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Storage-based joins are still commonly used today because the memory budget does not always scale with

the data size. One of the many join algorithms developed that has been widely deployed and proven to be

efficient is the Hybrid Hash Join (HHJ), which is designed to exploit any available memory to maximize the

data that is joined directly in memory. However, HHJ cannot fully exploit detailed knowledge of the join

attribute correlation distribution.

In this paper, we show that given a correlation skew in the join attributes, HHJ partitions data in a suboptimal

way. To do that, we derive the optimal partitioning using a new cost-based analysis of partitioning-based

joins that is tailored for primary key - foreign key (PK-FK) joins, one of the most common join types. This

optimal partitioning strategy has a high memory cost, thus, we further derive an approximate algorithm that

has tunable memory cost and leads to near-optimal results. Our algorithm, termed NOCAP (Near-Optimal

Correlation-Aware Partitioning) join, outperforms the state-of-the-art for skewed correlations by up to 30%,

and the textbook Grace Hash Join by up to 4×. Further, for a limited memory budget, NOCAP outperforms

HHJ by up to 10%, even for uniform correlation. Overall, NOCAP dominates state-of-the-art algorithms and

mimics the best algorithm for a memory budget varying from below

√︁
∥relation∥ to more than ∥relation∥.
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1 INTRODUCTION
Joins are ubiquitous in database management systems (DBMS). Further, primary key - foreign key
(PK-FK) equi-joins are the most common type of joins. For example, all the queries of industry-grade

benchmarks like TPC-H [53] and most of Join Order Benchmark (JOB) [31] are PK-FK equi-joins.

Recent research has focused on optimizing in-memory equi-joins [4–6, 9, 11, 34, 50, 55], however,

as the memory prices scale slower than storage [36], the available memory might not always be

sufficient to store both tables simultaneously, thus requiring a classical storage-based join [47].

This is common in a shared resource setting, like multiple colocated databases or virtual database

instances deployed on the same physical cloud server [8, 13, 27]. Besides, in edge computing,

memory is also limited, which is further exacerbated when other memory-demanding services are
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Fig. 1. NOCAP is closer to the optimal (OCAP) than the state of the art (DHH). Further, its benefits increase
for higher skew in the join correlation. We assume ∥𝑅∥ ≤ ∥𝑆 ∥, and that 𝐹 is the fudge factor indicating the
space amplification factor between the in-memory hash table and the stored raw data.

running [24]. In several other data-intensive use cases like Internet-of-things, 5G communications,

and autonomous vehicles [15, 21], memory might also be constrained. Finally, there are two main

reasons a workload might need to use storage-based joins: (1) workloads consisting of queries with

multiple joins, and (2) workloads with a high number of concurrent queries. In both cases, the

available memory resources must be shared among all concurrently executed join operators.

Storage-based Joins.When executing a join, storage-based join algorithms are used when the

available memory is not enough to hold the hash table for the smaller relation. Traditional storage-

based join algorithms include Nested Block Join (NBJ), Sort Merge Join (SMJ), Grace Hash Join

(GHJ), Simple Hash Join (SMJ), and Hybrid Hash Join (HHJ). Overall, HHJ, which acts as a blend of

Simple Hash Join and Grace Hash Join, is considered the state-of-the-art approach [18, 30, 51], and

is extensively used in existing database engines (e.g., MySQL [38], PostgreSQL [45], AsterixDB [2]).

HHJ uniformly distributes records from the two input relations to a number of partitions via

hashing the join key and ensures that, when possible, one or more partitions remain in memory

and are joined on the fly without writing them to disk. The remaining disk-resident partitions

are joined using a classical hash join approach to produce the final result. Unlike GHJ and SMJ,

HHJ uses the available memory budget judiciously and thus achieves a lower I/O cost. Existing

relational database engines (e.g., PostgreSQL [45] and AsterixDB [2, 28]) often implement a variant

of HHJ, Dynamic Hybrid Hash join (DHH) that dynamically decides which partitions should stay

in memory during partitioning.

The Challenge: Exploit Skew. For PK-FK joins, we describe the number of matching keys per PK

using a distribution, which we also refer to as join attribute correlation, or simply join correlation. In
turn, join correlation can be uniform (all PKs have the same number of FK matches) or skewed

(some PKs have more matches than others). Although there are many skew optimizations for

joins [19, 25, 29, 33, 39], a potential detailed knowledge of the join attribute correlation and its

skew is not fully exploited since existing techniques use heuristic rules to design the caching

and partitioning strategy. As such, while these heuristics may work well in some scenarios, in

general, they lead to suboptimal I/O cost under an arbitrary join correlation. For example, HHJ

can be optimized by prioritizing entries with high-frequency keys when building the in-memory

hash table [17]. However, practical deployments use limited information about the join attribute

correlation and typically employ a fixed threshold for building an in-memory hash table for keys

with high skew (e.g., 2% of available memory [46]). As a result, prior work does not systematically

quantify the benefit of such approaches, nor does it offer a detailed analysis of how close to optimal
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they might be. In fact, due to the exponential search space, there is no previous literature that

accurately reveals the relationship between the optimal I/O cost and the join correlation, thus

leaving a large unexplored space for studying the caching and partitioning strategy.

Key Idea: Optimal Correlation-Aware Partitioning. To study the optimality of different

partitioning-based join algorithms, we model a general partitioning strategy that allows for arbi-

trary partitioning schemes (not necessarily based on a specific hash function). We assume that the

relations we join have a PK-FK relationship, and we develop an algorithm for Optimal Correlation-
Aware Partitioning (OCAP) that allows us to compare any partitioning strategy with the optimal

partitioning, given the join correlation. Our analysis reveals that the state of the art is suboptimal

in the entire spectrum of available memory budget (varied from

√︁
∥relation∥ to ∥relation∥), leading

up to 60% more I/Os than strictly needed as shown in Figure 1, where the black lines are the state

of the art, and the red lines are the optimal number of I/Os. The OCAP is constructed by modeling

the PK-FK join cost as an optimization problem and then proving the consecutive theorem which

establishes the basis of finding the optimal cost within polynomial time complexity. We propose

a dynamic programming algorithm that finds the optimal solution in quadratic time complexity,

𝑂 (𝑛2 ·𝑚2), and a set of pruning techniques that further reduce this cost to𝑂
( (
𝑛2 · log𝑚

)
/𝑚

)
(where

𝑛 is the number of records of the smaller relation and𝑚 is the memory budget in pages). OCAP

has a large memory footprint as it assumes that the detailed information of the join attributes

correlation is readily available and, thus, can be only applied for offline analysis. Further, we rely on

OCAP to identify the headroom for improvement from the state of the art, and use it as a building

block of a practical algorithm that we discuss next.

The Solution: Near-Optimal Correlation-Aware Partitioning Join. In order to build a practical

join algorithm with a tunable memory budget, we approximate the optimal partitioning provided by

OCAP with our Near-Optimal Correlation-Aware Partitioning (NOCAP) algorithm. NOCAP enforces

a strict memory budget and splits the available memory between buffering partitions and caching

information regarding skew keys in join correlation. In Figure 1, we construct a conceptual graph

to compare our solution with the state-of-the-art storage-based join method, Dynamic Hybrid Hash

(DHH). As shown, DHH cannot fully adapt to the correlation and thus results in higher I/O cost

than OCAP when the correlation is skewed. Our approximate algorithm, NOCAP, uses the same

input from DHH and achieves near-optimal I/O cost, as observed when compared with OCAP.

Further, while DHH is able to exploit the higher skew to reduce its I/O cost, the headroom for

improvement for high skew is higher than for low skew, which is largely achieved by our approach.

Overall, NOCAP is a practical join algorithm that is always beneficial compared to the state of the

art, and offers its maximum benefit for a high skew in the join attribute correlation.

Contributions. In summary, our contributions are as follows:

• We build a new cost model for partitioning-based PK-FK join algorithms, and propose optimal

correlation-aware partitioning (OCAP) based on dynamic programming (§3.1), assuming that the

join correlation is known. OCAP’s time complexity is 𝑂
( (
𝑛2 · log𝑚

)
/𝑚

)
and space complexity

is 𝑂 (𝑛), where 𝑛 is the input size in tuples and𝑚 is the memory budget in pages (§3.2).

• We design an near-optimal correlation-aware partitioning (NOCAP) algorithm based on OCAP.

NOCAP uses partial correlation information (the same information used by the state-of-the-art

skew-optimized join algorithms) and achieves near-optimal performance under memory budget

constraints (§4). Our code is available at https://github.com/BU-DiSC/NOCAP-join.

• We thoroughly examine the performance of our algorithm by comparing it against GHJ, SMJ,

and DHH. We identify that the headroom for improvement is much higher for skewed join

correlations by comparing the I/O cost of DHH against the optimal. Further, we show that

NOCAP can reach near-optimal I/O cost and thus lower latency under different correlation
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skew and memory budget, compared to the state of the art (§5). Overall, NOCAP dominates the

state-of-the-art and offers performance benefits of up to 30% when compared against DHH and

up to 4× when compared against the textbook GHJ.

2 PREVIOUS STORAGE-BASED JOINS
We first review four classical storage-based join methods [18, 23, 26, 47] (see Table 1), and then

present more details of Dynamic Hybrid Hash (DHH), a variant of the state-of-the-art HHJ.

Table 1. Estimated Cost for NBJ, GHJ, and SMJ for 𝑅 Z 𝑆 . ∥𝑅∥ and ∥𝑆 ∥ are the number of pages of 𝑅 and
𝑆 . Assume ∥𝑅∥ ≤ ∥𝑆 ∥. #chunks is the number of passes for scanning 𝑆 . #pa-runs is the number of times to
partition 𝑅 and 𝑆 until the smaller partition fits in memory. #s-passes is the number of partially sorted passes
of 𝑅 and 𝑆 , until the number of the total sorted runs is no larger than 𝐵 − 1 (𝐵 is the total number of memory
available). 𝜇 and 𝜏 indicate the write/read asymmetry [41], where 𝑅𝑊 , 𝑆𝑊 , and 𝑆𝑅 denote the latency per
I/O for random write, sequential write, and sequential read respectively.

Approach Normalized #I/O Notation

NBJ(𝑅, 𝑆) ∥𝑅∥ + #chunks · ∥𝑆 ∥ None

GHJ(𝑅, 𝑆) (1 + #pa-runs · (1 + 𝜇)) · (∥𝑅∥ + ∥𝑆 ∥) 𝜇
def

= 𝑅𝑊 /𝑆𝑅
SMJ(𝑅, 𝑆) (1 + #s-passes · (1 + 𝜏)) · (∥𝑅∥ + ∥𝑆 ∥) 𝜏

def

= 𝑆𝑊 /𝑆𝑅

2.1 Classical Storage-based Joins

Nested Block Join (NBJ). NBJ partially loads the smaller relation 𝑅 (in chunks equal to the

available memory) in the form of an in-memory hash table and then scans the larger relation 𝑆

once per chunk to produce the join output for the partial data. This process is repeated multiple

times for the smaller relation until the entire relation is scanned. As such, the larger relation is

scanned for as many times as the number of chunks in the smaller relation.

Sort Merge Join (SMJ). SMJ works by sorting both input tables by the join attribute using external

sorting and applying𝑀-way (𝑀 ≤ 𝐵 − 1) merge sort to produce the join result. During the external

sorting process, if the number of total runs is less than 𝐵 − 1, the last sorting phase can be combined

together with the multi-way join phase to avoid repetitive reads and writes [47].

Grace Hash Join (GHJ). GHJ uniformly distributes records from the two input relations to a

number of partitions (at most 𝐵 − 1) via hashing the join key, and the corresponding partitions are

joined then. Specifically, when the smaller partition fits in memory, we simply store it in memory

(typically as a hash table) and then scan the larger partition to produce the output.

Hybrid Hash Join (HHJ). HHJ is a variant of GHJ that allows one or more partitions to stay in

memory without being spilled to disk, if the memory budget is sufficient. When partitioning the

second relation, we can directly probe in-memory partitions and generate the join output for those

in-memory partitions. The remaining keys of the second relation are partitioned to disk, and we

execute the same probing phase as in GHJ to join the on-disk partitions. When the memory budget

is lower than

√︁
∥𝑅∥ · 𝐹 (where ∥𝑅∥ is the size of the smaller relation in pages, and 𝐹 is the fudge

factor that stands for the space amplification factor between the in-memory hash table and the

stored raw data), HHJ downgrades into GHJ because it is not feasible to maintain a partition in

memory while having enough space in memory for the remaining partitions and the output.
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Fig. 2. An illustration of partitioning in DHH. Partitions in red are staged in memory when 𝑅 is being
partitioned, while the remaining ones in blue are written to disk.

2.2 Dynamic Hybrid Hash Join
Here we review DHH, the state-of-the-art implementation of HHJ, as well as its skew optimization.

While there are many different implementations of DHH [26], the core idea is the same across all

of them: decide which partitions to stay in memory or on disk.

Framework. We visualize one implementation (AsterixDB [2, 28]) of DHH in Figure 2. Compared

to HHJ, DHH exhibits higher robustness by dynamically deciding which partitions should be

spilled to disk. Specifically, every partition is initially staged in memory, and when needed, a staged

partition will be selected to be written to disk, thus freeing up its pages for new incoming records.

Typically, the largest partition will be selected, however, the victim selection policy may vary in

different systems. A bit vector (“Page Out Bits”, short as POB, in Figure 2) is maintained to record

which partitions have been written out at the end of the partitioning phase of 𝑅. Another hash

function is applied to build a large in-memory hash table using all staged partitions. It is worth

noting that, when no partitions can be staged in the memory (i.e., all the partitions are spilled

out to disk), DHH naturally downgrades into GHJ. When partitioning relation 𝑆 , DHH applies

the partitioning hash function first and checks POB for every record. If it is not set, DHH directly

probes the in-memory hash table and generates the join result. Otherwise, DHH moves the record

to the output page of the corresponding partition and flushes this page to the disk if it is full. Finally,

DHH performs exactly the same steps as traditional GHJ to join all the disk-resident partitions.

The partitioning and probing of DHH is presented in detail in Algorithms 1 and 2.

Number of Partitions. The number of partitions in DHH (noted by𝑚DHH) is a key parameter that

largely determines join performance. A large𝑚DHH requires more output buffer pages reserved

for each partition, and, thus, less memory is left for memory-resident partitions. On the other

hand, small𝑚DHH renders the size of each partition very large, which makes it harder to stage in

memory. No previous work has formally investigated the optimal number of partitions for arbitrary
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Algorithm 1: DHH-Primary(𝑅,𝐻𝑆mem, 𝐵)

1 𝑚DHH ← max

{
20,

⌈
∥𝑅 ∥ ·𝐹−𝐵
𝐵−1

⌉}
;

2 Initialize a length-𝑚DHH array POB as {0, 0, ..., 0};
3 Initialize a length-𝑚DHH partitioning PartPages;
4 foreach 𝑟 ∈ 𝑅 do

5 PartID← ℎsplit (𝑟 .key);
6 if POB[PartID] = 0 then

7 if

𝑚DHH∑
𝑖=1

PartPages[𝑖] .size() = 𝐵 − 2 −𝑚DHH then

8 Flush an arbitrary partition 𝑗 to disk;

9 POB[ 𝑗] = 1;

10 else append 𝑟 to PartPages[PartID];
11 else append 𝑟 to the in-disk partition PartID;

12 foreach 𝑟 ∈ PartPages do add 𝑟 to 𝐻𝑇mem [ℎprobe (𝑟 .key)];
13 return 𝐻𝑇mem, POB;

Algorithm 2: DHH-Foreign(𝑆, 𝐻𝑇mem, POB)

1 foreach 𝑠 ∈ 𝑆 do

2 if ℎprobe (𝑠 .key) ∈ 𝐻𝑇mem then

3 if 𝑠 .key is in records 𝐻𝑇mem [ℎprobe (𝑠 .key)] then
4 join 𝑠 with matched records and output;

5 else

6 if POB[ℎsplit (𝑠 .key)] = 1 then

7 append 𝑠 to the in-disk partition PartID;

correlation skew, but past work on HHJ employs some heuristic rules. For example, an experimental

study [26] recommends that 20 is the minimum number of partitions when we do not have sufficient

information about the join correlation. In addition, if we restrict the number of memory-resident

partitions to be 1, we can set the number of partitions𝑚DHH as𝑚DHH =

⌈
∥𝑅 ∥ ·𝐹−𝐵
𝐵−1

⌉
[51], where ∥𝑅∥

is the size of relation 𝑅 in pages, 𝐹 is the fudge factor for the hash table, and 𝐵 is the total given

memory budget in pages. Integrating this equation with the above tuning guideline, we configure

𝑚DHH = max

{⌈
∥𝑅 ∥ ·𝐹−𝐵
𝐵−1

⌉
, 20

}
(assuming 𝑚DHH ≤ 𝐵 − 2 in most cases, otherwise we configure

𝑚DHH = 𝐵 − 1 and execute GHJ).

Heuristic Skew Optimization In Practical Deployments. For ease of notation, we assume that

𝑅 is the relation that holds the primary key and is smaller in size (dimension table) and that 𝑆 is

the relation that holds the foreign key and is larger in size (fact table). In PK-FK joins, the join

correlation can be non-uniform. Histojoin [16] proposes to cache in memory the Most Common

Values (MCVs, maintained by DBMS) to reduce the I/O cost. Specifically, if the memory budget is

enough, Histojoin first partitions the dimension table 𝑅 and caches entries with high-frequency

keys in a small hash table in memory. When it partitions the fact table 𝑆 , if there are any keys

matched in the small hash table, it directly joins them and output. That way, Histojoin avoids
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writing out many records with the same foreign key from the fact table and reading them back into

memory during the probing phase. However, it is unclear how much frequency should be treated

as high to qualify for this optimization and how large the hash table for the skewed keys should

be within the available memory budget. In one implementation of Histojoin [17], the memory

allocated to the hash table specifically for skewed keys is limited to 2%. This restriction ensures that

the specific hash table fits in memory. Likewise, in PostgreSQL [46], when the skew optimization

knob is enabled and MCVs are present in the system cache (thus not occupying the user-specified

memory), PostgreSQL follows a similar approach by adding an extra trigger to build the hash table

for skewed keys. By default, PostgreSQL also allocates a fixed budget of 2% memory for the hash

table dedicated to handling skewed keys, but this allocation only occurs when the total frequency

of skewed keys is more than 0.01 ·𝑛𝑆 (𝑛𝑆 is the number of records in relation 𝑆). In fact, PostgreSQL

implements a general version of Histojoin by specifying the frequency threshold. However, existing

skew optimizations in both PostgreSQL and Histojoin rely on fixed thresholds (i.e., memory budget

for skewed keys, and frequency threshold), which apparently cannot adapt to different memory

budget and different join skew. For example, as shown in Figure 1, state-of-the-art DHH are not

enough to achieve ideal I/O cost, and they are further away from the optimal for higher skew.

3 OPTIMAL CORRELATION-AWARE PARTITIONING JOIN
We now discuss the theoretical limit of an I/O-optimal partitioning-based join algorithm when the

exact distribution of the join correlation is known in advance and can be accessed for free. We

assume that 𝑅 is the relation that holds the primary key (dimension table) and 𝑆 is the relation that

holds the foreign key (fact table). More specifically, we model the correlation between two input

relations with respect to the join attributes as a correlation table CT, where CT[𝑖] is the number

of records in 𝑆 matching the 𝑖-th record in 𝑅. Our goal is to find which keys should be cached in

memory, and how the rest of the keys should be partitioned in order to minimize the total I/Os of

the join execution with an arbitrary memory budget.

We start with an easy case when no records can be cached during the partition phase (§3.1) and

turn to the general case when keys can be cached (§3.2). We note again that the memory used for

storing CT as well as the optimal partitioning does not compete with the available memory budget

𝐵, which is indeed unrealistic. This is why we consider it as a theoretically I/O-optimal algorithm,

since it can help us understand the lower bound of any feasible partitioning but cannot be converted

into a practical algorithm. All missing proofs and details are given in our full version [58].

3.1 Optimal Partitioning Without Caching
We first build the cost model for partitioning assuming no cached records during the partitioning

(§3.1.1), then present the main theorem for characterizing the optimal partitioning (§3.1.2) and find

the optimal partitioning efficiently via dynamic programming (§3.1.3).

3.1.1 Partitioning as An Integer Program. A partitioning P is an assignment of 𝑛 records from 𝑅 to

𝑚 partitions. We use one input page and the rest of the pages as output buffers for each partition,

thus,𝑚 ≤ 𝐵 − 1. More specific constraints on𝑚 will be determined in §3.2 and §4.1. Once we know

how to partition 𝑅 (the primary key relation), we can apply the same partition strategy to 𝑆 .

Partitioning.We encode a partitioning P as a Boolean matrix of size 𝑛×𝑚, where P𝑖, 𝑗 = 1 indicates

that the 𝑖-th record belongs to the 𝑗-th partition. If the 𝑖-th record from 𝑅 does not have a match

in 𝑆 , i.e., CT[𝑖] = 0, we will not assign it to any partition. We can preprocess the input to filter

out these records so that the remaining records belong to exactly one partition. In this way, a

partitioning P can be compressed as a mapping function 𝑓 : [𝑛] → [𝑚] from the record’s index

to the partition’s index in P, such that the 𝑖-th record from relation 𝑅 is assigned to the 𝑓 (𝑖)-th
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partition in P. Let 𝑃 𝑗 = {𝑖 ∈ [𝑛] : 𝑓 (𝑖) = 𝑗} be the set of indexes of records from 𝑅 assigned to

the 𝑗-th partition in P. We can then derive the number of pages for 𝑅 𝑗 and 𝑆 𝑗 as ∥𝑅 𝑗 ∥ =
⌈
|𝑃 𝑗 |/𝑏𝑅

⌉
,

∥𝑆 𝑗 ∥ = ⌈
∑
𝑖∈𝑃 𝑗 CT[𝑖]/𝑏𝑆⌉, where 𝑏𝑅 (resp. 𝑏𝑆 ) is the number of records per page for 𝑅 (resp. 𝑆).

Moreover, we use N𝑓 (𝑖) = {𝑖′ ∈ [𝑛] : 𝑓 (𝑖′) = 𝑓 (𝑖)} to denote the records from 𝑆 that fall into the

same partition with the 𝑖-th record in 𝑅. We summarize our notation in Table 2.

Table 2. Summary of our notation.

Notation Definitions (Explanations)

∥𝑅∥ (∥𝑆 ∥) #pages of relation 𝑅 (𝑆)

𝑛𝑅 (𝑛𝑆 ) #records from relation 𝑅 (𝑆)

𝑃 𝑗 the 𝑗-th partition (𝑃 𝑗 = 𝑅 𝑗 )

|𝑃 𝑗 | #records in 𝑗-th partition

∥𝑅 𝑗 ∥ (∥𝑆 𝑗 ∥) #pages of a partition 𝑅 𝑗 (𝑆 𝑗 )

P a Boolean matrix for partitioning assignation

𝑓 : 𝑖 → 𝑗 returns 𝑗 for 𝑖 so that P𝑖, 𝑗 = 1

N𝑓 (𝑖) the partition where the 𝑖-th records belongs

𝑛 𝑛 = 𝑛𝑅 in the partitioning context

𝑚 #partitions

𝐵 #pages of the total available buffer

𝐹 the fudge factor of the hash table

CT the correlation table of keys and their frequency

𝑏𝑅 (𝑏𝑆 ) #records from relation 𝑅 (𝑆) per page

𝑐𝑅 (𝑐𝑆 ) #records from relation 𝑅 (𝑆) per chunk in NBJ

Cost Function. Given a partitioning P, the next step is to pair-wise join the partitions of 𝑆 and 𝑅.

Reusing the cost model in Table 1, the cost of computing the join results for a pair of partitions

(𝑅 𝑗 , 𝑆 𝑗 ) is min{NBJ(𝑅 𝑗 , 𝑆 𝑗 ), SMJ(𝑅 𝑗 , 𝑆 𝑗 ),GHJ(𝑅 𝑗 , 𝑆 𝑗 )}, by picking the cheapest one amongNBJ, SMJ,
and GHJ. We omit DHH here for simplicity, which does not lead to major changes of the optimal

partitioning, since in most cases NBJ is the most efficient one when taking read/write asymmetry

into consideration (writes are slower than reads for modern SSDs [41, 42]). For ease of illustration,

we assume only NBJ is always applied in the pair-wise join, i.e., the join cost induced by partitioning
P is Join(P,𝑚) = ∑𝑚

𝑗=1 NBJ(𝑅 𝑗 , 𝑆 𝑗 ).
Recall the cost function ofNBJ in Table 1. For simplicity, we assume ∥𝑅 𝑗 ∥ ≤ ∥𝑆 𝑗 ∥ for each 𝑗 ∈ [𝑚].

The other casewith ∥𝑅 𝑗 ∥ ≥ ∥𝑆 𝑗 ∥ can be discussed similarly. By setting #chunks= ⌈∥𝑅 𝑗 ∥/((𝐵−2)/𝐹 )⌉,
∥𝑅 𝑗 ∥ = |𝑃 𝑗 |/𝑏𝑅 and ∥𝑆 𝑗 ∥ = ⌈

∑
𝑖∈𝑃 𝑗 CT[𝑖]/𝑏𝑆⌉, we obtain the cost function as follows:

Join(P,𝑚) = ∥𝑅∥ +
𝑚∑︁
𝑗=1

⌈ |𝑃 𝑗 |
𝑐𝑅

⌉
·

∑︁
𝑖∈𝑃 𝑗

CT[𝑖]
𝑏𝑆

 ≤ ∥𝑅∥ +𝑚 +
𝑛𝑅

𝑐𝑅
+

𝑚∑︁
𝑗=1

⌈ |𝑃 𝑗 |
𝑐𝑅

⌉
·
∑︁
𝑖∈𝑃 𝑗

CT[𝑖]
𝑏𝑆

= ∥𝑅∥ +𝑚 + 𝑛𝑅
𝑐𝑅
+ 1

𝑏𝑆
·
𝑛∑︁
𝑖=1

CT[𝑖] ·
⌈ |N𝑓 (𝑖) |

𝑐𝑅

⌉
where 𝑐𝑅 = ⌊𝑏𝑅 · (𝐵 − 2)/𝐹 ⌋ is a constant that denotes the number of records per chunk in relation

𝑅. Note that the I/O cost of read and write both relations during the partitioning process is the

same for all partitioning strategies.
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𝑆𝑗
𝑙

…

𝑆𝑗
1

… 𝑆𝑗
𝑙−1

𝑃𝑗

𝑆𝑗 ≝ 𝑆𝑗
1 ∪ 𝑆𝑗

2 ∪⋯∪ 𝑆𝑗
𝑙−1∪ 𝑆𝑗

𝑙: All the elements that make 𝑃𝑗 inconsecutive

𝑖𝑗
− 𝑖𝑗

+𝑆𝑗
2

… …

Fig. 3. An illustration of records from a single partition, 𝑃 𝑗 , positioned in a non-consecutive way w.r.t. CT.

Integer Program. Given the number of partitions𝑚, finding a partitioning P for 𝑅 (containing the

primary key) of 𝑛 records with minimum cost can be captured by the following integer program:

min

P
Join(P,𝑚)

subject to

𝑚∑︁
𝑗=1

P𝑖, 𝑗 = 1,∀𝑖 ∈ [𝑛]

𝑚 + 1 ≤ 𝐵
P𝑖, 𝑗 ∈ {0, 1},∀𝑖 ∈ [𝑛],∀𝑗 ∈ [𝑚]

However, solving this program needs to exhaustively search all possible partitioning strategies, thus

having an exponential cost. We now characterize three key properties of the optimal partitioning,

which will allows us to use dynamic programming as well as further pruning of the search space.

3.1.2 Main Theorem. For simplicity, we assume that CT is sorted in ascending order, i.e., if 𝑖1 ≤ 𝑖2,
then CT[𝑖1] ≤ CT[𝑖2]. With sorted CT, we present our main theorem for characterizing the optimal

partitioning P with three critical properties. First, each partition of P contains consecutive records
from the sorted CT array. Second, the sizes of all partitions are in a weakly descending order. Third,

the size of each partition – except the first one in a weakly descending order – is divisible by 𝑐𝑅 .

Theorem 3.1 (Main Theorem). Given an arbitrary sorted CT array, there is an optimal partitioning
P = ⟨𝑃1, 𝑃2, · · · , 𝑃𝑚⟩ such that
• (consecutive property) for any 𝑖1 ≤ 𝑖2, if 𝑖1 ∈ 𝑃 𝑗 and 𝑖2 ∈ 𝑃 𝑗 , then 𝑖 ∈ 𝑃 𝑗 holds for any 𝑖 ∈ [𝑖1, 𝑖2];
• (weakly-ordered property)

⌈
|𝑃1 |
𝑐𝑅

⌉
≥

⌈
|𝑃2 |
𝑐𝑅

⌉
≥ · · · ≥

⌈
|𝑃𝑚 |
𝑐𝑅

⌉
;

• (divisible property) for any 2 ≤ 𝑖 ≤ 𝑚, |𝑃𝑖 | is divisible by 𝑐𝑅 .
where 𝑃 𝑗 is the set of records assigned to the 𝑗-th partition of P, i.e., 𝑃 𝑗 = {𝑖 ∈ [𝑛] : 𝑓 (𝑖) = 𝑗}.

Lemma 3.2 (Swap Lemma). For a partitioning P, if there exists a pair of indexes 𝑖1, 𝑖2 with CT[𝑖1] >
CT[𝑖2] and |N𝑓 (𝑖1) | ≥ |N𝑓 (𝑖2) |, it is feasible to find a new partitioning P′ by swapping records at 𝑖1
and 𝑖2, such that Join(P) ≥ Join(P′).

To prove the main theorem, the high-level idea is to transform an arbitrary partitioning P into P′

with desired properties, while keeping the join cost of P′ always smaller (or at least not larger)

than that of P. The core idea is a swap procedure, as described by Lemma 3.2, which can reassign

records in a way that records with larger CT values are moved to a smaller partition. The proof

of Lemma 3.2 directly follows the definition of join cost. Next, we will show step by step how to

transform an arbitrary partitioning P into the desired P′.

Consecutive Property. Given an arbitrary partitioning P, we first show how to transform it

into P′ such that P′ satisfies the consecutive property while Join(P′) ≤ Join(P). As described in
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Algorithm 3: SWAP(P)
1 while there exists 𝑃 𝑗 ∈ P that is non-consecutive do
2 while true do

3 left, right← min𝑖∈[𝑛]:𝑓 (𝑖 )=𝑗 𝑖,max𝑖∈[𝑛]:𝑓 (𝑖 )=𝑗 𝑖;

4 𝑆 𝑗 ← {𝑖 ∈ [𝑛] : left ≤ 𝑖 ≤ right, 𝑓 (𝑖) ≠ 𝑗};
5 if 𝑆 𝑗 = ∅ then break;

6 ℓ ← min𝑖∈𝑆 𝑗 𝑖;

7 if |N𝑓 (ℓ) | > |𝑃 𝑗 | then
8 swap(𝑓 (ℓ), 𝑓 (left)), left← left + 1;
9 else swap(𝑓 (ℓ), 𝑓 (right)), right← right − 1;

10 return P;

Algorithm 3, we first identify a partition whose records are not consecutive on the sorted CT, say
𝑃 𝑗 , and apply the swap procedure to it. Let 𝑖−𝑗 and 𝑖+𝑗 be the minimum and maximum index of

records from 𝑃 𝑗 on CT. For all records that make 𝑃 𝑗 non-consecutive, we can use multiple segments

to cover them. The segments are defined as follows. Let 𝑆1𝑗 , 𝑆
2

𝑗 , · · · , 𝑆 ℓ𝑗 be the longest consecutive
records whose indexes fall into [𝑖−𝑗 , 𝑖+𝑗 ] in CT, and belong to the same partition 𝑃 𝑗 ′ for some 𝑗 ′ ≠ 𝑗

(𝑆
ℓ1
𝑗
and 𝑆

ℓ2
𝑗
may belong to different partitions). We denote 𝑆 𝑗 = 𝑆

1

𝑗 ∪ 𝑆2𝑗 ∪ · · · ∪ 𝑆 ℓ𝑗 as the set of all
the records that make 𝑃 𝑗 non-consecutive with respect to the sorted CT (Figure 3).

Algorithm 3 maintains two pointers left and right to indicate the smallest and largest indexes of

records to be swapped. Consider the smallest index ℓ ∈ 𝑆 𝑗 . If |N𝑓 (𝑖) | > |𝑃 𝑗 |, we swap ℓ and left by

putting the record at position 𝑖 into 𝑃𝑓 (left) and the record at position left into 𝑃𝑓 (ℓ ) (𝑃𝑓 (ℓ ) = N𝑓 (ℓ)
by definition), noted by swap(𝑓 (ℓ), 𝑓 (left)). Otherwise, we swap ℓ and right similarly. We repeat

the above procedure until all the partitions become consecutive on the sorted CT. The resulting
partitioning from SWAP(P) is consecutive in terms of its CT positions, and the join cost does not

increase as a part of this process, as shown by the swap lemma.

Algorithm 4: ORDER(P)

1 while there exists 𝑃 𝑗 ′ ≾ 𝑃 𝑗 ∈ P s.t.
⌈ |𝑃 𝑗 ′ |
𝑐𝑅

⌉
<

⌈
|𝑃 𝑗 |
𝑐𝑅

⌉
do

2 ℓ, ℓ ′ ← min𝑖∈𝑃 𝑗 𝑖,min𝑖∈𝑃 𝑗 ′ 𝑖;

3 for 𝑖 ← 0 to |𝑃 𝑗 ′ | do swap(𝑓 (ℓ + 𝑖), 𝑓 (ℓ ′ + 𝑖));
4 P← SWAP(P);

Weakly-Ordered Property. Given a partitioning P with the consecutive property, we next show

how to transform it into P′ such that P′ also satisfies the weakly-ordered property. As each

partition in P contains consecutive records in the sorted CT, we can define a partial ordering

≾ on the partitions in P. For simplicity, we assume that 𝑃1 ≾ 𝑃2 ≾ · · · ≾ 𝑃𝑚 . As described in

Algorithm 4, we always identify a pair of partitions that are not weakly-ordered, i.e., 𝑃 𝑗 ′ ≾ 𝑃 𝑗 but⌈
|𝑃 𝑗 ′ |/𝑐𝑅

⌉
<

⌈
|𝑃 𝑗 |/𝑐𝑅

⌉
(if such partitions exist). In this case, we can apply Lemma 3.2 to swap records

between 𝑃 𝑗 ′ and 𝑃 𝑗 . This swap would turn 𝑃 𝑗 into non-consecutive on the sorted CT. If this happens,
we further invoke Algorithm 3 to transform 𝑃 𝑗 into a consecutive one; then, 𝑃 𝑗 ′ will be located

after 𝑃 𝑗 in the sorted CT. We will repeatedly apply the above procedure until no unordered pair of

partitions exists in P. We illustrate the weakly-ordered property, i.e., that the number of passes per
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partition decreases as the corresponding CT values increase, in Figure 4. In fact, a strongly-ordered

property also holds by replacing

⌈
|𝑃 𝑗 |/𝑐𝑅

⌉
with |𝑃 𝑗 |. We keep the weakly-ordered version here so

that it does not conflict with the divisible property, discussed below.

Divisible Property.Given a partitioning P satisfying the consecutive and weakly-ordered property,
we next show how to transform it into P′ such that P′ also satisfies the divisible property as follows.
We start checking the𝑚-th partition 𝑃𝑚 . If |𝑃𝑚 | is divisible by 𝑐𝑅 , we just skip it. Otherwise, we

move records from the previous partition 𝑃𝑚−1 to 𝑃𝑚 until |𝑃𝑚 | is divisible by 𝑐𝑅 . If, after moving,

the weakly-ordered property does not hold (i.e., ⌈|𝑃𝑚−1 |/𝑐𝑅⌉ < ⌈|𝑃𝑚 |/𝑐𝑅⌉), we execute Algorithm 4

to maintain the weakly-ordered property. After ensuring 𝑃𝑚 is divisible, we move to 𝑃𝑚−1. We

continue this procedure until |𝑃𝑚 |, · · · , |𝑃2 | are all divisible by 𝑐𝑅 . This fine-grained movement

between adjacent partitions naturally preserves the consecutive property and the join cost.

3.1.3 Dynamic Programming. With Theorem 3.1, we can now reduce the complexity of finding

the optimal partitioning by resorting to dynamic programming (instead of brute-force), searching

candidate partitionings with consecutive, weakly-ordered, and divisible properties.

Formulation by Consecutive Property.We define a sub-problem parameterized by (𝑖, 𝑗): finding
the optimal partitioning for the first 𝑖 records in the sorted CT using 𝑗 partitions. The solution of

this sub-problem parameterized by (𝑖, 𝑗) is denoted as 𝑉 [𝑖] [ 𝑗]. Recall that the optimal solution

of our integer program in Section 3.1.1 is exactly 𝑉 [𝑛] [𝑚]. As described by Algorithm 5, we can

compute 𝑉 in a bottom-up fashion. Specifically, we use 𝑉 [𝑖] [ 𝑗] .cost to store the cost of an optimal

partitioning for the sub-problem parameterized by (𝑖, 𝑗) and 𝑉 [𝑖] [ 𝑗] .LastPar stores the starting
position of the last partition. We also define CalCost(𝑠, 𝑒) as the per-partition join cost PPJ(𝑅 𝑗 ′ , 𝑆 𝑗 ′ ),
where 𝑠 (𝑒) is the position of the first (last) item in partition 𝑗 ′ with respect to CT, in other words

𝑃 𝑗 ′ = {𝑖 |𝑖 ∈ [𝑠, 𝑒]}. Note that we omit the term ∥𝑅 𝑗 ′ ∥ from NBJ(𝑅 𝑗 ′ , 𝑆 𝑗 ′ ) because it will always sum
up to ∥𝑅∥. Now, CalCost(𝑠, 𝑒) can be easily given using the pre-computed prefix sum:

CalCost(𝑠, 𝑒) =
(
𝑒∑︁
𝑖=1

CT[𝑖] −
𝑠−1∑︁
𝑖=1

CT[𝑖]
)
·
⌈
𝑒 − 𝑠 + 1
𝑐𝑅

⌉
(1)

The core idea of Algorithm 5 is the following recurrence formula:

𝑉 [𝑖] [ 𝑗] .cost = min

0≤𝑘≤𝑖−1
{𝑉 [𝑘] [ 𝑗 − 1] .cost + CalCost(𝑘 + 1, 𝑖)}

which iteratively searches for the starting position of the last partition in [0, 𝑖 − 1]. Also, we can
backtrack the index of the last partition to produce the mapping function 𝑓 from each index to its

associated partition, as described in Algorithm 6.

The time complexity of Algorithm 5 is𝑂 (𝑚 · 𝑛2), which is dominated by three for-loops, and the

space complexity is𝑂 (𝑚 ·𝑛) for storing𝑉 . This significantly improves the brute-force enumerating

method, whose time complexity is as large as 𝑂 (𝑚𝑛).
Speedup by Weakly-Ordered Property. Combing the weakly-ordered property in Theorem 3.1

with the pigeonhole principle [20], for any sub-problem parameterized by (𝑖, 𝑗), there exists an
optimal partitioning such that: (i) the “largest” partition contains at least the first

⌊
𝑖−1
𝑗

⌋
+ 1 − 𝑐𝑅

records in the sorted CT, and (ii) the “smallest” partition contains at most the last

⌊
𝑖
𝑗

⌋
+ 𝑐𝑅 records

in the sorted CT. Note that the “largest” (“smallest” ) partition is not always the largest (smallest)

in terms of the actual partition size. It is possible that 𝑃 𝑗 ′ ≾ 𝑃 𝑗 ′+1 and
⌈
|𝑃 𝑗 ′ |/𝑐𝑅

⌉
=

⌈
|𝑃 𝑗+1 |/𝑐𝑅

⌉
but |𝑃 𝑗 ′ | ≤ |𝑃 𝑗 ′+1 |. However, even if |𝑃 𝑗 ′ | ≤ |𝑃 𝑗 ′+1 |, the difference cannot be larger than 𝑐𝑅 from

the weakly-ordered property. As such, the “largest” partition for the sub-problem parameterized

by (𝑖, 𝑗) cannot be smaller than

⌊
𝑖−1
𝑗

⌋
+ 1 − 𝑐𝑅 (a more rigorous proof can be obtained using the
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Algorithm 5: Partition(CT, 𝑛,𝑚)
1 Initialize 𝑉 of sizes 𝑛 ×𝑚;

2 for 𝑖 ← 1 to 𝑛 do

3 𝑉 [𝑖] [1] .cost← CalCost(1, 𝑖), 𝑉 [𝑖] [1] .LastPar← 1;

4 for 𝑖 ← 2 to 𝑛 do

5 for 𝑗 ← 2 to min(𝑚, 𝑖) do
6 𝑉 [𝑖] [ 𝑗] .cost← +∞;
7 for 𝑘 ← 0 to 𝑖 − 1 do
8 tmp← 𝑉 [𝑘] [ 𝑗 − 1] .cost + CalCost(𝑘 + 1, 𝑖);
9 if tmp < 𝑉 [𝑖] [ 𝑗] .cost then
10 𝑉 [𝑖] [ 𝑗] .cost← tmp;
11 𝑉 [𝑖] [ 𝑗] .LastPar← 𝑘 + 1;

12 return 𝑉 ;

Algorithm 6: GetCut(𝑉 ,𝑛,𝑚)
1 LastPar← 𝑛;

2 for 𝑗 ← 0 to𝑚 − 1 do
3 for 𝑖 ← 𝑉 [LastPar] [𝑚 − 𝑗] .LastPar to LastPar do 𝑓 (𝑖) ←𝑚 − 𝑗 ;
4 LastPar← 𝑉 [LastPar] [𝑚 − 𝑗] .LastPar − 1;
5 return 𝐹 ;

divisible property). A similar analysis can be applied to the upper bound of the size of the “smallest”
partition. Synthesizing the above analysis, we get tighter bounds on 𝑘 in line 7 of Algorithm 5:

• 𝑘 ≥ max{(𝑖 − 𝑐𝑅) · (1 − 1

𝑗
), 0}. The partition 𝑃 𝑗 contains records from [𝑘 + 1 : 𝑖], and |𝑃 𝑗 | should

be not larger than the last (“smallest” ) partition in 𝑉 [𝑘] [ 𝑗 − 1]. The last (“smallest” ) partition for

the sub-problem parameterized by (𝑘, 𝑗 − 1) is at most

⌊
𝑘
𝑗−1

⌋
+ 𝑐𝑅 . Hence, 𝑖 − 𝑘 ≤

⌊
𝑘
𝑗−1

⌋
+ 𝑐𝑅 .

• 𝑘 ≤ max{𝑖 −
⌊
𝑛−𝑖−1
𝑚− 𝑗

⌋
− 1 + 𝑐𝑅, 1}. The partition 𝑃 𝑗 contains records from [𝑘 + 1 : 𝑖], and it should

be not smaller than the “largest” partition of remaining records in [𝑖 + 1 : 𝑛]. Recall that, we
still need to put the remaining 𝑛 − 𝑖 records into𝑚 − 𝑗 partitions. The “largest” partition of the

sub-problem parameterized by (𝑛 − 𝑖,𝑚 − 𝑗) contains at least
⌊
𝑛−𝑖−1
𝑚− 𝑗

⌋
+ 1 − 𝑐𝑅 records. Hence,

𝑖 − 𝑘 ≥
⌊
𝑛−𝑖−1
𝑚− 𝑗

⌋
+ 1 − 𝑐𝑅 .

After changing the range of the third loop (line 7, Algorithm 5) to [max{(𝑖−𝑐𝑅)·(1− 1

𝑗
), 0},max{𝑖−⌊

𝑛−𝑖−1
𝑚− 𝑗

⌋
−1+𝑐𝑅, 1}], we can skip the calculation of𝑉 [𝑖] [ 𝑗] when (𝑖−𝑐𝑅) · (1− 1

𝑗
) > 𝑖−

⌊
𝑛−𝑖−1
𝑚− 𝑗

⌋
−1+𝑐𝑅 .

This pruning reduces the time complexity to 𝑂 (𝑛2 log𝑚).
Speedup by Divisible Property. To utilize the divisible property, we initially put the first (𝑛
mod 𝑐𝑅) records in the first partition and then change the step size (lines 4 and 7) of Algorithm 5 to

𝑐𝑅 . This way, we can shrink 𝑉 to a (⌈𝑛/𝑐𝑅⌉ + 1) ×𝑚 matrix. Recall that𝑚 can be as large as 𝐵 − 1,
𝐹 is a constant larger than 1, and thus 𝑐𝑅 = ⌊𝑏𝑅 · (𝐵 − 2)/𝐹 ⌋ ≥ 𝑚. Therefore, the time complexity

is reduced to 𝑂
(
(𝑛/𝑐𝑅)2 log𝑚

)
= 𝑂

(
𝑛2 log𝑚

𝑚2

)
and the space complexity to 𝑂 (𝑛/𝑐𝑅 ·𝑚) = 𝑂 (𝑛).
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Fig. 4. A comparison of the number of passes required for the outer relation 𝑆 between the partitioning
adopted by DHH/GHJ and our optimal partitioning, assuming 𝐵 ≤

√︁
∥𝑅∥ · 𝐹 (DHH without skew optimization

downgrades to GHJ), 𝑛𝑅 = 1𝑀 , 𝑛𝑆 = 8𝑀 , 𝐹 = 1.02 and 𝐵 = 320 pages. Moreover, the record size of 𝑅 is
1𝐾𝐵, thus 𝑅 occupies 250𝐾 pages. In (a), random (uniform) partitioning (GHJ), the partition size is around
250𝐾/319 ≈ 784 pages, which require ⌈784/(318 × 𝐹 )⌉ = 3 passes to scan every partition of 𝑆 . In contrast, the
optimal partitioning allows the number of passes to vary from 2 to 6, which follows a non-monotonically
decreasing trend as CT value increases. When we have a skewed join correlation (b), a similar pattern is
observed. Further, the optimal partitioning naturally excludes records with CT[𝑖] = 0.

3.2 Optimal Partitioning With Caching
Wemove to the general case when records can be cached. In this case, some records stay in memory

during the partition phase, so as to avoid repetitive reads/writes, while remaining records still

go through the partitioning phase as Section 3.1. A natural question arises: which records should
stay in memory and which records should be written to disk? As we can see in DHH (Figure 2), the

hash function ℎsplit, together with POB actually categorizes all the join keys into two sets, memory-

resident keys as 𝐾mem ⊆ [𝑛] and disk-resident keys as 𝐾disk = [𝑛] − 𝐾mem. Then, it suffices to find

an optimal partitioning (without caching) for 𝐾disk, which reduces to our problem in Section 3.1.

Taking into account the partitioning cost (that includes writing data back to disk), we derive the

general join cost function Join(𝐾disk, P,𝑚) as:

Join(𝐾disk, P,𝑚) =
⌈ ∑︁
𝑖∈𝐾disk

CT[𝑖]
𝑏𝑆
·
⌈ |N𝑓 (𝑖) |

𝑐𝑅

⌉⌉
+ (1 + 𝜇) ·

⌈
|𝐾disk |
𝑏𝑅

⌉
+ 𝜇 ·

∑︁
𝑖∈𝐾disk

⌈
CT[𝑖]
𝑏𝑆

⌉
where 𝑏𝑅 (resp. 𝑏𝑆 ) represents the number of records per page for relation 𝑅 (resp. 𝑆), and 𝜇

is the ratio between random write and sequential read. Compared to the original cost function,

Join(P,𝑚), the new cost function, Join(𝐾disk, P,𝑚), involves two additional terms – 𝜇 · ( ⌈|𝐾disk |/𝑏𝑅⌉+⌈∑
𝑖∈𝐾disk

CT[𝑖]/𝑏𝑆
⌉
) as the cost of partitioning both relations, and ⌈|𝐾disk |/𝑏𝑅⌉ as the cost of loading

𝑅 in the probing phase. Putting everything together, we have the following integer program:

min

𝐾disk,P
Join(𝐾disk, P,𝑚)

subject to

⌈
𝑛 − |𝐾disk |

𝑏𝑅
· 𝐹

⌉
+𝑚 + 2 ≤ 𝐵,

𝑚∑︁
𝑗=1

P𝑖, 𝑗 = 1,∀𝑖 ∈ [𝑛]

P𝑖, 𝑗 ∈ {0, 1},∀𝑖 ∈ [𝑛], 𝑗 ∈ [𝑚]

where the first constraint limits the size of thememory-resident hash table, as two pages are reserved

for input and join output, and𝑚 pages for the output buffer for each disk-resident partition.
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Algorithm 7: OCAP(CT, 𝑛, 𝐵)
1 tmp← +∞, 𝑓 ← ∅;
2 for 𝑘 ← 0 to 𝑐𝑅 do

3 𝑉 ← Partition(CT[1 : 𝑛 − 𝑘], 𝑛 − 𝑘, 𝐵 − 2 − ⌈𝑘 ·𝐹
𝑏𝑅
⌉);

4 𝑐probe ← ⌈𝑛−𝑘𝑏𝑅 ⌉ +𝑉 [𝑛 − 𝑘] [𝐵 − 2 − ⌈
𝑘 ·𝐹
𝑏𝑅
⌉] .cost;

5 𝑐part ← 𝜇 · ( ⌈𝑛−𝑘
𝑏𝑅
⌉ + ⌈ 1

𝑏𝑆
·∑𝑛−𝑘

𝑖=1 CT[𝑖]⌉);
6 if tmp < 𝑐probe + 𝑐part then
7 tmp← 𝑐probe + 𝑐part;
8 𝑓 ← GetCut(𝑉 ,𝑛 − 𝑘, 𝐵 − 2 − ⌈𝑘 ·𝐹

𝑏𝑅
⌉);

9 return 𝑓 ;

The integer program above can be interpreted by first fixing the 𝐾disk (i.e., which keys/records

should be spilled out to disk), and then finding the optimal partitioning for 𝐾disk. The OCAP

algorithm can be invoked as a sub-routine for a given 𝐾disk. We still need to identify the optimal

𝐾disk (i.e., which records should be spilled out to disk) that leads to the overall minimum cost.

Although there is an exponentially large number of candidates for 𝐾disk, it is easy to see that records

with low CT value should be spilled out to disk, while records with high CT values should be kept

in memory. This follows from the fact that the objective function (join cost) only uses the CT
values of 𝐾disk. In other words, the consecutive property of Theorem 3.1 still applies for this hybrid

partitioning. We can achieve the optimal cost by caching the top-𝑘 records from CT in memory, if

restricting the size of 𝐾mem to be 𝑘 , where 𝑘 < 𝑐𝑅 since at most 𝑐𝑅 records can remain in memory.

By extending Algorithm 5 to a hybrid version, we finally come to the OCAP in Algorithm 7.

Complexity Analysis. As the number of records that can remain in memory is at most 𝑐𝑅 =

⌊𝑏𝑅 · (𝐵−2)/𝐹 ⌋, we run Algorithm 5 at most 𝑐𝑅 times. Recall that the complexity of Algorithm 5 can

be reduced to 𝑂
( (
𝑛2 log𝑚

)
/𝑐2
𝑅

)
, thus, the time complexity for OCAP is now 𝑂

( (
𝑛2 log𝑚

)
/𝑐𝑅

)
=

𝑂
( (
𝑛2 log𝑚

)
/𝑚

)
. The space complexity remains 𝑂 (𝑛).

4 OUR PRACTICAL ALGORITHM
In practice, it is impossible to know the exact correlation between input relations for each key in

advance; instead, amuch smaller set of high-frequency keys are collected for skew optimization, such

as the Most Common Values (MCVs) in PostgreSQL [46]. PostgreSQL supports skew optimization

by assigning 2% memory to build a hash table for skewed keys if their total frequency is larger

than 1% of the outer relation, but this heuristic uses fixed thresholds to trigger skew optimization,

which may be sub-optimal for an arbitrary join correlation. Hence, we present a practical algorithm

built upon the theoretically I/O-optimal algorithm in the previous section. Instead of relying on

the whole correlation CT table, our practical algorithm only needs the same amount of MCVs as

PostgreSQL and generates a hybrid partitioning that can adapt to an arbitrary join correlation and

constrained memory budget.

4.1 Hybrid Partitioning
Let 𝐾 be the set of skew keys tracked from MCVs with their CT values known. Guided by the

consecutive and weakly-ordered properies in Theorem 3.1, for a given |𝐾𝑚𝑒𝑚 |, it is always preferable
to keep in memory the keys with the highest CT values. That way, we minimize the amount of

records we partition to disk, thus overall minimizing disk accesses. For the rest of the keys that
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Fig. 5. An illustration of the hybrid partitioning workflow of NOCAP. Partitions 𝑃4 and 𝑃7 are spilled to disk
when invoking DHH, while 𝑃1 and 𝑃2 are written to disk due to the partitioning specified by 𝑓𝑑𝑖𝑠𝑘 . Other
records in 𝑅 either have keys from 𝐾mem or are staged in memory when invoking DHH, which will be inserted
to the in-memory hash table 𝐻𝑇mem.

Algorithm 8: Hybrid-Partition-Primary(𝑅,𝐻𝑆mem, 𝑓disk,𝑚rest)
1 𝑅′ ← {𝑟 ∈ 𝑅 : 𝑟 .key ∉ 𝐻𝑆mem, 𝑟 .key ∉ 𝑓disk}; ⊲ Logically construct 𝑅′ without instantiation;

2 foreach 𝑟 ∈ 𝑅 − 𝑅′ do
3 if 𝑟 .key ∈ 𝐻𝑆mem then add 𝑟 to 𝐻𝑇mem [ℎprobe (𝑟 .key)];
4 else assign 𝑟 to disk-resident partition 𝑓disk (𝑟 .key);
5 (𝐻𝑇 ′mem, POB) ← DHH-Primary(𝑅′,𝑚rest);
6 return (𝐻𝑇 ′mem ∪ 𝐻𝑇mem, POB)

Algorithm 9: Hybrid-Partition-Foreign(𝑆, 𝐻𝑇mem, 𝑓disk, POB)
1 𝑆 ′ ← {𝑠 ∈ 𝑆 : 𝑠 .key ∉ 𝑓disk}; ⊲ Logically construct 𝑆 ′ without instantiation;

2 foreach 𝑠 ∈ 𝑆 ′ do
3 if 𝑠 .key ∈ 𝑓𝑑𝑖𝑠𝑘 then
4 assign 𝑠 to disk-resident partition 𝑓disk (𝑠 .key)

5 DHH-Foreign(𝑆 − 𝑆 ′, 𝐻𝑇mem, POB);

are not tracked by MCVs, we consider their frequency as low and can be handled efficiently by

traditional hash joins, GHJ or DHH.
Framework. In a hybrid partitioning, we design a hash set, 𝐻𝑆mem, to store a subset of the skewed

keys (denoted as𝐾mem ⊆ 𝐾 ) that will be used to build the in-memory hash table,𝐻𝑇mem, a hash map,
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Algorithm 10: NOCAP(CT, 𝑘, 𝑛,𝑚)
1 𝑐𝑜𝑝𝑡 ← +∞, 𝑘mem ← 0, 𝑘disk ← 0, 𝑓disk ← ∅;
2 for 𝑖1 ← 0 to min(𝑘, 𝑐𝑅) do
3 𝑉 ← Partition(CT[𝑖1 + 1 : 𝑘], 𝑘 − 𝑖1,

⌈
𝑘−𝑖1
𝑐𝑅

⌉
);

4 for 𝑖2 ← 0 to min(𝑘, 𝑐𝑅) − 𝑖1 do
5 for 𝑗 ← min(𝑖2, 1) to ⌈ 𝑖2𝑐𝑅 ⌉ do
6 𝑚rest ← 𝐵 − 2 − 𝐵𝐻𝑇 (𝑖1) − 𝐵𝐻𝑆 (𝑖1) − 𝐵𝑓 (𝑖2) − 𝑗 ;
7 𝑐probe ← 𝑉 [𝑖2] [ 𝑗] .cost;
8 𝑐part ← 𝜇 ·

(
⌈ 𝑖2
𝑏𝑅
⌉ + ⌈ 1

𝑏𝑆
·∑𝑗=𝑖2

𝑗=𝑖1+1 CT[ 𝑗]⌉
)
;

9 𝑐rest ← 𝑔DHH (𝑖2 + 1, 𝑛,𝑚rest);
10 𝑐tmp ← 𝑐probe + 𝑐part + 𝑐rest;
11 if 𝑐tmp < 𝑐opt then

12 𝑐𝑜𝑝𝑡 ← 𝑐tmp, 𝑘mem ← 𝑖1, 𝑘disk ← 𝑖2;

13 𝑓disk ← GetCut(𝑉 , 𝑖2, 𝑗);

14 return 𝑘mem, 𝑘disk, 𝑓disk;

𝑓disk, to store another subset of skewed keys (denoted as 𝐾disk ⊆ 𝐾 ) with their designated partition

identifiers, and the rest of the skewed keys (if any) together with non-skewed keys (denoted as

𝐾rest) will be uniformly partitioned by GHJ or DHH with a certain memory budget𝑚rest (in pages).

With 𝐻𝑆mem, 𝑓disk and𝑚rest in hand, we can partition the records of 𝑅 using Algorithm 8. For each

record in 𝑅, if its key is in 𝐻𝑆mem, we put the entire record in 𝐻𝑇mem (𝐻𝑆mem only stores the key);

if its key belongs to 𝑓disk, we put it into the partition specified by 𝑓disk, which will be spilled to disk

later; otherwise, it will be handled by GHJ or DHH along with the rest of the records using the

𝑚rest pages. We can partition records in 𝑆 similarly using Algorithm 9. This hybrid partitioning

workflow is visualized in Figure 5.

Regarding whether to use GHJ or DHH, we note the following difference. When the available

memory is large, say ⌈|𝐾rest |/𝑐𝑅⌉ < 𝑚rest, we simply invoke DHH to partition 𝐾rest using 𝑚rest
pages. When the available memory is small, as discussed in Section 2.2, DHH downgrades to GHJ.
EnforcingMemory Constraints. State-of-the-art systems (e.g., MySQL and PostgreSQL) typically

assign to each join operator a user-defined memory budget. The default memory limit for the join

operator in MySQL is 256 KB [37] and the one in PostgreSQL is 4 MB [44]. Assuming the available

buffer is in total 𝐵 pages, we need to ensure that Algorithm 8 uses no more than 𝐵 pages. We

present a memory breakdown as illustrated in Figure 6.

• 𝐵𝐻𝑆 : #pages for the hash set 𝐻𝑆mem with keys in 𝐾mem;

• 𝐵𝐻𝑇 : #pages for the hash table 𝐻𝑇mem with records whose keys are in 𝐾mem;

• 𝐵𝑓 : #pages for the hash map 𝑓disk with keys in 𝐾disk;

• 𝑚disk: #pages as write buffer for all the on-disk partitions specified in 𝑓disk (which is the same

as #partitions specified in 𝑓disk);

• 𝑚rest: #pages to partition records whose keys are in 𝐾rest;

Moreover, we denote 𝑘𝑠 as the size of each key (in bytes), and 𝑝𝑠 as the size of each page (in

bytes). We can roughly have 𝐵𝐻𝑇 = ⌈𝑏𝑅 · |𝐾mem |/𝐹 ⌉, 𝐵𝐻𝑆 = ⌈𝑘𝑠 · |𝐾mem |/(𝐹 · 𝑝𝑠)⌉, and 𝐵𝑓 =

⌈(𝑘𝑠 + 4) · |𝐾disk |/(𝐹 · 𝑝𝑠)⌉, where a 4-byte integer is used to store the partition identifier in the

Proc. ACM Manag. Data, Vol. 1, No. 4 (SIGMOD), Article 252. Publication date: December 2023.



NOCAP: Near-Optimal Correlation-Aware Partitioning Joins 252:17

One for input

…

𝑚𝑚disk pages 

…

𝑚𝑚𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 pages 
(the rest of keys)

……

𝐵𝐵𝑓𝑓

Total available buffer space (𝐵𝐵 pages) 
……

𝐵𝐵𝐻𝐻𝐻𝐻𝐵𝐵𝐻𝐻𝐻𝐻

One for output

Fig. 6. The memory breakdown when partitioning 𝑅.

hash map 𝑓disk. At last, we come to the memory constraint subject to 𝐵 (the total number of pages):

𝐵𝐻𝑆 + 𝐵𝐻𝑇 + 𝐵𝑓 +𝑚disk +𝑚rest ≤ 𝐵 − 2 (2)

Cost function. Combining all these above together, we come to the cost function and integer

programming as follows:

min

𝐾mem,𝐾disk,Pdisk
Join(𝐾disk, Pdisk,𝑚disk) + 𝑔DHH ( |𝐾disk |,𝑚rest)

s.t. 𝐵𝐻𝑆 + 𝐵𝐻𝑇 + 𝐵𝑓 ≤ 𝐵 − 2 −𝑚disk −𝑚rest,

0 ≤ 𝑚disk ≤ 𝐵 − 2, 0 ≤ 𝑚rest ≤ 𝐵 − 2,
𝐾mem ∩ 𝐾disk = ∅, 𝐾mem ∪ 𝐾disk ⊆ 𝐾
𝑚∑︁
𝑗=1

P𝑖, 𝑗 = 1,∀𝑖 ∈ [𝑛]

P𝑖, 𝑗 ∈ {0, 1},∀𝑖 ∈ [𝑛],∀𝑗 ∈ [𝑚]

In the objective function, the first term, Join(𝐾disk, 𝑓disk,𝑚disk), is the join cost for 𝐾disk using𝑚disk
partitions, and the second term, 𝑔DHH ( |𝐾rest |,𝑚rest), is the estimated join cost of 𝐾rest with𝑚rest
pages using either GHJ or DHH, depending on how large𝑚rest is, as mentioned earlier. We will

further discuss 𝑔DHH ( |𝐾disk |,𝑚rest) in Section 4.2. When estimating the DHH (GHJ) cost, we need
to know the total number of records from 𝑆 whose key falls into 𝐾rest, which can be approximated

by 𝑛𝑆 −
∑
𝑖∈𝐾mem∪𝐾disk

CT[𝑖], since the CT values of keys in 𝐾 are known from MCVs.

To find out the best combination of 𝐾mem, 𝐾rest and 𝑓disk, we iterate over all possible values of

|𝐾mem |, |𝐾disk | and 𝑓disk, and pick the one with the minimum estimated cost, as shown in Algo-

rithm 10. Recall that once we have the ideal sizes of the sets, we use the CT values to populate

them. Further, note that the optimal value of𝑚rest is calculated using Equation (2), since𝑚disk can

be obtained from 𝑓disk. Then, implied by the weakly-ordered property in Theorem 3.1 (i.e., keys

with higher frequency should be kept in memory or in a small partition with higher priority), we

always pick the top-|𝐾mem | keys from 𝐾 as 𝐾mem and the next top-|𝐾disk | keys from 𝐾 as 𝐾disk.

4.2 Optimizations with Rounded Hash
We now present another optimization for the partitioning phase, called rounded hash (RH), which

may further reduce the cost of scanning the outer relation in the per-partition join. This is motivated

by the divisible property in Theorem 3.1, according to which the sizes of all (but one) partitions

should be divisible by 𝑐𝑅 in the optimal partitioning. Figure 7 shows when this insight helps.

We note that uniform partitioning assigns records using a uniform hash function PartID =

hash(key) mod 𝑚, based on the modulo function with respect to𝑚 (the number of partitions),

which is denoted as plain hash (PH). To reduce the extra I/O cost using non-uniform partitioning,

RH uses an additional modulo function with respect to ⌈𝑛/𝑐𝑅⌉:

PartID = (hash(key) mod ⌈𝑛/𝑐𝑅⌉) mod 𝑚 (3)
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Output buffer page for a partition A full-filled page in disk A half-filled page in disk

Partition 2 Partition 3 Partition 4

Fig. 7. An illustration of the uniform and non-uniform partitioning on the inner relation 𝑅, with a 5-page
buffer (with 4 pages for partitioning 𝑅 and 1 page for streaming the input). In NBJ, each chunk is up to
3-pages-long (with 1 page for streaming 𝑆 and 1 page for the output assuming 𝐹 = 1.0). Uniform partitioning
leads to 4 partitions with each having 18/4 = 4.5 pages worth of data. One needs to read 𝑆 twice for each
partition. As a comparison, rounded hashing with 𝑛/𝑐𝑅 = 6 and𝑚 = 4 generates 2 partitions with each having
6 pages, and 2 partitions with each having 3 page worth of data. In that way, partitions 1 and 2 need two
passes on the corresponding partitions in 𝑆 , while partitions 3 and 4 only need a single pass.

where 𝑐𝑅 = ⌊𝑏𝑅 · (𝐵 − 2)/𝐹 ⌋ is the chunk size of records. Intuitively, RH maximizes the number

of partitions with ⌊⌈𝑛/𝑐𝑅⌉ /(𝐵 − 1)⌋ chunks. In addition to reducing unnecessary passes, RH also

merges small partitions to avoid fragmentation [29].

Parametric Optimization. Since we rely on a hash function to partition records, partitions 1

and 2 in Figure 7 could occasionally overflow and grow larger than six pages due to randomness.

In a skewed workload, overflown partitions will result in higher cost compared to the cost of an

ideal uniform partitioning. In fact, a more robust scheme (Figure 7) is to assign 2.5 pages worth of

records to partition 4 (so that an overflow would not spill to a new page) and evenly distribute 15.5

pages to partitions 1, 2, and 3. Formally, we replace 𝑐𝑅 with 𝑐∗
𝑅
= 𝛽 · 𝑐𝑅 in Equation (3), where 𝛽 is

in the range (0, 1], and should be very close to 1 (we fix 𝛽 = 0.95 in our implementation).

Cost Estimation. To get a rough estimation of how many I/Os are used by RH, we first build

the I/O model for PH-based partitioning. We consider a generalized problem by estimating the

per-partition cost for partitioning records positioned on the CT array from index 𝑠 to index 𝑒 into

𝑚 partitions using PH, noted by 𝑔𝑃𝐻 (𝑠, 𝑒,𝑚):

𝑔PH (𝑠, 𝑒,𝑚) =
𝑚∑︁
𝑗=1

E

[⌈ |𝑃 𝑗 |
𝑐𝑅

⌉]
·
∑︁
𝑖∈𝑃 𝑗

CT[𝑖] =
⌈
𝑒 − 𝑠 + 1
𝑚 · 𝑐𝑅

⌉
·
𝑒∑︁
𝑖=𝑠

CT[𝑖]

where each ∥𝑃 𝑗 ∥ is approximated as a Poisson distribution with 𝜆 = 𝑒−𝑠+1
𝑚

. When estimating the

cost of RH we need to know how much proportion (noted by 𝛾 ) of data from 𝑆 is scanned with one

fewer pass (1 − 𝛾 of data is scanned with one more pass):

𝛾 =

((⌈
𝑒 − 𝑠 + 1
𝑐∗
𝑅

⌉
mod𝑚

)
·
⌊
𝑒 − 𝑠 + 1
𝑚 · 𝑐∗

𝑅

⌋
· 𝑐∗𝑅

)
/(𝑒 − 𝑠 + 1)

As such, the normalized number of rounded passes is:

#rounded_passes(𝑠, 𝑒) = 𝛾 ·
⌊
𝑒 − 𝑠 + 1
𝑚 · 𝑐∗

𝑅

⌋
+ (1 − 𝛾) ·

⌈
𝑒 − 𝑠 + 1
𝑚 · 𝑐∗

𝑅

⌉
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We then have our cost model for rounded hash 𝑔RH:

𝑔RH (𝑠, 𝑒,𝑚) = #rounded_passes(𝑠, 𝑒) ·
𝑒∑︁
𝑖=𝑠

CT[𝑖] (4)

The cost of our original problem is captured by 𝑔RH (1, 𝑛,𝑚).
Overestimation using Chernoff Bound. When the fill ratio of each partition using PH reaches

the predefined threshold 𝛽 (that is,
𝑒−𝑠+1
𝑚

> 𝛽 · 𝑡 · 𝑐𝑅 , where 𝑡 is the largest positive integer such
that 𝑡 · 𝑐𝑅 > 𝑒−𝑠+1

𝑚
), we disable RH. We do this to avoid additional passes that are triggered by

occasional overflow in the hashing process. We now consider the impact of disabling RH on

the cost model. Every element is distributed independently and identically using the same hash

function, and thus, we apply the Chernoff bound to the overflow probability. For an arbitrary

partition, we define 𝑋 =
∑𝑒
𝑖=𝑠 𝑋𝑖 where 𝑋𝑖 = 1 (i.e., 𝑖-th element is assigned to this partition) with

probability
1

𝑚
, and 𝑋𝑖 = 0 with probability 1 − 1

𝑚
. Then E[𝑋 ] = 𝑒−𝑠+1

𝑚
. From Chernoff bound,

Pr[𝑋 > 𝑡 · 𝑐𝑅] <
(

𝑒𝜎

(1+𝜎 )1+𝜎
)E[𝑋 ]

, where 𝜎 =
𝑡 ·𝑐𝑅 ·𝑚
𝑒−𝑠+1 − 1. We thus let 1 − 𝛾 =

(
𝑒𝜎

(1+𝜎 )1+𝜎
)E[𝑋 ]

and set:

#rounded_passes(𝑠, 𝑒) = 𝛾 ·
⌈
𝑒 − 𝑠 + 1
𝑚 · 𝑐∗

𝑅

⌉
+ (1 − 𝛾) ·

(⌈
𝑒 − 𝑠 + 1
𝑚 · 𝑐∗

𝑅

⌉
+ 1

)
We update the #rounded_passes(𝑠, 𝑒) in Equation (4) to estimate the I/O cost.

5 EXPERIMENTAL ANALYSIS
We now present experimental results for our practical method.

Approaches Compared.We compare NOCAP with Grace Hash Join (GHJ), Sort-Merge Join (SMJ),

and Dynamic Hybrid Hash join (DHH). For all the partitioning-based methods (GHJ, DHH, and

NOCAP), we apply a lightweight optimization that picks the most efficient algorithm according to

Table 1 for the partition-based joins. We also augment GHJ by allowing it to fall back to NBJ if the

latter has a lower cost. For DHH, we follow prior approaches that use fixed thresholds to trigger

skew optimization (2% of the available memory is used for an in-memory hash table for skewed keys

if the sum of their frequency is larger than 1% of the outer relation size). We also compare Histojoin

(by setting the trigger frequency threshold as zero) as one of our baselines. All the approaches are

implemented in C++, compiled with gcc 10.1.0, in a CentOS Linux with kernel 4.18.0. For NOCAP,

DHH, and Histojoin, we assume top 𝑘 = 50𝐾 frequently matching keys are tracked (i.e., 5% of

the keys when 𝑛 = 1𝑀). In PostgreSQL’s implementation of DHH, the frequent keys are stored

using a small amount of system cache, which does not consume the user-defined working memory

budget unless they are inserted into the in-memory hash table. Similarly, in our prototype, the

top-𝑘 keys are given. Due to the pruning techniques (§3.1.3), computing the partitioning scheme

(Algorithm 10) with 𝑘 = 50𝐾 takes less than one second, so we omit its discussion.

5.1 Sensitivity Analysis
We now present experimental results with synthetic data produced by our workload generator that

allows us to customize the distribution of matching keys between two input relations to test the

robustness of different join methods.

Experimental Setup.We use our in-house server, which is equipped with 375GB memory and

two Intel Xeon Gold 6230 2.1GHz processors, each having 20 cores with virtualization enabled.

As secondary storage, we use a 350GB PCIe P4510 SSD with direct I/O enabled. We can change

the read/write asymmetry by turning the O_SYNC flag on and off. When O_SYNC is on, every write

is first flushed to disk before returning and thus has higher asymmetry (𝜇𝑠𝑦𝑛𝑐 = 3.3, 𝜏𝑠𝑦𝑛𝑐 = 3.2).
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(e) Zipf (𝛼=1.3) [w/o sync]
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(f) Zipf (𝛼=1.0) [w/o sync]

28 210 212 214 216 218

Buffer size (pages) [log scale]

0.0

1.0

2.0

3.0

4.0

L
at

en
cy

(m
in

)
(g) Zipf (𝛼=0.7) [w/o sync]
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(h) Uniform [w/o sync]

28 210 212 214 216 218

Buffer size (pages) [log scale]

0.0

2.0

4.0

6.0

L
at

en
cy

(m
in

) NOCAP
DHH
Histojoin

SMJ
GHJ

(i) Zipf (𝛼 = 1.3) [w/ sync]

28 210 212 214 216 218

Buffer size (pages) [log scale]

0.0

2.0

4.0

6.0

L
at

en
cy

(m
in

)

(j) Zipf (𝛼=1.0) [w/ sync]

28 210 212 214 216 218

Buffer size (pages) [log scale]

0.0

2.0

4.0

6.0

L
at

en
cy

(m
in

)

(k) Zipf (𝛼=0.7) [w/ sync]

28 210 212 214 216 218

Buffer size (pages) [log scale]

0.0

2.0

4.0

6.0

L
at

en
cy

(m
in

)

(l) Uniform [w/ sync]

Fig. 8. While state-of-the-art skew optimization in DHH helps reduce the I/O cost, NOCAP better exploits join
correlation knowledge to achieve even lower I/O cost and latency. The benefit of NOCAP is more pronounced
with a skewed correlation.

When O_SYNC is off, we have lower asymmetry (𝜇𝑛𝑜_𝑠𝑦𝑛𝑐 = 1.28, 𝜏𝑛𝑜_𝑠𝑦𝑛𝑐 = 1.2). By default, sync

I/O is off to improve performance.

Experimental Methodology.We first experiment with a synthetic workload, which contains two

tables 𝑅 and 𝑆 with 𝑛𝑅 = 1𝑀 and 𝑛𝑆 = 8𝑀 . The record size is 1KB for both 𝑅 and 𝑆 , and thus we

have ∥𝑅∥ = 250𝐾 pages and ∥𝑆 ∥ = 2𝑀 pages (the page size is fixed to 4KB). In this experiment, we

vary the buffer size from 0.5 ·
√︁
𝐹 · ∥𝑅∥ ≈ 256 pages to ∥𝑅∥ = 250𝐾 pages. We use #I/Os (reads +

writes) and latency as two metrics, and when comparing #I/Os, we also run OCAP (§3.2) to plot

the optimal (lower bound) #I/Os . Further, we run our experiments under uniform correlation and

Zipfian correlation (short as Zipf) with 𝛼 = 0.7, 1.0, 1.3.

NOCAP Dominates for any Correlation Skew and any Memory Budget. For all the join

methods, #I/Os decreases as the buffer size increases, as shown in Figures 8a-8d.We also observe that

NOCAP achieves the lowest #I/Os (near-optimal) among all the join algorithms for any correlation

skew and any memory budget. When we compare latency from Figures 8e-8h, we also conclude

that GHJ and SMJ have a clear gap while they have nearly the same #I/Os regardless of the join

correlation. This is because random reads in SMJ are 1.2× slower than sequential reads in GHJ.

While these two traditional join methods have no optimization for skewed join correlations, DHH,

Histojoin, and NOCAP take advantage of correlation skew to reduce #I/Os. However, DHH and

Histojoin cannot fully exploit the join correlation because it limits the space for high-frequency

keys with a fixed threshold (up to 2% of the total memory budget). Compared to DHH and Histojoin,

NOCAP normally has fewer #I/Os because it freely decides the size of the in-memory hash table for

frequent keys without any predefined thresholds. Figures 8f-8h show that the latency gap between
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Fig. 9. DHH requires careful tuning to achieve its best performance, which is still slower than NOCAP.
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Fig. 10. When the memory is limited, NOCAP can
even reach 10% speedup with uniform workload.
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Fig. 11. With noisy MCVs, both DHH and NOCAP
have similar performance to Figures 8h and 8g.

NOCAP and DHH (Histojoin) is wider when we have medium skew (𝛼 = 1 or 𝛼 = 0.7), compared

to uniform. However, when the join correlation is highly skewed (𝛼 = 1.3), the small hash table (2%

of the available memory) in DHH is enough to capture the most frequent keys and, hence, issue

near-optimal #I/Os (Figure 8a). As a result, the benefit of NOCAP for 𝛼 = 1.3 (Figure 8e) is smaller

than for 𝛼 = 1 (Figure 8f). Nevertheless, NOCAP still issues 30% fewer #I/Os when the memory

budget is small (2
8
pages).

DHHCannot Adapt to Different Memory Budget. The skew optimization in DHH relies on two

thresholds (memory budget and minimum frequency), and thus, it cannot easily adapt to a different

memory budget. To verify this, we compare DHH with NOCAP under a given Zipfian correlation

(𝛼 = 0.7) using as memory budgets 2MB and 32MB. Figures 9a and 9b show the reduction of #I/Os

when using NOCAP vs. DHH as a percentage of the DHH #I/Os, as we vary the two thresholds

used by DHH. When 𝐵 = 2MB, the best tuning for DHH (corresponding to the darkest cells) does

not trigger skew optimization at all because the available memory is not big enough to have an

impact. To do this, DHH either needs the memory budget for the skewed keys to be zero, or the

frequency threshold to be very high. In contrast, when 𝐵 = 32MB, the best DHH tuning assigns 8%

memory to build the hash table for skewed keys, but it is still not able to outperform NOCAP. Note

that even though DHH can achieve close-to-NOCAP performance by varying these two thresholds,

this relies on workload-dependent, well-tuned parameters, which are hard to tune at runtime. In

contrast, NOCAP is always able to find the best memory allocation.

NOCAP Outperforms DHH Even for Uniform Correlation with Small Memory Budget.

We also examine the speedup when we have a lower memory budget. Although Figures 8l and 8h

show that there seems no difference between DHH and NOCAP when the workload is uniform, we

actually capture a larger difference after we narrow down the buffer range (128∼512 pages). As
shown in Figure 10a, NOCAP achieves up to 15% and 10% speedup when there are 480 and 352

pages. The step-wise pattern of DHH and GHJ comes from random (uniform) partitioning. When

the memory is smaller than

√︁
∥𝑅∥ · 𝐹 , uniform partitioning easily makes each partition larger than
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(a) 𝜎𝑆=0.488, 𝑆𝐹=10
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(c) 𝜎𝑆=0.488, 𝑆𝐹=50
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(d) 𝜎𝑆=0.63, 𝑆𝐹=50

Fig. 12. TPC-H: NOCAP leads to higher speedup when more data from 𝑆 are joined in a query.

the chunk size, as illustrated in Figure 7. On the contrary, rounded hash allows some partitions to

be larger so that other partitions have fewer chunks and thus require fewer passes to complete the

partition-wise joins. When the correlation becomes more skewed, NOCAP can be more than 30%

faster than DHH under limited memory, as shown in Figure 10b.

DHH and NOCAP Both Exhibit Robustness for Noisy MCVs. To examine how noisy CT can

affect DHH and NOCAP, we add Gaussian noise to the CT values, with the average noise as 0 (the

value of the average noise has no impact over MCVs) and 𝜎 = 𝑛𝑆/𝑛𝑅 . We reuse most of experimental

settings so that 𝑛𝑆/𝑛𝑅 = 8 and thus CT𝑛𝑜𝑖𝑠𝑒 [𝑖] ∈ [CT[𝑖] − 8,CT[𝑖] + 8] with probability 68%. We

redo the experiments with uniform and Zipfian join correlation (𝛼 = 0.7), and the results are shown

in Figure 11. We do not observe a significant difference between the results with noisy CT values

and the original results in Figures 8. The rationale behind this is that keys with high frequency

are still likely to be prioritized (cached) during hybrid partitioning even after we add the Gaussian

noise, thus having very similar performance to the results without noise.

5.2 Experiments with TPC-H, JCC-H, and JOB
We now experiment with TPC-H [53], JCC-H [10], and JOB [31], using DHH as our main competitor.

Experimental Setup. We experiment with a modified TPC-H Q12. Q12 selects data from table

lineitem and joins them with orders on l_orderskey=o_orderskey, followed by an aggregation.

As we have already seen, DHH has only a minor difference from NOCAP when the correlation is

uniform. Here, we focus on a skewed join correlation in TPC-H data. To achieve this, we modify the

TPC-H dbgen codebase – all the keys are classified into hot or cold keys, and the frequency of hot

and cold keys, respectively, follows two different uniform distributions, which controls the overall

skew and the average matching keys [12, 14]. In this experiment, we focus on a join correlation

where 0.5% of the o_orderkey keys match 500 lineitem records on average, and the rest of the

keys only match 1.5 lineitem records on average.

We further remove the filtering condition on l_shipmode and l_receiptdate so that the size of
the filtered lineitem is larger than orders (since we focus on the case when ∥𝑅∥ < ∥𝑆 ∥). We then

have two conditions left, l_receiptdate<l_shipdate and l_shipdate<l_commitdate, which
has separately selectivity 0.488 and 0.63. We use either one of the filter conditions to vary the

selectivity. We run our experiments with these two selectivity levels (0.488 and 0.63) and two

scale factors (𝑆𝐹=10, 𝑆𝐹=50), as shown in Figure 12. We employ storage-optimized AWS instances

(i3.4xlarge) and we turn off O_SYNC. The device asymmetry is 𝜇 = 1.2 and 𝜏 = 1.14.

NOCAP Accelerates TPC-H Joins. In Figure 12a, we observe that the difference in the total

latency between NOCAP and DHH is not as large as what we saw in previous experiments. In fact,

we find that the proportion of time spent on I/Os is lower in the TPC-H experiment due to the

group by and aggregation in Q12. In earlier experiments (e.g., Figures 8f and 8g), the time spent on

CPU is 10∼20 seconds out of a few minutes (8% - 10% of the total latency). In contrast, we observe
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(a) JCC-H (Tuned Skew)
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Fig. 13. While DHH can perform as close as NOCAP, NOCAP is more adaptive when the workload varies.

that in both Figures 12a and 12b, the proportion of time spent on CPU is more than 15%. This

shows that NOCAP’s benefit reduces when we have more CPU-intensive operations in a query.

In addition, Figure 12b shows that when we increase the selectivity on lineitem, the NOCAP’s
benefit also increases. We have a similar observation when we move to a larger data set (SF=50), as

shown in Figures 12c and 12d. In fact, in both cases, when we have more lineitem data involved

in the join, NOCAP has a higher speedup.

NOCAP Outperforms DHH for JCC-H and JOB. To further validate the effectiveness of NOCAP,

we experiment with JCC-H (Join Cross Correlation) and JOB (Join Order Benchmark). JCC-H is

built on top of TPC-H with adding join skew, so we reuse our TPC-H experimental setup (running

the modified Q12 with 𝑆𝐹 = 10 and 𝜎𝑆 = 0.488). In the original JCC-H dataset, the majority

(i.e., 300𝐾 · 𝑆𝐹 ) of lineitem records only join with 5 orders records. To vary the skew, we tune

the data generator so that there are around 5100 · 𝑆𝐹 orders records, of which each matches

600 lineitem records on average. In addition to JCC-H, we also compare DHH and NOCAP by

executing a PK-FK join between two tables from the JOB dataset. Specifically, cast_info stores
the cast information between movies and actors, which are respectively stored in tables title and

name. The number of movies per actor is highly skewed where the top 50 actors match 0.6% records

in cast_info, while the number of actors per movie is less skewed where the top 50 movies match

less than 0.1% records in cast_info (“top” in terms of the number of occurrences in cast_info). As
we can observe in Figures 13a-d, when the correlation is extremely skewed (i.e., the original JCC-H

and cast_info ⊲⊳ name), DHH, that has fixed thresholds, exploits the skew in the join correlation

to achieve close-to-NOCAP performance. However, when it comes to medium skew (i.e., tuned

JCC-H and cast_info ⊲⊳ title), NOCAP outperforms DHH.

6 DISCUSSION

General (Many-to-Many) Joins. In many-to-many joins, we have two CT lists that store the

frequency per key in each relation, and thus we need to create a new cost function (with twoCT lists)
to use as the main objective function. Despite that, we can still reuse our dynamic programming

algorithm (Algorithm 5) and replace CalCost by considering extra CT values, however, the error

bound is no longer guaranteed since our main theorem does not hold. In practice, even this crude

approximation of the optimal partitioning for general joins is worth exploring since the CPU cost of

enumerating partitioning schemes is very low, and it covers the design space of DHH with variable

values for its two thresholds. As a result, NOCAP is still expected to outperform DHH for general

joins. We leave the complete formulation for many-to-many joins as future work.

On-the-fly Sampling. On-the-fly sampling can give us more accurate CT values because it takes

into account the applied predicate while MCVs only rely on the estimated selectivity. However,

relying on sampling without knowledge of MCVs makes the partitioning operation not pipelineable

with the scan/select operator. This is because partitioning relies on the exact join correlation,
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but in case of sampling we need one complete pass first to acquire this information. In this case,

we may downgrade NOCAP into DHH to avoid the additional pass. Another approach proposed

by Flow-join [48] is to employ a streaming sketch to obtain an approximate distribution during

partitioning. However, this requires scanning 𝑆 first to build the histogram, which conflicts with

partitioning 𝑅 first in the hybrid join. On the other hand, if we already have MCVs (note that it is

acceptable to be noisy), sampling on-the-fly to enable sideways information passing (SIP) [40] can

be helpful. Specifically, we can sample 𝑅 on-the-fly during partitioning and build a Bloom filter

(BF), which is later used when partitioning/scanning 𝑆 . The additional BF makes the estimated

CT more accurate, and thus the partitioning generated by NOCAP is closer to the expected I/O cost.

However, adding a BF introduces new trade-offs between performance and memory consumption.

7 RELATEDWORK

In-Memory Joins. When the memory is enough to entirely fit both relations, in-memory join

algorithms can be applied [5, 6, 34, 43, 50, 52]. Similar to storage-based joins, in-memory join

algorithms can be classified as hash-based and sort-based (e.g., MPSM [1] and MWAY [3]). Hash

joins can be further classified into partitioned joins (e.g., parallel radix join [3]) and non-partitioned

joins (e.g., CHT [4]). GPUs can also be applied to accelerate in-memory joins [22, 35, 49]. Although

storage-based joins focus on #I/Os, when two corresponding partitions 𝑅 𝑗 and 𝑆 𝑗 both fit in memory,

NOCAP can benefit from using the fastest in-memory join algorithm.

Distributed Equi-Joins. In a distributed environment, the efficiency of equi-joins relies on load

balancing and communication costs. When the join correlation distribution is skewed, uniform

partitioning may overwhelm some workers by assigning excessive work [54]. More specifically,

when systems like Spark [57] rely on in-memory computations, the overall performance drops

when the transmitted data for a machine do not fit in memory. Several approaches [7, 32, 48, 56]

are proposed to tackle the data (and thus, workload) skew for distributed equi-joins.

8 CONCLUSION
In this paper, we propose a new cost model for storage-based partitioning PK-FK joins that allows us

to find the optimal correlation-aware partitioning (OCAP) strategy assuming accurate knowledge

of the join correlation. Using this optimal partitioning strategy, we show that the state-of-the-art

Dynamic Hybrid Hash Join (DHH) yields sub-optimal performance since it does not fully exploit

the available memory and the join correlation information. To address DHH’s limitations, based

on OCAP, we develop a practical near-optimal partitioning-based (NOCAP) join algorithm that

supports variable memory constraints. We show that NOCAP dominates the state of the art for any

available memory budget and for any join correlation, leading to up to 30% improvement.
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