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ABSTRACT
Sampling over joins is a fundamental task in large-scale
data analytics. Instead of computing the full join results,
which could be massive, a uniform sample of the join results
would su�ce for many purposes, such as answering analyt-
ical queries or training machine learning models. In this
paper, we study the problem of how to maintain a random
sample over joins while the tuples are streaming in. With-
out the join, this problem can be solved by some simple and
classical reservoir sampling algorithms. However, the join
operator makes the problem significantly harder, as the join
size can be polynomially larger than the input. We present
a new algorithm for this problem that achieves a near-linear
complexity. The key technical components are a general-
ized reservoir sampling algorithm that supports a predicate,
and a dynamic index for sampling over joins. We also con-
duct extensive experiments on both graph and relational
data over various join queries, and the experimental results
demonstrate significant performance improvement over the
state of the art.

1. INTRODUCTION
In large-scale data analytics, people often need to com-

pute complicated functions on top of the query results over
the underlying relational database. However, the join op-
erator presents a major challenge, since the join size can
be polynomially larger than the original database. Com-
puting and storing the join results is very costly, especially
as the data size keeps increasing. Sampling the join results
is thus a common approach used in many complicated an-
alytical tasks while providing provable statistical guaran-
tees. One naive method is to first materialize the join re-
sults in a table and then randomly access the table, but
this loses the performance benefit of sampling. As early
as 1999, two prominent papers [10, 7] asked the intriguing
question, of whether a sample can be obtained without com-
puting the full join. As observed in by [10], the main barrier
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is that the sampling operator cannot be pushed down, i.e.,
samplepR ’ Sq ‰ samplepRq ’ samplepSq. To overcome this
barrier, the idea is to design some indexes to guide the sam-
pling process. Notably, an index was proposed for acyclic
joins [13] that can be built in OpNq time, where N is the
number of tuples in the database, which can then be used
to draw a sample of the join results in Op1q time [18, 9].

This problem becomes more challenging in the streaming
setting, where input tuples arrive at a high velocity. How
to e�ciently and continuously maintain a uniform sample of
the join results produced by tuples seen so far? One naive
solution would be to rebuild the index and re-draw the sam-
ples after each tuple has arrived, but this results in a total
runtime of OpN2q to process a stream with N tuples. Re-
cently, [19] applied the reservoir sampling algorithms [17, 16]
to this problem to update the sample incrementally. How-
ever, their index also su↵ers from a high maintenance cost
that still leads to a total runtime of OpN2q in the worst case.

This paper presents a new reservoir sampling algorithm
for maintaining a sample over joins with a near-linear run-
time of OpN log N ` k log N log N

k q, where k is the given
sample size. Our algorithm does not need the knowledge
of N ; equivalently speaking, it works over an unbounded
stream, and the total runtime over the first N tuples, for
every N P Z`, satisfies the aforementioned bound. This re-
sult is built upon the following two key technical ingredients,
both of which are of independent interest.

Reservoir sampling with predicate. The classical reservoir
sampling algorithm, attributed to Waterman by Knuth [15],
maintains a sample of size k in OpNq time over a stream
of N items, which is already optimal. Assuming there is a
skip(i) operation that can skip the next i items and jump
directly to the next pi ` 1q-th item in Op1q time, the com-
plexity can be further reduced to Opk log N

k q, and there are
several algorithms achieving this [17, 16]. In this paper, we
design a more general reservoir sampling algorithm that, for
a given predicate ✓, maintains a sample of size k only over
the items on which ✓ evaluates to true. The complexity

of our algorithm is O
´�N

i“1 min
`
1, k

ri`1

˘¯
, where ri is the

number of items in the first i ´ 1 items that pass the pred-
icate. Note that when ✓p¨q ” true, we have ri “ i ´ 1 and
the bound simplifies to Opk log N

k q, matching the classical re-
sult. Meanwhile, the complexity degrades gracefully as the
stream becomes sparser, i.e., less items pass the predicate.
Intuitively, sparse streams requires more care and we cannot
skip too aggressively. In the extreme case where only one
item passes the predicate, then the algorithm is required to
return that item as the sample, and we have to check every
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item in order not to miss it.
However, the assumption that skip(i) takes Op1q time is

usually not true: One has to at least use a counter to count
how many items have been skipped, which already takes
Opiq time. Interestingly, the reservoir sampling over joins
problem provides a nice scenario where this assumption is
true, except that it has an Oplog Nq cost. It is known [8] that

the join results of N tuples can be as many as N�˚
, where

⇢˚ is the fractional edge cover number of the join. Thus,
the stream of input tuples implicitly defines a polynomially
longer (conceptual) stream of join results, which we want to
sample from. As there is good structure in the latter, there
is no need to materialize this simulated join result stream,
and it is possible to skip its items without counting them
one by one.

Dynamic sampling from joins. Let Q be an acyclic join
query, R a database instance of size N , and QpRq the join
results of Q on R. The second technical ingredient is an
index structure that supports the following operations:

(1) After a tuple is added to R, the index structure can be
updated in Oplog Nq time amortized.

(2) The index implicitly defines an array J that contains
QpRq plus some dummy tuples, but it is guaranteed that
|J | “ Op|QpRq|q, i.e., the dummy tuples are no more
than a constant fraction. For any given j P r|J |s, the in-
dex can return Jrjs in Oplog Nq time. It can also return
|J | in Op1q time.

(3) The above is also supported for the delta query �QpR, tq :“
QpR Y ttuq ´ QpRq for any tuple t R R.

Note that operation (2) above directly solves the join sam-
pling problem: We simply generate a random j P r|J |s and
find Jrjs, and repeat if it is dummy. Since |J | “ Op|QpRq|q,
this process will terminate after Op1q trials in expectation,
so the time to draw a sample is Oplog Nq expected. This is
only slightly slower than the previous index structures [18,
9], which are inherently static. Furthermore, operations (1)
and (2) together also provide a solution for the reservoir
sampling over join problem: For each tuple, we first update
the index in Oplog Nq time and then re-draw k samples in
Opk log Nq time. This leads to a total time of OpNk log Nq,
already better than [19], but still not near-linear.

To achieve near-linear time, we use operation (3) in con-
junction with our reservoir sampling algorithm. The obser-
vation is that each incoming tuple t adds a batch of join
results, which are defined by the delta query �QpR, tq. If
we can access any tuple in �QpR, tq by position, then we
can implement a skip easily. Our index can almost provide
this functionality, except that it does so over �J , which is
a superset of �QpR, tq that contains some dummy tuples.
This is exactly the reason why we need a reservoir sampling
algorithm that supports a predicate. We will run it over the
stream of batches, where each batch is the �J of the cor-
responding delta query. The predicate evaluates to true for
the real tuples while false for the dummies. Finally, since
each batch is dense (at least a constant fraction is real), our
reservoir sampling algorithm will have good performance.

2. PROBLEM DEFINITION
A multi-way (natural) join query can be defined as a hy-

pergraph Q “ pV, Eq [6], where V is the set of attributes,

and E � 2V is the set of relations. Let dompxq be the do-
main of attribute x P V. A database instance R consists of
a relation instance Re for each e P E , which is a set of tuples
and each tuple t P Re specifies a value in dompvq for each
attribute v P e. For a tuple t, we use suppptq to denote the
support of t, i.e., the set of attributes on which t is defined.
For attribute(s) x and tuple t with x � suppptq, the projec-
tion ⇡xt is the value of tuple t on attribute(s) x. The join
results of Q over instance R, denoted by QpRq, is the set
of all combinations of tuples, one from each Re, that share
common values for their common attributes, i.e.,

QpRq “
#

t P
�

xPV
dompxq | @e P E , Dte P Re, ⇡et “ te

+
.

For relation Re and tuple t, the semi-join Re ˙ t returns
the set of tuples from Re which have the same value(s) on
the attribute(s) e X suppptq with t. For a pair of relations
Re, Re1 , the semi-join Re ˙ Re1 is the set of tuples from Re

which has the same value(s) on the attribute(s) e X e1 with
at least one tuple from Re1 . Note that for a join query Q,
the delta query �QpR, tq is equal to QpR Y ttuq ˙ t.

In the streaming setting, we model each tuple as a triple
u “ pt, i, Req for i P Z`, indicating that tuple t is inserted
into relation Re at time i. Let D be the stream of input
tuples, ordered by their timestamp. Let Ri be the database
defined by the first i tuples of the stream, and set R0 “
H. We use N to denote the length of the stream, which is
only used in the analysis. The algorithms will not need the
knowledge of N , so they work over an unbounded stream.

There are two versions of the join sampling problem: As
studied in [7, 10, 18, 9, 11, 12, 14], one is an indexing (data
structure) problem where we wish to have an index that
supports drawing a sample from QpRiq. For this problem,
we care about the sampling time ts and the update time tu.
For a static index, we care about the index construction time
and the sampling time. The other is the reservoir sampling
problem, as studied in [17, 16, 19], where we wish to main-
tain k random samples from QpRiq without replacement for
every QpRiq, i P Z`. For this problem, we care about the
total runtime. Note that any solution for the former yields a
solution for the latter with total time Optu ¨N ` ts ¨Nkq, but
this may not be optimal. For both versions of the problem,
all algorithms, including ours, use OpNq space.

We follow the convention of data complexity [6] and an-
alyze the runtime in terms of the input size N and sample
size k, while taking the size of Q (i.e., |V| and |E |) as a con-
stant. We follow the set semantics, so inserting a tuple into
a relation that already has it has no e↵ect, thus duplicates
have been removed from the input stream.

3. RESERVOIR SAMPLING WITH PREDI-
CATE

3.1 Reservoir Sampling Revisited
Reservoir sampling [17, 16] is a family of algorithms for

maintaining a random sample, without replacement, of k
items from a possibly infinite stream. The classical version
[15] works as follows. (Step 1) It initializes an array S (called
the reservoir) of size k, which contains the first k items of the
input. (Step 2) For each new input xi, it generates a random
number j uniformly in r1, is. If j � k, then it replaces Srjs
with xi. Otherwise, it simply discards xi. At any time, S is
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Algorithm 1: ReservoirpD, k, ✓q
Input : An input stream D of items, an integer

k � 0, and a predicate ✓;
Output: A set S maintaining k random samples

without replacement of items on which ✓
evaluates to true;

1 S � H;
2 while |S| � k do
3 x � D.nextpq;
4 if x “ null then break;
5 if ✓pxq then S � S Y txu;
6 w � randpq1{k;
7 q � tlnprandpqq{ lnp1 ´ wqu;
8 while true do
9 x � D.skippqq;

10 if x “ null then break;
11 if ✓pxq then
12 y � a randomly chosen item from S;
13 S � S ´ tyu ` txu;
14 w � w ¨ randpq1{k;

15 q � tlnprandpqq{ lnp1 ´ wqu; (q „ Geopwq)

S
Yes

wi � w?

update w

Yes
�pxiq? xi`1

wi`1

xi`2

wi`2

xi`3

wi`3

¨ ¨ ¨

S
Yes

�pxiq?

update w

Yes
wi � w? xi`1

wi`1

xi`2

wi`2

xi`3

wi`3

¨ ¨ ¨

Figure 1: Comparison between the naive (above) and our
algorithm (below) on reservoir sampling with predicate.

a uniform sample without replacement of k items of all items
processed so far. Clearly, this algorithm takes OpNq time to
process a stream of N items. Also, the algorithm does not
need the knowledge of N , so it works over an unbounded
stream.

Assuming a skip(i) operation that can skip the next i items
in Op1q time, more e�cient versions are known. In particu-
lar, we will make use of the one from [16]. It is based on the
fact that, in a set of N independent random numbers drawn
the uniform distribution Unip0, 1q, the indices of the small-
est k random numbers are a sample without replacement
from the index set t1, 2, ¨ ¨ ¨ , Nu. The algorithm works as
follows. (Step 1) It initializes S as before, and set w “ u1{k

for u „ Unip0, 1q. (Step 2) It draws a random number q
from the geometric distribution Geopwq, and skip the next q
items. It then replaces a random item from S with xi, and
updates w to w ¨ u1{k for u „ Unip0, 1q. It can be shown [16]
that at any time, S is a sample without replacement of k
items of all items processed so far, and this algorithm runs
in Opk ¨ log N

k q expected time, which is optimal.

3.2 Reservoir Sampling with Predicate
The problem of reservoir sampling with predicate is de-

fined as follows. Given an input stream of items, a predi-
cate ✓ and an integer k � 0, it asks to maintain a sample
of size k of all items on which ✓ evaluates to true (these
items are also called real items, while the others dummy).
We assume that ✓ can be evaluated in Op1q time. Note that
the OpNq-time algorithm easily supports a predicate: We
just evaluate ✓ on each item and feed the real items to the
algorithm as illustrated in Figure 1. It is more nontrivial
to adapt the Opk log N

k q algorithm since the skip operation
skips an unknown number of real items.

We adapt the reservoir sampling algorithm [16] to Algo-
rithm 1. The insight is that the random variable wi, which
is drawn from Unip0, 1q when item x is visited, is indepen-
dent of ✓pxq. This property allows us to swap the order of
the two comparisons (wi � w and whether ✓pxq is true), as
illustrated in Figure 1. Note that we do not need to explic-
itly assign a random number to each item as the number of
failures before the next success (i.e., wi � w) follows a geo-
metric distribution parameterized by w. As in [16], we draw
a random variable q „ Geopwq to determine the number of
items to skip. After skipping q items, we fetch the next item
x and evaluate ✓pxq. If it satisfies ✓, we insert it into the
reservoir S and update w to w ¨ u1{k, where u „ Unip0, 1q.
Otherwise, we keep w unchanged and draw the next random
variable q „ Geopwq.

In the description, we use the following primitives:

‚ next() returns the next item if it exists, and null otherwise;

‚ skip(i) skips the next i items and returns the pi ` 1q-th
item if it exists, and null otherwise.

Compared with [16], we have made two changes: (lines
2-5) when the reservoir is not full, we only add real items
to it; (lines 11 - 14) we only update the reservoir and the
parameter w when the algorithm stops at a real item. The
correctness proof of Algorithm 1 is given in the full version
[1]. The time complexity of Algorithm 1 depends on how
the real and dummy items are distributed in the stream, as
more precisely characterized by the following theorem:

Theorem 1. Algorithm 1 runs in Op↵¨pp´1q`�¨�N
i“p

k
ri`1 q

expected time over a stream of N items, where ri is the num-
ber of real items in the first i ´ 1 items, p is the smallest i
such that ri “ k (set p “ N ` 1 if no such p exists), and ↵
and � are the runtime of nextp¨q and skipp¨q, respectively.

In the degenerate case where all items are real, we have
ri “ i´1 and the runtime of Algorithm 1 becomes Opk log N

k q
(when taking ↵, � as Op1q), matching the optimal reservoir
sampling runtime [17, 16]. In the other extreme case, all
items are dummy, so p “ N ` 1 and ri “ 0, and the runtime
becomes OpNq, i.e., no item is skipped. Indeed in this case,
it is not safe to skip anything; otherwise, the algorithm may
miss the first real item if one shows up, which must be sam-
pled. Below, we formalize this intuition and prove that Al-
gorithm 1 is not just optimal in these two degenerate cases,
but in all cases, namely, it is instance-optimal.

Theorem 2. For any input stream S of N elements, any
algorithm maintaining a uniform sample of size k over all

real elements runs in ⌦
´�N

i“1 mint1, k
ri`1 u

¯
expected time.

Although the runtime of Algorithm 1 can vary signifi-
cantly from Opk log N

k q to OpNq, it is closer to the former as
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Algorithm 2: BatchReservoirpD, k, ✓q
Input : An input stream D of item-disjoint batches,

an integer k � 0, and a predicate ✓;
Output: A set S maintaining k random samples

without replacement of items on which ✓
evaluates to true;

1 S � H, w � `8, q � 0;
2 foreach batch B P D do
3 pS, w, qq � BatchUpdatepS, k, B, q, w, ✓q;

Algorithm 3: BatchUpdatepS, k, B, q, w, ✓q
Input : A set S of random samples, an integer k � 0,

a new batch B with the first q items to be
skipped, parameter w and a predicate ✓;

Output: Updated S, w and q;
1 while |S| � k and B.remainpq � 0 do
2 x � B.nextpq;
3 if ✓pxq then S � S Y txu;
4 if |S| � k then return S, w, q;
5 if w � 1 then
6 w � randpq1{k;
7 q � tplnprandpqq{ lnp1 ´ wqqu; (q „ Geopwq)
8 while B.remainpq � q do
9 x � B.skippqq;

10 if ✓pxq then
11 y � a randomly chosen item from S;
12 S � S ´ tyu ` txu;
13 w � w ¨ randpq1{k;

14 q � tplnprandpq{ lnp1 ´ wqqu; (q „ Geopwq)
15 return S, w, q ´ B.remainpq;

long as the stream is dense enough. Combining Theorem 1
and Definition 1 we obtain:

Definition 1. Given a stream S “ xx1, x2, ¨ ¨ ¨ , xny, S is
�-dense for 0 � � � 1, if ri � � ¨ pi ´ 1q for all i.

Corollary 1. For any �-dense stream where � is a con-
stant, Algorithm 2 runs in Op↵¨k`� ¨k log N

k q expected time.

We also mention three important properties for dense streams,
which will be used later for joins. Lemma 1 implies that
straightforwardly concatenating two streams still preserves
their minimum density of real items. Lemma 2 implies
that mixing two streams as their Cartesian product pre-
serves a density that is at least half of their density product.
Lemma 3 implies that if one stream only consists of dummy
items, it is possible to get a better bound on the density
of real items in the entire stream. The more dummy items
padded, the sparser the stream becomes.

Lemma 1. Given two streams S1 “ xx1, x2, ¨ ¨ ¨ xmy and
S2 “ xy1, y2, ¨ ¨ ¨ , yny, if S1 is �1-dense and S2 is �2-dense,
their concatenation S1˝S2 :“ xx1, x2, ¨ ¨ ¨ , xm, y1, y2, ¨ ¨ ¨ , yny
is mint�1, �2u-dense.

Lemma 2. Given two streams S1 “ xx1, x2, . . . , xmy and
S2 “ xy1, y2, . . . , yny, if S1 is �1-dense and S2 is �2-dense,
their Cartesian product S1 ˆ S2 :“ xpx1, y1q, ¨ ¨ ¨ , px1, ynq,

Algorithm 4: ReservoirJoinpQ, D, kq
Input : A join query Q, an input stream D of tuples,

and an integer k � 0;
Output: A set S maintaining k random samples

without replacement for the join results of Q
over tuples seen as far;

1 Initialize L, S � H, w � `8, q � 0, ✓ � isReal(¨);
2 while true do
3 t � D.nextpq;
4 if t “ null then break;
5 L � IndexUpdatepL, tq;
6 B � BatchGeneratepQ, L, tq;
7 pS, w, qq � BatchUpdatepS, k, w, q, B, ✓q;

px2, y1q, ¨ ¨ ¨ , px2, ynq, pxm, y1q, ¨ ¨ ¨ pxm, ynqy is
`

�1�2
2

˘
-dense,

where pxi, xjq is real if and only if both xi and xj are real.

Lemma 3. Given a �-dense stream of size m, padding n

dummy items at the end yields a
´

m
m`n ¨ �

¯
-dense stream.

3.3 Batched Reservoir Sampling with Predi-
cate

As shown in Section 1, each arriving tuple t derives a batch
of new join results �QpR, tq. To apply our approach, we first
adapt Algorithm 1 into a batched version. Formally, given
an input stream of item-disjoint batches xB1, B2, ¨ ¨ ¨ , Bmy,
and a predicate ✓, the goal is to maintain k uniform sam-
ples without replacement from B✓

1 Y B✓
2 Y ¨ ¨ ¨ Y B✓

i for ev-
ery i, where B✓

i � Bi is the set of real items in batch Bi.
The framework of our batched version is described in Al-
gorithm 2. It invokes BatchUpdate to every batch, which
essentially runs Algorithm 1 on the given batch while guard-
ing against the case where skip() may skip out of the batch.
For this purpose, it needs another primitive:

‚ remain() returns the number of remaining items in a batch.

More precisely, when B.remain() � q, we skip all the re-
maining items in the current batch, and pass q ´ B.remain()
as another parameter to the next batch so that the first
q ´ B.remain() items in the next batch will be skipped. The
details are given in Algorithm 3. Moreover, we note that
parameters w, q are only initialized once (as line 6-7 in Al-
gorithm 1), i.e., the first time when the reservoir S is filled
with k items. To ensure this in the batched version, we set
w with `8 at the beginning (line 1 of Algorithm 2), so that
w, q will be initialized the first time when the reservoir S
is filled with k items, and will never be initialized again no
matter how many times Algorithm 3 is invoked. The samples
maintained by Algorithm 2 are the same as that maintained
by Algorithm 1 over items in batches, so correctness follows.

Theorem 3. Given a stream of m item-disjoint batches
each of which is �-dense for some constant �, Algorithm 2
runs in Opp↵ ` �q ¨ k ` p� ` �q ¨ k log N

k ` mq expected time,
where N is the total number of items, and ↵, �, � are the
runtime of nextp¨q, remainp¨q, skipp¨q respectively.

3.4 Reservoir Sampling Over Joins
The framework for reservoir sampling over joins is de-

scribed in Algorithm 4. For each tuple t in the input stream,
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�Q(R0, t1)�Q(R1, t2)�Q(R2, t3) �Q(R3, t4) �Q(R4, t5)

�J1 �J2 �J3 �J4 �J5

input tuple

real join result

dummy join result

input stream

reservoir sampling

reservoir sampling with predicate

t1 t2 t3 t4 t5

Figure 2: Comparison between the prior algorithm (above)
and our algorithm (below) on reservoir sampling over joins.

we invoke procedure BatchGenerate to conceptually gen-
erate a batch �QpR, tq and feed it into the batched reservoir
sampling algorithm. However, we cannot a↵ord to material-

ize each batch, whose total size could be as large as OpN�˚ q,
where ⇢˚ is the fractional edge cover number of join. In-
stead, we will maintain a linear-size index L, which supports
a retrieve operation that returns the item at position z in
�QpR, tq for any given z. The index should also be able to
return NB , the batch size. We further maintain a variable
pos to indicate the position of the current item retrieved.
Then the three primitives required by the batched reservoir
sampling algorithm can be implemented as follows:

‚ remain() returns NB ´ pos, where NB is the size of batch;

‚ skip(i) increases pos by i ` 1 and returns the item at pos
(i.e., skips the next i items and jumps directly to the pi `
1q-th item);

‚ next() simply returns skip(0);

Thus, to apply batched reservoir sampling on any join
query Q, it su�ces to show how to maintain a linear-size in-
dex L that can e�ciently support the retrieve operation for
each �QpR, tq, as well as |�QpR, tq|. This is still hard. To
get around this di�culty, we devise an approximate solution.
Our index L will implicitly define a �J that contains all the
join results in �QpR, tq, plus some dummy results. How-
ever, we should not sample from these dummy join results,
and this is exactly the reason why we must use a reservoir
sampling algorithm that supports the predicate. We set the
predicate ✓ to isReal(¨), which filters out the dummy results.
We conceptually add some dummy tuples to base relations
as well as some dummy partial join results. In this way, a
join result is real if and only if all participated tuples are
real, and dummy otherwise (i.e., at least one participated
tuple or partial join result is dummy). Finally, we will also
guarantee that each �J is dense so as to apply Theorem 3.
More specifically, we have ↵ “ � “ Oplog nq and � “ Op1q.
The number of batches is N , and the total number of items

is N�˚
, where ⇢˚ is a constant since it only depends on the

join query, not the data size. Hence, we obtain:

Theorem 4. Given an acyclic join Q, an initially empty
database R, a sample size k, and a stream of N tuples, Al-
gorithm 4 maintains k uniform samples without replacement
for each QpRiq, and runs in OpN log N ` k log N log N

k q ex-
pected time.

Comparison with [19]. [19] follows the same framework as
ours, but they simply used the classical reservoir sampling
algorithm without a predicate. As such, they must use an
index that supports the retrieve operation and the size in-
formation directly on �QpR, tq; please see Figure 2. Such
an index takes OpNq time to update, although they used
some heuristics to improve its practical performance. On
the other hand, our predicate-enabled reservoir sampling al-
gorithm allows us to use an index filled with dummy results,
which can be updated in Oplog Nq time as shown next.

4. SAMPLING OVER LINE-3 JOIN
We use the simplest non-trivial join, the line-3 join R1pX, Y q ’

R2pY, Zq ’ R3pZ, W q to show how our algorithm works;
please see [1] for the full algorithm that works for any acyclic
join. For the line-3 join, even maintaining an index for just
finding the delta query sizes is di�cult: It is still an open
problem if there is a better algorithm than computing each
delta query size from scratch, which takes OpNq time. This
is where we need to introduce dummy join results.

Index. For each b P ⇡Y R1, we maintain the degree of b in
R1, i.e., cntpbq “ |R1 ˙ b| and its approximation cnt˜ pbq “
2rlog2 cntpbqs by rounding cntpbq up to the nearest power of
2. Similarly, we maintain cntpcq “ |R3 ˙ c| and cnt˜ pcq “
2rlog2 cntpcqs for each c P ⇡ZR3. Note that cnt˜ p¨q changes at
most Oplog Nq times. For each value b P ⇡Y R2, we organize
the tuples R2 ˙ b into at most log N buckets according to
the approximate degree of c, where the i-th bucket is

�ipbq “
!

pb, cq P R2 : cnt˜ pcq “ 2i
)

.

Let Lb be the list of non-empty buckets. Define �ipbq “
2i ¨ |�ipbq|. We also maintain Nb “ �

iPrlog Ns �ipbq for each
value b P ⇡Y R2, which is an upper bound on the number of
new join results if some tuple pa, bq is added to R1. Sym-
metrically, for each c P ⇡ZR2, we maintain such a list Lc,
and Nc “ �

iPrlog Ns �ipcq.
Space Usage. As there are OpNq values in ⇡Y R1, we need
to maintain OpNq degrees and their approximations in total.
For each b P ⇡Y R2, it needs to organize the tuples R2 ˙ b
into buckets and maintain a value Nb. The size of non-empty
buckets maintained for b is essentially |R2 ˙ b|. Summing
over all values b P ⇡Y R2, the total size is OpNq. A similar
argument applies to ⇡ZR2.

Index Update. After a tuple t has arrived, we update our
data structure as follows. If t P R2, say t “ pb, cq, we add
pb, cq to �ipbq for i “ log2 cnt˜ pcq. This just takes Op1q time.

If t “ pa, bq P R1 (the t P R3 case is similar), we in-
crease cntpbq by 1, and update cnt˜ pbq if needed. If cnt˜ pbq
has changed, for each c P ⇡Z pR2 ˙ bq, we remove pb, cq
from �i´1pcq and add pb, cq to �ipcq, where i “ log2 cnt˜ pbq.
This may take OpNq time, but this update is only triggered
when cnt˜ pbq doubles, which happens at most Oplog Nq times.
Thus, the total update cost is bounded by OpN log Nq since

ÿ

b

rlog cntpbqs ¨ |⇡Z pR2 ˙ bq | � log N ¨
ÿ

b

|⇡Z pR2 ˙ bq |,

namely, the amortized update cost is Oplog Nq. Finally,
whenever some �ipbq or �ipcq changes, we update Nb and
Nc accordingly. The time for this update is the same as that
for �ipbq and �ipcq.
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Figure 3: Initial state.
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Figure 4: Insert p2, 2q into R2.
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Figure 5: Insert p2, 5q into R3.
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Figure 6: Insert p2, 1q into R1.

Batch Generate. The delta query �QpR, tq on the line-3
join falls into the following 3 cases:

�QpR, tq “
$
&

%

ttu ˆ pR3 ˙ pR2 ˙ bqq if t “ pa, bq P R1

pR1 ˙ bq ˆ ttu ˙ pR3 ˙ cq if t “ pb, cq P R2

pR1 ˙ pR2 ˙ cqq ˆ ttu if t “ pc, dq P R3

The batch �J � �QpR, tq for any t is defined as follows.
If t P R2, say t “ pb, cq, then �J :“ pR1 ˙ bq ˆ pR3 ˙ cq.
This batch is 1-dense and |�J | “ cntpbq ¨ cntpcq.

Next, consider the case t “ pa, bq P R1. Consider a bucket
xi, �ipbqy P Lb. For each pb, cq P �ipbq, define a mini-batch
that consists of all tuples in R3˙c, followed by cnt˜ pcq´cntpcq
dummy tuples. We concatenate these mini-batches to form
the batch for the bucket. Then we join these mini-batches
with t and concatenate all the results to form �J . This �J
is 1

2 -dense, since each mini-batch is 1
2 -dense and then we

invoke Lemma 1. Moreover, |�J | “ Nb and can be returned
in Op1q time. The case t P R3 is similar.

Retrieve. We next show how to retrieve a specific element
from the �J defined above. We consider the two cases t P R2

and t P R1 (t P R3 is similar), respectively. If t “ pb, cq P R2,
�J is the Cartesian product of R2 ˙ b and R3 ˙ c. Given
a position z P r|�J |s, we first find the unique pair pz1, z2q P
r|R2 ˙ b|s ˆ r|R3 ˙ c|s such that z “ z1 ¨ |R3 ˙ c| ` z2. Then,
we just return the combination of the tuple at position z1 in
R2 ˙ b and the tuple at position z2 in R3 ˙ c. The retrieve
operation in this case takes Op1q time. If t “ pa, bq P R1, we
retrieve the tuple at position z as follows:

‚ Let i P r0, log N s be the unique integer such that
ÿ

i1�i´1:�i1 pbq‰H
�i1 pbq � z ` 1 �

ÿ

i1�i:�i1 pbq‰H
�i1 pbq.

‚ Set j “
———–pz ´

ÿ

i1�i´1:�i1 pbq‰H
�i1 pbqq{2i

���fl.

‚ Set ` “ z ´
ÿ

i1�i´1:�i1 pbq‰H
�i1 pbq ´ 2i ¨ j.

Let t1 be the tuple at position j in �ipbq. We return the
join result of t and the tuple at position ` in R3 ˙ t1 if ` �

|R3 ˙ t1|, or a dummy tuple otherwise. As there are at most
Oplog Nq distinct i’s with �ipbq ‰ H, the value of i, j, ` can
be computed in Oplog Nq time. So the retrieve operation
takes Oplog Nq time in this case.

Example 4.1. Consider an example database in Figure 3
with an initialized index. Figure 4 shows the updated index
after inserting p2, 2q to R2, where p2, 2q is added to bucket
�1p2q, �1p2q is updated to 2, and Nb is updated to 6 for
b “ 2. Note that Lc stays unchanged as 2 R ⇡Y R1. Next,
Figure 5 shows the updated index after inserting p2, 5q into
R3, where p1, 2q is moved from �1p1q to �2p1q and p2, 2q
is moved from �1p2q to �2p2q. The value of �1p1q, �2p1q,
�2p2q, N1 and N2 are updated accordingly. Figure 6 shows
the updated index after inserting p2, 1q into R1. Inserting
p2, 2q into R2 generates an empty batch as cntpbq “ 0 for b “
2. Inserting p2, 5q into R3 generates a batch with single tuple
p5, 1, 2, 5q. All tuples involved in this batch are highlighted in
blue in Figure 5. Inserting p2, 1q into R1 generates a batch
xp2, 1, 1, 1q, p2, 1, 4, 4q, p2, 1, 4, 5q, p2, 1, 2, 3q, p2, 1, 2, 4q, p2, 1, 2,
5q, Ky, which is the concatenation of three mini-batches join-
ing with p2, 1q.
‚ �0p1q produces a mini-batch xp1, 1qy;

‚ �1p1q produces a mini-batch xp4, 4q, p4, 5qy;

‚ �2p1q produces a mini-batch xp2, 3q, p2, 4q, p2, 5q, Ky.
Note that we do not need to materialize the entire batch. For
example, to retrieve the item at position 4 in the batch, we
get i “ 2, j “ 0, and l “ 1 by the formulas above. Then, we
can retrieve p1, 2q from �2p1q and p2, 4q from R3 ˙ p1, 2q “
tp2, 3q, p2, 4q, p2, 5qu. Finally, we join p2, 1q with p1, 2q, p2, 4q
to produce the result p2, 1, 2, 4q.

5. EXPERIMENTS
5.1 Setup
Implementation. We compare our algorithm (denoted as
RSJoin) and the optimized version when foreign-key join
exists (denoted as RSJoin opt), with the algorithm in [19]
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Figure 7: Runtime over di↵erent join queries Figure 8: Update time distribution

(denoted as SJoin) and its optimized version when foreign-
key join exists (denoted as SJoin opt), the state-of-the-art
method for random sampling over joins under updates. The
symmetric hash join algorithm [2] was proposed for com-
puting the (delta) join results for the basic two-table join
over data streams, but its performance is overall dominated
by [19], hence we do not include it in our experiments. We
implement our algorithms in C++, and conduct experiments
on a machine with two Intel Xeon 2.1GHz processors with
24 cores and 251 GB of memory, running CentOS 7.

Datasets and Queries. We test both graph and relational
datasets/queries. All queries can be found in the version [1].
We use the Epinions dataset that contains 508,837 edges
from SNAP [3] as the graph dataset. Each relation contains
all edges. We randomly shu✏e all edges for each relation to
simulate the input stream. On Epinions, we evaluate line-k
joins (which find paths in the graph of length k), star-k joins
(which find all combinations of k edges sharing a common
vertex), and dumbbell join (which find all pairs of triangles
that are connected by an edge). No foreign-key join is in
graph queries. We use two relational datasets. One is the
TPC-DS [4], which focuses on a decision support system. We
evaluate the same QX, QY, and QZ queries as [19] on TPC-
DS, which include the foreign-key joins, and follow the same
setup as [19], such that small dimension tables (such as
date dim and household demographics are pre-loaded while
remaining tables are loaded in a streaming fashion. The
other is LDBC-SNB [5], which focuses on join-heavy com-
plex queries with updates. We tested Q10 query from the
BI workload 10. Similar to before, the static tables (such
as tag and city) are pre-loaded, and the dynamic tables are
loaded in a streaming fashion.

5.2 Experiment Results
Runtime. Figure 7 shows the runtime of all algorithms on
tested queries. For graph queries (i.e., line-k, star-k, and
dumbbell),the sample size is 100,000. For relational queries
(i.e., QX, QY, QZ, and Q10), the sample size is 1,000,000.
For the TPC-DS dataset, we use a scale factor of 10, while for
the LDBC-SNB dataset, we use a scale factor of 1. Firstly,
RSJoin and RSJoin opt can finish all queries within 12-hour
time limit while SJoin cannot finish on the line-5 join and
the QZ join. For the dumbbell join, the result is missing
for SJoin since it does not support cyclic queries. Secondly,
RSJoin is always the fastest over all join queries. Based on
existing results, RSJoin achieves a speedup ranging from 4.6x
to 147.6x over SJoin, not mention the case when SJoin can-
not finish in time. When foreign-key join exists (i.e., QX,
QY, QZ, and Q10), RSJoin opt achieves an improvement of
2.2x to 4.7x over SJoin opt. Furthermore, for QX, QY, QZ,
and Q10, RSJoin does not heavily rely on foreign-key op-
timizations as SJoin. As long as data satisfies foreign-key

constraints, RSJoin finishes the execution within a reason-
able amount of time, but this is not the case for SJoin.

Update time. To compare the update time, we disable the
sampling part of both algorithms and measure the update
time required for each input tuple. Figure 8 shows the result
on line-4 join. Most of the update time required is roughly
10 µs, with an average of 13 µs. Some tuples may incur a
much larger update time (51 ms in this case), but the overall
update time remains small, which aligns with our theoretical
analysis of Oplog Nq amortized cost. In contrast, there is no
guarantee on the update time for SJoin, and its update time
ranges from 0.5 µs to 165 ms, with an average of 1.4 ms.

Input size and Join size. We next investigate how the input
size N as well as the join size (i.e., the number of join results)
a↵ect the total execution time of all methods. We fix the
sample size k to be 10, 000 and record the total execution
after every 10% of input data is processed for line-3 join.
Figure 9 shows the progress of total number of join results
generated and the total execution time. We can see that the
total number of join results grows exponentially with the
input size, while the total execution time of RSJoin scales
almost linearly proportional to the input size, instead of the
join size. This is expected as the time complexity of RSJoin
is OpN ¨ log N ` k ¨ log N ¨ log N

k q, where the term N log N
almost dominates the total execution time in this case. In
contrast, the total execution time of SJoin shows a clear
increase trend together with the increase in the join size,
which is much larger than the input size.

Sample size. We next study how the sample size k af-
fects the total execution time of both algorithms. Figure 10
shows the runtime on line-3 join, when k varies from 10,000
to 5,000,000. The dashed line indicates the input size N “
508, 837 and the number of join results is 3,721,042,797.
When the sample size is smaller than the input size, i.e.,
k � N , the total execution time of RSJoin grows very slowly.
More specially, when k increases from 1 to 50, the total
execution time of RSJoin only increases by a factor of 2.
However, when the sample time overrides the input size,
i.e., k � N , the total execution time of RSJoin starts to
increase rapidly. This is also expected again as the theoret-
ical complexity of RSJoin is OpN ¨ log N ` k ¨ log N ¨ log N

k q.
When k � N , the term OpN ¨ log Nq dominates the overall
execution time, hence increasing the sample size within this
regime does not change the total execution time significantly.
When k � N , the term Opk ¨ log N ¨ log N

k q dominates the
overall execution time instead, hence increasing the sample
size results in a rapid increase in the total execution time.
SJoin follows a similar trend. Moreover, when the sample
size reaches k “ 10, 000, the runtime required by SJoin is
even more than that required by RSJoin for the case when
the sample size is as large as k “ 5, 000, 000.
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Figure 9: Runtime v.s. input/join size Figure 10: Runtime v.s. sample size Figure 11: Runtime v.s. scale factor

Figure 12: Memory usage v.s. input size Figure 13: Runtime v.s. input size Figure 14: Runtime v.s. density

Scalability. To examine the scalability of both methods, we
evaluate the QZ query on the TPC-DS dataset with scale
factors of 1,3,10, and 30. The results are shown in Figure 11.
The input size of QZ is approximately 226MB when the scale
factor is 1, while the input size reaches around 6.6GB when
the scale factor reaches 30. We do not include the results
of SJoin here since it takes more than 4 hours to finish the
execution even with a scale factor of 1. We observe that even
without applying foreign-key optimization, RSJoin achieves
linear growth in the runtime as the scale factor increases,
which indicates that RSJoin is scalable and practical even
when dealing with a significantly huge input size.

Memory usage. In addition, we explore the memory us-
age of all methods. Figure 12 shows the memory usage by
RSJoin and SJoin on line-3 join and RSJoin opt and SJoin opt
on Q10 query. The input size is roughly 21MB for line-3 join
and 505MB for Q10 query. After processing every 10% of
the input data, we record the memory usage as shown in Fig-
ure 12. The memory usage of Q10 grows much faster than
line-3 join as it is much more complex with more dedicated
index built. The memory usage required by all algorithms is
linear to the input size. On line-3 join, RSJoin requires only
60% of the memory by SJoin, and on Q10, RSJoin opt needs
only 31% of the memory by SJoin opt. This demonstrates a
nice property of our algorithm: the amount of memory used
by RSJoin and RSJoin opt during execution scales linearly
with the input size even when the join size grows exponen-
tially, which also enables our algorithm to handle much more
complex queries over large input datasets with limited mem-
ory resources.

Reservoir Sampling with Predicate. We compare reservoir
sampling with predicate by our new algorithm (denoted as
RSWP) with the naive algorithm (denoted as RS) on data
streams. We generate a data stream as follows. We fix a
random string of 1024 characters, referred to as the query
string. Each item in the input stream is a random string,
within edit distance ranging from 0 to 64 from the base
string. The predicate selects all strings in the stream whose
edit distance from the query string is no more than 16.

In Figure 13, we take a 1
10 -dense stream of 100, 000 strings

with sample size k “ 1, 000. We record the execution time
after processing every 10% of the input stream. As RS needs
to process every item (i.e., compute the edit distance from

the query string), the runtime of RS is linear to the number
of items in the stream processed so far. The time required
by RSWP for processing the first 10% of the input stream
is the same as RS, since both of them need to process every
one in the first 10,000 items (approximately) until it fills the
reservoir. After that, the runtime of RSWP grows slower and
slower, which is consistent with our theoretical result that
it takes O

`
k

ri`1

˘
expected time to process the i-th item.

In figure 14, we measure the runtime of both RSWP and
RS over 11 streams of same input size but di↵erent den-
sities. As RS needs to process every item in the stream,
its runtime only depends on the input size, instead of the
density of input stream. In contrast, the runtime of RSWP
depends on the density of stream. In an extreme case, when
no item passes the predicate (i.e., the density is 0), RSWP
cannot skip any item and hence requires the same time as
RS. However, as density increases, the runtime of RSWP de-
creases significantly. In another extreme case, when every
item passes the predicate (i.e., the density is 1.0), RSWP
exhibits a speed advantage of 17.7x over RS.

6. CONCLUSION
In this paper, we propose a general reservoir sampling al-

gorithm that supports a predicate. We design a dynamic
index that supports e�cient updates and direct access to
the join results. By combining these two key techniques, we
present our reservoir sampling over joins algorithm which
runs in near-linear time. There are several interesting ques-
tions left open, such as uniform sampling over join-project
queries over data streams.
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