Towards a Worst-Case 1/0-Optimal Algorithm for Acyclic
Joins:

Xiao Hu

Ke Yi

Hong Kong University of Science and Technology
{xhuam, yike}@cse.ust.hk

ABSTRACT

Nested-loop join is a worst-case I/O-optimal algorithm for
2 relations. Recently, a lot of efforts have been devoted to
the “triangle query”, for which an I/O-optimal algorithm is
known. This paper extends these results to a fairly large
class of acyclic joins. Acyclic joins can be computed opti-
mally in internal memory using Yannakakis’ algorithm from
1981, which simply performs a series of pairwise joins. How-
ever, no pairwise join algorithm can be I/O-optimal beyond
2 relations. To achieve I/O-optimality, the algorithm has to
handle all the intermediate results carefully without writ-
ing them to disk. Unlike the optimal internal memory join
algorithm which has a nice tight bound (the AGM bound),
the I/O-complexity of joins turns out to be quite complex or
even unknown. Yet, we are able to prove that our algorithm
is I/O-optimal for certain classes of acyclic joins without
deriving its bound explicitly.

Categories and Subject Descriptors

H.2.4 [Database Management|: Relational databases; F.2.2

[Analysis of algorithms and problem complexity]: Non-
numerical Algorithms and Problems

Keywords

I/O-efficient algorithms, acyclic joins, worst-case optimal

1. INTRODUCTION

Evaluating join queries is one of the most central problems
in relational databases, both in theory and practice. Yet
surprisingly, the worst-case complexity of join evaluation has
started to be unraveled just recently, largely thanks to the
work of Atserials, Grohe, and Marx [2], who gave a worst-
case bound on the join size. This then led to worst-case

*This work is supported by HKRGC under grants GRF-
621413, GRF-16211614, and GRF-16200415.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions @acm.org.

PODS’16, June 26-July 01, 2016, San Francisco, CA, USA

© 2016 ACM. ISBN 978-1-4503-4191-2/16/06. .. $15.00

DOL: http://dx.doi.org/10.1145,/2902251.2902292

optimal® join algorithms [9, 13]. Ngo, Ré, and Rudra [10]
presented a nice survey of these results, and also gave a
simpler and unified proof for both the AGM bound and the
running time of the algorithm.

These new optimal join algorithms crucially rely on re-
trieving tuples from a hash table, so they do not work well
in external memory. On the other hand, most standard join
algorithms used in existing database systems, like nested-
loop join or sort-merge join, are specifically designed for
limited main memory. Indeed, they achieve 1/O-optimality
for 2-table joins (more details to follow). Naturally, the in-
triguing question is if we can extend these algorithms to a
broader class of joins in the external memory model.

1.1 Problem definition

Formally, a (natural) join is a triple @ = (V, &, N), where
V is a set of attributes, £ C 2V is a set of relations, and
N is a function mapping each relation e € £ to a positive
integer N(e). Let dom(v) be the domain of attribute v € V.
An instance of Q is a function R that maps each e € &
to a set of tuples R(e) with |R(e)| < N(e), where each tu-
ple t € R(e) specifies a value in dom(v) for every attribute
v € e. The join results of Q on R, denoted by Q(R), con-
sist of all combinations of tuples, one from each R(e), that
share common values for their common attributes. In this
paper we assume that the query has constant size, namely,
we consider the data complezity of computing the join. In-
deed, the problem is intractable in terms of query size since
|Q(R)| is exponential in |€| in the worst case. When the re-
lations have subscripts as e, ez, ..., we use N;, R;, x;, etc.,
as shorthands for N(e;), R(e;), z(e;), etc.

We use the standard external memory model [1], which
has a main memory of size M with disk block size B. For
simpler presentation, we will assume that the memory size is
¢- M for a sufficiently large constant ¢, which will not change
our results by more than a constant factor. Note that since
we assume a constant query size, the sizes of the tuples do
not matter asymptotically, and we may assume O(M) tuples
from any relation fit in memory. Here are some standard
bounds in this model: scanning N tuples needs O(%) 1/Os,
and sorting N tuples can be done in O(% log% X) 1/0s.
In this paper, we will ignore this log factor, and simply say
that both can be done in 6(%) 1/Os, where the O notation
suppresses possibly one log M % factor. For simplicity, we

'Henceforth “optimal” will always mean “worst-case opti-
mal”; it will be stated explicitly otherwise, in particular
when used together with other notions of optimality like
“instance optimal”.

Join query internal memory [2] external memory optimality reference
Two relations N1 N2 % . % yes trivial
"Triangle Cs vV N1N2N3 % . % on equal N;’s [7, 12]
T
LW join LW, I, N 11 %)ﬁ - unknown [6]
“General cyclic join IL N open
Line L3 N1 N3 N]t;;’?’ . % yes new
Line L4 min{N1N2Ny, N1 N3Ny} min{%7 %} . % yes new
. z; yes for n < 8

> NTi
Line Ln,n 25 H’ N; complex on balanced N;’s for all n new
Star T, I, N: complex yes new
General acyclic join LN complex varies new
3Acyclic join with

yclic join wi C Nie M

equal N, = N N) B yes new

Table 1: Worst-case complexity of join algorithms in internal and external memory
! The bounds listed in the table are actually equivalent to the AGM bound: it can be verified that when the AGM
1 1
bound is smaller than [[N,*~', then [[N,"~' < 3" N;, and the running time will be dominated by the omitted

linear term.
2 The z;’s are the optimal fractional edge cover.
3 ¢ =3 z; is the edge cover number.

will assume N (e) > M for every e; otherwise proper ceiling
will have to be carefully added to the I/O bounds.

For each join result, the algorithm should call an emsit
function with all the participating tuples, which must re-
side in memory at the time of the call, but does not have to
write the result to disk. This agrees with most prior work on
I/O-efficient join algorithms [6, 7, 12], and also reflects how
join results are usually consumed in real database systems:
they are often directly fed to a process down in the pipeline;
sometimes the user just wants to apply an aggregation func-
tion (standard or an UDF) on the join results in a streaming
fashion. For lower bounds, we apply the same emit require-
ment, and assume that the tuples are indivisible, which is
a standard assumption in the external memory model. The
indivisibility assumption is often justified by the fact that
the user may be interested in the tuples as a whole entity,
e.g., the user may need the tuples’ other attributes that do
not participate in the join.

As with prior work on acyclic joins [14, 11], we assume
that the relations are fully reduced, i.e., there are no “dan-
gling” tuples. More precisely, for any relation R(e) and any
attribute v € e, for each value a € dom(v), there is at least
one tuple t € R(e) such that ¢ has value a on attribute v.
For acyclic joins, the relations can be fully reduced in lin-
ear time and linear I/Os (ignoring a log factor) in external
memory, using a series of semijoins, as described in [14]. In
the rest of the paper, we omit the linear term when stating
the running time or I/O cost of algorithms for brevity.

1.2 Previous results

In internal memory, there is a unified optimal algorithm
[9, 13], based on the AGM bound [2], for all join queries.
The AGM bound is based on the optimal fractional edge
cover of the query hypergraph (details given in Section 2.1).
It can be simplified when considering specific join queries,
as listed in Table 1.

However, the situation is much more complicated in exter-

nal memory. We know that nested-loop join uses O(NA}IIEQ)

I/Os to join two relations of sizes N1 and N». Since |Q(R)| =
N1 N2 in the worst case, and the B tuples brought in by one
disk I/O can join with at most O(M) tuples that are cur-
rently in memory, this bound is optimal.

The triangle query has received particular attention [7,
12], where V = {v1,v2,v3},e1 = {v1,v2},e2 = {v1,v3}, €3 =
{v2,v3}. AnI/O-optimal algorithm is known, but only when
N1 = N2 = N3. Hu, Qiao, and Tao [6] extended this algo-
rithm to Loomis- Whitney joins, a very special class of cyclic
joins, but its optimality is still unclear, even when all rela-
tions have equal size.

Most database schemas are acyclic, due to its many desir-
able properties [3]. Indeed, in as early as 1981, Yannakakis
[14] already gave an internal memory algorithm that eval-
uates any acyclic join in O(|Q(R)|) time, which is clearly
optimal (in fact, instance optimal). This algorithm easily
extends to external memory, as observed in [11], yielding an

algorithm with 0 (@) I/Os. This bound, however, is

only optimal when the join results have to be written out
to disk. In the emit model, it is even worse than a simple
nested-loop join by a factor of M in the worst case for a 2-
relation join, and the optimality gap gets even larger when
more relations are joined, as we will see shortly.

After the relations have been fully reduced, Yannakakis’
algorithm simply performs a series of pairwise joins between
two relations sharing a common attribute, as in standard
join processing in a database system. In internal memory,
this works because these intermediate join sizes are no larger
than the full join size. In external memory, however, we can-
not afford to write any intermediate results in full to disk,
so we will have to depart from this pairwise framework in
order to achieve I/O-optimality. Note that simply pipelin-
ing the intermediate results to the next join operator will
not work, as that join operator may use a nested-loop join,
which requires reading one of its input relations multiple
times. Thus, careful handling of the intermediate results

with limited memory is a key challenge for an external mem-
ory algorithm.

1.3 Acyclicity

The acyclicity of the join Q is defined with respect to
the hypergraph (V,). Unlike ordinary acyclic graphs (i.e.,
trees or forests), there are several notions of acyclicity for
hypergraphs. We adopt the most natural definition, given
by Berge [4]. Consider the bipartite graph G, in which V
corresponds to vertices on one side and £ to vertices on the
other side. There is an edge between v € V and e € £ if
v € e. Then the hypergraph (V, &) is said to be acyclic if
this bipartite graph is acyclic. This notion of acyclicity pre-
serves many natural properties in ordinary acyclic graphs.
For example, there is only one path between any two ver-
tices u,v € V, and any subgraph of (V,€) is still acyclic.
Note that this definition of acyclicity does not allow two re-
lations to have two or more common attributes. But if these
attributes always appear together in any relation, then they
can be simply considered as one “combined” attribute.

We do point out that earlier work on acyclic queries, in-
cluding Yannakakis’ algorithm, has adopted a more relaxed
notion of acyclicity, known as «-acyclicity. However, a-
acyclicity does not preserve the two properties above. In
particular, removing a hyperedge from an a-acyclic hyper-
graph can make it cyclic, which is quite counter-intuitive.
In particular, two most commonly used types of joins, line
joins and star joins, are both Berge-acyclic, to which we
will pay special attention. Henceforth, “acyclic” will always
mean “Berge-acyclic”.

1.4 Our results

We observe from Table 1 that all existing external mem-
ory results “just” replace N; with % in their internal mem-
ory counterparts, plus an additional % factor. Thus it is
natural to make the same conjecture for other join queries.
Indeed, our result on the line query L3 confirms this, and
it also trivially extends to L4 (see Table 1). Recall that a
line query L, on n relations is a @ = (V,&, N), where V =
{Ul,Uz, ...,’Un+1}, E = {61762, ...,en}, and e; = {Ui,Ui+1}.
Interestingly, this conjecture breaks down on Ls. The AGM
bound on Ls is N1 N3Ns, but its external memory counter-
part, & }é\;iév 5 is not sufficient to characterize the query’s
I/0O complexity. It is easy to construct an instance in which
every tuple in R; joins with every tuple in R4, thus ap-
plying the same argument as for the 2-relation join yields a
lower bound of Q(2L24). Note that we always have N1 Ny <
N1N3Ns (on fully reduced instances), but due to having

. . NyNyg - -
different denominators, <7* is in general not comparable

. The complication associated with the external
memory model starts to manifest itself. A similar situation
happens on star queries with at least 3 petals, namely, a
part of the join results could impose a higher lower bound
on the I/O complexity than the full join results.

We will need the following two concepts in order to state
our results for those queries marked as “complex” in Table 1.
For any subset of relations S C &, we call M.cs R(e) the
subjoin on S. On the other hand, define the partial join
Q(R, S) as the projection of Q(R) on the attributes of S.
Note that if the relations in S are connected, Q(R,S) =
Xees R(e) for an acyclic join on fully reduced relations. If
S is not connected, then Q(R, S) C M.cs R(e). Recall that

the natural join of two relations without a common attribute
is simply their cross product.

Figure 1 shows an instance of a line query Lg, illustrating
these concepts. In the figure, attribute values are vertices,
and each tuple is an edge. Thus, any path from some vertex
in A to some vertex in D is a join result. Note that these
relations have been fully reduced. In this example, the par-
tial join and subjoin on R; and R» are the same, since they
are connected, and includes every partial path from A to
C. The subjoin on R; and R3 is simply their cross product:
R1 X Rs = R; X Rs, but the partial join on R; and Rs
is only a subset of R1 X R3. For example, (¢1,t2) belongs
to both the subjoin and the partial join, but (¢1,t3) only
belongs to the subjoin but not the partial join.

Because the partial join Q(R,S) is a projection of the
full join, the algorithm has to compute Q(R,S) for any S
implicitly or explicitly. In internal memory, |Q(R,S)| <
|Q(R)|, so this is not an issue. However, in external memory,
applying the same argument above leads to a lower bound of

Q (%), Each partial join contributes a term that is in

general not comparable with others, and all of them should
be taken into account to give the highest lower bound.
With this observation, we define
_ 1Q(R,5)
VUES) = SisTi
as the minimum I/O cost for computing the partial join
9O(R,S). Thus m}gxmg,de(R, S) = msaxm}%Xw(R, S) is a

lower bound on the worst-case I/O cost for computing Q.
Similarly, define

_ | Mees R(e)]|
VRS = ypsmig
as the minimum I/O cost for computing the subjoin Xcg

R(e).

The main result of this paper is an algorithm for any
acyclic join @ = (V,&, N), whose I/O cost on instance R
is

min max V(R, S),
SEcGENS(Q) SeS
where S is any set of subsets of £ generatable by a nonde-
terministic process GENS(Q), as described in Algorithm 3.
Note that GENS(Q) only depends on the structure of the
query hypergraph.

The algorithm’s worst-case I/O-cost is thus

max min max V(R,S), (1)

R SeGenS(Q) SeS
which (for a given query hypergraph) is a function of the re-
lation sizes, as well as M and B. Unfortunately, this function
is very complex. To prove worst-case optimality, we make
a connection to the partial joins directly, thus avoiding the

Ry Ry R3

tl tz—'

A B C D

Figure 1: Illustration on subjoins and partial joins.

need to derive this function explicitly. We first rewrite (1):

max min max¥(R,S5) < min
R SeGinS(Q) SeS SeGENS(Q)

= min maxmax ¥(R,S).
SEGENS(Q) S€ES R

max max VU(R, S)
R~ SeS

Then, it suffices to show that there exists an S € GENS(Q)
such that for any S € S, there is an instance I on which

max W (R,) < ¥(1,9),
or

m}gx\ Mees R(e)| < |Q(LS)| (2)

Specifically, we obtain the following results (please also
refer to Table 1):

(1) Our algorithm is optimal for any star join (Section 5).

(2) For any line join in which the relation sizes satisfy a
certain balancing condition, the algorithm is optimal
(Section 6). This condition is always satisfied on any
3-relation or 4-relation line join.

(3) For line joins with 5 or more relations, the balancing
condition might break. In this case, our general al-
gorithm is not optimal, but we have designed special
algorithms that are optimal for line joins with up to 8
relations.

(4) In addition to line and star joins, our algorithm is
also optimal on some other types of acyclic joins (Sec-
tion 7).

(5) Our algorithm is optimal on any acyclic query in which
all relations have equal size (Section 7). In this case,
the I/O-complexity has a closed form (£7)°- % where
c is the edge cover number of the hypergraph. Very
recently, Koutris et al. [8] have given an interesting
reduction from their MPC model to the I/O model,
which leads to algorithms that match this edge cover
bound, but only for line joins and star joins on equal-

sized relations.

2. PRELIMINARIES

2.1 The AGM bound

For a query Q = (V, &, N), let z be a fractional edge cover
for the hypergraph (V,), i.e., for any v € V, Ze,ve(i z(e) >
1. Then the AGM bound [2] states that

max |Q(R)| = mmin H N(e)™@.

Note that the optimal fractional edge cover x can be found
by solving a linear program on the N (e)’s, which takes O(1)
time for constant query size.

2.2 Properties of acyclic joins

Let Q = (V,&,N) be a join query whose corresponding
hypergraph is acyclic. The following lemma can be easily
proved by definition.

LEMMA 1. In an acyclic query, there is always a relation
that contains only one attribute, or an attribute that is con-
tained in only one relation.

This leads to the following important observation of the
AGM bound on acyclic queries. Let x be the optimal frac-
tional cover of Q.

LEMMA 2. For acyclic queries, z(e) =0 or 1 for each e.

PROOF. Let A be the incidence matrix of the linear pro-
gram defined on x, which has a 1 at row e and column v if
v € e, and 0 otherwise. It is known that the optimal solution
of the linear program is integral if the determinant of any
square submatrix of A is +£1 or 0. We prove this by induc-
tion on the size of the submatrix. For a 1 x 1 submatrix, this
is trivially true. Suppose det(A’) = £1 or 0 for any k x k
submatrix A’ of A. Consider any (k + 1) x (k + 1) subma-
trix A’ of A, which corresponds to a subset of k 4 1 vertices
V' and a subset of k + 1 edges £ of the hypergraph. Since
any sub-hypergraph of an acyclic hypergraph is acyclic, by
Lemma 1 there is one relation in £ that contains only one
attribute in V' or one attribute in V' that is contained in
only one relation in £’. In either case, A’ can be rearranged

as
1
A/ = (0 Z//) ’
where A" is a k x k submatrix of A. Then by the induction

hypothesis, det(A’) = +1-det(A”) =+1or 0. O

island

@ join attributes

leaf
O unique attributes

Figure 2: Attributes and edges in an acyclic hyper-
graph.

We classify the attributes and relations as follows. If an
attribute v € V appears in only one relation, it is called a
unique attribute, otherwise a join attribute. Note that any
two relations have at most one common join attribute due
to the acyclicity requirement. A relation e is called an island
if e has no join attribute. A bud is a relation with only one
join attribute and no unique attribute. A relation e is called
a leaf if it contains at least one unique attribute and exactly
one join attribute. For a leaf e, let I'(e) be its neighbors, i.e.,
the set of other relations sharing the join attribute with e.
These terms are illustrated in Figure 2.

By Lemma 1, there is always an island, a bud, or a leaf in
an acyclic query. One may wonder why we consider islands
and buds as they are not very meaningful in a join query.
The reason, as we shall see later, is that they can appear
during the recursive processing of the join in our algorithm,
so we have to consider them for full generality.

2.3 Handling skew

Similar with the optimal join algorithms in internal mem-
ory [10], it is important to handle skew properly. In external
memory, skew is defined with respect to the memory size M.

For a relation R(e) and an attribute v € e, the set of tuples
in R(e) with value a on attribute v is denoted as R(e)|v=a,
and let N(e)|v=a = |R(€)|v=al-

A value a is heavy in R(e) if N(e)|lv=a > M, otherwise
light. Denote the set of heavy values in dom(v) with respect
to R(e) as

H(e,v) = {a € dom(v) : N(€)|v=a > M}.

Note that by sorting R(e) on the v attribute, we can par-
tition the tuples in R(e) into those with heavy values on v
and those with light values.

We will use the following operations in describing our al-
gorithms. If R(e) is sorted on v, we can handle the heavy
and light values separately. For a heavy value a, the oper-
ation “load R(e)|v=a into memory as M (e)” means reading
the next M tuples of R(e)|y=q into memory, and these tuples
are denoted as M(e). This operation is usually repeatedly
invoked, and and last invocation may read less than M tu-
ples from R(e)|y—q. For light values, the operation “load
R(e) by v into memory as M (e)” means reading tuples from
R(e) by the order of v until M or more tuples are fetched,
subject to the constraint that tuples with the same value on
attribute v must be loaded into memory together. Note that
since all values are light, no more than 2M tuples will be
loaded to memory, with no more than M distinct values on
v. This operation can also be repeatedly invoked, and the
last invocation may read less than M tuples. If R(e) is not
sorted on any attribute, the operation “load R(e) into mem-
ory as M(e)” means reading the next M tuples from R(e)
(again, the last invocation may read less than M tuples).

3. WARMING UP

Before presenting our general join algorithm, we start with
a review on 2-relation join algorithms and show how we can
extend them to the 3-relation line join.

For a join between 2 relations R; and Rz, we know that
nested-loop join achieves O(&1X2) I/0s, which is worst-case
optimal as |Q(R)| can be as large as N1 N> in the worst case.
In fact, by combining with sort-merge join, we can achieve
instance optimality, i.e., an algorithm that runs in 6(%)
I/Os on any instance R of Q. More precisely, we sort both
relations on the join attribute v, and then “merge” them to-
gether. For each value a € dom(v), if @ is heavy in both
R; and R2, we run a nested-loop join on Ri|v=q X R2|y=a,
costing O(%) I/0s; otherwise the merge can be
done with a single pass of Ri|yv=e and Ra2|y=¢. Note that
|Q(R)| = >, Nilv=aN2|v=a, hence the total I/O cost is as
claimed. In fact, this algorithm has been described in text-
books [5], but it appears that its (I/O) instance optimality
has never been formally stated.

Next we consider a 3-relation line join Lj:

Rl(vl,m) X Rg(vz,vg) X R3('U3,'U4).

The naive way to extend the nested-loop join to 3 relations
would result in O(%) 1/0s. However, by the AGM
bound, the optimal edge cover for this query is 1 = 1,22 =
0,z3 = 1, thus its maximum join size is only N1 N3. Below,
we present an algorithm that achieves O(Nils3) 1/0s (recall
that we omit the linear term, so there is a hidden % term).

We will make use of the 2-relation instance-optimal algo-
rithm above. In fact, we will only need the observation that

Algorithm 1: Line join on 3 relations

1 sort Ry by attribute va;

2 sort Rz by attribute vz, v3 lexicographically;

3 sort R3 by attribute vs;

4 foreach a € H(e1,v2) do

5 compute R5 = Ra|y,—q X R3 by merge join, and
write the results to disk;

6 compute Ri|v,=q X R3 by nested-loop join, and
emit all results;

7 discard Ri|vy=a and R2|vy—a;

8 while load Ri by va into memory as M; do
9 compute Rz (Mi) = Ro X Mu;

10 compute Ra(M7) X R3 by sort-merge join;
11 foreach tuple t emitted do
12 L find any matching tuples t' € M; and emit(t',t);

this algorithm has 5(% + £2) 1/Os when Ry and R» have
no common heavy values.

Our 3-relation line join algorithm is described in Algo-
rithm 1. It handles heavy values (line 4-7) and light values
(line 8-12) on attribute v2 in R; separately. For each heavy
value a € H(e1,v2), R2|vy=a is stored continuously on disk
sorted by ws. Since R3 is sorted by w3, we can compute
R5 = Ra|vy=a X R3 by a merge join on line 5. Note that all
tuples in Ra|v,=a have the same value on vz, they must have
distinct values on v3, so no value on vs is heavy. Thus by the

observation above, this costs O(% + %2) I/Os. Also,
R has at most N3 tuples, so we can afford to write the re-
sults to disk. Next, computing R1|v,=q X R5 by nested-loop
join on line 6 costs O(%) I/0s (since Ni|vy=a > M,
no [-] is needed). So the total cost to handle all the heavy

values in R; is

N2|'u2:a N3 N1|v2:aN3
Z B + B + MB '

a€H(e1,v2)

Since there are O(41) heavy values in H(e1,v2), this be-
comes O(%&3 + %)

For tuples in Ry with light values on v2, we load them into
memory, one chunk at a time. From previous analysis, each
memory chunk contains at most 2M tuples with at most M
distinct values on v2. Since R; and Rz are both sorted by
v2, computing all the semijoins on line 9 takes just one scan
through R; and R2. Since M; has no more than M distinct
values on vz, R2(Mi) does not have any heavy value on vs.
Then by the previous observation, doing a sort-merge on
Ry (M) M R3 on line 10 has cost 5(% + &2). Thus,
the total cost to handle all the light values is

~(Ni | Ny |Ro(My)| | N
O<B+B+Z<B+B3’)>.

M

Since there are O(41) memory chunks M1, and the Ra(M1)’s

are disjoint, this becomes 5(]\56/23 +).

THEOREM 1. Algorithm 1 has I/O cost O(NLlls) for any
3-relation line join.

To see why this is optimal, simply consider the instance
in Figure 3. Taking S = {Ri, Rs}, we have (R, S) = H12s
as a lower bound.

R
Ro ’

Figure 3: Worst-case instance for 3-relation line join.

4. ALGORITHM FOR ACYCLIC JOINS
4.1 The algorithm

In this section, we generalize our 3-relation line join al-
gorithm to handle arbitrary acyclic queries. The algorithm,
described in Algorithm 2, recursively “peels off” a bud, an
island, or a leaf.

The base case is when only one relation remains, in which
case we simply report all tuples (line 1-2). A bud can sim-
ply be ignored (line 3—4), as it has only one attribute and
it appears in other relations. Since there are no dangling
tuples, a bud cannot restrict other relations, either. Strictly
speaking, however, ignoring a bud violates the emit model.
But this can be easily fixed by attaching each tuple t in the
bud to all tuples it joins with. This takes linear I/Os in
total, so it is not an issue.

An island e can be peeled off by just using nested-loop
join with R(e) being the “outer relation” and the rest of Q
as the “inner relation” (line 5-9). The rationale is that any
tuple in R(e) joins with any join result from the rest of Q,
so the I/O cost inevitably will have N]\(j) multiplied with the
cost of computing the rest of 9.

To peel a leaf e, the idea is similar to the 3-relation line join
algorithm, handling heavy (line 14-20) and light tuples (line
21-27) in R(e) separately. There are two key differences,
though. First, computing the join on (parts of) R2 and R3
will be replaced by recursion. Second, for a general acyclic
join, a leaf e may share its join attribute with more than one
relations, namely, there can be more than one “Ry”.

| g Z

U v
Dealing with heavy tuples in R(e)
e %% i

U v

Dealing with light tuples in R(e)

—>

g

—>

S

Figure 4: Different strategies for dealing with heavy
and light tuples.

We provide some more explanation on the algorithm for
peeling off a leaf. First, a seemingly difficult decision is
which leaf to peel. Indeed, different pealing strategies may
lead to different costs. For example, on L4, we will see later
that different peeling strategies would lead to two different

Algorithm 2: AcycricJoIN(V, &, R)

1 if £ = {e} then
2 | emit all tuples in R(e);
3 else if there is a bud e € € then

4

AcycricJoiN(V, € — {e}, R);

5 else if there is an island e € £ then

6 while load R(e) into memory as M, do
7 ACYCLICJOIN(V —¢,& — {e}, R — {R(e)});
8 foreach tuple t emitted do
9 find any matching tuples ¢ € M; and
L emit(t',t);
10 else
11 pick a leaf e nondeterministically;
12 suppose e has unique attributes U, join attribute v,
and neighboring relations I';
13 sort R(e) by attribute v;
14 sort R(e’) by attribute v for each ¢’ € T}
15 foreach a € H(e,v) do
16 R'(a) < R—{R(e)} — {R(€') : ¢ €T}
H{R()|v=a 1 ¢’ €T}
17 while load R(€)|v=a into memory as My do
18 ACYCLICJOIN(V — U — {v}, € — {e}, R'(a));
19 foreach tuple t emitted do
20 | emit(t',t) for each tuple t' € Mi;
21 discard R(e)|v=a and R(€")|v=q;
22 while load R(e) by v into memory as M, do
23 foreach ¢’ €T do
24 | compute R(e')(M1) = R(e) x M;
25 R'(My) + R—{R(e)} —{R(') : €' €T}
H{R()(My) s ¢ € Th
26 AcycricJoiN(V — U, € — {e}, R'(M1));
27 foreach tuple t emitted do
28 finding any matching tuples ' € M; and
L emit(t',t);

bounds, 6(%) and 5(N}\;V32év4), respectively. Thus, a
“smart” algorithm should first compare N2 and N3, and then
choose the better peeling strategy. However, as we are not
trying to optimize the dependency on n, the number of rela-
tions, we chose to simply pick a leaf e nondeterministically
(line 11). To convert this nondeterministic algorithm to a
deterministic one, we use the standard simulation technique
to explore all nondeterministic branches in a round-robin
fashion, terminating the simulation as soon as any branch
terminates. In effect, we attain the cost of the best peel-
ing strategy, up to a factor that might be exponential in n,
which is a constant anyway.

Next, consider a peeling a leaf e. Let U be its set of unique
attributes, v its join attribute, and I" the set of neighboring
relations of e. For a heavy value a, we first find R(e')|v=a
for each ¢’ € T, i.e., the tuples in I" that join with a. Now
we can remove both e and v from Q, as all tuples have the
same value a on v. In the case I' has more than one rela-
tion, this will decompose Q into disconnected components
(see Figure 4). Note that this operation may generate new
islands and buds, which is exactly why we need to deal with
islands and buds in each recursive call. Then, for each mem-
ory chunk of R(e)|v=a, we do the join recursively; for each

join result returned from the recursion, we combine it with
all the tuples in memory since they have the same value a
on the join attribute v.

For light tuples in R(e), we load them into memory, one
chunk M; at a time. Then for each ¢’ € T', we find R(e’)(M1),
i.e., the tuples in R(e) that can join with M;. Next, we make
the recursive call. Note that in this case, we only remove e
and its unique attributes, but not v, before going into the
recursion, so this does not disconnect the query (see Fig-
ure 4).

4.2 Analysis

We will bound the I/O-cost of Algorithm 4 in terms of
U(R,S), the minimum cost of computing the subjoins. The
first bound, stated below, uses all subsets S of the relations.

THEOREM 2. For an acyclic join Q@ = (V,E,N) and in-
stance R, the 1/0 cost of Algorithm 2 is

0 (maxw(r.s)), 3)
where S is over all subsets of £.

The proof is by induction and naturally follows the re-
cursion of the algorithm. The details are quite technical,
though, and are given in Appendix A.1.

It is not hard to see that this bound cannot be tight. In
particular, it does not depend on the peeling order, which
means that this is actually a bound on the worst branch
of the nondeterministic peeling process. The other source of
looseness comes from a star. A star consists of a core eg that
has no unique attributes, and k petalses,...,ex, k > 1, such
that e; Nep # 0. Each petal contains one or more unique
attributes and does not intersect with any relations except
the core. The core connects with the rest of Q via exactly
one join attribute. Please see Figure 5 for an illustration.

@ join attributes

O unique attributes
Figure 5: An illustration of a star.

When applied to a standalone star, Theorem 2 would gen-
erate all subsets of its relations. However, an observation is
that we will always have

\I/(R, {60,617 .. .,ek}) S \I/(R, {61, . ,,ek}),

SinCGRo [X]R1 X NRk Q R1 X NRkand\I/(R,{eo,el,
...,er}) has a larger denominator. This means that not all
subsets S of relations have to be included in (3), and more
importantly, this observation applies recursively. Specifi-
cally, whenever Algorithm 2 successively peels off the petals
of a star, followed by its core, we can apply this argument: If
the core is included in the recursive consideration, then not
all its petals have to be included; all the petals have to be
included in the same subjoin only if the core is not included.

This is more precisely defined by a nondeterministic recur-
sive process GENS(Q) as described in Algorithm 3, which
leads to the following tighter bound:

Algorithm 3: GENS(Q)

1 if Q is empty then

2 | return {0};

3 if O contains a bud e then

4 | return GENS(Q — {e});

5 else if O contains a star then

pick a star X non-deterministically;

let ep be the core of X;

S1 + GENS(Q — X + {eo});

81+ S1U{SUf|S€S1,fCX—{e}};
10 S2 + GENS(Q — X);

11 Sz S2U{SUS|S€eS2fCX—{e}};
12 return S; U Sa U QX;

13 else

14 pick an island e or a leaf e non-deterministically;
15 S + GENS(Q — {e}) };

16 return SU{SU{e} | S € S};

© WIS

THEOREM 3. For an acyclic join @ = (V,E,N) and in-
stance R, the I1/0 cost of Algorithm 2 is

¥(s)). (1)

where S is any set of subsets of £ generatable by Algorithm 3.

0] min max
SEGENS(Q) SeS

The proof of Theorem 3 is given in Appendix A.2. Similar
to the proof of Theorem 2, it is based on induction and
the recursive structure of the algorithm. More precisely, we
show that the I/O cost of any branch of the nondeterministic
algorithm is captured by the corresponding branch of the
nondeterministic GENS(Q) process, therefore achieving the
I/0O cost of the best branch by the round-robin simulation.

Here are some examples when applying Theorem 3 to some
join queries.

Line query Ls: On L3, we can either consider {e1,e2} as a
star (with only one petal), or {ez2, e3} as a star. Suppose we
peel {e1, ex} first. Then GENS(Q) will be recursively applied
on {ez,es} and {es}, respectively. GENS({e2,e3}) will re-
turn all its subsets, and GENS({e3}) returns {{es}, 0}, each
of which is unioned with {e1}. Thus, the final S returned
by GENS(Q) is

{{617 63}7 {627 63}’ {617 62}7 {61}7 {62}7 {63}7 (Z)}

It can be verified that if GENS(Q) peels {e2, e3} first, it will
generate the same S.

On a fully reduced instance R, ¥(R, {e1, e2}), U(R, {e2, e3})
are dominated by W (R, {e1, e3}), so the I/O-cost of the algo-
rithm is O(¥ (R, {e1, es}) + (R, {e2})), matching the result
of Theorem 1.

Line query Li: On Li, GENS(Q) generates different S
on different peeling orders. If we peel the star {e1, e2} first,
GENS(Q) will return (subjoins that are dominated by others
are omitted)

{{e1,e3,ea},{e1,e3}, {e1,ea}, {e2,ea}}.

€1,€2,€3,€4, €5

peel {e1,e2} peel {es, €5}

€3, €4, €5 €1,€2,€3 €1,€2,€3,€4

peel {e1, ez}
peel {ea, e3}
peel {e4, €5} peel {e3, eq}

S1 SQ SS S4

€2, €3, €4, €5

Figure 6: Applying GENS(Q) on Ls.

If we peel {es, es4} first, GENS(Q) will return

{{e1,e2,e4},{e1,e3}, {e1, ea}, {e2,ea}}.

Which one leads to a smaller bound will depend on all these
subjoin sizes on the given instance. In the worst case, the
former is dominated by W(R, {e1, e3,es}) = N}@QB& and the
latter dominated by W(R, {e1, €2, ea}) = Y0204 56 the I/0

' ! - MZ2B
cost is as claimed in Table 1.

Line query Ls: On Ls, we can either peel off {ei, ez} or
{es4,e5}. In either case, GENS(Q) generates two recursive
calls, one on an L3 and one on an Ly (see Figure 6). As seen
above, GENS(Q) on an L3 will generate a unique result, but
can generate two different results on an L4, so there are a
total of 4 S’s generatable by GENS(Q) on Ls (dominated
subjoins are omitted):

S2 =83 = {{e1,e3,es5}, {e2,es5}, {e1,ea}, {e2,e4}}
S1 = {{e1,e3,e5}, {e2,ea,e5}, {€2,e5}, {e1, ea}, {€2,ea}}
S4 = {{617 €3, 65}7 {617 €2, 64}7 {627 65}, {617 64}7 {627 64}}

Thus, two of the four peeling strategies are better than the
others, and in terms of the worst case, they give a bound
of O(MFplls Nals 4 Talla 4 NaBa) which will be shown
to be optimal in Section 6. This is an example where the
1/0O-complexity is not simply replacing N; with % in the
AGM bound.

Star query: If Q by itself is a standalone star, we can
remove it in one shot, which would generate all subjoins.
However, we could also remove all but one petal, resulting
in all subjoins except the full join, which agrees with our
earlier observation that the full join is dominated by the
subjoin defined by all petals, thus not needed.

S. OPTIMALITY ON STAR JOINS

On a star query with n petals, our analysis above imme-
diately yields the following result.

COROLLARY 1. On a star join Q@ = (V,&,N) and an in-
stance R, Algorithm 2 has I/0 cost

A HZL:1 Ni

© (ﬂ s e VI S) ®)

PROOF. As argued, the I/O cost has a term ¥(R,S) for

each proper subset S of £. If S does not include eg, this is

captured by the first term in (5). If eg € S, then the subjoin

becomes a partial join, thus captured by the second term of
(5). O

THEOREM 4. Algorithm 2 is worst-case optimal for any
star join Q.

PROOF. As the second term in (5) is already optimal (ac-
tually instance-optimal). To show the first term is optimal,
it suffices construct an instance I such that its partial join
size on the n petals is [],_, Ns. We construct I by gen-
eralizing Figure 3: The domain of each join attribute v;
has only one value, and petal R; is a one-to-many matching
from the only value in dom(v;) to the unique attribute of
R;. The core simply consists of a single tuple connecting all
the (only) values in dom(v;),t =1,...,n. [

Although we have proved the optimality of our algorithm
on star joins without deriving its complexity explicitly, it
is still an interesting question as to what this complexity
looks like, i.e., what is the second term of (5) on the worst
R? The answer turns out to be a complicated function,
intricately depending on Ny, the size of the core of the star,
as compared to the sizes of the petals.

6. OPTIMALITY ON LINE JOINS

The optimality of Algorithm 2 on line joins is much more
subtle than on star joins. Recall that a line join on n rela-

tions, Ly, isa query @ = (V, &, N), where V = {v1,v2, ..., Un41},

E ={ei,e2,...,en}, and e; = {vs,vi11}, as illustrated in Fig-
ure 7.

€1 €2 €3 €n-1 €n

1 U2 U3 V4 Un—1 Un Un+1

Figure 7: A line join on n relations.

6.1 Optimal edge cover

Let z be the optimal edge cover of a n-relation line join.
First we give the characterization of x:

1) z1=zn=1;

(2) there are no two consecutive 0’s;

(3) there are no three consecutive 1’s;

(4) there are no 5 consecutive z;’s being (1,1,0,1,1).

The first 3 rules are obvious; the last rule follows from the
observation that (1,0, 1,0, 1) is always better than (1, 1,0, 1, 1),
since the size of the middle relation is smaller than the prod-
uct of its two neighbors on fully reduced relations.

Another simple observation is that x has “sub-optimality”,

ie., for any z; = z; = 1,i < j, (z,...,2;) must be an
optimal edge cover for the subjoin R; X --- X R;. If not,
we could replace (z;, ..., x;) with a better one, which would

improve x for the whole join.

For any ¢ < j, (%s,...,x;) is called an alternating interval
if (x4,...,2;) = (1,0,1,0,...,0,1). It is easy to see that x
must consist of one or more alternating intervals. A single
z; = 1 is also an alternating interval, but it can only appear
at the two ends. For example, for n = 4, x = (1,0,1,1) or
(1,1,0,1).

6.2 Worst-case optimality

In this subsection we give sufficient conditions under which
Algorithm 2 is optimal.

When n is odd.

For an odd n, we say that an n-relation line join Q is
balanced if

NiNit2---Nj_oN;j > Niy1Niy3---Nj_3N;_1

forany 1 <i < j < msuch that j—¢ is an even number. Note
that any 3-relation line join is always balanced after dangling
tuples are removed. A 5-relation line join is balanced if
N1N3N5 > NoNy.

LEMMA 3. On a balanced line join, the optimal edge cover
x must be alternating.

PROOF. Suppose for contradiction that x is not alternat-
ing, then by previous analysis, z must consist of 3 or more al-

ternating intervals. Thus, the pattern (1,1,0,1,0,...,0,1,0,1,1)

must appear somewhere, and suppose it is (z;,...,z;). By
sub-optimality, this pattern has appeared only because it is
better than (1,0,1,0,...,0,1,0,1) on the interval (N, ..., N;),
which means

Nit1Nipz - Nj_3Nj_1 < NiyoNijya--- Nj_4Nj_o,

violating the balancing condition on the interval (N;11, ...,
N]'_1) . D

Applying Theorem 3 on a line join yields the following
result.

COROLLARY 2. Let Q@ = (V,&E,N) be a line query on an

odd number of relations. On instance R, Algorithm 2 has
1/0 cost

9} (mgx‘ll(S)) =0 (mgx %))

where S is over all independent subsets of £.

PrOOF. It suffices to show that GENS(Q) can generate
an S such that for each S € S, ¥(S) is dominated by ¥(S’)
for some independent subset S’ of £. Let L(i,7) be a set of
subsets generatable by GENS(Q) on e; X e; 41 X -+ X ej.
The proof is by induction on the length of the interval (i, j),
where the interval length must be odd. The base case is
trivial.

To generate L(3, j), we peel off (e;, e;41) first, which yields

L(i,j) =(L(i +2,7) o {ei}) U L(i + 1,5) U {{ei}},

where we use the notation XoY = {XUY | X € X}. By the
induction hypothesis, L(i + 2,) only contains subsets that
are dominated by independent subsets, so L(i + 2,j) o {e; }
retains this property.

To deal with L(i+1,5), we peel off (ej—1, e;), which gives

Li+1,j)=(L(t+1,j—2)o{e;})UL(E+ 1,5 —1)U{{e;}}.

L(i+1,7—1) is an interval of odd length and we can apply
the induction hypothesis directly. For L(i 4+ 1,7 — 2), which
is an interval of even length, we peel off {e;_3,ej_2}:

L(i+1,j-2) = (L(i+1, j—4)ofe,—2DUL(i+1, j~3)U{{e;~2}}.

Again, L(i + 1,j — 3) is an interval of odd length and we
apply the induction hypothesis directly. Then we repeat the
same process on L(i+ 1,7 —4), until its length reduces to 2.
Thus, the only subjoin that we have not accounted for is

5 Ej}.
On a fully reduced instance, this subjoin is dominated by
that of {e;, €it2,€iq4,...,¢;}1. O

{ei+17 €i+2;€i+d,€it6;- - -

THEOREM 5. For odd n, Algorithm 2 is optimal for any
balanced n-relation line join.

ProorF. It suffices to show that for every independent
subset S of £, there exists an instance [such that the partial
join size on S is the same as largest subjoin size on S, i.e.,
1Q(1, 8)| = [T.cs N(e).

It is easy to see that an instance I in which each rela-
tion is the cross product of its two domains satisfies this
requirement. However, we still need to ensure that such a
construction is feasible. More precisely, suppose attribute v;
has a domain size |[dom(v;)| = z;. Then the following is the
sufficient and necessary condition for the feasibility of such
an I:

ZiZi+1=Ni i:l,...,n,
zZSNl, izl,...,n,
zi < Nj—1, t=2,...,n+1,
zi > 1, i=1,....,n+1.

Using the n equalities, we can represent all the z;’s using 2;:

_ M
zZ2 = Z’
— z1N2
z3 = N,
24 = N1
z1 N2’
)
- 21NNy --Np_1
m = "NiN3---N,_g
— _ NiN3--Np
Antl = S No Ny Np_1

All the inequalities on the z;’s thus translate to those on z1:

1 Ny

Ny Ny N3

No N

NiN3 N1f\’3N5
NoNg NoN,

N3 NaNs <z < Ny Ny N5 Ny
Ny N4 Ng N3 N4 Ng

NiN3---Np

NiN3--Np_2
NoN4-Np_1°

NoNg-+Np_1
By the balancing condition, any term on the right-hand side

is greater than any term on the left-hand side. Thus, this
construction is feasible, which concludes the proof. []

When n is even.

THEOREM 6. For an n-relation line join Q where n is
even, Algorithm 2 is optimal if there is an odd k such that
the two subjoins e1 M --- M e, and exy1 X --- X e, are both
balanced.

Proor. First, observe that under the above condition,
the optimal edge cover consists of two alternating intervals
(z1,...,zk) and (Trpt1,...,Tn).

The construction of R is the same as before, except that
we set zx+1 = 1, i.e., the common attribute of Ry and Rg+1
has only one value. Feasibility can be verified by going
through the same exercise as in the proof of Theorem 5. [J

HEES N(e)
MISEiB
where S is over all independent subsets of £, except that ey,
and er41 can be chosen into S together.

It may seem that the construction above can be general-
ized to the case where Q can be decomposed into any number
of balanced subjoins. However, this case can never happen:

The optimal bound in this case is thus max

If Q is decomposed into 3 or more subjoins, then the pat-
tern (1,1,0,1,0,...,0,1,0,1,1) must appear somewhere in
the optimal edge cover, and by previous analysis, this means
that one of the subjoins is not balanced.

6.3 When Algorithm 2 is not optimal

When n = 5.

As mentioned, L3 is always balanced; a L4 join can be
split into an L; and and an L3, both of which must be
balanced. Thus, the smallest n on which Algorithm 2 might
not be optimal is n = 5. When N1 N3Ns < NaN4, the
construction of R above is not feasible. We have to allow
R3 to be any mapping from dom(vs) onto dom(vs4), while R
and R4 remain as cross products. Thus, the I/O lower bound
becomes ¥(Q) = % + % + %7 which is smaller than
the bound & }é\.’fg S+]\;3/}\;4 +]\;\?1]]\375 + NI@JE“ in the balanced
case. For this case, we have designed a special algorithm
that achieves the optimal bound, as described in Algorithm

4.

Algorithm 4: LINEJOINUNBALANCED5 (R4, ..., Rs)

1 call Algorithm 1 on (R1, Rz, R3), and write the results
to disk as S;
call Algorithm 1 on (Rs, R4, Rs5), and write the results
to disk as T}
sort R3 by wvs,v4 lexicographically;
sort S and T by wvs, va lexicographically;
foreach t € R3 do
compute S(t) = S x ¢;
compute T'(t) =T x t;
compute S(t) X T'(t) by nested-loop join, and emit
all results;

N

[o JIEN = RN QY

The costs of the two line joins in line 1-2 are 5(Aﬁ? +

2 and 5(N13/g5 + &), but writing S and T to disk costs
5(% + %) The loop in line 4-7 has N3 iterations.
We can compute all the semijoins in line 56 with one scan
of S, T and R3 after sorting them by v3, v4 lexicographically.
Finally, every S(t) has size at most N1 and every T'(t) has
size at most N5, so the nested loop join on line 8 takes
O(%) I/Os. Adding up all these costs yields the desired
bound.

When n = 6.

The only possibility where Algorithm 2 is not optimal for
an Lg is when its optimal edge cover is (1,0,1,0,1,1) (or
(1,1,0,1,0,1)), and the first 5 relations are not balanced.
In this case, we can run a nested-loop join with Rg as the
outer relation and R; X --- X Rs as the inner relation,
computed by Algorithm 4.

Whenn =7.

On an L7, the optimal edge cover can be either (1,1,0,1,0,1,1)

or (1,0,1,0,1,0,1).

The former case can be reduced to the unbalanced 5-
relation case. More precisely, when the optimal edge cover is
(1,1,0,1,0,1,1), then the middle 5 relations must be unbal-
anced, i.e., N3N5 > Na2N4Ng. Now we simply run nested-
loop join on Ry M (Re X --- X Rg) X Ry, while using

Algorithm 4 for the 5-relation join in the middle. The I/O

so () N1N2NgNeN7 N1 N3Ny NiNsN7
cost is O(—2"255 + TP T Thrs)
‘We can show that this bound is optimal. We construct an

instance R in which R; and Rs are many-to-one mappings
from dom(v1) to dom(vz) and from dom(ve) to dom(vr),
respectively. R and R7 are one-to-many mappings from
dom(vz2) to dom(vs) and dom(v7) to dom(vs), respectively.
R3 and Rs are cross products and R4 remains as a many-to-
many mapping. It is feasible due to the condition N3N5 >
N>N4Ng. On such an instance, we have

|Q(R, {e1,e3,e7})| = N1 N3N,
|Q(R, {e1,e5,e7})| = N1 N5N7,
|Q(R,{e1,e3,e5,e7})| = N1 Na2NyNgN7.

When the optimal edge cover is (1,0,1,0,1,0,1), 3 bal-
ancing conditions might break: N;N3NsNg > N2N4Ng,
N1N3N5 2 N2N4 and N3N5N7 Z N4N6. We have also
designed a different algorithm, described below, which is
optimal when any of these 3 balancing conditions break.
Its optimality proof involves a careful case-by-case analysis,
which we leave in Appendix A.3.

Algorithm 5: LINEJOINUNBALANCED7 (R4, ..., R7)

1 call Algorithm 1 on (R3, R4, Rs5), and write the results
to disk as S

2 Construct a corresponding acyclic join query (V, &, R)
with R = {R1, Rz, S, R¢, Rr};

3 AcycricJoiN(V, &, R) ;

n = 8 and beyond.

An Ls can be reduced to smaller joins, so can be solved
optimally under all cases. However, the situation gets highly
complex for n > 9. A general algorithm that can solve all
the unbalanced cases optimally remains elusive.

7. GENERAL ACYCLIC JOINS

In this section, we study the optimality of Algorithm 2 on
other classes of acyclic joins.

7.1 When all relations have equal sizes

Let = the optimal edge cover of @ = (V,£,N) and let
¢ =Y z(e). When all relations have equal sizes, z is just the
minimum edge cover of the hypergraph (V,). For acyclic
queries, the minimum edge cover can be found by the fol-
lowing simple greedy strategy:

Algorithm 6: Minimum edge cover C

1 C « 0;

2 while QO has uncovered attributes do

let e be any edge containing unique attributes;
C + CU{e};

remove e and its attributes from Q;

Ok W

We will show the Algorithm 2 is optimal in this case.
THEOREM 7. Let Q@ = (V,&,N) be an acyclic query where

N(e) = N for all e € €. Let ¢ be the minimum edge cover

number of (V,). Algorithm 2 has I/O cost O ((%)p) on
Q and this is optimal.

Proor. To prove the upper bound, we need to find an S
generatable by GENS(Q), such that forany S € S, U (R, S) <
(%)C % on any instance R. It turns out if all relations have
equal sizes, nondeterminism is not needed, and we can al-
low GENS(Q) to peel any star, and peel any leaf or island if
no stars exist. Buds can always be ignored as they do not
appear in any S € S or in the minimum edge cover.

The proof is by induction on the size of Q. The base case
when QO has only one relation is trivial. For the inductive
step, let us first consider the case when GENS(Q) peels off
a star X with core eg. Let ¢1 and c2 be the minimum edge
cover number of Q@ — X + {eg} and Q — X, respectively.
Following the greedy algorithm above for finding a minimum
edge cover, we have

c2+|X|—-1=¢ aa<ec+1<ec

Let Si and S2 respectively be the set of subsets of rela-
tions returned by GENS(Q — X + {eo}) and GENS(Q — X)),
following any nondeterministic branch. Any S returned by
GENS(Q) must fall into one of the following cases.

1. S € S; or S € Sy: In this case, we have ¥(R,S) <
()= < (&)X by invoking the induction
hypothesis on Q — X + {eo} and Q — X.

2. S C X: For such an S, we have ¥(R, S) < (%)'S‘% <

() 2 since S| < |X] <.

3. 8=51Uf where S1 € S1,f C X — {eo}: We have

N‘fl) I Mees, R(e)| M
Y(R,5) < MIFI+151] "B

_ (Aj\;>|f| (RS

- E [fl4ec1 %
-\ M B’

Since |f| 4+ c1 < |X] —2+4 1 < ¢, this is bounded by
Nye M
(ﬁ "B

4. S = So U f where S2 € S, f C X — {eo}: Similar to
above, we have

[£l+e2

M
and the upper bound holds by the fact that |f| + c2 <
|[X|—1+c2=c

Next, consider the case when GENS(Q) peels off a leaf
(the case when it peels off an island is trivial). We ob-
serve that when a leaf e is peeled off by GENS(Q), any of
its neighboring edge must contain unique attributes. Oth-
erwise, suppose e has a neighboring edge €’ that does not
have unique attributes, then it will become the core of a
star, with e being a petal. However, when GENS(Q) decides
to peel off a leaf, it must be the case that Q does not have
stars, which is contradictory.

Now suppose GENS(Q) peels off a leaf e, and let ¢’ be the
minimum edge cover of Q — {e}. Since every neighboring
relation of e has unique attributes, all of them must be in
selected in the edge cover of Q—{e}. Thus we have ¢'+1 = c.
Any S returned by GENS(Q) must take the form of S’ U {e}

where S’ is generated by GENS(Q — {e}). Similar to the
analysis above, we have

N\ M N\ M
s (5) (XY
as desired.

To show that this bound is optimal, we need to construct
an instance in which there are c relations whose partial join
size is N°. By LP duality, the minimum edge cover corre-
sponds to a vertex packing such that an edge is in the cover
if and only if it covers a vertex in the packing. We set the
domain size of each vertex in the packing to be N, and that
of each vertex not in the packing to be 1. Each relation will
simply be the cross product of their domains. Note that
each edge can have at most one vertex in the packing, so its
relation size is at most N. On this instance, the partial join
size of all relations in the edge cover is N¢. [J

7.2 Lollipop joins

A lollipop join is illustrated in Figure 8, which is a star
join with one petal, say e,, extending to another relation
en+1. It is the mixture of a star join and a an L4, so it is
intuitive that Algorithm 2 should be optimal for this type
of joins.

Figure 8: A lollipop join.

A lollipop join contains two stars, with ey and e, as the
core, respectively. Similar to the L4 case, different peeling
strategies leads to different I/O bounds, and which one is
better depends on the relation sizes. When Ny < N,,, we
peel off the star with e,, as the core first, otherwise we peel
the star with eg as the core.

When Ny < N,: In this case, we peel off the star with
en being the core. The S returned by GENS(Q) will then
contain the following types of subsets: (i) S C {en,en+1}
(i1) SU{ent1} with S C E—{en,ent1}; (iil) S C E—{ent1}-
Recall that to prove optimality, for each S € S, we need to
construct an instance I whose partial join size on S matches
the maximum subjoin size, i.e.,

max| Mecs R(e)| = |Q(T, 5)].

Case (i) is trivial. For case (ii), the instance I is con-
structed as follows: Set |dom(v,)| = No, and the domain
of all the other join attributes have size 1. Each relation is
simply the cross product of the domains of its attributes.
Note that |I(e;)| = N;, except that |I(en)] = No < Nn. On
this I, the partial join on S U {en41} has size

QU SU{ears)l= [N(o),
eeSU{ept1}

which is clearly also the maximum subjoin size.

For (iii), if ep € S, then the partial join size always
matches the subjoin size. If eg ¢ S, we construct I as
follows: Set |dom(vy)| = No, |[dom(vn41)] = %—3, and the
domain of all the other join attributes have size 1. Each
relation is the cross product of the domains of its attributes,
and we have |I(e;)] = N; for all i. Note that we will need
Npy1 > %—g for this construction to be feasible, but this is
always the case on fully reduced instances.

When Ny > N,: In this case, we peel off the star with
core eg first. The S generated by GENS(Q) contains the
following types of subsets: (i) S C & — {en,en+1} always
containing eo; (ii) SU{eo, en+1} with S C € —{eo, en, €nt1};
(iii) SU f with S C € — {eo,en, ent1}, f C {en,e€nt1}-

For any S in (i), the partial join size always matches the
subjoin size. For any S U {eg,ent1} in case (ii), its subjoin
size is at most

Nnt1 - max|Q(R, S U {eo})[- (6)

Let Rmax be the R that maximizes |Q(R,S U {eo})|. Note
that in Rmax, we must have |dom(v,)| < N,,. We construct
the instance I based on Rmax: For any e € SU{eo}, I(e) =
Rumax(e); I(en) is a many-to-one mapping from dom(v,) to
dom(vn+1); I(€n+1) is a one-to-many mapping of size Np41
from dom(v,) to dom(vn41). On such an I, its partial join
size on S U {eg, e} is exactly (6).

For any SU f in (iii), if f = {ent1} or f = 0, the case can
be easily handled by setting |[dom(v1)| = - - - = |[dom(vn41] =
1. On such an I, its partial join size is simply [[g, ; N (€)-
If f ={en} or {en,ent1}, we just need to change |[dom(v,)]
to N,. This is feasible due to condition Ny > N,, so that
|R(eo)| does not violate its size constraint. The partial join
size is then still [] g, ; N(e).

We do not have a closed-form worst-case bound for lol-
lipop joins, as it contains a star.

7.3 Dumbbell joins

A dumbbell join is illustrated in Figure 9, which consists
of two stars connected by a common petal. One star has eg
at its center, with n petals e1,...,e,. The other star has
petals e, . .

.,em—1, with e,, at its center.

Figure 9: A dumbbell join.

Note that a dumbbell join generalizes an Ls, so Algo-
rithm 2 is not always optimal. The optimality condition
also generalizes that for L5, becoming

NZN'I'LNJ ENON’m7 (7)

forany 1<i<n—-1,n+1<j<m-—1.

The proof of worst-case optimality on dumbbell join query
is a generalization of the analysis on the lollipop join, but
more involved. The details are given in Appendix A.4. Again,
we do not have a closed-form bound on its optimal I/O com-
plexity, as it contains a star.

8. CONCLUDING REMARKS

In this paper, we have designed a worst-case I/O-optimal
algorithm for computing a fairly large class of acyclic joins.
Interestingly, we have been able to prove its optimality with-
out deriving its worst-case bound explicitly. This is done by
relating the I/O cost of the algorithm to all the subjoins
sizes, and then showing that the subjoin sizes match the
corresponding partial join sizes in the worst case.

We conclude by mentioning a few interesting open prob-
lems.

1. For cases where our general algorithm is not optimal,
in particular for line joins with 5 to 8 relations, we
have designed special algorithms to achieve optimality.
Is there a more unified way to tackle these cases?

2. Yannakakis’ algorithm is instance optimal in internal
memory. However, we conjecture that such an algo-
rithm does not exist in external memory, even on 3 re-
lations. Is there a formal proof? If it indeed does not
exist, are there any conditions under which it does?

3. How about cyclic joins? So far, worst-case I/O-optimal
algorithms are known only for triangle queries on re-
lations of equal size.

9. REFERENCES

[1] A. Aggarwal, J. Vitter, et al. The input/output
complexity of sorting and related problems.
Communications of the ACM, 31(9):1116-1127, 1988.

[2] A. Atserias, M. Grohe, and D. Marx. Size bounds and
query plans for relational joins. In Proc. IEEE
Symposium on Foundations of Computer Science,
pages 739-748, 2008.

[3] C. Beeri, R. Fagin, D. Maier, and M. Yannakakis. On
the desirability of acyclic database schemes. Journal of
the ACM, 30(3):479-513, 1983.

[4] C. Berge and E. Minieka. Graphs and hypergraphs,
volume 7. North-Holland publishing company
Amsterdam, 1973.

[5] H. Garcia-Molina, J. D. Ullman, and J. Widom.
Database Systems: The Complete Book. Prentice Hall,
2008.

[6] X. Hu, M. Qiao, and Y. Tao. Join Dependency
Testing, Loomis-Whitney Join, and Triangle
Enumeration. In Proc. ACM Symposium on Principles
of Database Systems, 2015.

[7] X. Hu, Y. Tao, and C.-W. Chung. Massive graph
triangulation. In Proc. ACM SIGMOD International
Conference on Management of Data, 2013.

[8] P. Koutris, P. Beame, and D. Suciu. Worst-case
optimal algorithms for parallel query processing.

[9] H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case
optimal join algorithms. In Proc. ACM Symposium on
Principles of Database Systems, pages 37-48, 2012.

[10] H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back:
New developments in the theory of join algorithms.
ACM SIGMOD Record, 42(4):5-16, 2014.

[11] A. Pagh and R. Pagh. Scalable computation of acyclic
joins. In Proc. ACM Symposium on Principles of
Database Systems. ACM, 2006.

[12] R. Pagh and F. Silvestri. The input/output
complexity of triangle enumeration. In Proc. ACM
Symposium on Principles of Database Systems, 2014.

[13] T. Veldhuizen. Leapfrog triejoin: A simple, worst-case
optimal join algorithm. In Proc. International
Conference on Database Theory, 2014.

[14] M. Yannakakis. Algorithms for acyclic database
schemes. In Proc. International Conference on Very
Large Data Bases, pages 82-94, 1981.

APPENDIX
A. DETAILED PROOFS

A.1 Proof of Theorem 2

PRrROOF. Recall that the join between two relations with
no common attribute is simply their cross product. So (3)
can be written as

5 Z [sicees) | Meres: R(€)] ()
MISI-1B '
sce

where C(S) consists of all the connected components of S.

Let the I/O cost of Algorithm 2 be f(Q). We will prove
that f(Q) is bounded by (8) by induction on |£|. The base
case |E| = 1 is trivial. Now suppose f(Q) is (8) for any Q
and R with || = k relations, and we will show that the claim
holds on k41 relations as well. To simplify the presentation,
the analysis below hides a constant factor for each level of
induction / recursion. Since we assume the query size is a
constant, this does not change the asymptotic result.

First, the total costs of peeling all the buds is 5(%), which
is included in (8).

Next, consider peeling off an island e. Let Q' be the query
fed in to the recursive calls after the peeling. We have

_ N(e) | [N(e) ,
rvem =20 1 (M9 @),
The % term is clearly contained in (8). If N(e) < M, then
the algorithm just makes one recursive call, and we have
f(Q) = % + f(Q') = (8) by the induction hypothesis.
When N(e) > M, we can drop the ceiling. By the induction

. [T M,/ c 57 R(e|
hypothesis, f(Q') has a term —2 Ec(i;m_f;

subset S of £ — {e}. Since e is disconnected from S and
SuU{e} is a subset of &, Lj\(j) . HS/EC(E“Sﬁflf;/R(E)
in (8).

In the rest of the proof, we consider peeling off a leaf e,
with join attribute v and neighboring relations I". The cost
of the sorting in line 12-13 is O(% + Y eer Ng)), which
is included in (8).

for each

is included

Heavy tuples. Consider the heavy tuples in R(e) first (line
14-20). For each a, the loop (line 16-19) has % iter-
ations (we must have N(e)|v=a > M because a is heavy),
each recursively computing a query Q’(a). So the total cost
of handling all the heavy tuples is

> Mk poa.
a€H (e,v)

Recall that for heavy values on v, we delete v before go-
ing into the recursion, which decomposes the query into |T'|

components. And in the modified instance R'(a) fed into
the recursive calls, each R(e’), e’ € I has been replaced with
R(e')|y=q. For any e’ ¢ T', R(€') remains unchanged, i.e.,
R(e')|v=a« = R(€’). Thus, by the induction hypothesis, the
total cost to handle all the heavy values is

Z N(e)|v=a Z [Iscces) | Meres: R(€')|v=al
M

MIsI-1B
a€H(e,v) SCE—{e}

o Z Z N(@)'U:a HS’EC(S) ‘ ME/GS/ R(€/)|v:a|
o M MISI-1B '
SCE—{e} a€H(e,v)

Thus, it suffices to show that, for any S C £ — {e},

Y. NEl=a [IMees R(E)l=al (9)

a€H (e,w) S’ec(S)
< JI I%ees REL (10)
S’ec(Su{e})

Note that (9) is on the recursive calls on Q'(a), in which the
attribute v has been removed, so the relations in I'" are not
connected, while (10) considers the whole query Q, in which
all relations in I' are connected, together with e.

First, observe that any S’ € C(S) that does not include
any edge in I' must be disconnected from e, thus also dis-
connected from any component of C(S U {e}). Thus, it con-
tributes the same factor

[Morcss R(Eomal = | Moes: R()]

to both (9) and (10), which cancel out. Note that if all con-
nected components of S are like this, after all cancellation,
we have

9)= > N(e)lv=a < N(e) = (10).

a€H (e,v)

Thus, we can assume that each connected component of S
includes a relation of I'. Let them be Si,...,S,. Note that
they are disconnected in Q'(a), but are all connected in Q,
together with e, so C(S U {e}) has only one component.

We then have

Y N@lo=a][I Meres, Re)]o=al
=1

a€H (e,v)
= > |R(@)=a X (Meres R(€)]o=a)]
a€H(e,v)

= (10).

(9)

Light tuples. Finally, consider the light tuples (line 21—
27). Different memory chunks M; of R(e) partition each
R(e') into disjoint parts R(e’)(Mi). The total cost of com-
puting and sorting all the R(¢')(M1)’s on line 22-23 is O().
It only remains to consider the recursive calls. By the in-
duction hypothesis, this is

HS/GC(S) | Neresr R(el)(M1)|

Sre)-y 3 Hesige
M, My SCE—{e}

Isces) | Meres R(e) (M)

- 3yl R RORD

SCE—{e} My

Here we define R(e')(M1) = R(e’) if &' ¢ T

Thus, it suffices to show that, for any S C £ — {e},

Yo I I™ees R(eHOM) (11)

My S’ec(S)

< JI I%ees R (12)

s’ec(s)

Note that S is also a subset of &, so (12) is included in (8).

For any S’ that does not include a relation in I", R(e")(M1)
R(¢€'), it contributes the same factor to both (11) and (12),
thus cancels out. Any connected component that remains af-
ter the cancellation includes some relation of I'. Recall that
for light tuples, the join attribute v is included in the re-
cursive calls, so all relations in I' are still connected, which
means that all that is left is one connected component S.
Therefore,

(11) = 37| Moes R()(M:)]

M,
= | Meres R(e')| = (12),
which concludes the proof. [

A.2 Proof of Theorem 3

By the round-robin simulation of the nondeterministic al-
gorithm, it is sufficient to prove the following:

LEMMA 4. Let Q be an acyclic query, A be any branch of
GENS(Q), and S be the resulting set of subsets of relations
returned by GENS(Q) following A. There is a branch of

Algorithm 2 whose I/0 cost is 0] (maxses U(R,S5)).

PrOOF. The proof is by induction on the size of the hy-
pergraph of Q. The base case when the hypergraph is empty
is trivial. If A first peels off is a leaf, an island, or a bud,
the proof is almost identical to the proof of Theorem 2, thus
we will focus on the case when peeling off a star. Suppose
A peels off a star X with k petals eq, ..., ek, and the core is
eo. We assume that the petals are disjoint for now.

The set of subsets returned by GENS(Q) following A is

GENS(Q) = 2% 4+ 2% {e0) x GENS(Q — X)

(270 — (X~ {eo}}) x GENS(Q - X + {eo}).

(13)

Here we redefine the notation X xY = {XUY | X e X|Y €
Y}.

First consider the case where X has only one petal e;. We
ask Algorithm 2 to peel off e; and then eg. Let vy be the
join attribute between eg and e;. Following similar analysis
as in the proof of Theorem 2 and invoking the induction
hypothesis on Q@ —X = Q —{eo, e1}, the I/O-cost of handing
the heavy tuples in R(e1) is

Z R(e1)|vi=a (R(60)|“1:a + max

a€H(e1,v1) M B SEGENS(Q—X)

=VU(R,{eo,e1}) +

(R, S).

max
Se{{e1}} xGENS(Q—X)

These two terms are captured by the first two terms of (13),
respectively. The cost to handle the light tuples is (invoking
the induction hypothesis on Q — {e1})

> max U (R(My),S) = >
My ER(ey) SEOPS(Q—{erh) SECINS(Q—{er})

U(R, S))

U(R, S).

This is captured by the last term of (13), which degenerates
to just GENS(Q — {e1}) when X has only one petal.

If X has k > 2 petals, we ask Algorithm 2 to peel off
the petals ex,ex—_1,...,e1 one by one, and finally eg. Let vy,
be the join attribute between ep and e;. Recall that when
dealing with heavy tuples in R(er), we remove v before
making the recursive call on Q — {ex} — {vr}. Thus, we
invoke the induction hypothesis on @ —{e,} —{vi} to bound
the cost of handling the heavy tuples in R(eg):

Z %) max W(Rluy 0, S)
a€H(ep vp) SeGmS(Q—{ex}—{vr})
U(R, S).

:\II(Rv {ekv 60}) +

The first term is captured by the first term of (13). For the
second term, observe that ex_1,...,e1,eq still forms a star
in @ — {ex} — {vx}. Consider any S € {{ex}}x GENS(Q —
{ex} —{vi}). If eg € S, it is captured by the second term of
(13); if eg € S, then S cannot have all of eq, ..., ex—1 due to
the property of GENS(Q — {ex} — {vi}), thus captured by
the third term of (13).

When dealing with the light tuples in R(ex), recall that
Algorithm 2 does not remove the join attribute v, before
making the recursive call, so we invoke the induction hy-
pothesis on Q — {ex} to bound the cost to handle the light
tuples:

max
Se{{er}}xGuns(Q—{er}—{vr})

Z max U(R(My),S)
My ER(er) SEGENS(Q—{er})

—U(R, {er}) + U(R, S).

max
SEGENS(Q—{er})
The first term is captured by the first term of (13). For the
second term, note that in @ — {ex}, X — {ex} is no longer
a star as eg contains a unique attribute v, and GENS will
peel each of them as a leaf. So we have

GENS(Q — {ex}) = 21011} GENS(Q — X).

This must be a subset of GENS(Q) since it does not contain
€L.

Finally, if there are two or more petals in X joining with
ep on the same join attribute, we ask Algorithm 2 to peel
off the extra petals first, to transform X into a simple star.
These extra petals will be included in every S. But since all
we need to show is that not all petals can be included in S if
eo is included, which is already guaranteed by the analysis
on the simple star, this does not affect the theorem. []

A.3 Optimality of Algorithm 5
In Algorithm 2, the cost of AcycLICJOIN in line 1 is

5(% + &), but writing S to disk costs 6(%) The

cost of AcycLICJOIN in line 2 is O(N“X/}‘;VBSN7 + Aﬁgﬁ +

N1 Ng No N7 iq Na N3Ns N3 N3 N5 N7
MB_ + MB)- Thfare is F < B S 2 due to
relation size constraints and assumptions. The upper bound

is exactly O(NIJXE’QAE’N7 + NAZJJ\;S + 13;/;6 + 1\;@]]\;7).

Under this scenario, 3 balancing conditions might break:
(a) N1N3N5N7 2 N2N4N6, (b) N1N3N5 Z N2N47 and (C)
N3NsN7; > NaNg. There are eight combinations about
these three conditions, but in fact only following four sit-
uations needing consideration by the dependency and sym-

metry among those balancing conditions.
(i) all (a)(b)(c) broken;

(ii) only (a)(b) broken, symmetric with only (a)(c) broken;
(iii) only (a) broken;
(iv) only (b) broken, symmetric with only (c) broken;

Note that if both (b)(c) are broken, (a) will definitely be
broken and this case will degenerate to case (i). Next we
will construct an instance for each case discussed above and
show worst-case optimality of Algorithm 5.

For case (i) (ii)(iii), construct an instance I similarly as
previously. Relations e; and e7 are both one-to-one mapping
from dom(v1) onto dom(v2) and from dom(v7) onto dom(vs)
respectively. Relations ez, e4 and eg are cross products while
es3 and es remain as many-to-many mappings. It is feasible
by the constraints with implication N2 > N; and Ng > N7.
For such an I, only e4 is not cross product. Thus there is
|Q(I)| = N1N3NsN7 with partial joins below.

|Q(I, {e2,e4,e6})| = N1N3 N5 N7,
|Q(I, {e2, e7})| = Na N7,
|Q(L {61766})| = N1 N,
|O(1,{e2,es})| = N2Ns.

For case (iv), construct an instance I in a similar way.
Relation e; is a one-to-one mapping from dom(v;) onto
dom(vs). For attribute v, we set |[dom(vs)| = 1. Relations
ez, e4, €5 and eg are cross products while e3 and e; remain
as many-to-many mappings. It is feasible due to the relation
size constraints and its implications No > Ny, N7 > Ng and
N4 > Ns. For such an I, there is |Q(I)| = N1N3Ns N7 with
partial joins below.

|O(1,{e2, e4,e7})| = N1 N3 N5 N7,
|Q(1,{e2,e7})| = N2N7,
|Q(L {61766})| = N1 Ng,
|Q(I, {e2,e6})| = NaNe.

A.4 Optimality of dumbbell joins

For a dumbbell join query Q, we peel off the star with e,
being the core first. This generates two recursive calls, one
on an lollipop join (eg M --- X e, M e,,) and one on a star
join (en M epy1 X -+ X ey). For the lollipop join (eq X

- M e, XM e,), we choose to peel off the star (with eg being
the core), which generates two recursive calls on Lz(eg X
en X en) and La(en X en,). The S generated by GENS(Q)
contains the following types of subsets. Recall that to prove
optimality, for each S € S, we need to construct an instance
I whose partial join size on S matches the maximum subjoin
size, i.e.,

max | Mees R(e)| = [Q(I, 9]

(i) S =5 US> U f with S - {en+17€n+27~--
Sa C {ela [N 671*1}’ f - {e”H 6m}.

If f = {en}, the domain of join attribute is the solution
of the following inequalities.

No = [[;—; [dom(vs)],

N, = Jdom(un)| - dom (vl
N =1, 41 [dom(vi)],

1 S |d0m(’U1)| S Ni,l 1 2

aem—1}7

-,m—1

Tuples in relation e;,4 € [1,m — 1] — {n} can be an arbi-
trary mapping from unique attributes onto dom(v;). This

construction is always feasible by balancing condition (7).
Under this instance, we obtain

max| M.cs R(e)| = [] N(e) =
ecS

1Q(L, S)I-

If f = {em}, the maximum subjoin size is

(el < I Ne)

ec Sy

max| Mees R(e mgx| Mees,ur R(e)|. (14)

Let Rmax be the R that maximizes | Meegs, ufe,,} R2(e)| under
the constraint |[dom(vy,)| < N,. We construct instance I by
extending Rmax. The domain of join attribute v; for ¢ € [1,n]
has only one value. Any relation e;,i € [1,n — 1] is a one-
to-many matching from the only value in dom(v;) to the
unique attribute of R;. This construction is always feasible
as 1-|dom(vy)| < N, in a fully reduced instance. Under
this instance, we have

TT M) max | Mecs,or Ble)| =
e€ Sy

If f = {en,em}, there is also (14). Let Rmax be the
R that maximizes | Wees,ur R(e)| under the constraint
|dom(v,)| < No. We construct instance I by extending
Rmax. The domain of join attribute v; for i € [1,n — 1]
has only one value. Any relation e;,i € [1,n — 1] is a
one-to-many matching from the only value in dom(v;) to
the unique attribute of R;. This construction is feasible as
|dom(vy,)| < No and (15) holds for every S.

(ii) S =51 USy with S1 - {6n+1,6n+2,- .. ,6m71}, So -
{eo,e1, -+ ,en}. The instance construction I depends on
two cases. If eg ¢ S, the proof is the same as (i) when
f = {en}. If eg € S, the proof is almost the same as (i)
when f = {en}.

(iii) S C {en+1,€n+2, ** ,€m—1,em}. The subjoin of any
S containing e,, always matches its partial join. For S not
containing e,,, we construct the instance I by setting the
domain of any join attribute with only one value. Each
leaf can be a one-to-many matching from the only value in
dom(v;) to the unique attributes in R;. Under this instance,
we achieve the same result in (i) with f = {en}.

(iV) S =5 USU f with S - {en+1,en+2, cee ,emfl},
52 g {617 e ,6’"71}, f S {{607 e’m}7 {60}7 {em}7 {en}}~ If
f € {{eo},{em},{en}}, the case degenerates to (i). If f =
{eo, em }, the case is different. Without loss of generality, we
assume N; < N; when ¢ < j and the balancing condition (7)
becomes N1 N, Npnt1 > NoNp,. For any subjoin, there is a
upper bound below

1Q(1, 5)]- (15)

B
max Y(R,S1 U{en}) - max U(Sz U{eo}) - i
under constraints |dom(v,)| < N, and |[dom(vm)| < Ni.
We focus on maxg W(S2U{eo}) under |dom(v,)| < N, first.
When Ny < N1N,, we know that
NoTTrZ; Nk

max max U(R,S2U{eo}) < Mn—2R

Otherwise, maxs, maxg ¥(R, S2 U {eg}) is bounded by
min{No, [[.¢s, N(e)} - Tlecs, N(e)

e M15:1B
1 N; N
<max{ 0 HJ i N }

'n—zB7 Mnr—i-1B

where ¢ is the index such that Hz N < N° < HJ 1 Nj.

Note that at least one of Ny < N N1 and N < NpNpy1

occurs otherwise balancing condition (7) will be broken.
When No < N,N; and N,,, < N,N,+1, the maximum

subjoin is

No HZQ Ni . Hk n+2
Mn—2RB Mm—n— QB

by our analysis above. We construct instance I by setting
the domain as

maxmax ¥(R, S) =
s R

IIliIl{]\/’l,]\/v()}7 =1

max{%—i’7 1}, i=n
|dom(v;)| = min{Np41, N}, i=n+1

max{ 2 N’" 1, i=m

1, otherwise

Relation R; for ¢ € [1,m—1] —{n} can be an arbitrary map-
ping from unique attributes onto dom(v;). The construction
is feasible with |dom(vy)| - |[dom(vym,)| < N, implied by bal-
ancing condition (7). Under this instance, there is

max max VU (R,S) =9(1,S)

where § = 51U Sy U f with S1 = {ent2,€nys, -
Sy = {62,637 Ce ’en_l}7 f= {€O7€m}.
When Nyo < NpN1 and N,, > N,N,41, there is %‘; <

NpNp41
Nm

73771*1}’

< 1. The maximum subjoin is

NoITiZs Ne

max max Y(R,S) = Aot

max U(R,S1U{em}
Let Rmax be the R that maximizes | Mees, ufe,,} R(€)| un-
der the constraint |dom(vy,)| < N,. We construct instance
I by extending Rmax. We set |[dom(v1)| = No and the do-
main of join attribute v; for j € [2,n] with only one value.
This construction is always feasible as |dom(N1)| < N; and
|dom(vm)| < Np. We know that

max max U(R,S) =9(1,S)
where S = S1US2U f with S1 as arg maxs, maxg V(R, S1U
{em}), S2 = {ez,e3,- - ,en—1}, f ={eo,em}.

When No > N, N1 and N,,, < N, Np+1, the instance con-
struction is the same as the case Ng < N,N; and N,, >
NpNpy1.

