
Enumeration Algorithms for Conjunctive Queries
with Projection
Shaleen Deep
Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
shaleen@cs.wisc.edu

Xiao Hu
Department of Computer Sciences, Duke University, Durham, North Carolina, USA
xh102@cs.duke.edu

Paraschos Koutris
Department of Computer Sciences, University of Wisconsin-Madison, Madison, Wisconsin, USA
paris@cs.wisc.edu

Abstract
We investigate the enumeration of query results for an important subset of CQs with projections,
namely star and path queries. The task is to design data structures and algorithms that allow for
efficient enumeration with delay guarantees after a preprocessing phase. Our main contribution
is a series of results based on the idea of interleaving precomputed output with further join
processing to maintain delay guarantees, which maybe of independent interest. In particular, we
design combinatorial algorithms that provide instance-specific delay guarantees in nearly linear
preprocessing time. These algorithms improve upon the currently best known results. Further,
we show how existing results can be improved upon by using fast matrix multiplication. We also
present the first known results involving tradeoff between preprocessing time and delay guarantees for
enumeration of path queries that contain projections. CQs with projection where the join attribute
is projected away is equivalent to boolean matrix multiplication. Our results can therefore be also
interpreted as sparse, output-sensitive matrix multiplication with delay guarantees.

1 Introduction

The efficient evaluation of join queries over static databases is a fundamental problem in
data management. There has been a long line of research on the design and analysis of
algorithms that minimize the total runtime of query execution in terms of the input and
output size [22, 14, 13]. However, in many data processing scenarios it is beneficial to split
query execution into two phases: the preprocessing phase, which computes a space-efficient
intermediate data structure, and the enumeration phase, which uses the data structure to
enumerate the query results as fast as possible, with the goal of minimizing the delay between
outputting two consecutive tuples in the result. This distinction is beneficial for several
reasons. For instance, in many scenarios, the user wants to see one (or a few) results of the
query as fast as possible: in this case, we want to minimize the time of the preprocessing
phase, such that we can output the first results quickly. On the other hand, a data processing
pipeline may require that the result of a query is accessed multiple times by a downstream
task: in this case, it is better to spend more time during the preprocessing phase, to guarantee
a faster enumeration with smaller delay.

Previous work in the database literature has focused on finding the class of queries that
can be computed with O(|D|) preprocessing time (where D is the input database instance)
and constant delay during the enumeration phase. The main result in this line of work
shows that full (i.e., without projections) acyclic Conjunctive Queries (CQs) admit linear
preprocessing time and constant delay [3]. If the CQ is not full but its free variables satisfy
the free-connex property, the same preprocessing time and delay guarantees can still be
achieved. It is also known that for any (possibly non-full) acyclic CQ, it is possible to

© S. Deep, X. Hu and P. Koutris;
licensed under Creative Commons License CC-BY

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

mailto:shaleen@cs.wisc.edu
mailto:xh102@cs.duke.edu
mailto:paris@cs.wisc.edu
https://creativecommons.org/licenses/by/3.0/
https://www.dagstuhl.de/lipics/
https://www.dagstuhl.de

XX:2 Enumeration Algorithms for Conjunctive Queries with Projection

achieve linear delay after linear preprocessing time [3]. When the CQ is full but not acyclic,
factorized databases uses O(|D|fhw) preprocessing time to achieve constant delay, where fhw
is the fractional hypertree width of the query. We should note here that it is always possible
to spend enough preprocessing time to achieve constant delay, since we can always compute
and materialize the result of the query during preprocessing.

The aforementioned prior work investigates specific points in the preprocessing time-delay
tradeoff space. While the story for full acyclic CQs is relatively complete, the same is not
true for general CQs, even for acyclic CQs with projections. For instance, consider the
simplest such query: Qpath = πx,z(R(x, y)onS(y, z)), which joins two binary relations and
then projects out the join attribute. For this query, [3] ruled out a constant delay algorithm
with linear time preprocessing unless the matrix multiplication exponent ω = 2. However,
we can obtain O(|D|) delay with O(|D|) preprocessing time. We can also obtain O(1) delay
with O(|D|2) preprocessing by computing and storing the full result. It is worth asking
whether there are other interesting points in this tradeoff between preprocessing time and
delay. Towards this end, Kara et. al [12] showed that for any hierarchical CQ 1 (possibly
with projections), there always exists a smooth tradeoff between preprocessing time and
delay. This is the first improvement over the results of Bagan et. al [3] in over a decade for
queries involving projections. Applied to the query Qpath, the main result of of [12] shows
that for any ε ∈ [0, 1], we can obtain O(|D|1−ε) delay with O(|D|1+ε) preprocessing time.

In this paper, we continue the investigation of the tradeoff between preprocessing time
and delay for CQs with projections. We focus on two classes of CQs: star queries, which are
a popular subset of hierarchical queries, and a useful subset of non-hierarchical queries known
as path queries. We focus narrowly on these two classes for two reasons. First, star queries
are of immense practical interest given their connections to set intersection, set similarity
joins and applications to entity matching (we refer the reader to [7] for an overview). The
most common star query seen in practice is the query Qpath. The same holds true for path
queries, which are fundamental in graph processing. Second, as we will see in this paper,
even for the simple class of star queries, the tradeoff landscape is complex and requires the
development of novel techniques. We also present a result on another subset of hierarchical
CQs that we call lef-deep.

Our key insight is to design enumeration algorithms that depend not only on the input
size |D|, but are also aware of other data-specific parameters such as the output size. To
give a flavor of our results, consider the query Qpath, and denote by OUTon the output of the
corresponding query without projections, R(x, y)onS(y, z). We can show the following result.

I Theorem 1. Given a database instance D, we can enumerate the output of Qpath =
πx,z(R(x, y)onS(y, z)) with preprocessing time O(|D| log |D|) and delay O(|D|2/|OUTon|).

Note here that the preprocessing time is (almost) linear, while the delay is dependent on
the size of the full join. In the worst case where |OUTon| = Θ(|D|2), we actually obtain the best
delay, which will be constant. Compare this to the result of [12], which would require O(|D|2)
preprocessing time to achieve the same guarantee, giving us a polynomial improvement. On
the other hand, if |OUTon| = Θ(|D|), we obtain only a linear delay guarantee of O(|D|). 2

The reader may wonder how our result compares in general with the tradeoff in [12]; we
will in fact show that the tradeoff in [12] is suboptimal and that Theorem 1 implies that we

1 Hierarchical CQs are a strict subset of acyclic CQs.
2 We do not need to consider the case where |OUTon| ≤ |D|), since then we can simply materialize the full

result during the preprocessing time.

S. Deep, X. Hu and P. Koutris XX:3

Queries Preprocessing Delay Source

Full acyclic CQ O(|D|) O(|D|) [3]
Free-connex CQ (projections) O(|D|) O(1) [3]
Full CQ O(|D|fhw) O(1) [15]
Full CQ O(|D|subw log |D|) O(1) [1]
Hierarchical CQ (projections) O(|D|1+(w−1)ε) O(|D|1−ε), ε ∈ [0, 1] [12]
Star query with k relations (projections) O(|D| log |D|) O(|D|k/(k−1)/|OUTon|1/k−1) this paper
Path query with k relations (projections) O(|D|2−ε/(k−1)) O(|D|ε log |D|), ε ∈ [0, 1) this paper
Left-deep hierarchical CQ (projections) O(|D| · log |D|) O(|D|k/|OUTon|) this paper
Two path query (projections) O(|D2ε) O(|D|1−ε), ε ∈ [2/3, 1] this paper

Figure 1 Preprocessing time and delay guarantees for different queries. |OUTon| denotes the size
of join query under consideration but without any projections. subw denotes the submodular width
of the query.

can always get a strictly better tradeoff point. Figure 1 summarizes the prior work and the
results present in this paper.
Our Contribution. In this paper, we improve the state-of-the-art on the preprocessing
time-delay tradeoff for a subset of CQs with projections. We summarize our main technical
contributions below (highlighted in Figure 1):

1. Our main contribution consists of a novel algorithm (Theorem 7) that achieves output-
dependent delay guarantees for star queries after (almost) linear preprocessing time.
Specifically, we show that for the query πx1,...,xk(R1(x1, y) on · · · on Rk(xk, y)) we can
achieve delay O(|D|k/(k−1)/|OUTon|1/k−1) with almost linear preprocessing. Our key idea
is to identify an appropriate degree threshold to split a relation into partitions of heavy and
light, which allows us to perform efficient enumeration. For star queries, our result implies
that there exists no smooth tradeoff between preprocessing time and delay guarantees as
stated in [12] for the class of star queries.

2. We introduce the novel idea of interleaving join query computation (Section 3) which
forms the foundation for our algorithms, and may be of independent interest in the
context of enumeration algorithms. Specifically, we show that it is possible to union the
output of two algorithms A and A′ with δ delay guarantee where A enumerates query
results with δ delay guarantees but A′ does not. This technique allows us to compute a
subset of a query on-the-fly when enumeration with good delay guarantees is impossible.

3. We show (Subsection 4.4) how fast matrix multiplication can be used to obtain a tradeoff
between preprocessing time and delay that further improves upon the tradeoff in [12].

4. We present an algorithm for left-deep hierarchical queries with almost linear preprocessing
time and output-dependent delay guarantees.

5. Finally, we present the first results on preprocessing time-delay tradeoffs for a non-
hierarchical query with projections, for the class of path queries. A path query has the
form πx1,xk+1(R1(x1, x2) on · · · on Rk(xk, xk+1)). Our results show that we can achieve
delay O(|D|ε · log |D|) with preprocessing time O(|D|2−ε/(k−1)) for any ε ∈ [0, 1).

Organization. We introduce the basic terminology and problem setting in Section 2.
In Section 3, we prove several helper lemmas that may be of independent interest for
enumeration algorithms. Section 4 presents our main results for star queries, Section 6
for left-deep hierarchical queries, and Section 6 for path queries. We discuss related work
in Section 7, and finally conclude in Section 8 with promising future research directions and
open problems.

XX:4 Enumeration Algorithms for Conjunctive Queries with Projection

2 Problem Setting

In this section we present the basic notation and terminology.

2.1 Conjunctive Queries
In this paper we will focus on the class of conjunctive queries (CQs), which we denote as

Q = πy(R1(x1) on R2(x2) on . . . on Rn(xn))

Here, the symbols y,x1, . . . ,xn are vectors that contain variables or constants. We say that
Q is full if there is no projection. We will typically use the symbols x, y, z, . . . to denote
variables, and a, b, c, . . . to denote constants. We use Q(D) to denote the result of the query
Q over input database D.

In this paper, we will focus on CQs that have no constants and no repeated variables in
the same atom (both cases can be handled within a linear time preprocessing step, so this
assumption is without any loss of generality). Such a query can be represented equivalently
as a hypergraph HQ = (VQ, EQ), where VQ is the set of variables, and for each hyperedge
F ∈ EQ there exists a relation RF with variables F .

We will be particularly interested in two families of CQs that are fundamental in query
processing, star and path queries. The star query with k relations is expressed as:

Q∗k = R1(x1,y) on R2(x2,y) on · · · on Rk(xk,y)

where x1, . . . ,xk have disjoint sets of variables. The path query with k (binary) relations is
expressed as:

Pk = R1(x1, x2) on R2(x2, x3) on · · · on Rk(xk, xk+1)

In Q∗k, variables in each relation Ri are partitioned into two sets: variables xi that are
present only in Ri and a common set of join variables y present in every relation.
Hierarchical Queries. A CQ Q is hierarchical if for any two of its variables, either their
sets of atoms are disjoint or one is contained in the other [18]. For example, Q∗k is hierarchical
for any k, while Pk is hierarchical only when k ≤ 2.
Join Size Bounds. Let H = (V, E) be a hypergraph, and S ⊆ V. A weight assignment
u = (uF)F∈E is called a fractional edge cover of S if (i) for every F ∈ E , uF ≥ 0 and (ii) for
every x ∈ S,

∑
F :x∈F uF ≥ 1. The fractional edge cover number of S, denoted by ρ∗H(S) is

the minimum of
∑
F∈E uF over all fractional edge covers of S. We write ρ∗(H) = ρ∗H(V).

Tree Decompositions. Let H = (V, E) be a hypergraph of a CQ Q. A tree decomposition
of H is a tuple (T, (Bt)t∈V (T)) where T is a tree, and every Bt is a subset of V, called the
bag of t, such that

1. each edge in E is contained in some bag; and
2. for each variable x ∈ V, the set of nodes {t | x ∈ Bt} form a connected subtree of T.

The fractional hypertree width of a decomposition is defined as maxt∈V (T) ρ
∗(Bt), where

ρ∗(Bt) is the minimum fractional edge cover of the vertices in Bt. The fractional hypertree
width of a query Q, denoted fhw(Q), is the minimum fractional hypertree width among all
tree decompositions of its hypergraph. We say that a query is acyclic if fhw(Q) = 1.
Computational Model. To measure the running time of our algorithms, we will use
the uniform-cost RAM model [10], where data values as well as pointers to databases are
of constant size. Throughout the paper, all complexity results are with respect to data
complexity, where the query is assumed fixed.

S. Deep, X. Hu and P. Koutris XX:5

2.2 Fast Matrix Multiplication
Let A be a U1×U3 matrix and C be a U3×U2 matrix over any field F . Ai,j is the shorthand
notation for entry of A located in row i and column j. The matrix product is given by
(AC)i,j =

∑U3
k=1Ai,kCk,j . Algorithms for fast matrix multiplication are of extreme theoretical

interest given its fundamental importance. Throughout this paper, will assume that the
exponent ω in matrix multiplication is 2 + o(1) as believed by many researchers. We will
frequently use the following folklore lemma about rectangular matrix multiplication.

I Lemma 2. Let ω be the smallest constant such that an algorithm to multiply two n× n
matrices that runs in time O(nω) is known. Let β = min{U, V,W}. Then fast matrix
multiplication of matrices of size U × V and V ×W can be done in time O(UVWβω−3).

Fixing ω = 2 + o(1), rectangular matrix multiplication can be done in time O(UVW/β).
A long line of research on fast matrix multiplication has dropped the complexity to O(nω),
where 2 ≤ ω < 3. The current best known value is ω = 2.373 [9], but it is believed that the
actual value is 2 + o(1).

2.3 Problem Statement
Given a Conjunctive Query Q and an input database D, we want to enumerate the tuples in
Q(D) in any order. We will study this problem in the enumeration framework similar to
that of [16], where an algorithm can be decomposed into two phases:

Preprocessing phase: it computes a data structure that takes space Sp in preprocessing
time Tp.
Enumeration phase: it outputs Q(D) with no repetitions. This phase has access to
any data structures constructed in the preprocessing phase and can also use additional
space of size Se. The delay δ is defined as the maximum time to output any pair of
consecutive tuples (and also the time to output the first tuple, and the time to notify
that the enumeration phase has completed).

In this work, our goal is to study the relationship between the preprocessing time Tp and
delay δ for a given CQ Q. Ideally, we would like to achieve the best possible delay in linear
preprocessing time but this may not be always possible. As Figure 1 shows, when Q is full,
with Tp = O(|D|fhw), we can enumerate the results with constant delay O(1) [15]. In the
particular case where Q is acyclic, fhw = 1, and hence we can achieve constant delay with
only linear preprocessing time. On the other hand, [3] shows that for every acyclic CQ, we
can achieve linear delay O(|D|) with linear preprocessing time O(|D|)

Recently, [12] showed that it is possible to get a tradeoff between the two extremes, for
the class of hierarchical queries. Note that hierarchical queries are acyclic but not necessarily
free-connex.

I Theorem 3 (due to [12]). Consider a hierarchical CQ Q with factorization width w, and
an input instance D. Then, for any ε ∈ [0, 1] there exists an algorithm that can preprocess D
in time Tp = O(|D|1+(w−1)ε) and space Sp = O(|D|1+(w−1)ε) such that we can enumerate the
query output with

delay δ = O(|D|1−ε) space Se = O(1).

The factorization width w of a hierarchical query is a notion defined by [12]. Intuitively,
it refers to the AGM exponent of the query after removing all relations that do not contain
any projection variables. For πx1,...,xk(Q∗k), the factorization width is w = k. [12] is the first
non-trivial result that improves upon the linear delay guarantees given by [3].

XX:6 Enumeration Algorithms for Conjunctive Queries with Projection

3 Helper Lemmas

Before we present the proof of our main results, we discuss three useful lemmas which will
be used frequently, and may be of independent interest for enumeration algorithms. The
first two lemmas are based on the key idea of interleaving query results which we describe
next. We will say that an algorithm A provides no delay guarantees to mean that its delay
guarantee is its total execution time. In other words, if an algorithm requires time T to
complete, its delay guarantee is upper bounded by T .

I Lemma 4. Consider two algorithms A and A′ such that

1. A enumerates query results in total time T with no delay guarantees.
2. A′ enumerates query results with delay δ and takes T ′ total time.
3. The outputs of A and A′ are disjoint.

Then, the union of the outputs of A and A′ can be enumerated with delay O(δ ·max{1, T/T ′}).

Proof. Let ∆ denote a parameter to be fixed upon later. Note that in every δ time, we can
emit one output result from A′. But since we also want to compute the output from A that
takes overall time T , we need to slow down the enumeration of A′ sufficiently so that we
do not run out of output from A′. This can be done by interleaving the two algorithms
in the following way: we allow A′ to run for δ time and emit (at least) one output tuple,
then switch to A and run it for O(∆) time and then go back to A′. We keep alternating
between the two algorithms. This alternation takes O(1) time in RAM model where the
state of registers and program counter can be stored and retrieved enabling pause and
resume of any algorithm. Our goal is to find a value of ∆ such that A′ does not run out of
enumeration output until A has finished. This condition is satisfied for the smallest value
of ∆ such that T ≤ T ′/δ · ∆ which yields ∆ ≥ T/T ′ · δ. The overall delay guarantee is
O(δ + ∆) = O(δ ·max{1, T/T ′}). J

Lemma 4 tells us that as long as T = O(T ′), the output of A and A′ can be combined
without giving up on delay guarantees by pacing the output of A′. The next lemma introduces
our second key idea of interleaving stored output result with on-the-fly query computation
(the full algorithm is located in Appendix A).

I Lemma 5. Consider an algorithm A that enumerates query results in total time T with
no delay guarantees. Suppose that J output tuples have been stored apriori with no duplicates
tuples, where J ≤ T . Then, there exists an algorithm that enumerates the output with delay
guarantee δ = O(T/J).

Proof. Let δ = c · T/J , where c is a constant. We first store the J output results in a hash
map. Using a similar interleaving strategy as above, we emit one result from J and allow
algorithm A to run for δ time. Whenever A wants to emit an output tuple, it probes the
hash map first and emits t only if t does not appear in the hash map. Each probe takes
O(1) time, so the total running time of A is still O(T). Note that A terminates before the
materialized output runs out. It can be easily checked that no duplicated result is emitted
and O(δ) delay is guaranteed between every pair of consecutive results. Again, observe that
we need the algorithm A to be pausable, which means that we should be able to resume the
execution from where we left off. This can be achieved by storing the contents of all registers
in the memory and loading it when required to resume execution. J

S. Deep, X. Hu and P. Koutris XX:7

The final helping lemma allows us to enumerate the union of (possibly overlapping) results
of m different algorithms, with the additional condition that all algorithms must output the
results using exactly the same order.

I Lemma 6. Consider m algorithms A1,A2, · · · ,Am such that each Ai enumerates its
output Li with O(δ) delay using the same order. Then, the union of their output can be
enumerated (without duplicates) with O(m · δ) delay in the same order.

Algorithm 1: Merge(A1,A2, · · · ,Am)
1 S ← {1, 2, · · · ,m};
2 foreach i ∈ S do
3 ei ← Ai.first() ;
4 while S 6= ∅ do
5 w ← mini∈S ei ; /* finds the smallest output over all algorithms */
6 output w ;
7 foreach i ∈ S do
8 if ei = w then
9 ei ← Ai.next();

10 if ei = null then
11 S ← S − {i} /* the algorithm completes its output */

Proof. We describe Algorithm 1. For simplicity of exposition, we assume that Ai outputs
a null value when it finishes enumeration. Note that results enumerated by one algorithm
are in order, thus it always outputs the locally minimum result over the remaining result
to be enumerated. Algorithm 1 goes over all locally minimum results over all algorithms
and outputs the smallest one as globally minimum result. Once a result is enumerated, all
algorithms needs check whether it matches its locally minimum result. If yes, then Ai needs
to update its locally minimum result by finding the next one. Then, Algorithm 1 just repeats
this loop until all algorithms finish enumeration.

Observe that one distinct result is enumerated in each iteration of the while loop. It
takes O(m) time to find the globally minimum result (line 5) and O(m · δ) to update all local
minimum results (line 7-9). Thus, Algorithm 1 has a delay guarantee of O(m · δ). J

Directly implied by Lemma 6, the list merge problem can be enumerated with delay
guarantees: Given m lists L1, L2, · · · , Lm whose elements are drawn from a common domain,
if elements in Li are distinct (i.e no duplicates) and ordered, then the union of all lists⋃m
i=1 Li can be enumerated in order with delay O(m). Note that the enumeration algorithm
Ai degenerates to going over elements one by one in list Li, which has O(1) delay guarantee
as long as indexes/pointers within Li are well-built. Throughout the paper, we use this
primitive as ListMerge(L1, L2, · · · , Lm).

4 Star Queries

In this section, we study enumeration algorithms for the star query πr(Q∗k) where r ⊆⋃
i∈{1,2,··· ,k} xi. Our main result is Theorem 7 that we present below. We first present a

warm-up proof for πr(Q∗k) in Subsection 4.1, and then in Subsection 4.2 give the proof for the
general result. In the next two subsections, we show how we can obtain different tradeoffs
that can give even better guarantees for certain input instances.

XX:8 Enumeration Algorithms for Conjunctive Queries with Projection

I Theorem 7. Consider the star query with projection πr(Q∗k) where r ⊆
⋃
i∈{1,2,··· ,k} xi

and an instance D 3. There exists an algorithm with preprocessing time Tp = O(|D| log |D|)
and preprocessing space Sp = O(|D|), such that we can enumerate Q∗k(D) with

delay δ = O

(
|D|k/k−1

|OUTon|1/k−1

)
and space Se = O(|D|).

In the above theorem, the delay depends on the full join result size |OUTon| = |Q∗k(D)|. As
the join size increases, the algorithm can obtain better delay guarantees. In the extreme case
when |OUTon| = Θ(|D|k), it achieves constant delay with (almost) linear time preprocessing.
In the other extreme, when |OUTon| = Θ(|D|), it achieves linear delay.

Observe that when |OUTon| ≤ |D|, we can compute and materialize the result of the query
in linear preprocessing time and achieve constant delay enumeration. Generalizing this
observation, with Tp = O(|OUTon|) preprocessing time, we can always achieve constant delay.

It is instructive now to compare Theorem 3 with Theorem 7. Suppose that we want
to achieve delay δ = O(|D|1−ε) for some ε ∈ [0, 1]. Theorem 3 tells us that this requires
O(|D|1+ε(k−1)) preprocessing time. We distinguish two cases:

|OUTon| ≤ |D|1+ε(k−1): we can simply compute the full join Q∗k(D) and materialize it
during the preprocessing phase, hence achieving O(1) delay.
|OUTon| > |D|1+ε(k−1): we invoke the algorithm in Theorem 7 to achieve a better delay
than Theorem 3 using only (nearly) linear preprocessing time, since the inequality
|D|k/k−1/|OUTon|1/k−1 < |D|1−ε strictly holds in this range of |OUTon|.

In other words, there exists no tradeoff between delay and preprocessing time as Theorem 3
suggests: either we have enough preprocessing time to achieve constant delay, or we can
achieve the desirable delay with (nearly) linear preprocessing time. Our results thus imply
that, depending on |OUTon|, one must choose a different algorithm to achieve the optimal
tradeoff between preprocessing time and delay. In the rest of the paper, for simplicity of
exposition, we assume that all variable vectors xi,y in Q∗k are singletons (i.e, all the relations
are binary) and r = {x1, x2, . . . , xk}. The proof for the general query is a straightforward
extension of the binary case.

4.1 Warm-up: 2-Path Query
As a warm-up step, we will present an algorithm for the query Qpath = πx,z(R(x, y)onS(y, z))
that achieves O(|D|2/|OUTon|) delay with (nearly) linear preprocessing time.

At a high level, we will decompose the join into subqueries with disjoint outputs. The
subqueries will be generated based on whether a valuation for x is light or not based on its
degree in relation R. For all light valuations of x (degree at most δ), we will show that their
enumeration is achievable with delay δ. For the heavy x valuations, we will show that they
also can be computed on-the-fly while maintaining the delay guarantees.

Preprocessing Phase. We first process the input relations such that we remove any
dangling tuples. During the preprocessing phase, we will store the input relations as a hash
map and sort the valuations for x in increasing order of their degree. More specifically, for
every tuple t ∈ R(x, y), we create a hash map with key πx(t) and value πy(t); and for every

3 We assume that r contains at least one variable from each xi. Otherwise, we can remove relations with
no projection variables after the preprocessing phase.

S. Deep, X. Hu and P. Koutris XX:9

tuple t ∈ S(y, z), we create a hash map with key πy(t) and value πz(t). Finally, we sort all
values in πx(R) in increasing order of their degrees in R (i.e |σx=viR(x, y)| is the sort key).
Let L = {v1, . . . , vn} denote these values sorted by their degree and let d1, . . . , dn be their
respective degrees. This list is also generated in the preprocessing phase. It is easy to see
that this step takes time O(|D| log |D|).

Algorithm 2: Enumeration Phase

1 left← 1
2 right← n;
3 while left < right do
4 Assume πyσx=vleftR1 = {u1, u2, · · · , u`} and πyσx=vrightR1 = {u′1, u′2, · · · , u′h};
5 ListMerge(πzσy=u1R2, πzσy=u2R2, · · · , πzσy=u`R2) for O(1) time;
6 left← left + 1 if enumeration of left completed;
7 if left = right then
8 break

9 ListMerge(πzσy=u′1R2, πzσy=u′2R2, · · · , πzσy=u′
h
R2) for O(1) time;

10 right← right− 1 if enumeration of right completed;
11 ListMerge(πzσy=u′1R2, πzσy=u′2R2, · · · , πzσy=u′

h
R2);

Enumeration Phase. The enumeration algorithm is presented in Algorithm 2. The
algorithm alternates between low-degree and high-degree values in L. The first key observation
is that, for a given vi ∈ L, we can enumerate the result of the subquery σx=vi(Qpath) with
delay O(di). This can be accomplished by observing that the subquery is equivalent to list
merging and using Algorithm 1. Note that the enumeration output of Algorithm 1 is in
lexicographic order. Our second observation is that we can alternate between low-degree and
high-degree values in L in the following way: we spend O(1) time applying Algorithm 1 on
v1(left pointer) and then spend O(1) time applying Algorithm 1 on vn(right pointer). We
keep alternating until either v1 or vn finishes and then move on to the next (or previous
respectively) value in L.

I Lemma 8. For the query Qpath and an instance D, Algorithm 2 enumerates Qpath(D)
with delay δ = O(|D|2/|OUTon|) and Se = O(|D|).

Proof. Let δ denote the degree di when left = right. First, we claim that the delay will be
O(δ). Indeed, the left side of the algorithm will emit a result every O(δ) time. Because of
the interleaving, the enumeration algorithm will also have the same guarantee.

By construction, when the left and right pointers meet, the algorithm has spent equal
amount of time processing light (di ≤ δ) and heavy (di > δ) values of L. Let Lleft and Lright
denote the set of values that are processed by the left and right pointers respectively. When
the two pointers meet, we must have that full join result of the valuations enumerated by right
(i.e

∑
v∈Lright

|R(v, y)onS(y, z)|) is Jh = Ω(|OUTon|/2). On the other hand, Jh ≤ |D|2/δ since
there are most |D|/δ heavy values in L, and each heavy value can produce at most |D| tuples
for the full join. Combining the two inequalities gives us the claimed delay guarantee. J

I Example 9. Consider relations R and S as shown in Figure 2a and Figure 2b.
Figure 2c shows the sorted valuations a2 and a1 by their degree and the valuations for Z

as sorted lists S[b1], S[b2] and S[b3]. For both a1 and a2, the pointers point to the head of the
lists. We will now show how ListMerge(S[b1], S[b2], S[b3]) is executed for a1. Since there

XX:10 Enumeration Algorithms for Conjunctive Queries with Projection

X Y
a1 b1

a1 b2

a1 b3

a2 b1

(a) Table R

Y Z
b1 c1

b1 c2

b2 c2

b3 c3

(b) Table S

a2 b1

a1 b2

b3

[c1, c2] S[b1]

[c2] S[b2]

[c3] S[b3]

↓↓

↓

↓

(c) output (a1, c1)

b1

a1 b2

b3

[c1, c2]

[c2]

[c3]

↓

↓

↓

(d) output (a1, c2)

b1

a1 b2

b3

[c1, c2]

[c2]

[c3]

↓

↓

↓

(e) output(a1, c3)

Figure 2 Example for two path query enumeration

are three sorted lists that need to be merged, the algorithm finds the smallest valuation across
the three lists. c1 is the smallest valuation and the algorithm outputs (a1, c1). Then, we need
to increment pointers of all lists which are pointing to c1 (S[b1] is the only list containing
c1). Figure 2d shows the state of pointers after this step. The pointer for S[b1] points to c2
and all other pointers are still pointing to the head of the lists. Next, we continue the list
merging by again finding the smallest valuation from each list. Both S[b1] and S[b2] pointers
are pointing to c2 and the algorithm outputs (a1, c2). The pointers for both S[b1] and S[b2]
are incremented and the enumeration for both the lists is complete as shown in Figure 2e. In
the last step, only S[b3] list remains and we output (a1, c3) and increment the pointer for
S[b3]. All pointers are now past the end of the lists and the enumeration is now complete.

The reader should note that the output of all subqueries is computed by going over their
entire join results (and deduplicating smartly). However, this is not the only method to
compute the join-project result for heavy valuations. Indeed, as we will see later, one can
compute the join using fast matrix multiplication (such as [2]) to further improve the delay
guarantees based on the database instance.

Observe also that the delay of δ = O(|D|2/|OUTon|) is only an upper bound. Depending
on the skew present in the database instance, it is possible that Algorithm 2 achieves much
better delay guarantees in practice. We conclude this subsection with a concrete example to
illustrate this.

I Example 10. Consider a relation R(x, y) of size O(N) that contains values v1, . . . , vN
for attribute x. Suppose that each of v1, . . . , vN−1 have degree exactly 1, and each one is
connected to a unique value of y. Also, vN has degree N − 1 and is connected to all N − 1
values of y. Suppose we want to compute Qpath. It is easy to see that OUTon = Θ(N). Thus,
applying the bound of δ = O(N2/|OUTon|) gives us O(N) delay. However, Algorithm 2 will
achieve a delay guarantee of O(1). This is because all of v1, . . . , vN−1 are processed by the
left pointer in O(1) delay as they produce exactly one output result, while the right pointer
processes vN on-the-fly in O(N) time.

4.2 Proof of Main Theorem

We now generalize Algorithm 2 for any star query. At a high level, we will decompose the
join query πx1,...,xk(Q∗k) into a union of k + 1 subqueries whose output is a partition of the
result of original query. These subqueries will be generated based on whether a value for
some xi is light or not. We will show if any of the values for xi is light, the enumeration
delay is small. The k + 1-th subquery will contain heavy values for all attributes. Our key
idea again is to interleave the join computation of the "heavy" subquery with generating the

S. Deep, X. Hu and P. Koutris XX:11

output from any of the remaining subqueries by performing constant amount of work and
alternate between the heavy subquery and the remaining light subqueries.
Preprocessing Phase. Assume all relations are reduced without dangling tuples, which
can be achieved in linear time. The full join size |OUTon| can also computed in linear time.

Set ∆ = (2|D|k
|OUTon|)

1
k−1 . For each relation Ri, a value v for attribute xi is heavy is its degree

(i.e |πyσxi=vR(xi, y)|) is greater than ∆, and light otherwise. Moreover, a tuple t ∈ Ri
is identified as heavy or light depending on whether πxi(t) is heavy or light. In this way,
each relation R is divided into two relations Rh and R`, containing heavy and light tuples
respectively.

The original query can be decomposed into subqueries of the following form: πx1,x2,··· ,xk(R?
1 on

R?
2 on · · · on R?

k) where ? can be either h, ` or ?. Here, R?i simply denotes the original relation
Ri. However, care must be taken to generate the subqueries so that there is no overlap
between the output of any subquery. In order to do so, we create k subqueries of the form

Qi = πx1,...,xk(Rh1 on · · · on Rhi−1 on R`i on R?i+1 on · · · on R?k)

In subquery Qi, relation Ri has superscript `, all relations R1, . . . , Ri−1 have superscript h
and relations Ri+1, . . . , Rk have superscript ?. The k + 1-th query with all ? as h is denoted
by QH . Note that the results of all these subqueries are disjoint.
Enumeration Phase. We next describe how enumeration is performed. The key idea is
the following: We will show that for QL = Q1 ∪ · · · ∪Qk, we can enumerate the result in
delay O(∆). Since QH contains all heavy valuations from all relations, we compute its join
on-the-fly by alternating between some subquery in QL and QH . This will ensure that we
can give some output to user with delay guarantees and also make progress on compute the
full join of QH . The key observation is to make sure that while we compute QH , we do not
run out of the output from QL, i.e, |QH | ≤ |QL|, similar to the algorithm for two-path query.
Moreover, it can be easily shown that each output t = (x1, x2, · · · , xk) is emitted by exactly
one query.

Next, we introduce the algorithm that enumerates output for any specific valuation v
of attribute xi, which is described in Lemma 11. This algorithm can be viewed as another
instantiation of Algorithm 1.

I Lemma 11. Consider an arbitrary value v ∈ dom(xi) with degree d in relation Ri(xi, y).
Then, its query result ×x1,x2,··· ,xkσxi=vR1(x1, y) on R2(x2, y) on · · · on Rk(xk, y) can be
enumerated in order with O(d) delay guarantee.

Proof. Let u be an arbitrary neighbor of vi. Each u is associated with a list of valuations
over attributes (x1, · · · , xi−1, xi+1, · · · , xk), which is a cartesian product of k − 1 sub-lists
σy=uRj(xj , y). Note that such a list is not materialized as that for 2-path query, but this is
not a problem.

We next define the enumeration algorithm Au for each neighbor u ∈ πyσxi=vRi(xi, y),
with lexicographical ordering of attributes (x1, · · · , xi−1, xi+1, · · · , xk). Note that elements
in each list πxjσy=uRj(xj , y) can be enumerated with O(1) delay. Then, Au enumerates
all results in ×j 6=i:j∈{1,2··· ,k}σy=uRj(xj , y) by k − 1 level of nested loops in ordering of
(x1, · · · , xi−1, xi+1, · · · , xk), which has O(k − 1) = O(1) delay. After applying Algorithm 1,
we can obtain enumeration algorithm that enumerates the union of query results over all
neighbors with O(d) delay guarantee. J

Directly implied by Lemma 11, the result of any subquery in QL can be enumerated with
δ = O(∆). Observe that subquery QH can be computed in time |D| · (|D|∆)k−1 = 1

2 |OUTon| in

XX:12 Enumeration Algorithms for Conjunctive Queries with Projection

the worst case. Thus, QH can be computed on the fly without running out of output from
QL. This is because |QL| = |OUTon| − |QH | ≥ 1

2 |OUTon|. We can now apply Lemma 4 where
A is the full join computation of QH , A′ is the enumeration algorithm applied to QL. Our
choice of ∆ ensures that the join output is T = T ′ = 1

2 |OUTon| in the worst-case (and T ≤ T ′
in general). Overall, we have completed the proof for Theorem 7.

4.3 Interleaving with Join Computation

Theorem 7 obtains poor delay guarantees when the full join size |OUTon| approximates the
input size O(|D|). In this section, we present an alternate algorithm that provides good
delay guarantees in this case.

The algorithm is an instantiation of Lemma 5 on the star query, which degenerates to com-
pute as many distinct output results as possible in limited preprocessing time. An observation
is that for each valuation u of attribute y, the cartesian product ×i∈{1,2,··· ,k}πxiσy=uRi(xi, y)
is a subset of output results without duplication. Thus, this subset of output result is
readily available since no deduplication needs to be performed. Similarly, after all rela-
tions are reduced, it is also guaranteed that each valuation of attribute xi of relation Ri
generates at least one output result. Thus, maxki=1 |dom(xi)| results are also readily avail-
able that do not require deduplication. We define J as the larger of the two quantities,
i.e, J = max

{
maxki=1 |dom(xi)|,maxu∈dom(y)

∏k
i=1 |σy=uRi(xi, y)|}

}
. Together with these

observations, we can achieve the following theorem.

I Theorem 12. Consider star query πx1,...,xk(Q∗k) and an input database instance D. There
exists an algorithm with preprocessing time O(|D|) and space O(|D|), such that πx1,...,xk(Q∗k)

can be enumerated with delay δ = O

(
|OUTon|
|OUTπ|1/k

)
and space Se = O(|D|)

In the above theorem, we obtain delay guarantees that depend on both the full join
result OUTon and the projection output size OUTπ. However, one does not need to know OUTon
or OUTπ to apply the result. We first compare the result with Theorem 7. First, observe
that Theorem 12 requires O(|D|) preprocessing instead of O(|D| log |D|) required by The-
orem 7. Second, the delay guarantee provided by Theorem 12 can be better than Theorem 7.
This happens when O(|OUTon|

|OUTπ|1/k
) ≤ O(|D|

k/k−1

|OUTon|1/k−1), which can be further simplified to the
condition |OUTon| ≤ |D| ·O(|OUTπ|(k−1)/k2). Theorem 3 obtains a linear delay guarantee when
ε = 0. This result is recovered by Theorem 12 due to the inequality |OUTon|/|OUTπ|1/k ≤ |D|
for πx1,...,xk(Q∗k) (see [2]).

We now proceed to describe the algorithm. First, we compute all the statistics for
computing J in linear time. If J = |dom(xj)| for some integer j ∈ {1, 2, · · · , k}, we just
materialize one result for each valuation of xj . Otherwise, J =

∏k
i=1 |σy=uRi(xi, y)| for

some valuation u in attribute y. Note that we do need to explicitly materialize the cartesian
product but only need to store the tuples in

⋃
i∈{1,2,··· ,k} σy=uRi(xi, y). As mentioned, each

output in ×ki=1 (πyσy=uRi(xi, y)) can be enumerated with O(1) delay. This preprocessing
phase takes O(|D|) time and O(|D|) space. We invoke Lemma 5 at last. The final observation
is to relate the size of J in terms of |OUTπ|. Note that |OUTπ| ≤ Πi∈[k]|dom(xi)| which implies
that maxi∈[k] |dom(xi)| ≥ |OUTπ|1/k. Thus, it holds that |J | ≥ |OUTπ|1/k which gives us the
desired delay guarantee.

S. Deep, X. Hu and P. Koutris XX:13

4.4 Fast Matrix Multiplication

Theorem 7 tells us that there exists no tradeoff between preprocessing time and delay
guarantees as claimed by Theorem 3 for πx1,...,xk(Q∗k). In this section, we will show how fast
matrix multiplication can be used to obtain a tradeoff between preprocessing time and delay
that is better than Theorem 3 for some values of delay δ.

I Theorem 13. Consider Qpath = πx,z(R(x, y)onS(y, z)). Assume that the ω = 2 for matrix
multiplication. Then, we can enumerate the result of Qpath with Tp = O(|D|2/δ2) and delay
O(δ), for 1 ≤ δ ≤ |D|1/3.

Proof. Our key insight is to use fast matrix multiplication for preprocessing. Let δ be the
degree threshold for deciding whether a valuation is heavy or light. We can partition the
original query into the following subqueries: πx,z(R1(x?, y?)onR2(y?, z?)) where ? can be
either h, ` or ?. The input tuples can also be partitioned into four different cases (which can
be done in linear time since δ is fixed). We handle each subquery separately.

x has ? = ` and z has ? = ?. In this case, we can just invoke ListMerge(vi) for each
valuation vi in attribute x and enumerate the output.
x has ? = h and z has ? = `. In this case, we can invoke ListMerge(vi) for each
valuation vi in attribute z and enumerate the output. Note that there is no overlap of
output between this case and the previous case.
both x, z have ? = h. We compute the output of πx,zR(xh, y?) on S(y?, zh) in preprocessing
phase and obtain O(1)-delay enumeration.

y has ? = `. We compute the full join R(xh, y`) on S(y`, zh) and materialize all distinct
output results, which takes O(|D| · δ) time.
y has ? = h. There are at most |D|/δ valuations in all attributes. We now have a square
matrix multiplication instance for all dimensions are of size O(|D|/δ). Using Lemma 2
with ω = 2, we can evaluate the join in time O((|D|/δ)2).

Overall, the preprocessing time is Tp = O((|D|/δ)2 + |D| · δ). The matrix multiplication
term dominates whenever δ ≤ O(|D|1/3) which gives us the desired time-delay tradeoff. J

For the current best value of ω = 2.373, we get the tradeoff as Tp = O((|D|/δ)2.37) and a
delay guarantee of O(δ), |D|0.15 < δ ≤ |D|0.40. If we choose δ = |D|0.40, the preprocessing
time is Tp = O(|D|1.422). In contrast, Theorem 3 requires a preprocessing time of Tp =
O(|D|1.6), which is suboptimal compared to the above theorem. On the other hand, since
Tp = O(|D|1.422), we can assume that |OUTon| = Ω(|D|1.422), otherwise one can simply
compute the full join, deduplicate and get constant delay enumeration. Applying Theorem 7
with |OUTon| = Ω(|D|1.422) tells us that we can obtain delay as O(|D|2/|OUTon|) ≤ O(|D|0.58).
Thus, we can now offer the user both the choices and the user can make the decision on
which enumeration algorithm to use.

We can also extend the algorithm to πx1,...,xk(Q∗k) as well. When any of the xi valu-
ation is light, we can partition the relations into k subqueries as described for star quer-
ies and apply Lemma 6 allowing for O(δ) enumeration. The k + 1th query is QH =
πx1,...xk(Rh1 (x1, y)onRh2 (x2, y)on . . .onRhk(xk, y)) which can be evaluated in the preprocessing
step in time O(|D| · δk−1 + (|D|/δ)k) [7] (assuming ω = 2 + o(1)). Thus, we get the tradeoff
as Tp = O((|D|/δ)k) and delay O(δ) for 1 ≤ δ ≤ |D|1/(k+1) for projection over star queries.

XX:14 Enumeration Algorithms for Conjunctive Queries with Projection

5 Left-Deep Hierarchical Queries

In this section, we will apply our techniques to another subset of hierarchical queries, which
we call left-deep. A left-deep hierarchical query is of the following form:

Qkleftdeep = R1(w1, x1)onR2(w2, x1, x2)on . . .onRk−1(wk−1, x1, . . . , xk−1)onRk(wk, x1, . . . , xk−1)

It is easy to see that Qkleftdeep is a hierarchical query for any k ≥ 1. Note that for k = 2,
we get the two-path query. For k = 3, we get R(w1, x1) onS(w2, x1, x2)onT (w3, x1, x2). We
will be interested in computing the query πw1,...,wk(Qkleftdeep), where we project out all the
join variables. We show that the following result holds:

I Theorem 14. Consider the query πw1,...,wk(Qkleftdeep) and any input database D. Then,
there exists an algorithm that enumerates the query after preprocessing time Tp = O(|D| log |D|)
with delay O(|D|k/|OUTon|).

In the above theorem, OUTon is the full join result of the query without projections,
Qkleftdeep. The AGM exponent for Qkleftdeep is ρ∗ = k. Observe that Theorem 14 is of interest
when |OUTon| ≥ |D|k−1 to ensure that the delay is smaller than O(|D|). When the condition
|OUTon| ≥ |D|k−1 holds, the delay obtained by Theorem 14 is also better than the one given
by the tradeoff in Theorem 3. In the worst case when |OUTon| = Θ(|D|k), we can achieve
constant delay enumeration after (almost) linear preprocessing time, compared to Theorem 3
that would require Θ(|D|k) preprocessing time to achieve the same delay.

6 Path Queries

In this section, we will study path queries. In particular, we will present an algorithm that
enumerates the result of the query πx1,xk+1(Pk), i.e., the CQ that projects the two endpoints
of a path query of length k. Recall that for k ≥ 3, Pk is not a hierarchical query, and hence
the tradeoff from [12] does not apply. Instead, we show that the following tradeoff holds.

I Theorem 15. Consider the query πx1,xk+1(Pk) with k ≥ 2. For any input instance D and
parameter ε ∈ [0, 1) there exists an algorithm that enumerates the query with preprocessing
time (and space) Tp = O(|D|2−ε/(k−1)) and delay O(|D|ε · log |D|).

We should note here that for ε = 1, we can obtain a delay O(|D|) using only linear
preprocessing time O(|D|), while for ε→ 1 the above theorem would give preprocessing time
O(|D|2−1/(k−1)). Hence, for k ≥ 3, we observe a discontinuity in the time-delay tradeoff.

A second observation following from Theorem 15 is that as k →∞, the tradeoff collapses
to only two extremal points: one where we get constant delay with Tp = O(|D|2), and the
other where we get linear delay with Tp = O(|D|).

7 Related Work

We overview prior work on static query evaluation for acyclic join-project queries. The result
of any acyclic conjunctive query can be enumerated with constant delay after linear-time
preprocessing if and only if it is free-connex [3]. This is based on the conjecture that
Boolean multiplication of n × n matrices cannot be done in O(n2) time. Acyclicity itself
is necessary for having constant delay enumeration: A conjunctive query admits constant
delay enumeration after linear-time preprocessing if and only if it is free-connex acyclic [6].
This is based on a stronger hypothesis that the existence of a triangle in a hypergraph of

S. Deep, X. Hu and P. Koutris XX:15

n vertices cannot be tested in time O(n2) and that for any k, testing the presence of a
k-dimensional tetrahedron cannot be tested in linear time. We refer the reader to an overview
of pre-2015 for problems and progress related to constant delay enumeration [17]. Prior work
also exhibits a dependency between the space and enumeration delay for conjunctive queries
with access patterns [8]. It constructs a succinct representation of the query result that allows
for enumeration of tuples over some variables under value bindings for all other variables. As
noted by [12], it does not support enumeration for queries with free variables, which is also
its main contribution. Our work demonstrates that for a subset of hierarchical queries, the
tradeoff shown in [12] is not optimal. Our work introduces fundamentally new ideas that
may be useful in improving the tradeoff for arbitrary hierarchical queries and enumeration of
UCQs. There has also been some experimental work by the database community on problems
related to enumerating join-project query results efficiently but without any formal delay
guarantees. Seminal work [20, 19, 21] has studied how compressed representations can be
create apriori that allow for faster enumeration of query results. Also related is the problem
of dynamic evaluation of hierarchical queries. Recent work [11, 12, 4, 5] has studied the
tradeoff between amortized update time and delay guarantees.

8 Conclusion and Open Problems

In this paper, we studied the problem of enumerating query results for an important subset
of CQs with projections, namely star and path queries. We presented data-dependent
algorithms that improve upon existing results by achieving non-trivial delay guarantees
in (almost) linear preprocessing time. Our results are based on the idea of interleaving
join query computation to achieve meaningful delay guarantees. Further, we showed how
non-combinatorial algorithms (fast matrix multiplication) can be used for faster preprocessing
to improve the tradeoff between preprocessing time and delay. We also presented the first
results on time-delay tradeoffs for a subset of non-hierarchical queries for the class of path
queries. The results in this paper take the first step towards introducing techniques that
may be of independent interest for enumerating UCQs and achieving better instance specific
delay guarantees for CQs. Our results also open several new tantalizing questions that open
up possible directions for future work.

Extending to hierarchical queries. The first main question is to understand whether
our techniques can be extended to arbitrary hierarchical queries. Theorem 14 suggests that
this may be possible, depending on the output size of the query.

More preprocessing time for star queries. The second major open question is
to show whether Theorem 7 can benefit from more preprocessing time to achieve lower
delay guarantees. For instance, if we can afford the algorithm preprocessing time Tp =
O(|OUTon|1−ε + |D|) time, can we expect to get delay δ = O(|D|ε) for all ε ∈ (0, 1)?

Sublinear delay guarantees for two-path query. It is not known whether we can
achieve sublinear delay guarantee in linear preprocessing time for Qpath query. This question
is equivalent to the following problem: for what values of |OUTπ| can Qpath be evaluated in
linear time. If |OUTπ| = |D|ε, then the best known algorithms can evaluate Qpath in time
O(|D|1+ε/3) (using fast matrix multiplication) [7] but this is still superlinear.

Space-delay bounds. The last question is to study the tradeoff between space vs delay
for arbitrary hierarchical queries and path queries. Using some of our techniques, it may be
possible to smartly materialize a certain subset of joins that could be used to achieve delay
guarantees by interleaving with join computation.

XX:16 Enumeration Algorithms for Conjunctive Queries with Projection

References
1 M. Abo Khamis, H. Q. Ngo, and D. Suciu. What do shannon-type inequalities, submodular

width, and disjunctive datalog have to do with one another? In Proceedings of the 36th ACM
SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems, pages 429–444,
2017.

2 R. R. Amossen and R. Pagh. Faster join-projects and sparse matrix multiplications. In
Proceedings of the 12th International Conference on Database Theory, pages 121–126. ACM,
2009.

3 G. Bagan, A. Durand, and E. Grandjean. On acyclic conjunctive queries and constant delay
enumeration. In International Workshop on Computer Science Logic, pages 208–222. Springer,
2007.

4 C. Berkholz, J. Keppeler, and N. Schweikardt. Answering conjunctive queries under updates. In
proceedings of the 36th ACM SIGMOD-SIGACT-SIGAI symposium on Principles of database
systems, pages 303–318. ACM, 2017.

5 C. Berkholz, J. Keppeler, and N. Schweikardt. Answering fo+ mod queries under updates on
bounded degree databases. ACM Transactions on Database Systems (TODS), 43(2):7, 2018.

6 J. Brault-Baron. De la pertinence de l’énumération: complexité en logiques propositionnelle et
du premier ordre. PhD thesis, Université de Caen, 2013.

7 S. Deep, X. Hu, and P. Koutris. Fast join project query evaluation using matrix multiplication.
arXiv preprint arXiv:2002.12459, 2020.

8 S. Deep and P. Koutris. Compressed representations of conjunctive query results. In Proceedings
of the 35th ACM SIGMOD-SIGACT-SIGAI Symposium on Principles of Database Systems,
pages 307–322. ACM, 2018.

9 F. L. Gall and F. Urrutia. Improved rectangular matrix multiplication using powers of
the coppersmith-winograd tensor. In Proceedings of the Twenty-Ninth Annual ACM-SIAM
Symposium on Discrete Algorithms, pages 1029–1046. SIAM, 2018.

10 J. E. Hopcroft, J. D. Ullman, and A. Aho. The design and analysis of computer algorithms,
1975.

11 A. Kara, H. Q. Ngo, M. Nikolic, D. Olteanu, and H. Zhang. Counting triangles under updates
in worst-case optimal time. In 22nd International Conference on Database Theory, 2019.

12 A. Kara, M. Nikolic, D. Olteanu, and H. Zhang. Trade-offs in static and dynamic evaluation
of hierarchical queries. In arXiv preprint arXiv:1907.01988, 2019.

13 H. Q. Ngo, E. Porat, C. Ré, and A. Rudra. Worst-case optimal join algorithms. In Proceedings
of the 31st ACM SIGMOD-SIGACT-SIGAI symposium on Principles of Database Systems,
pages 37–48. ACM, 2012.

14 H. Q. Ngo, C. Ré, and A. Rudra. Skew strikes back: new developments in the theory of join
algorithms. SIGMOD Record, 42(4):5–16, 2013.

15 D. Olteanu and M. Schleich. Factorized databases. ACM SIGMOD Record, 45(2):5–16, 2016.
16 L. Segoufin. Constant delay enumeration for conjunctive queries. SIGMOD Record, 44(1):10–17,

2015.
17 L. Segoufin. Constant delay enumeration for conjunctive queries. ACM SIGMOD Record,

44(1):10–17, 2015.
18 D. Suciu, D. Olteanu, C. Ré, and C. Koch. Probabilistic databases, synthesis lectures on data

management. Morgan & Claypool, 2011.
19 K. Xirogiannopoulos and A. Deshpande. Extracting and analyzing hidden graphs from

relational databases. In Proceedings of the 2017 ACM International Conference on Management
of Data, pages 897–912. ACM, 2017.

20 K. Xirogiannopoulos, U. Khurana, and A. Deshpande. Graphgen: Exploring interesting graphs
in relational data. Proceedings of the VLDB Endowment, 8(12):2032–2035, 2015.

21 K. Xirogiannopoulos, V. Srinivas, and A. Deshpande. Graphgen: Adaptive graph processing
using relational databases. In Proceedings of the Fifth International Workshop on Graph

S. Deep, X. Hu and P. Koutris XX:17

Data-management Experiences & Systems, GRADES’17, pages 9:1–9:7, New York, NY, USA,
2017. ACM.

22 M. Yannakakis. Algorithms for acyclic database schemes. In VLDB, volume 81, pages 82–94,
1981.

XX:18 Enumeration Algorithms for Conjunctive Queries with Projection

A Algorithm for Lemma 5

Algorithm 3 describes the detailed algorithm for Lemma 5.

Algorithm 3: Deduplicate(J,A)
Input : Materialized output J , Algorithm A
Output : Deduplicated result of A and J

1 δ ← T/J, ptr← &J, dedup← &J
2 H ← ∅ /* empty hashset */
3 while ptr 6= null do
4 output ∗ptr /* output result from J to maintain delay guarantee */
5 ∗ptr← ∗ptr + 1, counter← 0
6 while counter ≤ O(δ) do
7 if A has not completed then
8 Execute/Resume A for O(1) time and insert any output generated into H;
9 counter← counter +O(1);

10 else
11 if dedup 6= &J.end() /* remove all J tuples from H */
12 then
13 Delete ∗dedup from H if it exists;
14 dedup← dedup + 1, counter← counter +O(1);
15 foreach t ∈ H do
16 output t

B Proofs

I Theorem 14. Consider the query πw1,...,wk(Qkleftdeep) and any input database D. Then,
there exists an algorithm that enumerates the query after preprocessing time Tp = O(|D| log |D|)
with delay O(|D|k/|OUTon|).

Proof. The algorithm is based on ListMerge subroutine from Lemma 6. We distinguish
two cases based on the degree of valuations of variable wk. If some valuation of wk (say
v) is light (degree is at most δ), then we can enumerate the join result with delay O(δ).
Since there are at most δ tuples U = σwk=vRk, each u ∈ U is associated with a list of
valuations over attributes (w1, w2, . . . , wk−1), which is a cartesian product of k − 1 sub-lists
πwiσx1=u[x1],...,xi=u[xi]Ri. The elements of each list can be enumerated in O(1) delay in
lexicographic order. Thus, we only need to merge the δ sublists which can be accomplished
in O(δ) time using Lemma 6.

We now describe how to process all wk valuations that are heavy. The key observation
here is that the full-join result with no projections for this case can be upper bounded
by |D|k/δ since there are at most |D|/δ heavy wk valuations. The full-join result can be
computed and deduplicated in time O(|D|k/δ) using any worst-case optimal join algorithm.
We can now apply Lemma 5 where A′ is the list-merging algorithm for the light case, A is
the worst-case optimal join algorithm for the heavy case and δ = 2 · |D|k/|OUTon|. Here we
should note that |OUTon| can be computed during the preprocessing phase that also sorts and
indexes the relations, and requires O(|D| log |D|) time. J

S. Deep, X. Hu and P. Koutris XX:19

I Theorem 15. Consider the query πx1,xk+1(Pk) with k ≥ 2. For any input instance D and
parameter ε ∈ [0, 1) there exists an algorithm that enumerates the query with preprocessing
time (and space) Tp = O(|D|2−ε/(k−1)) and delay O(|D|ε · log |D|).

Proof. Let ∆ be a parameter that we will fix later. In the preprocessing phase, we first
perform a full reducer pass to remove dangling tuples, and then create for each relation
Ri(xi, xi+1) a hash map with key xi, and all its corresponding xi+1 values sorted for each
key entry. (We also store the degree of each value.) Next, for every i = 1, . . . , k, and every
heavy value a of xi in Ri (with degree > ∆), we compute the query πxk+1(Ri(a, xi+1) on
· · · on Rk(xk, xk+1)), and store its result sorted in a hash map with key a. Note that each
such query can be computed in time O(|D|) through a sequence of semijoins and projections.
Since there are at most |D|/∆ heavy values for each xi, the total running time (and space
necessary) for this step is O(|D|2/∆).

We will present the enumeration algorithm using induction. In particular, we will show
that for each i = k, . . . , 1 and for every value a of xi, the subquery πxk+1(Ri(a, xi+1) on · · · on
Rk(xk, xk+1)) can be enumerated (using the same order) with delay O(∆k−i · log |D|). This
implies that our target path query can be enumerated with delay O(∆k−1 · log |D|), by simply
iterating through all values of x1 in R1. Finally we can obtain the desired result by choosing
∆ = |D|ε/(k−1).

Indeed, for the base case (i = k) it is trivial to see that we can enumerate πxk+1(Rk(a, xk+1))
in constant time O(1) using the stored hash map. For the inductive step, consider some i,
and a value a for xi in Ri. If the value a is heavy, then we can enumerate all the xk+1’s with
constant delay by probing the hash map we computed during the preprocessing phase. If the
value is light, then there are at most ∆ values of xi+1. For each such value b, the inductive
step provides an algorithm that enumerates all xk+1 with delay O(∆k−i−1 · log |D|) (the log
factor appears from sorting the lists). Observe that the order across all b’s will be the same.
Thus, we can apply Lemma 6 to obtain that we can enumerate the union of the results with
delay O(∆ ·∆k−i−1 · log |D|) = O(∆k−i · log |D|). J

	Introduction
	Problem Setting
	Conjunctive Queries
	Fast Matrix Multiplication
	Problem Statement

	Helper Lemmas
	Star Queries
	Warm-up: 2-Path Query
	Proof of Main Theorem
	Interleaving with Join Computation
	Fast Matrix Multiplication

	Left-Deep Hierarchical Queries
	Path Queries
	Related Work
	Conclusion and Open Problems
	Algorithm for Lemma 5
	Proofs

