

rounds.

Multi-numbering [16]: Given IN (key, value) pairs, for

each key, assigns consecutive numbers 1, 2, 3, . . . to all the
pairs with the same key.

Sum-by-key [16]: Given IN (key, value) pairs, compute the

sum of values for each key, where the sum is defined by any

associative operator.

Multi-search [16]: Given N1 elements x1, x2, · · · , xN1
as set

X and N2 elements y1,y2, · · · ,yN2
as set Y , where all ele-

ments are drawn from an ordered domain. Set IN = N1 + N2.

For each xi , find its predecessor in Y , i.e., the largest element

in Y but smaller than xi .

Semi-Join: Given two relations R1 and R2 with a common

attribute x , the semijoin R1 ⋉ R2 returns all the tuples in

R1 whose value on x matches that of at least one tuple in

R2. This can be reduced to a multi-search problem: For each

t ∈ R1, if its predecessor on the x attribute in R2 is the same

as that of t , then it is in the semijoin.

Note that we can remove all dangling tuples in an acyclic-

join [33] by a constant number of semi-joins, so it can be

done in O(1) rounds with linear load.

Parallel-packing: Given IN numbers x1, x2, · · · , xIN where

0 < xi ≤ 1 for i = 1, 2, · · · , IN, group them into m sets

Y1,Y2, · · · ,Ym such that

∑
i ∈Yj xi ≤ 1 for all j , and

∑
i ∈Yj xi ≥

1

2
for all but one j . Initially, the IN numbers are distributed ar-

bitrarily across all servers, and the algorithm should produce

all pairs (i, j) if i ∈ Yj when done. Note thatm ≤ 1 + 2

∑
i xi .

We are not aware of an explicit reference on this primitive,

but it can be solved quite easily, as shown in the full version

of the paper [18].

Computing the output size OUT of an acyclic join: This
primitive is a special case of our join-aggregate algorithm,

which will be described in Section 6.

x1

x2

x3

x5 x6x4

x1

x2 x3

x4 x5

Figure 2: Examples of tall-flat and hierarchical join.

3 R-HIERARCHICAL JOINS
Recall that in a hierarchical join, all attributes can be orga-

nized into a forest, such that x is a descendant of y if and

only if Ex ⊆ Ey . Each e ∈ E corresponds to a node x in the

forest, such that e contains precisely x and all its ancestors.

A subclass of hierarchical joins are tall-flat joins. For a tall-

flat join, this attribute forest takes the form of a special tree,

which consists of a single “stem” plus a number of leaves

at the bottom. For example, Q1 = R1(x1) Z R2(x1, x2) Z
R3(x1, x2, x3) Z R4(x1, x2, x3, x4) Z R5(x1, x2, x3, x5) Z R6(x1,
x2, x3, x6) is a tall-flat join; Q2 = R1(x1, x2) Z R2(x1, x3, x4) Z
R3(x1, x3, x5) is a hierarchical join (but not tall-flat). Their at-

tribute forests (actually, trees for these two cases) are shown

in Figure 2.

In this section, we study r-hierarchical joins. A join is r-

hierarchical if its reduced join is hierarchical. For example,

Q3 = Q2 Z R4(x3, x5) Z R5(x5) is an r-hierarchical join (but

not hierarchical). After an r-hierarchical join is reduced, its

hyperedges correspond to the leaves of the attribute forest.

3.1 BinHC algorithm revisited
We mentioned above that the HyperCube algorithm [2] is an

instance-optimal algorithm for computing Cartesian prod-

ucts. The BinHC algorithm [7] is a generalization of the

HyperCube algorithm to general joins. For a join Q, denote

the residual query by removing attributes x ⊆ V as Qx.

Let u be any fractional edge packing of Qx that saturates

the attributes x, i.e.,
∑

e :x ∈e u(e) ≥ 1 for every x ∈ x, and∑
e :x ∈e u(e) ≤ 1 for every x ∈ V − x. Assuming know-

ing all degree information in advance, this algorithm com-

putes Q on instance R in a single round with a load of

Õ( IN

p + LBinHC(p,R)), where

LBinHC(p,R) := max

x,u

(∑
a∈dom(x)

∏
e ∈E |σx=aR(e)|

u(e)

p

) 1∑
e∈E u(e )

Here we define 0
0 = 0. Note that for any e ⊆ x, |σx=aR(e)| is

either 0 or 1, so we can just set u(e) = 0 for each such e in
the definition above.

We prove the following results and the proofs can be found

in the full version of the paper [18].

Theorem 3.1. On any tall-flat join and any instance R,
LBinHC(p,R) = O (Linstance(p,R)).



Instance and Output Optimal Parallel Algorithms for Acyclic Joins PODS’19, June 30-July 5, 2019, Amsterdam, Netherlands

Theorem 3.2. On any r-hierarchical join Q and instance
R without dangling tuples, LBinHC(p,R) = O (Linstance(p,R)).

Note that sinceLinstance(p,R) is a per-instance lower bound
even for multi-round algorithms, this means that the BinHC

algorithm is instance-optimal even among all multi-round

algorithms, up to polylogarithmic factors. This result also

incorporates the instance-optimality of the HyperCube algo-

rithm on Cartesian products, which are special r-hierarchical

joins without dangling tuples.

Remark. Koutris and Suciu [25] show that non-tall-flat

joins cannot be done with load Õ( IN

p +
OUT

p ) by one-round

algorithms. This does not contradict Theorem 3.2 since their

lower bound construction uses dangling tuples. Our result

implies that the key barrier for one-round algorithms is actu-

ally the dangling tuples. If they do not exist, one-round algo-

rithms can go beyond tall-flat joins and solve r-hierarchical

joins instance-optimally, up to polylog factors. On the other

hand, onceO(1) rounds are allowed, dangling tuples become

irrelevant, since they can be removed with linear load and

O(1) rounds.

3.2 An instance-optimal algorithm
We have shown that the BinHC algorithm is an instance-

optimal algorithm for r-hierarchical joins, but it has an instance-

optimality ratio of log
O (1) p, where the O(1) exponent de-

pends on the query size, and is at least m, the number of

relations. In this section, we improve the optimality ratio

to O(1), i.e., achieving a load of O( IN

p + Linstance(p,R)). Our

algorithm uses O(1) rounds, but note that BinHC also needs

O(1) rounds to remove the dangling tuples if they exist. Fur-

thermore, our algorithm is deterministic while BinHC is

randomized.

As a preprocessing step, we remove all dangling tuples.

Then we reduce the join hypergraph, since if e ⊆ e ′, R(e)
will not affect the final join results after dangling tuples are

removed
7
. Thus, we are left with a hierarchical join Q on an

instance R with no dangling tuples.

Let T be the attribute forest of Q. Recall that after the

join is reduced, each relation corresponds to a leaf of T ,

whose attributes are precisely the leaf’s ancestors in T . Our

algorithm is recursive. We will show that the load of this

algorithm is O( IN

p + Linstance(p,R)) for any hierarchical join

Q on any instance R. To simplify notation, we will not derive

the exact constant in the big-Oh, which depends (exponen-

tially) on the recursion depth. Since the recursion depth is

proportional to (actually, twice) the height of T , which is

7
Strictly speaking, this violates the tuple-based requirement that when

emitting a join result, all the participating tuples must be present. This can

be easily fixed. Before removing R(e), we attach each tuple t ∈ R(e) to
all tuples in R(e′) that join with t . This can be done by the multi-search

primitive with linear load.

a constant, this is not a concern. Similarly, the number of

servers employed by the algorithm will be O(p), where the
hidden constant may also depend on the recursion depth.

The base case is when Q has just one relation. In this case

the algorithm just emits all tuples in the relation, achieving

the bound O( IN

p + Linstance(p,R)) trivially.

For a general hierarchical join Q and an instance R, we

proceed as follows. We first compute Linstance(p,R): We use

p servers to compute | Ze ∈S R(e)| for each S ⊆ E (recall

that computing the output size of an acyclic join is an MPC

primitive). This requires O(p) servers with load O( IN

p ). Note

that Q(R, S) =Ze ∈S R(e) when there is no dangling tuples in

R, so we can compute Linstance(p,R) as defined in (2). Setting

L = IN

p + Linstance(p,R), we will show below how to compute

the join with O(p) servers and load O(L).
Let k be the number of trees in T . We handle the following

two cases using different recursive strategies:

Case (1): k = 1. In this case, T is a tree. Suppose the root

attribute of T is x , which is included in all the relations.

Consider every a ∈ dom(x), and letRa = {σx=aR(e) : e ∈ E}.

It suffices to compute the residual query Qx on each Ra , but

all the Qx (Ra)’s have to be computed in parallel, using O(p)
servers in total. Thus, the key is to allocate servers to these

residual queries appropriately so as to ensure a uniform load

of O(L). To do so, we first compute INa , the input size of

Ra , for all a ∈ dom(x). Since INa =
∑

e ∈E |σx=aR(e)|, and
each tuple belongs to exactly one Ra , this is a sum-by-key

problem, i.e., each tuple t with πx t = a has key a and weight

1. Note that IN =
∑

a INa .

An instance Ra is heavy if INa > L and light otherwise.
We handle heavy and light instances in different ways.

Case (1.1): Light instances. We use the parallel-packing

primitive to put the light instances intoO( IN

L ) = O(p) groups
with each group having total input sizeO(L). Then we simply

use one server to solve the instances in each group. The load

of each server is O(L).

Case (1.2): Heavy instances. By definition, there are at

most
IN

L = O(p) heavy instances. For each heavy instance

Ra , we allocate pa = ⌈p ·
INa
IN

⌉ servers to compute in parallel

the join size |Qx (Ra, S)| for all a ∈ dom(x) and all S ⊆ E.

This usesO(p) servers, and the load isO(maxa
INa
pa

) = O( IN

p ).

Next, for each heavy instance Ra , we allocate

pa = max

S ⊆E

|Qx (Ra, S)|

L |S |

servers and compute Qx (Ra) recursively in parallel. The

number of servers used is∑
a

pa ≤
∑
a

∑
S ⊆E

|Qx (Ra, S)|

L |S |
=

∑
S ⊆E

|Q(R, S)|

L |S |
= O(p).
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By the induction hypothesis, computing Qx (Ra) with pa
servers has a load of (the big-Oh of)

INa

pa
+ Linstance(pa,Ra) =

INa

pa
+max

S ⊆E

(
|Qx (Ra, S)|

pa

) 1

|S |

. (3)

We bound each term of (3): For a heavy instance Ra , there

must exist at least one e ∈ E such that |σx=aR(e)| ≥
1

|E |
·

INa . Furthermore, since there are no dangling tuples, every

tuple in σx=aR(e) must be part of a join result of Qx (Ra), so

|σx=aR(e)| = |Qx (Ra, {e})|. Taking S = {e}, we have

pa ≥
1

L
· |Qx (Ra, {e})| =

1

L
· |σx=aR(e)| ≥

INa

|E | · L
,

so
INa
pa
= O(L). The second term of (3) is also bounded by L

simply by the definition of pa .

Case (2): k > 1. In this case, the join becomes a Cartesian

productQ1(R1)×· · ·×Qk (Rk ), where eachQi (Ri ) is a join un-

der Case (1). One would attempt to first compute each Qi (Ri )

recursively, and then compute the Cartesian product, but this

would not yield instance-optimality. Just consider an instance

with |Q1(R1)| = 1 and |Q2(R2)| = p · IN, where Q2(R2) =

R1(A,B) Z R2(B,C) with |dom(B)| = 1, |R1 | = IN, |R2 | = p.

On this instance, we have Linstance(p,R) = max( IN

p ,
√

IN), but

if we took a two-step approach, merely storing the interme-

diate result Q2(R2) would incur a load of Ω(IN). This means

that we have to interleave the two steps so as to avoid storing

the intermediate results Qi (Ri ) explicitly.
We arrange servers into ap1×p2×· · ·×pk hypercube, where

the dimensions p1,p2, · · · ,pk will be determined later. We

identify each server with coordinates (c1, c2, · · · , ck ), where
ci ∈ [pi ]. For every combination c1, . . . , ci−1, ci+1, . . . , ck , the
pi servers with coordinates (c1, · · · , ci−1, ∗, ci+1, · · · , ck ) form
a group to compute Qi (Ri ) (using the algorithm under Case

(1)). Yes, each Qi (Ri ) is computed p1 · · ·pi−1pi+1 · · ·pk times,

which seems to be a lot of redundancy. However, as we shall

see, there will be no redundancy in terms of the final join

results, and it is exactly due to this redundancy that we

avoid the shuffling of the intermediate result and achieve

an optimal load. Consider a particular server (c1, . . . , ck ). It
participates in k groups, one for each Qi (Ri ), i = 1, . . . ,k .
For each Qi (Ri ), it emits a subset of its join results, denoted

Qi (Ri , c1 . . . , ck ). Then the server emits the Cartesian prod-

uct Q1(R1, c1 . . . , ck ) × · · · × Qk (Rk , c1 . . . , ck ). Note that for
each group of servers computing Qi (Ri ), the pi servers in
the group emit Qi (Ri ) with no redundancy, so there is no

redundancy in emitting the Cartesian product.

It remains to show how to set p1, . . . ,pk so that p1 · · ·pk =
O(p) and each server has a load of O(L). To do so, we first

compute INi , the input size of Ri , in the same way as in Case

(1). An instance Ri is heavy if INi > L and light otherwise.
For each heavy instance Ri , we use p servers to compute

| Ze ∈S Ri (e)| = |Qi (Ri , S)| for all S ⊆ Ei , where Ei is the set

of edges in Qi . This requires O(p) servers with load O( IN

p ).

Then if Ri is light, we set pi = 1; otherwise set

pi = max

S ⊆Ei

⌈
|Qi (Ri , S)|

L |S |

⌉
.

Let I = {i | Ri is heavy}. The number of servers used is∏
i ∈I

pi ≤
∏
i ∈I

∑
S ⊆Ei

(
|Qi (Ri , Si )|

L |S |
+ 1) ≤

∑
S ⊆

⋃
i∈I Ei

|Q(R, S)|

L |S |
,

which is bounded by O(p).
Finally, consider the load of each server, which serves to

compute each Qi (Ri ) with a group of pi servers. For a light
Ri , pi = 1 and it imposes a load of O(L). For a heavy Ri , by

the induction hypothesis, the load is (the big-Oh of)

INi

pi
+ Linstance(pi ,Ri ) =

INi

pi
+ max

S ⊆Ei

(
|Qi (Ri , S)|

pi

) 1

|S |

.

This can be bounded by O(L) using the same argument as

Case (1.2). Summing over all i = 1, . . . ,k increases the load

by just a k = O(1) factor.
The induction proof thus completes and we obtain the

following result.

Theorem 3.3. On any r-hierarchical join query Q and any
instance R, there is an algorithm computing Q(R) in O(1)
rounds with load O( IN

p + Linstance(p,R)).

Since an instance-optimal algorithm is also output-optimal,

we also obtain an output-optimal algorithm for r-hierarchical

joins. In fact, we derive a closed-form formula of the output-

optimal bound, described in Theorem 3.4. Moreover, we

give a cleaner but not tight output-sensitive bound in Corol-

lary 3.5. In particular, it will be used in the analysis of the

output-sensitive algorithm for arbitrary acyclic joins in Sec-

tion 5.1. Their proofs are shown in the full version of the

paper [18].

Theorem 3.4. There is an algorithm that computes any r-
hierarchical join with loadO

(
IN

p1/max{1,k∗−1}
+ (OUT

p )
1

k∗

)
inO(1)

rounds, wherek∗ = ⌈log
IN

OUT⌉. This bound is output-optimal.

Corollary 3.5. There is an algorithm that computes any

r-hierarchical join in O(1) rounds with load O( IN

p +
√

OUT

p ).

4 LINE-3 JOIN
The simplest acyclic but not r-hierarchical join is the line-3

join R1(A,B) Z R2(B,C) Z R3(C,D). In this section, we give

an output-optimal MPC algorithm with loadO( IN

p +
√

IN·OUT

p ),

together with a matching lower bound. In particular, the

lower bound implies that instance-optimal algorithms are

not possible for the line-3 join. In Section 5, we extend these

results to arbitrary acyclic joins.
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4.1 The Yannakakis algorithm revisited
The Yannakakis algorithm first removes all the dangling

tuples, which is just a series of semi-joins and can be done

with loadO( IN

p ). Then the algorithm performs pairwise joins

in some arbitrary order. In the RAM model, the join order

does not affect the asymptotic running time: After dangling

tuples have been removed, any intermediate join result is

part of a full join result, so the running time of the last join,

which is Θ(OUT), dominates that of any intermediate join.

In fact, this argument applies on a per-instance basis, and the

Yannakakis algorithm is instance-optimal on any instance

with any join order.

Interestingly, the join order does matter in the MPCmodel.

Consider the following instance of the line-3 join (see the

top half of Figure 3). Attributes A,B,C,D have domain sizes

OUT

N ,
N 2

OUT
,N , 1, respectively. SetR1(A,B) = dom(A)×dom(B),

R2(B,C) is a one-to-many relation from dom(B) to dom(C),
and R3(C,D) = dom(C) × dom(D). Note that this instance
has IN = Θ(N ) and the output size is exactly OUT. Consider

first the join plan (R1 Z R2) Z R3, and note that |R1 Z

R2 | = |R1 Z R2 Z R3 | = OUT. Using theO( IN

p +
√

OUT

p )-load

algorithm [7, 16] for binary joins, the load of computing

R1 Z R2 is O( IN

p +
√

OUT

p ). However, since the output of

the first join is the input of the second join, the input size

for the second join is OUT, so the load of the second join

is O(OUT

p +
√

OUT

p ) = O(OUT

p ). In general, the intermediate

join result can be as large as O(OUT), which is why the

Yannakakis algorithm incurs a load ofO(OUT

p ) (after dangling

tuples are removed) on an acyclic join, as observed in [1, 24].

Now consider the alternative plan R1 Z (R2 Z R3). Note

that |R2 Z R3 | = O(IN), so the load of computing R2 Z R3

is O( IN

p ), while the load of computing the second join is

O( IN

p +
√

OUT

p ). Crucially, the reason why the second plan is

better is that it has a smaller intermediate join size. Note that

a smaller intermediate join size does not matter in the RAM

model, where the total cost is always dominated by the last

join. But it does matter in the MPC model, because of the

O( IN

p +
√

OUT

p ) load complexity of a binary join, which has

a linear dependency on the input size but sublinear in the

output size. Fundamentally, this is because the MPC model

is all about locality: algorithms strive to send all “related”

tuples to the same server so as to maximize the number of

join results that can be found by the server locally.

Now, the key question is if there is always a join plan

with an intermediate join size asymptotically smaller than

O(OUT). Unfortunately, the answer is no. A bad example

can be easily constructed, by just putting two of the above

instances together, but in opposite directions (see Figure 3).

A B C D

Figure 3: A hard instance for the Yannakakis algo-
rithm.

Nevertheless, this bad example precisely points us to the

right direction: Although a global best join order may not

exist, but if we decompose the join into multiple pieces, it is

possible to find a provably good join order for each. This is

exactly the basic idea of our algorithm, presented next.

4.2 A new algorithm for the line-3 join
We first compute OUT (an MPC primitive). Then we proceed

in two steps:

Step (1): Computing degrees. For a value in attribute B,
it is heavy if its degree in relation R1, i.e., |σB=bR1 |, is greater

than τ (value to be determined later), otherwise light. We

first use the sum-by-key primitive to compute the degrees of

all b’s for b ∈ dom(B). After classifying the values in dom(B)
as heavy and light, we divide tuples in R1 and R2 also into

heavy tuples and light tuples, depending on their B value.

More precisely, a tuple in R1 or R2 is heavy if its B value is

heavy, and light otherwise. This can be done by the multi-

search primitive. We denote the heavy (resp. light) tuples in

Ri as R
H
i (resp. RLi ), for i = 1, 2.

Step (2): Decomposing the join. We decompose the join

into the following two parts, and compute them using differ-

ent join orders:

Q1 = RH
1
Z (RH

2
Z R3),

Q2 = (RL
1
Z RL

2
) Z R3.

Note that since R1 and R2 are both divided according to the

B attribute, RH
1
do not join with RL

2
, RL

1
do not join with RH

2
.

Now we analyze the load. For Q1, the intermediate join

R23 = RH
2
Z R3 has size bounded by

OUT

τ , since each inter-

mediate join result from R23 has a heavy B value, so it joins

with at least τ tuples in R1. Thus, the load of computing Q1

is O( IN

p +
OUT

pτ +
√

OUT

p ).

For Q2, the intermediate join R12 = RL
1
Z RL

2
has size

bounded by IN · τ , since each light tuple from R2 can join

with at most τ tuples from R1. Thus, the load of computing

Q2 is O(
IN

p +
IN·τ
p +

√
OUT

p ).
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Setting τ =
√

OUT

IN
balances the second term in both cases,

and we obtain the claimed result (note that

√
OUT

p ≤
√

IN·OUT

p

for IN ≥ p):

Theorem 4.1. There is an algorithm computing the line-3
join in O(1) rounds with load O

(
IN

p +
√

IN·OUT

p

)
.

4.3 Lower bound
In the full version [18], we prove the following lower bound

on any tuple-based algorithm for computing the line-3 join.

Theorem 4.2. For any OUT ≥ IN, there exists an instance
R for the line-3 join with input size Θ(IN) and output size
Θ(OUT), such that any tuple-based algorithm computing the
join inO(1) roundsmust have a load ofΩ

(
min

{√
IN·OUT

p ·log IN
, IN√

p

})
.

Ignoring logarithmic factors, this lower bound completes

our understanding of the line-3 join in terms of output-

optimality: (1) When OUT ≤ IN, the Yannakakis algorithm

has linear load O
(

IN

p

)
. (2) When IN < OUT ≤ p · IN, the

lower bound becomes Ω̃
(√

IN·OUT

p

)
, which is matched by our

new algorithm. (3) When OUT ≥ p · IN, the lower bound is

Ω
(

IN√
p

)
, which is matched by the worst-case optimal algo-

rithm in [17, 23]. In particular, this means that when OUT

is large enough, the load complexity of the join is no longer

output-sensitive. This also stands in contrast with the RAM

model, where the complexity of any acyclic join always

grows linearly with OUT.

An easy corollary (proof in the full version [18]) is the

following result, which shows that instance-optimality is not

achievable for the line-3 join.

Corollary 4.3. For any IN ≥ p3/2, there is an instance R
with input size Θ(IN) for the line-3 join, such that any tuple-
based algorithm computing the join in O(1) rounds must have
a load of Ω( IN

p1/2
log IN

), while Linstance(p,R) = O( IN

p ).

5 ACYCLIC JOINS
In this section, we first extend the results from the previous

section to arbitrary acyclic joins. Specifically, the algorithm

is a (nontrivial) generalization of the line-3 algorithm, but it

is self-contained; the lower bound builds on top of the hard

instance of the line-3 join.

5.1 Algorithm
As preprocessing, we remove all dangling tuples. Assume

the output size OUT has been computed (an MPC primitive).

Recall that in an acyclic join Q = (V, E), the hyperedges
E can be organized into a join tree T , such that for each at-

tribute x ∈ V , the nodes corresponding to Ex are connected

ABDGH′

ABC BD B ADE DF HH′

e0

e1 e2 e3 e4 e5 e6

Figure 4: A node e0 in the join tree T and its leaf chil-
dren e1, e2, e3, e4, e5, e6.

in T . Given such a join tree T , our algorithm recursively de-

composes the join into multiple pieces, and apply a different

join strategy for each.

We start from an internal node of T whose children are

all leaves. Let this node be e0, which has k leaf children

e1, · · · , ek (see Figure 4 for an example). Let si = e0 ∩ ei be
the set of join attributes between e0 and ei . We will assume

si , ∅; otherwise we can add a dummy attribute to both e0

and ei and all tuples in R(e0) and R(ei ) share the same value

on this dummy attribute (e.g., we add a dummy attribute H ′

to both e0 and e6 in Figure 4). Note that the join tree ensures

the property that if x ∈ ei ∩ ej for i , j, then x ∈ e0.

Let Nα =
∑k

i=1
|R(ei )| and Nβ = IN−Nα . We will actually

prove a slightly tighter bound, that the load of our algorithm

is bounded by O( IN

p +

√
Nβ ·OUT

p +
√

OUT

p ).

Set τ =
√

OUT

Nβ
. Our algorithm proceeds in three steps.

Step (1): Computing data statistics. In each relationR(ei ),
i = 1, . . . ,k , let v be an assignment of values for attributes

si . The set of heavy assignments in R(ei ) is

H (si , ei ) = {v ∈ πsiR(ei ) : |σsi=vR(ei )| ≥ τ }.

Tuples in R(ei ) can also be identified as heavy or light, de-
pending on their projection on attributes si . More precisely,

a tuple t ∈ R(ei ) is heavy if πsi t ∈ H (si , ei ). The set of heavy
tuples and light tuples in R(ei ) are denoted as RH (ei ) and
RL(ei ), respectively. All the statistics can be computed in by

the sum-by-key and multi-search primitives with linear load.

Let
¯E = E − {e0, e1, · · · , ek }. We decompose the join into

the following sub-joins:

R(e0) Z R?(e1) Z · · · Z R?(ek ) Z
(
Ze ∈ ¯E R(e)

)
,

where each ? can be either H or L. Note that there are 2
k
,

which is a constant, sub-joins, so we can afford to use p
servers for each sub-join. If a sub-join involves at least one

RH (ei ), we apply the procedure in step (2) to it. In step (3),

we handle the case where all ? are L.

Step (2): Sub-joins with at least one RH (ei ). Without loss

of generality, suppose RH (e1) is in the sub-join, i.e., we need

to compute the sub-join

R(e0) Z RH (e1) Z R?(e2) Z · · · Z R?(ek ) Z
(
Ze ∈ ¯E R(e)

)
,
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where each ? can be either H or L. The algorithm consists of

three steps:

(2.1) Compute R′(e0) = R(e0)⋉ RH (e1).

(2.2) Compute R′ = R′(e0) Z R?(e2) Z · · · Z R?(ek ) Z(
Ze ∈ ¯E R(e)

)
by any order.

(2.3) Compute RH (e1) Z R′
.

We analyze the load in each step: (2.1) is a primitive op-

eration that incurs linear load. To bound the load of (2.2),

observe that |R′ | ≤ OUT

τ , since each tuple in R′
joins with at

least τ tuples in RH (e1), each producing one final join result.

Thus, the load is bounded byO( IN

p +
OUT

p ·τ ). The binary join in

(2.3) has input size
OUT

τ + IN and output size OUT, incurring

a load ofO( IN

p +
OUT

p ·τ +
√

OUT

p ), which dominates the first two

steps. Plugging in the value of τ , the total load is bounded

by O( IN

p +

√
Nβ ·OUT

p +
√

OUT

p ), as desired.

Step (3): The sub-join with all RL(ei ). It remains to com-

pute the following sub-join:

R(e0) Z RL(e1) Z · · · Z RL(ek ) Z
(
Ze ∈ ¯E R(e)

)
.

We further divide R(e0) into heavy and light tuples, as

follows. Let s = s1 ∪ s2 ∪ · · · ∪ sk , and let v be an assignment

over attributes s . The set of heavy assignments in R(e0) is

define as

H (s, e0) = {v ∈ πsR(e0) :

k∏
i=1

|σsi=πsivRL(ei )| ≥ τ }.

Tuples in R(e0) are classified as heavy or light, depending
on their projection on attributes s , i.e., a tuple t ∈ R(e0) is

heavy if πst ∈ H (s, e0), and light otherwise. Similarly, denote

the heavy and light tuples in R(e0) as RH (e0) and RL(e0),

respectively.

These statistics can also be computed using the primi-

tives, but with some more care. For each relation RL(ei ),
we first use sum-by-key to compute |σsi=viRL(ei )| for every
vi ∈ πsiRL(ei ). This gives us a list of (vi , |σsi=viRL(ei )|) pairs.
Then, we use multi-search to find, for each tuple t ∈ R(e0),

the up to k pairs (vi , |σsi=viRL(ei )|) such that σsi t = vi . After
this step, each tuple t ∈ R(e0) is attached with k values, and

we multiply them together to decide if t is heavy or light.

Step (3.1): The sub-join with RH (e0). We first compute

the following sub-join:

RH (e0) Z RL(e1) Z · · · Z RL(ek ) Z
(
Ze ∈ ¯E R(e)

)
.

The algorithm consists of three steps:

(3.1.1) Compute R′(e0) = RH (e0) Z
(
Ze ∈ ¯E R(e)

)
by any order.

(3.1.2) ComputeR′(ei ) = RH (e0) Z RL(ei ) for each i = 1, · · · ,k .
(3.1.3) Compute R′(e0) Z R′(e1) Z · · · Z R′(ek ). Note that

each of these relations contains all attributes in e0, so

it is a hierarchical join (it is actually tall-flat), so we

can use the instance-optimal algorithm in Section 3 to

compute this join.

Now we analyze the load of each step: First, observe that

|R′(e0)| ≤
OUT

τ . This is because the projection of each tuple in

R′(e0) on s is a heavy assignment, so it will produce at least τ
join results after joining with theRL(ei )’s. Therefore, the load
of computing the join in (3.1.1) is O( IN

p +
OUT

p ·τ ). Each binary

join in (3.1.2) has a load of O( IN

p +
√

OUT

p ). Note that each

join result R′(ei ) has size bounded by Nβ · τ , since any tuple

in R(e0) can join with at most τ tuples in RL(ei ). Thus, the
hierarchical join in (3.1.3) has input sizeO(Nβ · τ +

OUT

τ ) and

output size OUT, so the instance-optimal algorithm has load

O(
Nβ ·τ
p + OUT

p ·τ +
√

OUT

p ) according to Corollary 3.5. All the

loads are bounded by O( IN

p +

√
Nβ ·OUT

p +
√

OUT

p ), as desired.

Step (3.2): The sub-join with RL(e0). Finally, we are left

with the sub-join

RL(e0) Z RL(e1) Z · · · Z RL(ek ) Z
(
Ze ∈ ¯E R(e)

)
.

This is actually the only case where we need recursion:

(3.2.1) Compute R′
L(e0) = RL(e0) Z RL(e1) Z · · · Z RL(ek ) by

any order.

(3.2.2) If
¯E , ∅, compute R′

L(e0) Z
(
Ze ∈ ¯E R(e)

)
recursively.

Now we analyze the load: First, we have |R′
L(e0)| ≤ Nβ · τ ,

since the projection of each tuple in RL(e0) on s is a light

assignment. Thus, the load of step (3.2.1) is O( IN

p +
Nβ ·τ
p ),

which is also bounded by O( IN

p +

√
Nβ ·OUT

p +
√

OUT

p ). So far,

we have completed the base case of the induction proof.

For the join to be computed recursively in step (3.2.2),

its input size is at most IN + Nβ · τ and output size is at

most OUT. More importantly, Nβ can only become smaller,

since e0 becomes a leaf in the residual join and |R(e0)| is

no longer included in Nβ , no matter which node in the

residual join is picked to be its new e0. By the induction

hypothesis, computing the residual join recursively incurs a

load of O( IN

p +
Nβ ·τ
p +

√
Nβ ·OUT

p +
√

OUT

p ), thus bounded by

O( IN

p +

√
Nβ ·OUT

p +
√

OUT

p ).

Note that the recursion will increase the constant in the

big-Oh, but as the recursion depth depends only on the query

not the data size, it does not change the asymptotic result.

This completes the induction proof that the algorithm has

a load ofO( IN

p +

√
Nβ ·OUT

p +
√

OUT

p ). Observing that Nβ ≤ IN

and

√
OUT

p ≤
√

IN·OUT

p , we obtain the following result.

Theorem 5.1. There is an algorithm that computes any
acyclic join in O(1) rounds with load O( IN

p +
√

IN·OUT

p ).
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5.2 Lower bound
In Section 4.2 we have constructed a hard instance for the

line-3 join and have shown that any algorithm must incur

a load of Ω(min{
√

IN·OUT

p ·log IN
, IN√

p }) on this instance. In this sec-

tion, we generalize this lower bound to an arbitrary acyclic

join that is not r-hierarchical. Note that for r-hierarchical

joins, we can achieve a smaller load O( IN

p +
√

OUT

p ) (see the

full version [18]), so this establishes a separation between

r-hierarchical joins and acyclic joins.

The basic idea in the lower bound is that any acyclic join

must “include” a line-3 join, such that any algorithm comput-

ing the acyclic join must also compute the line-3 join. This is

more formally captured by the following structural lemma

on acyclic and r-hierarchical joins. To state the lemma, we

need some terminology. In a hypergraph Q = (V, E), a path
between x,y ∈ V , denoted P(x,y), is a sequence of vertices
starting with x and ending withy, such that each consecutive
pair of vertices appear together in an edge. The length of a

path is defined as the number of vertices in P(x,y) minus 1.

A path P(x,y) is minimal if there is no other path P ′(x,y)
that is a strict subsequence of P(x,y). It is easy to see that

P(x1, xk ) = (x1, x2, · · · , xk ) is minimal if and only if there

exists no edge e ∈ E containing xi and x j with |j − i | > 1.

Note that a shortest path must be minimal, but not vice versa.

Lemma 5.2. An acyclic join query is not r-hierarchical if
and only if it has a minimal path of length 3.

The proof is given in the full version [18].With this lemma,

we can extend the hard instance for the line-3 join to any

acyclic but non-r-hierarchical join Q = (V, E).
Let (x1, x2, x3, x4) be a minimal path of length 3 in Q, and

suppose {x1, x2} ⊆ e1, {x2, x3} ⊆ e2, {x3, x4} ⊆ e3. Let R =

{R1(x1, x2), R2(x2, x3),R3(x3, x4)} be the hard instance for the

line-3 join. We construct the hard instance R ′ = {R′(e) : e ∈

E} for Q as follows. The domain of xi , i = 1, 2, 3, 4 is the

same as in R. For any other attribute y, set |dom(y)| = 1.

Since the path is minimal, each e ∈ E must fall into one

of the following three cases:

(1) For any e with e ∩ {x1, x2, x3, x4} = ∅, R′(e) contains
only one tuple connecting the only value in the do-

mains of attributes in e .
(2) If e ∩ {x1, x2, x3, x4} = {xi }, i = 1, 2, 3, 4, then R′(e)

contains |dom(xi )| tuples, each having a distinct value

of dom(xi ).
(3) If e ∩ {x1, x2, x3, x4} = {xi , xi+1}, i = 1, 2, 3, then R′(e)

contains |Ri (xi , xi+1)| tuples such that πxi ,xi+1
R′(e) =

Ri (xi , xi+1).

It can be easily verified that Q(R ′) is exactly the join re-

sults of the line-3 join on R, so the same lower bound applies.

However, since the output size of the line-3 join is at most

IN
2
, we do have a condition on OUT:

Theorem 5.3. For an acyclic but non-r-hierarchical join
and any IN ≥ p3/2,OUT ≤ IN

2, there exists an instance R
with input size Θ(IN) and output size Θ(OUT) such that any
tuple-based algorithm computing it in O(1) rounds must have
a load of Ω(min{

√
IN·OUT

p ·log IN
, IN√

p }).

Similar to the line-3 join, this lower bound shows that our

acyclic join algorithm is output-optimal (up to a logarithmic

factor) when OUT ≤ p · IN.

Furthermore, the same argument for Corollary 4.3 can be

used here to show that instance-optimal algorithms do not

exist for any acyclic but non-r-hierarchical join.

Corollary 5.4. For any IN ≥ p3/2, there is an instance R
with input size Θ(IN) for any acyclic but non-r-hierarchical
join, such that any tuple-based algorithm that computes the
join in O(1) rounds must have a load of Ω( IN

p1/2
log IN

), while

Linstance(p,R) = O(
IN

p ).

6 JOIN-AGGREGATE QUERIES
We consider join-aggregate queries over annotated relations
[14, 20]. Let (R, ⊕, ⊗) be a commutative semiring. Every tuple

t is associated with an annotationw(t) ∈ R. Let Q = (V, E)
be a join hypergraph. The annotation of a join result t ∈

Q(R) isw(t) := ⊗te ∈R(e),πe t=te ,e ∈Ew(te ). Let y ⊆ V be a set

of output attributes and ȳ = V − y the non-output attributes.

A join-aggregate query Qy(R) asks us to compute ⊕ȳQ(R) ={
(ty,w(ty)) : ty ∈ πyQ(R),w(ty) = ⊕t ∈Q(R):πyt=tyw(t)

}
.

In plain language, a join-aggregate query first computes

the join Q(R) and the annotation of each join result, which

is the ⊗-aggregate of the tuples comprising the join result.

Then it partitions Q(R) into groups by their projection on y.
Finally, for each group, it computes the ⊕-aggregate of the

annotations of the join results.

Many queries can be formulated as special join-aggregate

queries. For example, if we take R to be the domain of inte-

gers, ⊕ to be addition, ⊗ to be multiplication, and setw(t) = 1

for all t , then it becomes the COUNT(*) GROUP BY y query;

in particular, if y = ∅, the query computes |Q(R)|.

The join-project query πyQ(R), also known as a conjunc-
tive query, is a special join-aggregate query, and we extend

the terminology from [5] to join-aggregate queries. A width-
1 GHD of a hypergraph Q = (V, E) is a tree T , where each

node u ∈ T is a subset ofV , such that

(1) (coherence) for each attribute x ∈ V , the nodes con-

taining x are connected in T ;

(2) (edge coverage) for each hyperedge e ∈ E, there exists

a node u ∈ T such that e ⊆ u; and
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(3) (width-1) for each node u ∈ T , there exists a hyper-

edge e ∈ E such that u ⊆ e .

Given a set of output attributes y (a.k.a. free variables), we say
that T is free-connex if there is a subset of connected nodes

of T including its root, denoted as T ′
(such a T ′

is said to

be a connex subset), such that y =
⋃

u ∈T′ u. A join-aggregate

query Qy is free-connex if it has a free-connex width-1 GHD.
As preprocessing, we remove the dangling tuples and ap-

ply the reduce procedure repeatedly to remove an e ∈ E if

there is another e ′ ∈ E such that e ⊂ e ′. Note that while dan-
gling tuples can be just discarded, we cannot simply discard

R(e) in the reduce procedure. To ensure that the annotations

will be computed correctly, we should replace R(e ′) with
R(e) Z R(e ′) and then discard R(e). Note that by the earlier

definition, the annotation of a join result is the ⊗-aggregate

of the annotations of tuples comprising the join result, so

the annotation in R(e) are aggregated into those in R(e ′).
We find a free-connex width-1 GHD T of Q [4, 5]. Note

that the nodes of T also define a hypergraph, and can be

regarded as another join-aggregate query, but with the prop-

erty that it has a free-connex subsetT ′
such that y =

⋃
u ∈T′ u.

We construct an instance RT = {R(u) : u ∈ T } such that

Qy(R) = T(RT), where T(RT) denotes the result of run-

ning the query defined by πyT on RT . Observe that on a

reduced Q, the condition e ⊆ u in property (2) of a width-1

GHD can be replaced by e = u, since if e ⊂ u and u ⊆ e ′ for
some other e ′ ∈ E due to property (3), we would find e ⊂ e ′.
This implies that T has only two types of nodes: (1) all hy-

peredges in E, and (2) nodes that are a proper subset of some

e ∈ E. Then we construct RT as follows. For each u ∈ T of

type (1), we set R(u) := R(e) where e = u; for each u ∈ T of

type (2), we set R(u) := R(e) for any e ∈ E,u ⊂ e , but the
annotations of all tuples in R(u) are set to 1 (the ⊗-identity).

Below, we will focus on computing T(RT).

Joglekar et al. [20] modified the Yannakakis algorithm

into AggroYannakakis, and showed that it has loadO( IN

p +
OUT

p ) on any free-connex join-aggregate query
8
. Since we

want to avoid the sub-optimalO(OUT

p ) term, we modify their

algorithm into LinearAggroYannakakis, which runs with

linear load. It aggregates over all the non-output attributes,

returning a modified query T ′(RT′) that only has the output

attributes. The details of LinearAggroYannakakis, as well

as its guarantees stated in the following lemma, are given in

the full version [18].

8
The bound stated in [20] is actually O (

(IN+OUT)2

p ), because they used a

sub-optimal binary join algorithm as the subroutine following [1]. Replacing

it with the optimal binary join algorithm in [7, 16] yields the claimed bound.

In addition, they only considered simple join-aggregate queries, which are a

strict subclass of free-connex queries. But after our conversion from Qy(R)

to T(RT ), their algorithm actually works for all free-connex queries.

Lemma 6.1. LinearAggroYannakakis is a constant-round,
linear-load algorithm that, given any free-connex width-1 GHD
T and an instance RT , returns an instance RT′ such that
T(RT) = T ′(RT′), where T ′ is the free-connex subset of T .

Because T ′
is acyclic, we can run our output-optimal

algorithm to compute T ′(RT′). More precisely, when the

algorithm emits a join result, we compute the ⊗-aggregate

of the tuples comprising the join result. Note that in the

following result, OUT = |Qy(R)|, i.e., the size of the final

output, which can be much smaller than |Q(R)|.

Theorem 6.2. There is an algorithm that computes any
free-connex join-aggregate query in O(1) rounds with load
O( IN

p +
√

IN·OUT

p ).

Observing that the join size of a (non-aggregate) join is

a special join-aggregate query with y = ∅, we obtain the

following result, which has been used as a primitive. Note

that there is no circular dependency here, because it only

uses LinearAggroYannakakis.

Corollary 6.3. For any acyclic join Q and any instance R,
|Q(R)| can be computed in O(1) rounds with load O( IN

p ).

Furthermore, if T ′
is r-hierarchical, we run our instance-

optimal algorithm to compute T ′(RT′). In fact, we can pre-

cisely characterize the class of queries with an r-hierarchical

T ′
. A query is called out-hierarchical if it is free-connex and

its residual query by removing all non-output attributes is

r-hierarchical. We show the following result and its proof

can be found in the full version [18].

Lemma 6.4. A join-aggregate query Qy is out-hierarchical
if and only if it has a width-1 GHD T with a connex subset
T ′ such that y =

⋃
u ∈T′ u and T ′ is r-hierarchical.

Theorem 6.5. For out-hierarchical query Qy and any in-
stance R, there is an algorithm computing it in O(1) rounds
with load O( IN

p + Linstance(p,R, y)).

Note that the instance-optimal lower bound Linstance for a
join-aggregate query is defined with respect to the output at-

tributes only, i.e., Linstance(p,R, y) := maxS ⊆E

(
|πyQ(R,S ) |

p

) 1

|S |
,

where πyQ(R, S) = πy((Ze ∈S R(e))⋉ Q(R)).

7 A LOWER BOUND ON TRIANGLE JOIN
Finally, we look beyond acyclic joins. In particular, we give

an output-sensitive lower bound on the triangle join Q△ =

R1(B,C) Z R2(A,C) Z R3(A,B). For Q△, a worst-case lower

bound of Ω( IN

p2/3
) is known, by the following argument: A

server loading L tuples can emit at most O(L3/2) join results

by the AGM bound [3], while the join size of Q△ can be as

large as Ω(IN3/2). Then setting p · L3/2 = Ω(IN3/2) yields this
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lower bound. However, if OUT is used as a parameter, this

argument only leads to a lower bound of Ω((OUT

p )2/3). Below,

we improve this lower bound to the following:

Theorem 7.1. For any IN/log
2

IN ≥ 3p3,OUT, there exists
an instance R for Q△ with input size Θ(IN) and output size
Θ(OUT) such that any tuple-based algorithm computing it in
O(1) rounds must have a load of Ω(min{ IN

p +
OUT

p logN ,
IN

p2/3
}).

The proof, given in the full version [18], is quite techni-

cal, but the intuition is simple: When OUT = Θ(IN3/2), the

triangles are “dense” enough, so a server can achieve the

maximum efficiency and emit Θ(L3/2) triangles. However,

for small OUT, we can construct an instance in which the

triangles are “sparse” so that a server cannot be as efficient.

In fact, an instance constructed randomly (in a certain way)

would have this property with high probability.

Our lower bound has the following consequences:

(1) When OUT ≥ IN · p1/3
, the lower bound becomes

Ω̃( IN

p2/3
), which means that the worst-case optimal al-

gorithm of [23] is actually also output-optimal in this

parameter range. Finding Ω̃(IN · p1/3) triangles is as

difficult as finding Θ(IN3/2) triangles.

(2) When IN ≤ OUT ≤ IN · p1/3
, the lower bound be-

comes Ω̃(OUT

p )while we do not have a matching upper

bound yet. Nevertheless, this already exhibits a sepa-

ration from acyclic joins, which can be done with load

O(
√

IN·OUT

p ). The gap is at least Ω̃(
√

OUT

IN
).
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