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Abstract
A witness is a sub-database that preserves the query results of the original database but of much
smaller size. It has wide applications in query rewriting and debugging, query explanation, IoT
analytics, multi-layer network routing, etc. In this paper, we study the smallest witness problem
(SWP) for the class of conjunctive queries (CQs) without self-joins.

We first establish the dichotomy that SWP for a CQ can be computed in polynomial time if and
only if it has head-cluster property, unless P = NP. We next turn to the approximated version by
relaxing the size of a witness from being minimum. We surprisingly find that the head-domination
property - that has been identified for the deletion propagation problem [35] - can also precisely
capture the hardness of the approximated smallest witness problem. In polynomial time, SWP for
any CQ with head-domination property can be approximated within a constant factor, while SWP for
any CQ without such a property cannot be approximated within a logarithmic factor, unless P = NP.

We further explore efficient approximation algorithms for CQs without head-domination property:
(1) we show a trivial algorithm which achieves a polynomially large approximation ratio for general
CQs; (2) for any CQ with only one non-output attribute, such as star CQs, we show a greedy
algorithm with a logarithmic approximation ratio; (3) for line CQs, which contain at least two non-
output attributes, we relate SWP problem to the directed steiner forest problem, whose algorithms can
be applied to line CQs directly. Meanwhile, we establish a much higher lower bound, exponentially
larger than the logarithmic lower bound obtained above. It remains open to close the gap between
the lower and upper bound of the approximated SWP for CQs without head-domination property.

2012 ACM Subject Classification Theory of computation → Data provenance

Keywords and phrases conjunctive query, smallest witness, head-cluster, head-domination

Digital Object Identifier 10.4230/LIPIcs...

1 Introduction

To deal with large-scale data in analytical applications, people have developed a large body
of data summarization techniques to reduce computational as well as storage complexity,
such as sampling [12, 47, 14], sketch [18], coreset [41] and factorization [39]. The notion of
witness has been studied as one form of why-provenance [11, 30, 3] that provides a proof for
output results, with wide applications in explainable data-intensive analytics. The smallest
witness problem was first proposed by [37] that given a query Q, a database D and one
specific query result t ∈ Q(D), the target is to find the smallest sub-database D′ ⊆ D

such that t is witnessed by D′, i.e., t ∈ Q(D′). In this paper, we consider a generalized
notion for all query results, i.e., our target is to find the smallest sub-database D′ ⊆ D

such that all query results can be witnessed by D′, i.e., Q(D) = Q(D′). Our generalized
smallest witness has many useful applications in practice, such as helping students learn SQL
queries [37], query rewriting, query explanation, multi-layer network routing, IoT analytics
on edge devices[40, 46]. We mention three application scenarios:

▶ Example 1. Alice located at Seattle wants to send the query results of Q over a database
D (which is also stored at Seattle) to Bob located at New York. Unfortunately, the number
of query results could be polynomially large in terms of the number of tuples in D. An
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alternative is to send the entire database D, since Bob can retrieve all query results by
executing Q over D at New York. However, moving the entire database is also expensive. A
natural question arises: is it necessary for Alice to send the entire D or Q(D)? If not, what
is the smallest subset of tuples to send?

▶ Example 2. Charlie is a novice at learning SQL in a undergraduate database course.
Suppose there is a huge test database D, a correct query Q that Charlie is expected to learn,
and a wrong query Q′ submitted by him, where some answers in Q(D) are missed from
Q′(D). To help Charlie debug, the instructor can simply show the whole test database D

to him. However, Charlie will have to dive into such a huge database to figure out where
his query goes wrong. A natural question arises: is it necessary to show the entire D to
Charlie? If not, what is the smallest subset of tuples to show so that Charlie can quickly
find all missing answers by his wrong query?

▶ Example 3. In a multi-layer communication or transportation network, clients and servers
are connected by routers organized into layers, such that links (or edges) exist between
routers residing in consecutive layers. What is the smallest subset of links needed for building
a fully connected network, i.e., every client-server pair is connected via a directed path?
For a given network, what is the maximum number of links that can be broken while the
connectivity with respect to the client-server pairs does not change? This information could
help evaluate the inherent robustness of a network to either malicious attacks or even just
random failures.

Recall that our smallest witness problem finds the smallest sub-database D′ ⊆ D such
that Q(D) = Q(D′). It would be sufficient for Alice to send D′, while Bob can retrieve all
query results by executing Q over D′, saving much transmission cost. Also, it would be
sufficient for the instructor to show D′ to Charlie, from which all correct answers in Q(D)
can be recovered, saving Charlie much efforts in exploring a huge test database.1 Moreover,
the connectivity of a multi-layer network D can be modeled as a line query Q (formally
defined in Section 5.3) with connected client-server pairs as Q(D), such that D′ is a smallest
subset of links needed for maintaining the desired connectivity, and D −D′ is a maximum
subset of links that can be removed safely. In this paper, we aim to design algorithms that
can efficiently compute or approximate the smallest witness for conjunctive queries, and
understand the hardness of this problem when such algorithms do not exist.

1.1 Problem Definition
Let R be a database schema that contains m relations R1, R2, · · · , Rm. Let A be the set of
all attributes in R. Each relation Ri is defined on a subset of attributes Ai ⊆ A. We use
A, B, C, A1, A2, A3, · · · etc. to denote the attributes in A and a, b, c, · · · etc. to denote their
values. Let dom(A) be the domain of attribute A ∈ A. The domain of a set of attributes
X ⊆ A is defined as dom(X) =

∏
A∈X dom(A). Given the database schema R, let D be a given

database of R, and let the corresponding relations of R1, · · · , Rm be RD
1 , · · · , RD

m, where
RD

i is a collection of tuples defined on dom(Ai). The input size of database D is denoted as
N = |D| =

∑
i∈[m] |RD

i |. Where D is clear from the context, we will drop the superscript.

1 The smallest witness for a single query result [36] has been incorporated into an educational tool
(https://dukedb-hnrq.github.io/), successfully employed in Duke database courses with 1,000+ under-
graduate users. Our generalized version can also be incorporated and save more efforts by showing one
small witness for all answers.
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We consider the class of conjunctive queries without self-joins:

Q(A) : −R1(A1), R2(A2), · · · , Rm(Am)

where A ⊆ A is the set of output attributes (a.k.a. free attributes) and A−A is the set of
non-output attributes (a.k.a. existential attributes). A CQ is full if A = A, indicating the
natural join among the given relations; otherwise, it is non-full. Each Ri in Q is distinct,
i.e., Q does not have a self-join. When a CQ Q is evaluated on database D, its query result
denoted as Q(D) is the projection of natural join result of R1(A1) ⋊⋉ R2(A2) ⋊⋉ · · · ⋊⋉ Rm(Am)
onto A (after removing duplicates).

▶ Definition 4. [Smallest Witness Problem (SWP)] For CQ Q and database D, it asks
to find a subset of tuples D′ ⊆ D such that Q(D) = Q(D′), while there exists no subset of
tuples D′′ ⊆ D such that Q(D′′) = Q(D) and |D′′| < |D′|.

Given Q and D, we denote the above problem by SWP(Q, D). See an example in Appendix A.
We note that the solution to SWP(Q, D) may not be unique, hence our target simply finds one
such solution. We study the data complexity [43] of SWP i.e., the sizes of database schema
and query are considered as constants, and the complexity is in terms of input size N . For
any CQ Q and database D, the size of query results |Q(D)| is polynomially large in terms of
N , and Q(D) can also be computed in polynomial time in terms of N . In contrast, the size of
SWP(Q, D) is always smaller than N , while as we see later SWP(Q, D) may not be computed in
polynomial time in terms of N . Again, our target is to compute the smallest witness instead
of the query results. We say that SWP is poly-time solvable for Q if, for an arbitrary database
D, SWP(Q, D) can be computed in polynomial time in terms of |D|. As shown later, SWP is
not poly-time solvable for a large class of CQs, so we introduce an approximated version:

▶ Definition 5. [θ-Approximated Smallest Witness Problem (ASWP)] For CQ Q

and database D, it asks to find a subset of tuples D′ ⊆ D such that Q(D′) = Q(D) and
|D′| ≤ θ · |D∗|, where D∗ is a solution to SWP(Q, D).

Also, SWP is θ-approximable for Q if, for an arbitrary database D, there is a θ-approximated
solution to SWP(Q, D) that can be computed in polynomial time in terms of |D|.

1.2 Our Results
Our main results obtained can be summarized as (see Figure 1):

In Section 3, we obtain a dichotomy of computing SWP for CQs. More specifically, SWP
for any CQ with head-cluster property (Definition 11) can be solved by a trivial poly-time
algorithm, while SWP for any CQ without head-cluster property is NP-hard by resorting to
the NP-hardness of set cover problem (Section 3.2).

In Section 4, we show a dichotomy of approximating SWP for CQs without head-cluster
property. The head-domination property that has been identified for deletion propagation
problem [35], also captures the hardness of approximating SWP. We show a poly-time algorithm
that can return a O(1)-approximated solution to SWP for CQs with head-domination property.
On the other hand, we prove that SWP cannot be approximated within a factor of (1 −
o(1)) · log N for every CQ without head-domination property, unless P = NP, by resorting to
the logarithmic inapproximability of set cover problem (in Section 4.2). Interestingly, this
separation on approximating SWP for acyclic CQs (in Section 2.1) coincides with the separation
of free-connex and non-free-connex CQs (in Section 4.1) in the literature. In Section 5, we
further explore approximation algorithms for CQs without head-domination property. Firstly,
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Figure 1 Summary of our results. The shadow area is the class of free-connex CQs.

we show a baseline of returning the union of witnesses for every query result leads to a
O(N1−1/ρ∗)-approximated solution, where ρ∗ is the fractional edge covering number2 of the
input CQ [4]. Furthermore, for any CQ with only one non-output attribute, which includes
the commonly-studied star CQs, we show a greedy algorithm that can approximate SWP
within a O(log N) factor, matching the lower bound. However, for another commonly-studied
class of line CQs, which contains more than two non-output attributes, we prove a much
higher lower bound Ω(2(log N)1−ϵ) for any ϵ > 0 in approximating SWP, by resorting to the
label cover problem (Appendix E). Meanwhile, we observe that SWP problem for line queries
is a special case of the directed steiner forest (DSF) problem ( Section 5.3), and therefore
existing algorithms for DSF can be applied to SWP directly. But, how to close the gap between
the upper and lower bounds on approximating SWP for line CQs remains open.

2 Preliminaries

2.1 Notations and Classifications of CQs

Extending the notation in Section 1.1, we use rels(Q) to denote all the relations that appear
in the body of Q, and use attr(Q), head(Q) ⊆ attr(Q) to denote all the attributes that
appear in the body, head of Q separately (so, head(Q) = A in Section 1.1). Moreover,
head(Ri) = head(Q) ∩ attr(Ri). For any attribute A ∈ attr(Ri), πAt denotes the value
over attribute A of tuple t. Similarly, for a set of attributes X ⊆ attr(Ri), πXt denotes
values over attributes in X of tuple t. We also mention two important classes of CQs.

▶ Definition 6 (Acyclic CQs [7, 22]). A CQ Q is acyclic if there exists a tree T such that (1)
there is a one-to-one correspondence between the nodes of T and relations in Q; and (2) for
every attribute A ∈ attr(Q), the set of nodes containing A forms a connected subtree of T.
Such a tree is called the join tree of Q.

▶ Definition 7 (Free-connex CQs [6]). A CQ Q is free-connex if Q is acyclic and the resulted
CQ by adding another relation contains exactly head(Q) to Q is also acyclic.

2 For a CQ Q, a fractional edge covering is a function W : rels(Q) → [0, 1] with
∑

Ri:A∈attr(Ri) W (Ri) ≥ 1
for every attribute A ∈ A. The fractional edge covering number of Q is the minimum value of∑

Ri:Ri∈rels(Q) W (Ri) over all fractional edge coverings.
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2.2 SWP for One Query Result
The SWP problem for one query result is formally defined as:

▶ Definition 8. [SWP for One Query Result] For CQ Q, database D and query result
t ∈ Q(D), it asks for finding a subset of tuples D′ ⊆ D such that t ∈ Q(D′), while there is
no subset D′′ ⊆ D such that t ∈ Q(D′′) and |D′′| < |D′|.

Given Q, D and t, we denote the above problem by SWP(Q, D, t). It has been shown
by [37] that SWP(Q, D, t) can be computed in polynomial time for arbitrary Q, D, and
t ∈ Q(D). Their algorithm [37] simply finds an arbitrary full join result t′ ∈⋊⋉Ri∈rels(Q) Ri

such that πhead(Q)t
′ = t, and returns all participating tuples in

{
πattr(Ri)t

′ : Ri ∈ rels(Q)
}

as the smallest witness for t. This primitive is used in building our SWP algorithm. The SWP
problem for a Boolean CQ (A = ∅, indicating whether the result of underlying natural join
is empty or not) can be solved by finding SWP for an arbitrary join result in its full version.

2.3 Notions of Connectivity
We give three important notions of connectivity for CQs, which will play an important role
in characterizing the structural properties used in SWP. See an example in Figure 2.
Connectivity of CQ. We capture the connectivity of a CQ Q by modeling it as a graph
GQ, where each relation Ri is a vertex and there is an edge between Ri, Rj ∈ rels(Q)
if attr(Ri) ∩ attr(Rj) ̸= ∅. A CQ Q is connected if GQ is connected, and disconnected
otherwise. For a disconnected CQ Q, we can decompose it into multiple connected subqueries
by applying search algorithms on GQ, and finding all connected components for GQ. The set
of relations corresponding to the set of vertices in one connected component of GQ form a
connected subquery of Q.

Given a disconnected CQ Q, let Q1, Q2, · · · , Qk be its connected subqueries. Given a
database D over Q, let Di ⊆ D be the corresponding sub-databases defined for Qi. Observe
that every witness for Q(D) is the disjoint union of a witness for Qi(Di), for i ∈ [k]. Hence,
Lemma 9 follows. In the remaining of this paper, we assume that Q is connected.

▶ Lemma 9. For a disconnected CQ Q of k connected components Q1, Q2, · · · , Qk, SWP is
poly-time solvable for Q if and only if SWP is poly-time solvable for every Qi, where i ∈ [k].

Existential-Connectivity of CQ. We capture the existential-connectivity of a CQ Q

by modeling it as a graph G∃
Q, where each relation Ri with attr(Ri) − head(Q) ̸= ∅ is a

vertex, and there is an edge between Ri, Rj ∈ rels(Q) if attr(Ri)∩attr(Rj)−head(Q) ̸= ∅.
We can find the connected components of G∃

Q by applying search algorithm on G∃
Q, and

finding all connected components for G∃
Q. Let E1, E2, · · · , Ek ⊆ rels(Q) be the connected

components of G∃
Q, each corresponding to a subset of relations in Q.

Nonout-Connectivity of CQ. We capture the nonout-connectivity of a CQ Q by modeling
it as a graph HQ, where each non-output attribute A ∈ attr(Q)− head(Q) is a vertex, and
there is an edge between A, B ∈ attr(Q)− head(Q) if there exists a relation Ri ∈ rels(Q)
such that A, B ∈ attr(Ri). We can find the connected components of HQ, and finding all
connected components for HQ. Let H1, H2, · · · , Hk ⊆ attr(Q)− head(Q) be the connected
components of HQ, each corresponding to a subset of non-output attributes in Q.

2.4 Head Cluster and Domination
These two important structural properties identified for characterizing the hardness of (A)SWP
are directly built on the existential-connectivity of a CQ Q and the notion of dominant
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Figure 2 The left is GQ for Q(A1, A2, A3, A4, A5) : − R1(A1, B1), R2(B1, B2),
R3(A2, B2, B3), R4(A2, A3, B4), R5(A1, A2), R6(A4, B5), R7(B5, A5), R8(B6, B7) with three sub-
queries Q1(A1, A2, A3) : − R1(A1, B1), R2(B1, B2), R3(A2, B2, B3), R4(A2, A3, B4), R5(A1, A2),
and Q2(A4, A5) : − R6(A4, B5), R7(B5, A5) and Q3 : −R8(B6, B7). The middle is G∃

Q1 for Q1, with
two connected components {R1, R2, R3}, {R4} and dominants R5, R4. The right is HQ1 for Q1,
with two connected components {B1, B2, B3}, {B4}.

relation. For a CQ Q with a subset E ⊆ rels(Q) of relations, Ri ∈ rels(Q) is a dominant
relation for E if every output attribute appearing in any relation of E also appears in Ri,
i.e., ∪Rj∈Ehead(Rj) ⊆ head(Ri).

▶ Definition 10 (Head Domination [34]). For CQ Q, let E1, E2, · · · , Ek be the connected
components of G∃

Q. Q has head-domination property if for any i ∈ [k], there exists a dominant
relation from rels(Q) for Ei.

The notion of head-domination property has been first identified for deletion propagation
with side effect problem [35], which studied the smallest number of tuples to remove so that
a subset of desired query results must disappear while maintain as many as remaining query
results. We give a detailed comparison between SWP and deletion propagation in Appendix C,
although they solve completely independent problem for CQs without self-joins.

▶ Definition 11 (Head Cluster). For CQ Q, let E1, E2, · · · , Ek be the connected components
of G∃

Q. Q has head-cluster property if for any i ∈ [k], every Rj ∈ Ei is a dominant relation
for Ei.

There is an equivalent but simpler definition for head-cluster property: A CQ Q has head-
cluster property if for every pair of relations Ri, Rj ∈ rels(Q) with head(Ri) ̸= head(Rj),
there must be attr(Ri) ∩ attr(Rj) ⊆ head(Q). Here, we define head-cluster property based
on dominant relation, since it is a special case of head-domination property.

3 Dichotomy of Exact SWP

In this section, we focus on computing SWP exactly for CQs, which can be efficiently done if
head-cluster property is satisfied. All missing proofs are given in Appendix D.

▶ Theorem 12. If a CQ Q has head-cluster property, SWP is poly-time solvable; otherwise,
SWP is not poly-time solvable, unless P = NP.

3.1 An Exact Algorithm
We prove the first part of Theorem 12 with a poly-time algorithm. The head-cluster property
implies that if two relations have different output attributes, they share no common non-output
attributes. This way, we can cluster relations by output attributes. As shown, Algorithm 1
partitions all relations into {E1, E2, · · · , Ek} based on the connected components in G∃

Q. For
the subset of relations in one connected component Ei, every relation is a dominant relation,
i.e., shares the same output attributes. If one relation only contains output attributes Ai
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Algorithm 1 SWP(Q, D)

1 D′ ← ∅;
2 (E1, E2, · · · , Ek)← connected components of G∃

Q;
3 A1, A2, · · · , Ak ← output attributes of E1, E2, · · · , Ek;
4 foreach Rj ∈ rels(Q) with attr(Rj) ⊆ head(Q) do
5 D′ ← D′ ∪ πattr(Rj)Q(D);
6 foreach i ∈ [k] do
7 Define Qi (Ai) : −{Rj(Aj) : Rj ∈ Ei};
8 foreach t′ ∈ πAiQ(D) do
9 D′ ← D′ ⊎

SWP (Qi, {Rj : Rj ∈ Ei}, t′);

10 return D′;

(line 4), it must appear alone as a singleton component, since we assume there is no duplicate
relations in the input CQ. All tuples from such a relation that participate in any query results
must be included by every witness to Q(D). We next consider the remaining components
containing at least two relations. In Ei, for each tuple t′ ∈ πAi

Q(D) in the projection of
query results onto the output attributes Ai, Algorithm 1 computes the smallest witness for
t′ in sub-query Qi defined on relations in Ei. The disjoint union (

⊎
) of witnesses returned

for all groups forms the final witness. On a CQ with head-cluster property, Algorithm 1 can
be stated in a simpler way; see Algorithm 3 in Appendix D.

Algorithm 1 runs in polynomial time, as (i) Q(D) can be computed in polynomial time;
(ii) |Q(D)| is polynomially large; and (iii) the primitive in line 9 only takes O(1) time.

▶ Lemma 13. For a CQ Q with head-cluster property, Algorithm 1 finds a solution to
SWP(Q, D) for any database D in polynomial time.

Remark 1. SWP is poly-time solvable for any full CQ, since attr(Ri)∩attr(Rj) ⊆ head(Q)
holds for every pair of relations Ri, Rj ∈ rels(Q). Hence, the hardness of SWP comes from
projection. On the other hand, SWP is also poly-time solvable for some non-full CQs, say
Q(A1, A2, A3) : −R1(A1, A2), R2(A2, A3), R3(A1, A3), R4(A1, B1).
Remark 2. It is not always necessary to compute Q(D) as Algorithm 1 does. We actually
have much faster algorithms for some clases of CQs. If CQ Q is full, SWP(Q, D) is the set
of non-dangling tuples in D, i.e., those participate in at least one query result of Q(D).
Furthermore, if Q is an acyclic full CQ, non-dangling tuples can be identified in O(|D|)
time [45]. It is more expensive to identify non-dangling tuples for cyclic full CQs, for example,
the PANDA algorithm [2] can identify non-dangling tuples for any full CQ in O(Nw) time,
where w ≥ 1 is the sub-modular width of input query [2]. It is left as an interesting open
question to compute SWP for CQs with head-cluster property more efficiently.

3.2 Hardness
We next prove the second part of Theorem 12 by showing the hardness for CQs without
head-cluster property. Our hardness result is built on the NP-hardness of set cover [8]:
Given a universe U of n elements and a family S of subsets of U , it asks to find a subfamily
C ⊆ S of sets whose union is U (called “cover”), while using the fewest sets. We start with
Qcover(A) : −R1(A, B), R2(B) and then extend to any CQ without head-cluster property.

▶ Lemma 14. SWP is not poly-time solvable for Qcover(A) : −R1(A, B), R2(B), unless P = NP.
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Proof. We show a reduction from set cover to SWP for Qcover. Given an arbitrary instance
(U ,S) of set cover, we construct a database D for Qcover as follows. For each element u ∈ U ,
we add a value au to dom(A); for each subset S ∈ S, we add a value bS to dom(B), and a
tuple (bS) to R2. Moreover, for each pair (u, S) ∈ U × S with u ∈ S, we add a tuple (au, bS)
to R1. Note that Qcover(D) = U . It is now to show that (U ,S) has a cover of size ≤ k if and
only if SWP(Qcover, D) has a solution D′ of size ≤ |U|+ k. Then, if SWP is poly-time solvable
for Qcover, set cover is also poly-time solvable, which is impossible unless P = NP. ◀

▶ Lemma 15. For a CQ Q without head-cluster property, SWP is not poly-time solvable for
Q, unless P = NP.

It is always feasible to identify a pair of relations Ri, Rj ∈ rels(Q) with attributes
A ∈ head(Ri)−attr(Rj) and B ∈ attr(Ri)∩attr(Rj)−head(Q). All remaining attributes
contain a dummy value. Then, each relation in Q degenerates to R1(A, B), or R2(B), or a
dummy tuple. Our argument for Qcover can be applied here.

4 Dichotomy of Approximated SWP

As it is inherently difficult to compute SWP exactly for general CQs, the next interesting
question is to explore approximated solutions for SWP. In this section, we establish the
following dichotomy for approximating SWP. All missing proofs are given in Appendix E.

▶ Theorem 16. If a CQ Q has head-domination property, SWP is O(1)-approximable; other-
wise, SWP of input size N is not (1− o(1)) · log N -approximable, unless P = NP.

4.1 A O(1)-Approximation Algorithm
Let’s start by revisiting Qcover(A) : −R1(A, B), R2(B). Although SWP is hard to compute
exactly for Qcover, it is easy to approximate SWP(Qcover, D) for arbitrary database D within a
factor of 2. Let D∗ be a solution to SWP(Qcover, D). We can simply construct an approximated
solution D′ by picking a pair of tuples (a, b) ∈ R1, (b) ∈ R2 for every a ∈ Qcover(D), and show
that |D′| ≤ 2 · |Qcover(D)| ≤ 2 · |D∗|. This is actually not a violation to the inapproximability
of set cover problem. If revisiting the proof of Lemma 14, (U ,S) has a cover of size ≤ k if
and only if SWP(Qcover, D) has a solution of size ≤ |U|+ k. Due to the fact that k ≤ |U|, the
inapproximability of set cover does not carry over to SWP for Q. This observation can be
generalized to all CQs with head-domination property.

As described in Algorithm 1, an approximated solution to SWP(Q, D) for a CQ Q with
head-domination property consists of two parts. For every relation that only contains output
attributes, Algorithm 1 includes all tuples that participate in at least one query result
(line 4-5), which must be included by any witness for Q(D). For the remaining relations,
Algorithm 1 partitions them into groups based on the existential connectivity. Intuitively,
every pair of relations across groups can only join via output attributes in their dominants.
Recall that Ai denotes the set of output attributes appearing in relations from Ei. Then, for
each group Ei, we consider each tuple t′ ∈ πAiQ(D) and find the smallest witness for t′ in
Qi defined by relations in Ei. The union of witnesses returned for all groups forms the final
answer. As shown before, Algorithm 1 runs in polynomial time.

▶ Lemma 17. For a CQ Q with head-domination property, Algorithm 1 finds a O(1)-
approximated solution to SWP(Q, D) for any database D in polynomial time.
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R3(A2, A3, A4, A5) R4(A3, A6)

R1(A1, A2)

R2(A2, A3, A7)

R5(A3, A8) R6(A6, A10)

R7(A2, A9)

R8(A9, A11)

R9(A4, A12)

Figure 3 A free-connex CQ Q with head(Q) =
{A1, A2, A3, A7}. A partition of relations containing non-
output attributes is {{R3, R9}, {R4, R5, R6}, {R7, R8}},
with dominant relations R3, R4, R7 respectively.

a1

a2

a3

a4

a5

c1

c2

c3

c4

c5

b1

b6

b5

b4

b3

b2

Figure 4 A database D for Qmatrix

with an integral sub-database in red.
Each vertex is a value in the attribute,
and each edge is a tuple in D.

Connection with Free-connex CQs. We point out that every free-connex CQ has
head-domination property, which is built on an important property as stated in Lemma 18.

▶ Lemma 18 ([6]). A free-connex CQ has a tree structure T such that (1) each node of
T corresponds to attr(Ri) or head(Ri) for some relation Ri ∈ rels(Q); and each relation
Ri ∈ rels(Q) corresponds to a node in T; (2) for every attribute A ∈ attr(Q), the set of
nodes containing A form a connected subtree of T; (3) there is a connected subtree Tcon of T
including the root of T, such that all attributes appearing in T is exactly head(Q).

▶ Lemma 19. Every free-connex CQ has head-domination property.

Proof. Given a tree structure T for a free-connex CQ Q as descried by Lemma 18, every
relation Ri with attr(Ri) − head(Ri) ̸= ∅ and all of its ancestors fully containing output
attributes, is a dominant. Suppose Ri corresponds to node u. As attr(Ri)− head(Ri) ̸= ∅,
u /∈ Tcon. Consider any descendant v of u, that corresponds to a relation in Q, say Rj . Implied
by the fact that Tcon is a connected subtree, v /∈ Tcon. Hence, head(Rj) ⊆ head(Ri). For every
relation Rj ∈ rels(Q) with attr(Rj)− head(Q) ̸= ∅, either itself is a dominant relation, or
it has an ancestor as a dominant relation, since the root node fully contains output attributes.
In our construction above, every relation Rj ∈ rels(Q) with attr(Rj) − head(Q) ̸= ∅ is
associated with only one dominant relation. ◀

4.2 Logarithmic Inapproximability
Now, we turn to the class of CQs without head-domination property, and show their hardness
by resorting to inapproximability of set cover [23, 20]: there is no poly-time algorithm for
approximating set cover of input size n within factor (1− o(1)) · log n, unless P = NP. We
identify two hardcore structures (Definition 23 and Definition 26), and prove that no poly-
time algorithm can approximate SWP for any CQ containing a hardcore within a logarithmic
factor, unless P = NP. Lastly, we complete the proof of Theorem 16 by establishing the
connection between the non-existence of a hardcore and head-domination property for CQs.

4.2.1 Free sequence
Let’s start with the simplest acyclic but non-free-connex CQ Qmatrix(A, C) : −R1(A, B), R2(B,

C). We show a reduction from set cover to SWP for Qmatrix while preserving its logarithmic
inapproximability. The essence of our proof is the notion of integral witness, such that for
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(O1) min
∑
b∈B

|Cb|

s.t.
⋃

b:(a,b)∈R1

Cb = C, ∀a ∈ A

Cb ⊆ C,∀b ∈ B

(O2) min
∑
b∈B

xb

s.t.
∑

b:(a,b)∈R1

xb ≥ 1,∀a ∈ A

xb ∈ {0, 1},∀b ∈ B
Figure 5 Optimization problems in the proof of Lemma 21.

any database D where R2 is a Cartesian product between B and C, SWP(Qmatrix, D) always
admits an integral witness.

▶ Definition 20 (Integral Database). For any database D over Qmatrix with R2 = (πBR2)×
(πCR2), a sub-database D′ ⊆ D is integral if R′

2 = (πBR′
2)× (πCR2), where R′

2 is the subset
of tuples of R2 in D′.

▶ Lemma 21. For Qmatrix(A, C) : −R1(A, B), R2(B, C) and any database D where R2 =
(πBR2)× (πCR2), there is an integral solution to SWP(Qmatrix, D), i.e., a smallest witness to
Q(D) that is also integral.

Proof. Consider a database D where R2 = (πBR2)× (πCR2). We assume that there exists
no dangling tuples in R1, R2, i.e., every tuple can join with some tuple from the other relation;
otherwise, we simply remove these dangling tuples. With a slight abuse of notation, we
denote A = πAR1, B = πBR1(= πBR2) and C = πCR2. We consider the optimization
problem O1 in Figure 5. Intuitively, it asks to assign a subset of elements Cb ⊆ C to each
value b ∈ B, such that each a is “connected” to all values in C via tuples in R1, R2, while
the total size of the assignment defined as

∑
b∈B |Cb| is minimized. See Figure 4.

We rewrite the objective function as:
∑

b∈B |Cb| =
∑

c∈C |{b ∈ B : c ∈ Cb}|, where {b ∈
B : c ∈ Cb} indicates the subset of values from B to which c is assigned. Together with the
constraint that every a ∈ A must be connected to c, we note that minimizing |{b ∈ B : c ∈ Cb}|
is equivalent to solving the optimization problem (O2) in Figure 5. Let x∗ be the optimal
solution of the program above, which only depends on the input relation R1, and completely
independent of the specific value c. Hence, we conclude that

∑
b∈B |Cb| = |C| ·

∑
b∈B x∗

b .
We next construct an integral sub-database D′ as follows. For each b ∈ B with x∗

b = 1,
we add tuples in {(b, c) ∈ R2 : ∀c ∈ C} to D′. For each a ∈ A, we pick an arbitrary b ∈ B

with (a, b) ∈ R1 and x∗
b = 1, and add (a, b) to D′. Any solution to SWP(Qmatrix, D) must

contain at least |A| tuples from R1 and at least |C| ·
∑

b∈B x∗
b tuples from R2. Hence, D′ is

an integral witness to SWP(Qmatrix, D). ◀

▶ Lemma 22. There is no poly-time algorithm to approximate SWP for Qmatrix within a factor
of (1− o(1)) · log N , unless P = NP.

Proof. Consider an arbitrary instance of set cover (U ,S), where |U| = n and |S| = nc for
some constant c ≥ 1.3 We construct a database D for Qmatrix as follows. For each element
u ∈ U , we add a value au to dom(A) and cu to dom(C); for each subset S ∈ S, we add a value
bS to dom(B). Moreover, for each pair (u, S) ∈ U × S with u ∈ S, we add tuple (au, bS) to

3 The inapproximability of set cover holds even when the size of the family of subsets is only polynomially
large with respect to the size of the universe of elements [38, 24].
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R1. R2 is a Cartesian product between dom(B) and dom(C). Every relation contains at most
nc+1 tuples. Hence N ≤ 2nc+1. Note that Qmatrix(D) is the Cartesian product between A

and C. Implied by Lemma 21, it suffices to consider integral witness to SWP(Qmatrix, D). We
can show that (U ,S) has a cover of size ≤ k if and only if SWP(Qmatrix, D) has an integral
witness of size ≤ n(k + 1) (see Appendix E). Hence, if SWP is (1− o(1)) · log N -approximable
for Qmatrix, there is a poly-time algorithm that approximates set cover of input size n within
a (1− o(1)) · log N factor, which is impossible unless P = NP. ◀

Now, we are ready to introduce the notion of free sequence:

▶ Definition 23 (Free Sequence). In a CQ Q, a free sequence is a sequence of attributes
P = ⟨A1, A2, · · · , Ak⟩ such that4

A1, Ak ∈ head(Q) and A2, A3, · · · , Ak−1 ∈ attr(Q)− head(Q);
for every i ∈ [k − 1], there exists a relation Rj ∈ rels(Q) such that Ai, Ai+1 ∈ attr(Rj);
there exists no relation Rj ∈ rels(Q) such that A1, Ak ∈ Rj.

▶ Lemma 24. For a CQ Q containing a free sequence, there is no poly-time algorithm that
can approximate SWP for Q within a factor of (1− o(1)) · log N , unless P = NP.

We give some high-level idea behind the proof of Lemma 24. Let P = ⟨A1, A2, · · · , Ak⟩ be
such a free sequence. In a reduction from set cover to SWP for Q, Ai simulates A if i = 1, B

if i ∈ [2 : k− 1], and C if i = k as Qmatrix. Every remaining attribute only contains a dummy
value {∗}. A similar argument for Qmatrix can be applied by defining integral sub-database
of D over Q, proving the existence of an integral witness to SWP(Q, D), and establishing a
correspondence between solutions to set cover and integral witness to SWP(Q, D).
Remark. Any acyclic but non-free-connex CQ must have a free sequence [6]. Our
characterization of SWP for acyclic CQs coincides with the separation between free-connex
and non-free-connex CQs. In short, SWP is poly-time solvable or O(1)-approximable for
free-connex CQs, while no poly-time algorithm can approximate SWP for any acyclic but
non-free-connex CQs within a factor of (1− o(1)) · log N , unless P = NP.

4.2.2 Nested Clique
Although free sequence suffices to capture the hardness of approximating SWP for acyclic CQs,
it is not enough for cyclic CQs. Let’s start with the simplest cyclic CQ Qpyramid(A, B, C) :
−R1(A, B), R2(A, C), R3(B, C), R4(A, F ), R5(B, F ), R6(C, F ) that does not contain a free
sequence, but SWP is still difficult to approximate.

▶ Lemma 25. There is no poly-time algorithm to approximate SWP for Qpyramid within a
factor of (1− o(1)) · log N , unless P = NP.

Proof. Consider an instance (U ,S) of set cover, with U = {u1, u2, · · · , un} and S =
{S1, S2, · · · , Sm}, where m = nc for some constant c > 1. We construct a database D

for Q as follows. Let dom(A) = {a1, a2, · · · , an}, dom(B) = {b1, b2, · · · , bn}, dom(C) =
{c1, c2, · · · , cn} and dom(F ) = dom(F −)×dom(F +), where dom(F −) = {f−

1 , f−
2 , · · · , f−

m} and
dom(F +) = {f+

1 , f+
2 , · · · , f+

n }. Relations R1, R2, R3 and R6 are Cartesian products of their

4 Free sequence is a slight generalized notion of free path [6] studied in the literature, which further
requires that for any relation Rj ∈ rels(Q), either attr(Rj) ∩ P = ∅, or |attr(Rj) ∩ P | = 1, or
attr(Rj) ∩ P = {Ai, Ai+1} for some i ∈ [k − 1].
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corresponding attributes. For each pair (uℓ, Sj) ∈ U × S with uℓ ∈ Sj , we add tuples of
{(aℓ, f−

j )} × dom(F +) to R4. For each i ∈ [n], we add tuples {bi} × dom(F −)× {f+
i } to R5.

It can be easily checked that the input size of D is O(n2c), hence log N = Θ(log n). Q(D) is
the Cartesian product between A,B and C. Hence, every solution to SWP(Q, D) includes all
tuples in R1, R2, R3. Below, we focus on R4, R5, R6.

We observe that D enjoys highly symmetric structure over dom(B). More specifically,
each value bi ∈ dom(B) induces a subquery Qi(A, C) = R4(A, Fi) ⋊⋉ R5(Fi) ⋊⋉ R6(C, Fi),
where dom(Fi) = dom(F −) × {f+

i }, and a sub-database Di =
{

Ri
4, Ri

5, Ri
6
}

, where Ri
4 =

{(aℓ, f−
j , f+

i ) : ∀ℓ ∈ [n], j ∈ [m], uℓ ∈ Sj}, Ri
5 = dom(Fi) and Ri

6 = dom(C) × dom(Fi).
It can be easily checked that SWP(Q, D) = R1 ⊎ R2 ⊎ R3 ⊎

(
⊎i∈[n]SWP(Qi, Di)

)
. For any

i ∈ [n], computing SWP(Qi, Di) is almost the same as Qmatrix. Moreover, the solution to each
SWP(Qi, Di) shares the same structure, which is independent of the specific value bi ∈ dom(B).
In a sub-database D′ ⊆ D, let R′

i be the corresponding sub-relation of Ri. A solution D′

to SWP(Q, D) is integral if R′
4 = (πA,F −R′

4)× dom(F +), R′
5 = dom(B)× (πF −R′

5)× dom(F +),
and R′

6 = dom(C)× (πF −R′
6)× dom(F +). Implied by Lemma 21 and analysis above, there

always exists an integral solution to SWP(Q, D).
Moreover, (U ,S) has a cover of size ≤ k if and only if SWP(Q, D) has an integral witness

of size ≤ 3n2 + n(n + k + kn) = (k + 4)n2 + kn. If SWP is (1− o(1)) · log N -approximable for
Q, then there is a poly-time algorithm that can approximate set cover instances of input size
n within a factor of (1− o(1)) · log n, which is impossible unless P = NP. ◀

Now, we are ready to introduce the structure of nested clique and the rename procedure
for capturing the hardness of cyclic CQs:

▶ Definition 26 (Nested Clique). In a CQ Q, a nested clique is a subset of attributes
P ⊆ attr(Q) such that

for any pair of attributes A, B ∈ P , there is some Rj ∈ rels(Q) with A, B ∈ attr(Rj);
P ∩ head(Q) ̸= ∅ and P − head(Q) ̸= ∅;
there is no relation Rj ∈ rels(Q) with P ∩ head(Q) ⊆ head(Rj).

▶ Definition 27 (Rename). Given the nonout-connectivity graph HQ of a CQ Q with con-
nected components H1, H2, · · · , Hk, the rename procedure assigns one distinct attribute
to all attributes in the same component. The resulted CQ Q′ contains the same out-
put attributes as Q, and each Ri ∈ rels(Q) defines a new relation R′

i ∈ rels(Q′) with
attr(R′

i) = head(Ri) ∪ {Fj : ∀j ∈ [k], Hj ∩ attr(Ri) ̸= ∅}.

In Figure 2, Q1(A1, A2, A3) : −R1(A1, B1), R2(B1, B2), R3(A2, B2, B3), R4(A2, A3, B4), R5(A1,

A2) is renamed as Q′
1(A1, A2, A3) : −R1(A1, F1), R2(F1), R3(A2, F1), R4(A2, A3, F2), R5(A1, A2).

▶ Theorem 28. For a CQ Q, if its renamed query Q′ contains a nested clique, there is no
poly-time algorithm that can approximate SWP for Q within a factor of (1 − o(1)) · log N ,
unless P = NP.

4.3 Completeness
At last, we complete the proof of Theorem 16 by establishing the connection between the
non-existence of hardcore structures and head-domination property:

▶ Lemma 29. In a CQ Q, if there is neither a free sequence nor a nested clique in its
renamed query, Q has head-domination property.
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We have proved Lemma 29 for acyclic CQs, such that if Q does not contain a free sequence,
Q has head-cluster property. It suffices to focus on cyclic CQs. We note that any cyclic CQ
contains a cycle or non-conformal clique [9]. Our proof is based on a technical lemma that
if every cycle or non-conformal clique contains only output attributes or only non-output
attributes, Q has head-domination property. We complete it by showing that if Q does not
contain a free sequence or nested clique in its renamed query, no cycle or non-conformal
clique contains both output and non-output attributes.

5 Approximation Algorithms

We next explore possible approximation algorithms for CQs without head-domination property.
All missing proofs are in Appendix F.

5.1 Baseline
A baseline for general CQs returns the union of smallest witness for every query result, which
includes at most min{N, |rels(Q)| · |Q(D)|} tuples. Meanwhile, AGM bound [5] implies
that at least O(|Q(D)|1/ρ∗) tuples are needed to reproduce |Q(D)| results, where ρ∗ is the
fractional edge covering number of Q. Together, we obtain:

▶ Theorem 30. SWP is N1−1/ρ∗-approximable for any CQ Q, where ρ∗ is the fractional edge
covering number of Q.

This upper bound is polynomially larger than the logarithmic lower bound proved in
Section 4. We next explore better approximation algorithms for some commonly-used CQs.

5.2 Star CQs
We look into one commonly-used class of CQs noted as star CQs:

Qstar(A1, A2, · · · , Am) : −R1(A1, B), R2(A2, B), · · · , Rm(Am, B).

Our approximation algorithm follows the greedy strategy developed for weighted set cover
problem, where each element to be covered is a query result and each subset is a collection
of tuples. Intuitively, the greedy strategy always picks a subset that minimizes the “price”
for covering the remaining uncovered elements. The question boils down to specifying the
universe U of elements, and the family S of subsets as well as their weights. However, naively
taking every possible sub-collection of tuples from the input database as a subset, would
generate an exponentially large S, which leads to a greedy algorithm running in exponential
time. Hence, it is critical to keep the size of S small. Let’s start with Qmatrix (m = 2).

Greedy Algorithm for Qmatrix. Given Qmatrix, a database D, and a subset of query results
C ⊆ Qmatrix(D), the price of a collections of tuples (X, Y ) for X ⊆ πAR1 and Y ⊆ πCR2 is
defined as f(C, X, Y ) = |X|+|Y |

|(C∪(X⋊⋉Y ))−C| . To shrink the space of candidate subsets, a critical
observation is that the subset with minimum price chosen by the greedy algorithm cannot be
divided further, i.e., all tuples should have the same join value as captured by Lemma 31.

▶ Lemma 31. Given Qmatrix and a database D, for two distinct values b, b′ ∈ dom(B), and
two pairs of subsets of tuples (X1, Y1) ∈ 2σB=bR1 × 2σB=bR2 , (X2, Y2) ∈ 2σB=b′ R1 × 2σB=b′ R2 ,
for arbitrary C ⊆ Qmatrix(D), min{f(C, X1, Y1), f(C, X2, Y2)} ≤ f(C, X1 ∪X2, Y1 ∪ Y2).
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Algorithm 2 GreedySWP(Qmatrix, D)

1 D′ ← ∅, C ← ∅;
2 foreach bi ∈ dom(B) do
3 (Xi, Yi)← (πAσB=biR1, πCσB=biR2);
4 while C ̸= Qmatrix(D) do
5 bj ← arg minbi∈dom(B) f(C, Xi, Yi);
6 D′ ← D′ ∪Xj ∪ Yj , C ← C ∪ (Xj × Yj);
7 foreach bi ∈ dom(B) do
8 (Xi, Yi)← arg min

X⊆πAσB=bi
R1,Y ⊆πC σB=bi

R2
f(C, X, Y );

9 return D′;

Now, we are ready to present a greedy algorithm that runs in polynomial time. As
shown in Algorithm 2, we always maintain a pair (Xi, Yi) for every value bi ∈ dom(B), such
that (Xi, Yi) minimize the function f(C, X, Y ) for X ⊆ πAσB=biR1 and Y ⊆ πAσB=biR2.
Initially when C = ∅, it can be easily proved that when C = ∅, the pair (X, Y ) that leads
to minimum price must be X = πAσB=biR1 and Y = πCσB=biR2. The greedy algorithm
always chooses the one pair with minimum price, pick all related tuples in this pair, and
update the coverage C. After this step, we also need to update the candidate pair (Xi, Yi)
for each value bi ∈ dom(B) and enter into the next iteration. We will stop until all query
results are covered.

The remaining question is how to compute (Xi, Yi) with minimum price (line 8) efficiently.
We mention a problem known as densest subgraph in the bipartite graph in the literature
[29, 33], for which a poly-time algorithm based on max-flow has been proposed.

▶ Definition 32 (Densest Subgraph in Bipartite Graph). Given a bipartite graph (X, Y, E)

with E : X × Y → {0, 1}, it asks to find X ′ ⊆ X, Y ′ ⊆ Y to maximize
∑

x∈X′,y∈Y ′ E(x,y)
|X′|+|Y ′| .

Back to our problem, each value bi ∈ dom(B) induces a bipartite graph with X = πAσB=biR1,
Y = πCσB=bi

R2, and E = X × Y − C. This way, the densest subgraph in this bipartite
graph corresponds to a subset of uncovered query results with minimum price.

The approximation ratio of our greedy algorithm follows the standard analysis of weighted
set cover [44]. We next focus on the time complexity. The while-loop proceeds in at most
O(|Q(D)|) iterations, since |C| increases by at least 1 in every iteration. It takes O(N) time to
find the pair with minimum price, since there are O(N) distinct values in dom(B). Moreover,
it takes polynomial time to update (Xi, Yi) for each bi ∈ dom(B). Overall, Algorithm 2 runs
in polynomial time in terms of N .

Extensions. Our algorithm for Qmatrix can be extended to star CQs, and further to all
CQs with only one non-output attribute. Similar property as Lemma 31 also holds. Our
greedy algorithm needs a generalized primitive, noted as densest subgraph in hypergraph5 [31]
for finding the “set” with the smallest price. Following the similar analysis, we obtain:

▶ Theorem 33. For any CQ Q with |attr(Q)−head(Q)| = 1, SWP is O(log N)-approximable.

5 Given a hypergraph H = (V, E) for E ⊆ 2V , it asks to find a subset of nodes S ⊆ V such that the ratio
|{e ∈ E : e ⊆ S}|/|S| is maximized.
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5.3 Line CQs
We turn to another commonly-used class of CQs noted as line CQs:

Qline(A1, Am) : −R1(A1, A2), R2(A2, A3), · · · , Rm(Am, Am+1)

with m ≥ 3. We surprisingly find that SWP for line CQs is closely related to directed steiner
forest (DSF) problem [21, 13, 25, 19] in the network design: Given an edge-weighed directed
graph G = (V, E) of |V | = n and a set of k demand pairs {(si, ti) ∈ V × V : i ∈ [k]} and the
goal is to find a subgraph G′ of G with minimum weight such that there is a path in G′ from
si to ti for every i ∈ [k]. Observe that SWP(Qline, D) is a special case of DSF. This way, all
existing algorithm proposed for DSF can be applied to SWP for Qline. The best approximation
ratio achieved is O(min{k 1

2 +o(1), n0.5778}) [25, 13, 1]. Combining the baseline in Section 5.1
(with ρ∗ = 2 for line CQs) and existing algorithms for DSF, we obtain:

▶ Theorem 34. For Qline and any database D of input size N , there is a poly-time algorithm
that can approximate SWP(Qline, D) within a factor of O(min{|Qline(D)| 12 +o(1), dom0.5778, N

1
2 }),

where dom is the number of values that participates in at least one full join result.

There is a large body of works investigating the lower bounds of DSF; and we refer interested
readers to [19] for details. We mention a polynomial lower bound Ω(k1/4−o(1)) for DSF, but
it cannot be applied to SWP, since SWP is a special case with its complexity measured by the
number of edges in the graph. Instead, we built a reduction from label cover to SWP for Qline
directly (which is an adaption of reduction proposed in [21, 15]) and prove the following:

▶ Theorem 35. No poly-time algorithm approximates SWP for Qline within Ω(2(log N)1−ϵ)
factor for any constant ϵ > 0, unless P = NP.

6 Related Work

Factorized database [39] Factorized database studies a nested representations of query
results that can be exponentially more succinct than flat query result, which has the same
goal as SWP. They built a tree-based representations by exploiting the distributivity of product
over union and commutativity of product and union. This notion is quite different from
SWP. They measure the regularity of factorizations by readability, the minimum over all its
representations of the maximum number of occurrences of any tuple in that representation,
while SWP measures the size of witness.
Data Synopses [17, 41] In approximate query processing, people studied a lossy, compact
synopsis of the data such that queries can be efficiently and approximately executed against
the synopsis rather than the entire dataset, such as random samples, sketches, histograms and
wavelets. These data synopses differ in terms of what class of queries can be approximately
answered, space usage, accuracy etc. In computational geometry, a corset is a small set of
points that approximate the shape of a larger point set, such as for shape-fitting, density
estimation, high-dimensional vectors or points, clustering, graphs, Fourier transforms etc.
SWP can also be viewed as data synopsis, since it also selects a representative subset of
tuples. But, it is more query-dependent, as different CQs over the same database (such
as Q1(x) : −R1(x, y), R2(y, z) and Q2(x, y, z) : −R1(x, y), R2(y, z)) can have dramatically
different SWP. Furthermore, all query results must be preserved by SWP, but this is never
guaranteed in other data synopses. There is no space-accuracy tradeoff in SWP as well.
Related to Other Problems in Database Theory. The SWP problem also outputs
the smallest provenance that can explain why all queries results are correct. This notion of
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why-provenance has been extensively investigated in the literature [11, 30, 3], but not from
the perspective of minimizing the size of witness. The SWP problem is also related to the
resilience problem [26, 27, 42] ( Definition 39), which intuitively finds the smallest number
of tuples to remove so that the query answer turns into false. Our SWP problem essentially
finds the maximum number of tuples to remove while the query answer does not change. We
can observe clear connection here, but their solutions do not imply anything to each other.

7 Conclusion

In this paper, we study the data complexity of SWP problem for CQs without self-joins. There
are several interesting problems left:

1. Approximating SWP for CQs without head-domination property. So far, the approximation
of SWP is well-understood only on some specific class of CQs without head-domination
property. For remaining CQs, both upper and lower bounds remain to be improved, which
may lead to fundamental breakthrough for other related problems, such as DSF.

2. SWP for CQs with self-joins. It becomes much more challenging when self-joins exists, as
one tuple appears in multiple logical copies of input relation. Similar observation has
been made for the related resilience problem [27, 35]

3. Relaxing the number of query results witnessed. It is also possible to explore approximation
on the number of query results that can be witnessed. Here, SWP is naturally related to
the partial set cover problem, for which many approximation algorithms [28] have been
studied.
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A Missing Examples

R1

A B

a1 b1
a2 b2
a3 b2

R2

B C

b1 c1
b2 c3
b3 c2
b3 c3

R3

C F

c1 f1
c2 f3
c3 f3

R4

C H

c1 h1
c2 h1
c3 h1
c3 h2

Q(D)
A C F

a1 c1 f1
a2 c3 f3
a3 c3 f3

Figure 6 An example of database schema R = {R1, R2, R3, R4} (with A = {A, B, C, F, H},
attr(R1) = {A, B}, attr(R2) = {B, C}, attr(R3) = {C, F } and attr(R4) = {C, H}), a database
D, and the result of CQ Q(A, C, F ) : −R1(A, B), R2(B, C), R3(C, F ), R4(C, H) over D. D′ =
{(a1, b1), (b1, c1), (c1, f1), (c1, h1)} is the solution to SWP(Q, D, ⟨a1, c1, f1⟩). D′ together with tuples
{(a2, b2), (a3, b2), (b2, c3), (c3, f3), (c3, h2)} is the solution to SWP(Q, D).

B Discussion on Our Improvement over Naive Solutions

At last, let’s see what can be benefited from our algorithmic results such as in Examples 1, 2
and 3. Below, we compare SWP(Q, D) with |D| and |Q(D)|.

For a CQ Q with head-cluster property, let Q1, Q2, · · · , Qk be the subqueries defined on
relations partitioned by the output attributes. For a CQ Q with head-domination property,
let Q1, Q2,· · · , Qk be the subqueries defined by the connected components of G∃

Q. Consider
an arbitrary database D. Let D′

i be the projection of Q(D) onto output attributes of Qi. Let
D′ =

∑k
i=1 D′

i. We can prove for any D: (i) |D′| ≤ |Q(D′)| = |Q(D)|; (ii) SWP(Q, D) = |D′|,
if Q has head-cluster property; (iii) ASWP(Q, D) ≤ |rels(Q)| · |D′| if Q has head-domination
property. In general, |Q(D)| can be as large as Θ (|D′|ρ), where ρ is fractional edge covering
number of the residual CQ by removing all non-output attributes from Q, and |D| can also
be polynomially larger than |D′|, so (A)SWP(Q, D) could be polynomially smaller than both
|D| and |Q(D)|, while never be larger than them by a query-dependent constant.

For arbitrary CQ Q with database D, let D′ be the projection of Q(D) onto output
attributes for each relation. We have proved that ASWP(Q, D) is always smaller than |D| and
no larger than |Q(D′)| by a constant factor. The improvement would heavily depends on
the specific database. As noted, in some applications (such as Example 2 and 3), a naive
solution of size |Q(D)| does not exist.

C Deletion Propagation

In the literature, the classic deletion propagation (DP) of CQs without self-joins show
resemblance with SWP studied in this work. Here, we perform a comprehensive comparison
between them with respect to problem formulation, complexity results and techniques.

▶ Definition 36 (Deletion Propagation with Side Effect [35, 36]). Given a CQ Q, a database
D and a subset of query results J ⊆ Q(D), the problem asks to find a subset of tuples D′ ⊆ D

such that J ∩Q(D −D′) = ∅, and there exists no subset D′′ ⊆ D with J ∩Q(D −D′′) = ∅
and |Q(D −D′′)| > |Q(D −D′)|.

DP with side effects is different from SWP in terms of objective function, where DP focuses
on the number of remaining query results, and SWP focuses on the number of input tuples.
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▶ Definition 37 (Deletion Propagation with Source Side Effect [10, 16]). Given a CQ Q, a
database D and a subset of query results J ⊆ Q(D), the problem asks to find a subset of
tuples D′ ⊆ D such that all query results J just disappear after removing all tuples in D′,
i.e., J ∩Q(D −D′) = ∅, while there exists no subset D′′ ⊆ D with J ∩Q(D −D′′) = ∅ and
|D′′| < |D′|.

We note that if J = ∅, i.e., no query result is desired to be removed, the trivial solution
D′ = ∅ is optimal, and if J = Q(D), DP with source side effect just degenerates to the
resilience problem (see Definition 39).

▶ Definition 38 (Aggregated Deletion Propagation (ADP) [32]). Given a CQ Q, a database D

and a parameter 1 ≤ k ≤ |Q(D)|, the problem asks to find a subset of tuples D′ ⊆ D such
that at least k query results disappear, i.e., |Q(D −D′)| ≤ |Q(D)| − k, while there exists no
subset D′′ ⊆ D with |Q(D −D′′)| ≤ |Q(D)| − k and |D′′| < |D′|.

Similarly, we note that if k = 0, i.e., no query result is desired to be removed, the trivial
solution D′ = ∅ is optimal, and if k = |Q(D)|, ADP degenerates to the resilience problem. We
next focus on the difference between resilience and SWP:

▶ Definition 39 (Resilience [26, 27]). Given a Boolean CQ Q and a database D with Q(D) is
true, the problem asks to find a subset of tuples D′ ⊆ D such that Q(D −D′) is false, while
there exists no subset D′′ ⊆ D with Q(D −D′′) as false and |D′′| < |D′|.

These two problems have completely different constraints on D′, such that Q(D′) = Q(D)
is always required by SWP, but Q(D −D′) = ∅ is required by the resilience problem. Note
that Q(D−D′) ̸= Q(D)−Q(D′)! Hence, Q(D−D′) = ∅ does not imply anything for Q(D′),
so there is no connection between solutions to the resilience problem and solutions to SWP.
Complexity. As head domination property also precisely captures the hardness of deletion
propagation with side effect, we next focus on the difference between our paper and [35]:

Poly-time solvability (assume P ̸= NP):
SWP is poly-time solvable iff Q has head-cluster property;
DP is poly-time solvable iff Q has head-domination property;

Approximability:
SWP is N1−1/ρ-approximable for any Q;
DP is 1/ min{|attr(Q)|, |rels(Q)|}-approximable for any Q;

Inapproximability for CQ without head-domination property:
SWP is NP-hard to approximate within a factor of (1− o(1)) · log N ;
SWP is NP-hard to approximate for line CQs within a factor of O

(
2(log N)1−ϵ

)
for any

constant ϵ > 0;
DP is NP-hard to approximate within a factor of α, for some constant α ∈ (0, 1), which
may vary over different CQs;

Greedy Algorithms:
SWP is O(log N)-approximable for star CQs.
SWP is O(min{|Qline(D)| 12 +o(1), dom0.5778, N

1
2 })-approximable for line CQs (see The-

orem 34).
DP is 1

2 -approximable for star CQs.

Techniques. We are not aware of any similar techniques used for algorithms and lower
bounds between this paper and [35].



XX:22 Finding Smallest Witnesses for Conjunctive Queries

Algorithm 3 EasySWP(Q, D)

1 D′ ← ∅;
2 {E1, · · · , Ek} ← a partition of rels(Q) by output attributes;
3 A1, A2, · · · , Ak ← output attributes of E1, E2, · · · , Ek;
4 foreach i ∈ [k] do
5 Define Qi(Ai) : −{Rj(Aj) : j ∈ Ei};
6 foreach t′ ∈ πAiQ(D) do
7 D′ ← D′ ⊎

SWP(Qi, {Rj : Rj ∈ Ei}, t′);

8 return D′;

D Missing Materials in Section 3

Proof of Lemma 13. We prove that for any CQ Q with head-cluster property and an
arbitrary database D, Algorithm 1 returns the solution to SWP(Q, D). Together with the fact
that Algorithm 1 runs in polynomial time, we finish the proof for Lemma 13.

Let D′ be the solution returned by Algorithm 1. Let D′
i ⊆ D′ be the set of tuples from

relations in Ei. We show that D′ is a witness for Q(D), i.e., Q(D′) = Q(D). Direction ⊆.
As Q is a monotone query, Q(D′) ⊆ Q(D) always holds for any sub-database D′ ⊆ D.
Direction ⊇. Consider an arbitrary query result t ∈ Q(D). Let D′

i(t) denote the group of
tuples returned by SWP(Qi, {Rj : Rj ∈ Ei}, πAi

t). We note that t ∈ πA ⋊⋉i∈[k] D′
i(t), since

every tuple has the same value πAt over any output attribute A, if it contains attribute A;
there is no non-output attribute to join for tuples across groups;
tuples inside each group can be joined by non-output attribute; (implied by the correctness
of SWP for a single query result)

Hence, t ∈ Q(D′). Together, Q(D′) ⊇ Q(D).
We next show that there exists no other database D′′ ⊆ D such that Q(D′′) = Q(D) and

|D′′| < |D′|. By contradiction, assume there is some D′′ ⊆ D such that Q(D′′) = Q(D) and
|D′′| < |D′|. Let D′′

i ⊆ D′′ denote the set of tuples from relations in Ei. As |D′′| < |D′|,
there must exist some i ∈ [k] such that |D′′

i | < |D′
i|, i.e., D′

i −D′′
i ̸= ∅. In Algorithm 1, we

can rewrite D′
i as follows:

D′
i =

⊎
t′∈πAi

Q(D)

SWP(Qi, {Ri : Ri ∈ Ei}, t′),

where
⊎

denotes the disjoint union. As D′
i −D′′

i ̸= ∅, there must exist some t′ ∈ πAi
Q(D)

such that t′ /∈ Qi(D′′
i ), i.e., t′ cannot be witnessed by D′′

i . Correspondingly, there must
exist some query result t with πAi

t = t′ such that t /∈ Q(D′′), i.e. t cannot be witnessed by
D′′, contradicting the fact that Q(D′′) = Q(D). Hence, no such D′′ exists and D′ has the
smallest size. ◀

Proof of Lemma 15. Consider such a CQ Q with a desired pair of relations Ri, Rj ∈ rels(Q).
We next show a reduction from Qcover to Q. Given an arbitrary database Dcover over Qcover,
we construct a database D over Q as follows. First, it is always feasible to identify attribute
A′ ∈ head(Ri) − attr(Rj) and attribute B′ ∈ attr(Ri) ∩ attr(Rj) − head(Q). We set
dom(A′) = dom(A), dom(B′) = dom(B), and remaining attributes with a dummy value {∗}.
Each relation in Q degenerates to R1(A, B), or R2(B), or a dummy tuple {∗, ∗, · · · , ∗}. It can



X. Hu and S. Sintos XX:23

be easily checked that there is a one-to-one correspondence between solutions to SWP(Q, D)
and solutions to SWP(Qcover, Dcover). Thus, if SWP is poly-time solvable for Q, then SWP is
also poly-time solvable for Qcover, leading to a contradiction of Lemma 14. ◀

Faster Algorithm of Computing SWP for Triangle CQ. Let’s take the triangle full CQ
Q△(A, B, C) = R1(A, B) ⋊⋉ R2(B, C) ⋊⋉ R3(A, C) as example. For an arbitrary database D,
SWP(Q△, D) can be computed in O

(
N

2ω
ω+1

)
time, where ω is the exponent of fast matrix

multiplication algorithm. The algorithm is adapted from triangle detection. For each input
relation, we proceed with the following procedure. Let’s take R1 as example.

This algorithm uses a parameter ∆, whose value will be determined later. A value
a ∈ dom(A) is heavy if it appears in more than ∆ tuples in R1(A, B) or R3(A, C), and light
otherwise. A value b ∈ dom(B) is heavy if it appears in more than ∆ tuples in R1(A, B) or
R2(B, C), and light otherwise. A value c ∈ dom(C) is heavy if it appears in more than ∆
tuples in R2(B, C) or R3(A, C), and light otherwise. We take the union of results of the
following queries:

πA,B

(
R1(A, Blight) ⋊⋉ R2(Blight, C) ⋉ R3(A, C)

)
: We first materialize R1(A, Blight) ⋊⋉

R2(B, C), then compute the semi-join between the intermediate join results and R3,
and the projection of the semi-join results onto attributes A, B. It takes O(N ·∆) time.
πA,B

(
R1(Alight, B) ⋊⋉ R3(Alight, C) ⋉ R2(B, C)

)
: We apply similar procedure as above.

It also takes O(N ·∆) time.
R1(A, B) ⋉

(
R2(B, C light) ⋊⋉ R3(A, C light)

)
: We materialize R2(B,

C light) ⋊⋉ R3(A, C light), then compute the semi-join between R1 and the intermediate join
results. It takes O(N ·∆) time.
R1(A, B) ⋊⋉

(
R2(Bheavy, Cheavy) ⋊⋉ R3(Aheavy, Cheavy)

)
: We materialize R2(Bheavy, C light) ⋊⋉

R3(Aheavy, C light) using fast matrix multiplication, then compute the semi-join between
R1 and the intermediate join results. It also takes O

(
( N

∆ )ω
)

time.

By setting ∆ = N
ω−1
ω+1 , we obtain the overall run-time as O(N

2ω
ω+1 ).

E Missing Proofs in Section 4

Missing Details in the Proof of Lemma 21. Here, we show that (U ,S) has a cover of size
≤ k if and only if the SWP(Qmatrix, D) has an integral solution of size ≤ |U|+k · |V | = n(k +1).

Direction only-if. Suppose we are given a cover S ′ of size k to (U ,S). We construct an
integral solution D′ to SWP(Qmatrix, D) as follows. Let B′ ⊆ dom(B) be the set of values that
corresponding to S ′. For every bS ∈ B′, i.e., S ∈ S ′, we add tuple (bS , cu) to D′ for every
u ∈ U . For every au ∈ dom(A), we choose an arbitrary value bS ∈ B′ such that u ∈ S, and
add tuple (au, bS) to D′. This is always feasible since S ′ is a valid set cover. It can be easily
checked that n tuples from R1 and k · n tuples from R2 are added to D′.

Direction if. Suppose we are given a integral solution D′ of size k′ to SWP(Qmatrix, D).
Let B′ be the subset of values whose incident tuples in R2 are included by D′. We argue
that all subsets corresponding to B′ forms a valid cover of size k′

n−1 . By definition of integral
solution, |B′| = k′

n − 1. Moreover, for every value a ∈ dom(A), at least one edge (a, b) is
included by D′ for some b ∈ B′, hence B′ must be a valid set cover. ◀

Proof of Lemma 17. We show that for any CQ Q with head-domination property and an
arbitrary database D, Algorithm 1 always return a |rels(Q)|-approximated solution D′ to
SWP(Q, D). It can be easily checked that Q(D) = Q(D′).
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Consider the connected components E1, E2, · · · , Ek of G∃
Q with dominants Ṙ1, Ṙ2, · · · , Ṙk.

Let Qi be the subquery defined over relations in Ei, with output attributes head(Qi) =
attr(Ṙi), and Di = {Rj : Rj ∈ Ei} be the corresponding database for Qi. Let D∗ be the
solution to SWP(Q, D). We point out some observations on D∗:

For each Rj with attr(Rj) ⊆ head(Q), D∗ must include tuples in πattr(Rj)Q(D).
For every dominant Ṙi, D∗ must include at least |πhead(Ṙi)Q(D)| tuples from Ṙi.

On the other hand, Algorithm 1 includes |rels(Qi)| tuples for each primitive at line 11,
and invokes this primitive for each tuple in πhead(Ṙi)Q(D). Together, we come to:

|D′| =
∑

Rj :attr(Rj)⊆head(Q)

∣∣πattr(Rj)Q(D)
∣∣ +

∑
Ṙi:i∈[k]

∣∣∣πhead(Ṙi)Q(D)
∣∣∣ · |rels(Qi)|

≤ |D∗|+ |D∗| · |rels(Qi)| = 2 · |D∗| · |rels(Q)|

It can also be easily checked that Q(D) = Q(D′). Hence, Algorithm 1 always returns a
O(1)-approximation solution for SWP(Q, D).

Moreover, the query results Q(D) can be computed in poly-time in the input size of D.
Each primitive of finding the smallest witness for one query result takes O(1) time. Hence,
Algorithm 1 runs in polynomial time. ◀

Proof of Lemma 24. Let P = ⟨A1, A2, · · · , Ak⟩ be such a sequence. For simplicity, let
P ′ = {A2, A3, · · · , Ak−1}. We next show a reduction from set cover to SWP(Q, D). Consider
an arbitrary instance of set cover with a universe U and a family S of subsets of U where
|U| = n and |S| = nc for some constant c ≥ 1. We construct a database D for Q as follows.
For each u ∈ U , we add a value au to dom(A1) and dom(Ak). For each subset S ∈ S, we
add a value bS to dom(B) for every B ∈ P ′. We set the domain of remaining attributes in
attr(Q)− P as {∗}. For each relation Rj ∈ rels(Q), we distinguish the following cases:

If A1 ∈ attr(Rj), we further distinguish two more cases:
if attr(Rj) ∩ P ′ = ∅, we add tuple t with πA1t = au for every u ∈ U ;
otherwise, we add tuple t with πA1t = au and πAi

t = bS for Ai ∈ attr(Rj) ∩ P ′, for
every pair (u, S) ∈ U × S such that u ∈ S;

If Ak ∈ attr(Rj), we further distinguish two more cases:
if attr(Rj) ∩ P ′ = ∅, we add tuple t with πAk

t = au for every u ∈ U ;
otherwise, we add tuple t with πAk

t = au and πAit = bS for Ai ∈ attr(Rj) ∩ P ′, for
every pair (u, S) ∈ U × S;

If P ∩ attr(Rj) ⊆ P − {A1, Ak}, we add a tuple t with πAi
t = bS for Ai ∈ attr(Rj) ∩ P ,

for every S ∈ S;
If P ∩ attr(Rj) = ∅, then we add a tuple {∗};

It can be easily checked that every relation contains at most nc+1 tuples, hence log N =
Θ(log n). The query result Q(D) is exactly the Cartesian product of U × U .

Consider a sub-database D′ of D constructed above. Let R′
j be the corresponding sub-

relation of Rj in D′. A solution D′ to SWP(Q, D) is integral if R′
j =

(
πattr(Rj)∩P ′R′

j

)
×(πAk

Rj)
holds for every relation Rj with Ak ∈ attr(Rj) and attr(Rj) ∩ P ′ ̸= ∅. Applying a similar
argument as Lemma 21, we can show that there always exists an integral solution to SWP(Q, D).
Below, it suffices to focus on integral solutions.

It can be easily proved that (U ,S) has a cover of size ≤ k if and only if SWP(Q, D) has an
integral solution of size ≤ nq1 + knq2 + q3 where q1, q2, q3 ≤ |rels(Q)| are query-dependent
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parameters. If SWP is (1− o(1)) · log N -approximatable for Q, there is a poly-time algorithm
that can approximate set cover instances of input size n within a log n-factor, which is
impossible unless P = NP. ◀

Proof of Lemma 25. Let P ⊆ attr(Q) be the subset of attributes corresponding to the
clique in the renamed query of Q. We identify the relation that contains the most number
of output attributes of P , say R2 = arg maxRi∈rels(Q) |attr(Ri) ∩ P ∩ head(Q)|. As there
exists no relation Rk ∈ rels(Q) with head(Q) ∩ P ⊆ attr(Rk), it is always feasible
to identify an attribute A ∈ head(Q) ∩ P − attr(R2). For simplicity, we denote P ′ =
head(Q) ∩ P − attr(R2) − {A} = {A1, A2, · · · , Aℓ}, for some integer ℓ. All non-output
attributes in P−head(Q) collapse to a single attribute F . All other attributes in attr(Q)−P

contain a dummy value {∗}.
Consider an arbitrary instance of set cover (U ,S) with U = {u1, u2, · · · , un} and S =

{S1, S2, · · · , Sm}, where m = nc for some constant c > 1. We construct a database D for
Q. Let dom(A) = {a1, a2, · · · , an}, dom(B) = {b1, b2, · · · , bn}, dom(C) = {c1, c2, · · · , cn} for
every C ∈ P ′, and dom(F ) = dom(F −)× dom(F +) where dom(F −) = {f−

1 , f−
2 , · · · , f−

m} and
dom(F +) = {f+

h1,h2,··· ,hℓ
: ∀h1, h2, · · · , hℓ ∈ [n]}. We distinguish the following cases for a

relation Ri ∈ rels(Q):

If attr(Ri)∩ P ⊆ head(Q), Ri is a Cartesian product over all attributes in head(Ri)∩ P ;
Otherwise, we further distinguish the following three cases:

R2 is a Cartesian product over all attributes in attr(R2) ∩ P ;
If A, F ∈ attr(Ri), we construct sub-relation (πA,F Ri) such that for each pair (uℓ, Sj) ∈
U×S with uℓ ∈ Sj , we add tuples

{
aℓ, f−

j

}
×dom(F +) to (πA,F Ri). If attr(Ri)∩P ′ ̸= ∅,

for each tuple
(

aℓ, f+
h1,h2,··· ,hℓ

, f−
j

)
∈ (πA,F Ri), we extend it by attaching value chj

for
attribute Aj ∈ attr(Ri) ∩ P ′. This way, we already obtain

(
πA,F,attr(Ri)∩P ′Ri

)
. At

last, we construct Ri as the Cartesian product of remaining attributes in head(Ri) ∩
head(R2) ∩ P and

(
πA,F,attr(Ri)∩P ′Ri

)
.

Otherwise, F ∈ attr(Ri) but A /∈ attr(Ri). We construct sub-relation (πF Ri) =
dom(F ). If attr(Ri) ∩ P ′ ̸= ∅, for each tuple

(
f+

h1,h2,··· ,hℓ
, f−

j

)
∈ πF Ri, we extend it

by attaching value chj for attribute Aj ∈ attr(Ri) ∩ P ′. This way, we already obtain(
πF,attr(Ri)∩P ′Ri

)
. At last, we construct Ri as the Cartesian product of remaining

attributes in head(Ri) ∩ head(R2) ∩ P and
(
πA,F,attr(Ri)∩P ′Ri

)
.

It can be checked that every relation contains O(n|head(Q)∩P | · m) tuples, hence log N =
Θ(log n). Meanwhile, the query result Q(D) is the Cartesian product over attributes in
head(Q)∩P , so every solution to SWP(Q, D) must contain all tuples in Ri if attr(Ri)∩P ⊆
head(Q), and the dummy tuple {∗} in every relation Ri if attr(Ri) ∩ P = ∅.

Here, D also enjoys highly symmetric structure over every attribute C ∈ P ′. More
specifically, every tuple t = (ci1 , ci2 , · · · , ciℓ

) ∈ ×C∈P ′dom(C) induces a subquery by removing
all attributes in P ′, and restricting dom(F ) as dom(Ft) = dom(F −)×

{
f+

i1
, f+

i2
, · · · , f+

iℓ

}
. In

a sub-database D′ ⊆ D, let R′
i be the corresponding sub-relation Ri. A solution D′ to

SWP(Q, D) is integral if:

for every relation Ri ∈ rels(Q) with A, F ∈ attr(Ri),

πA,F,head(Ri)∩head(R2)∩P R′
i =

(
πA,F −R′

i

)
× dom(F +)×

(
×C∈head(Ri)∩head(R2)∩P dom(C)

)
for every relation Ri ∈ rels(Q) with A /∈ attr(Ri) and F ∈ attr(Ri),

πF,head(Ri)∩head(R2)∩P R′
i = (πF −R′

i)× dom(F +)×
(
×C∈head(Ri)∩head(R2)∩P dom(C)

)
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It can be easily shown that there always exists an integral solution to SWP(Q, D). Moreover,
(U ,S) has a cover of size ≤ k if and only if SWP(Q, D) has an integral solution of size
(q1k + q2) · n|head(Q)∩P |−1, where q1, q2 ≤ |rels(Q)| are some query-dependent parameters.
Applying a similar argument as Lemma 21, we can show that if SWP is (1 − o(1)) · log N -
approximable for Q, there is a poly-time algorithm that can approximate set cover instances
of input size n within a log n-factor, which is impossible unless P = NP. ◀

▶ Definition 40 (Cycle). In a CQ Q, a sequence of attributes P = ⟨A1, A2, · · · , Ak⟩ is a
cycle if

for every i ∈ [k], there exists a relation Rj ∈ rels(Q) such that Ai, A(i+1)mod k ∈ attr(Rj);
for every Rj ∈ rels(Q), either attr(Rj)∩P = ∅, or |attr(Rj)∩P | = 1 or attr(Rj)∩P =
{Ai, A(i+1)mod k} for some i ∈ [k].

▶ Definition 41 (Non-Conformal Clique). In a CQ Q, a non-conformal clique is a subset of
attributes P ⊆ attr(Q), such that

for every pair of attributes Ai, Aj, there exists a relation Rk ∈ rels(Q) with Ai, Aj ∈
attr(Rk);
there is no relation Rℓ ∈ rels(Q) such that P ⊆ attr(Rℓ).

▶ Lemma 42 ([9]). Every cyclic CQ contains either a cycle or a non-conformal clique.

Proof of Lemma 29. We already prove this lemma for acyclic CQs, such that if there exists
no free sequence, Q has head-domination property. Below, we focus on cyclic CQs. From
Lemma 42, Q must contain a cycle or a non-formal clique.

Consider an arbitrary cycle or clique P . As shown in Lemma 44, if P ∩ head(Q) ̸= ∅ and
P − head(Q) ̸= ∅, there must exist a relation Rk ∈ rels(Q) such that removing head(Rk)
turns Q into a disconnected CQ, where relations in {Ri : attr(Ri) ∩ P − head(Q) ̸= ∅} is a
connected subquery. Then, it is safe to remove all relations in {Ri : attr(Ri)∩P−head(Q) ̸=
∅} from Q, and prove that the residual query (where P disappears) has head-domination
property.

Applying this removal procedure iteratively, we are left with cycles and non-conformal
cliques that contain only output attributes, or only non-output attributes. Lemma 43 proves
that Q in this case has head-domination property, thus completing the proof. ◀

▶ Lemma 43. In a cyclic CQ Q without free sequences and nested cliques in its renamed query,
if every cycle or non-conformal clique contains only output attributes, or only non-output
attributes, Q has head-domination property.

Proof of Lemma 43. We apply the following procedure to Q: if there exists a cycle or
non-conformal clique P , we add a virtual relation Rp with attr(Rp) = P to rels(Q). We
apply this procedure iteratively until no more cycle or non-conformal clique can be found.
Let Q′ be the resulted query.

We first prove that for each virtual relation Rp added, either attr(Rp) ⊆ head(Q) or
attr(Rp) ⊆ attr(Q)− head(Q). Adding virtual relation does not increase more cycles, but
some possible non-conformal cliques. We distinguish the following three cases:

If Rp is added for a cycle P , then P must exist in Q and therefore attr(Rp) ⊆ head(Q)
or attr(Rp) ⊆ attr(Q)− head(Q);
If Rp is added for a non-conformal clique P , and P exists in Q, then attr(Rp) ⊆ head(Q)
or attr(Rp) ⊆ attr(Q)− head(Q);
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Algorithm 4 GreedySWP(Q, D)

1 D′ ← ∅;
2 foreach t ∈ Q(D) do D′ ← D′ ∪ SWP(Q, D, t);
3 return D′;

Otherwise, Rp is added for a non-conformal clique P but P does not exist in Q. It must
be the case that after Rp′ is added for a cycle P ′, a non-conformal clique P forms with
P ′ ⊊ P . If P ′ ⊆ head(Q), then P ⊆ head(Q); otherwise, P is a nested clique in the
renamed query of Q. If P ′ ⊆ attr(Q)−head(Q), then P ⊆ attr(Q)−head(Q); otherwise,
any pair of non-consecutive attributes in P ′ will form a free sequence together with an
arbitrary attribute in P ∩ head(Q), contradicting the fact that Q does not contain a free
sequence. In either case, Rp is added as a virtual relation with attr(Rp) ⊆ head(Q) or
attr(Rp) ⊆ attr(Q)− head(Q).

We next point out some critical observations on Q′: (1) head(Q) = head(Q′); (2) Q′

is acyclic, as it does not contain any cycle or non-conformal clique; and (3) Q′ also does
not contain any free sequence as Q. Together, Q′ is free-connex. It is feasible to find
a free-connex join tree, and identify connected components E′

1, E′
2, · · · , E′

k of G∃
Q′ with

dominants Ṙ1, Ṙ2, · · · , Ṙk ∈ rels(Q′). Moreover, as Q′ is connected, head(Ṙi) ̸= ∅ holds for
every i ∈ [k]. We next show that virtual relations are not dominants. By contradiction, we
assume Rp = Ṙ1 for some virtual relation Rp. If attr(Rp)− head(Q) = ∅, E′

1 ∪ {Rp} form a
connected subquery, so Q′ is disconnected, leading to a contradiction. If attr(Rp) ⊆ head(Q),
we further distinguish two more cases. If Rp is added for a non-conformal clique, then E′

1
form a nested-clique in the rename query of Q; and if Rp is added for a cycle, then any
non-consecutive attributes of P together with non-output attributes in relations of E′

1 form
free-sequence. Hence, virtual relations cannot be dominants, and Ṙ1, Ṙ2, · · · , Ṙk ∈ rels(Q).

Let Ei ⊆ E′
i be the set of non-virtual relations in E′

i. It can be easily checked that
E1, E2, · · · , Ek are also the connected components of G∃

Q with dominants Ṙ1, Ṙ2, · · · , Ṙk.
Hence, Q has head-domination property. ◀

▶ Lemma 44. In a cyclic CQ Q without free sequences and nested cliques in its renamed
query, for any cycle or non-conformal clique P , if P ∩ head(Q) ̸= ∅ and P − head(Q) ̸= ∅,
there must exist a relation Rk ∈ rels(Q) such that removing head(Rk) turns Q into a
disconnected CQ, where {Ri : attr(Ri) ∩ P − head(Q) ̸= ∅} is a connected subquery.

Proof. Consider an arbitrary non-output attribute A ∈ attr(Q) − head(Q). Let VA ⊆
attr(Q) be the set of attributes renamed to attribute A in this procedure. Let NA = {B ∈
attr(Q)− VA : ∃B′ ∈ VA, Ri ∈ attr(Q), s.t.B, B′ ∈ attr(Ri)} be the set of attributes that
appear together with some attribute of VA in some relation. Note that NA ⊆ head(A);
otherwise, any attribute in NA − head(A) will be renamed as A, coming to a contradiction.
Moreover, for every pair of attributes B, B′ ∈ NA, there must exist a relation Ri such
that B, B′ ∈ attr(Ri); otherwise, a free sequence is identified, coming to a contradiction.
Thus, NA is a clique. In addition, there must exist one relation Rk such that NA ⊆
attr(Rk); otherwise, a nested clique NA ∪ {A} is identified in the renamed query, coming
to a contradiction. In this way, removing all attributes in VA ⊆ head(Rk) turns Q into a
disconnected CQ, where {Ri ∈ rels(Q) : head(Ri) ⊆ VA} is a connected subquery.

Let’s come to cycle P . For simplicity, denote P = ⟨A1, A2, · · · , Ak⟩. As there is no
free sequence, P ∩ head(Q) = {Ai, A(i+1)mod k} for some i ∈ [k]. Then, we can identify an
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Figure 7 An example of hard instance constructed for Qline3.

arbitrary output attribute in P − head(Q) as A, and therefore

P − head(Q) ⊆ VA;
for every relation Rj ∈ rels(Q) with attr(Rj) ∩ P − head(Q) ̸= ∅, head(Rj) ⊆ VA.

Hence, removing head(Rk) turns Q into a disconnected CQ, where {Ri : attr(Ri) ∩ P −
head(Q) ̸= ∅} is a connected subquery.

We next turn to non-conformal clique P . We can identify an arbitrary output attribute
in P − head(Q) as A, and therefore

P − head(Q) ⊆ VA;
for every relation Rj ∈ rels(Q) with attr(Rj) ∩ P − head(Q) ̸= ∅, head(Rj) ⊆ VA.

Hence, removing head(Rk) turns Q into a disconnected CQ, where {Ri : attr(Ri) ∩ P −
head(Q) ̸= ∅} is a connected subquery. ◀

F Missing Proofs in Section 4

Proof of Theorem 30. Let D′ be the solution returned by Algorithm 4. For each query
result t ∈ Q(D), we add at most |rels(Q)| tuples to D′, so |D′| ≤ |Q(D)| · |rels(Q)|.
Meanwhile, |D′| ≤ N · |rels(Q)|. Let D∗ be the solution to SWP(Q, D). Note that at most
|D∗|ρ query results can be reproduced from D∗. Hence, we must have |D∗|ρ ≥ |Q(D)|, i.e.,
|D∗| ≥ |Q(D)|1/ρ. Below, we show that |D′| ≤ N1−1/ρ · |D∗| with the following facts:

If |Q(D)| ≤ N , then the approximation ratio (skipping |rels(Q)|) is |D′|
|D∗| ≤

|Q(D)|
|Q(D)|1/ρ =

|Q(D)|1−1/ρ ≤ N1−1/ρ.
If N < Q(D), then the approximation ratio (skipping |rels(Q)|) is at most |D′|

|D∗| ≤
N

|Q(D)|1/ρ ≤ N
N1/ρ = N1−1/ρ.

As Q(D) can be computed in polynominal time, Q(D) is polynomially large and SWP for a
single tuple can be computed in poly-time, this baseline runs in polynominal time. ◀

Proof of Theorem 35. We focus on line-3 query Qline3(A1, A4) : −R1(A1, A2), R2(A2, A3),
R3(A3, A4), which can be generalized to line-m query Qline(A1, Am) : −R1(A1, A2), R2(A2, A3),
· · · , Rm(Am, Am+1), by putting A3, A4, · · · , Am−1 as identical copies of Am.

Label Cover. We introduce the Label Cover Problem as below:

▶ Definition 45 (Label Cover). Given a complete bipartite graph (U, V, E) with |U | =
|V | = n, a finite alphabet Σ with Σ > n, constraints Cu,v for every edge e = (u, v), the
goal is find assignments to the vertices MU : U → 2Σ and MV : V → 2Σ that every
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edge is satisfied, i.e., there exists x ∈ MU (u), y ∈ MV (v) such that (x, y) ∈ Cu,v, and∑
u∈U |MU (u)|+

∑
v∈V |MV (v)| is minimized. The problem size m is defined as n× |Σ|.

▶ Lemma 46 ([20]). There is no poly-time algorithm that can approximate the label cover
instances of size m within O

(
2(log m)1−ϵ

)
factor for any ϵ > 0.

SWP for Qline3. We set dom(A) = U × [n2], dom(B) = U × Σ, dom(C) = V × Σ and
dom(D) = V × [n2]. The database D includes:

R1 = {(⟨u, i⟩, ⟨u, x⟩) : u ∈ V, i ∈ [n2], x ∈ Σ};
R2 = {(⟨u, x⟩, ⟨v, y⟩) : u, v ∈ V, x, y ∈ Σ, (x, y) ∈ Cuv};
R3 = {(⟨v, y⟩, ⟨v, i⟩) : v ∈ V, y ∈ Σ, i ∈ [n2]};

In this instance, we have N = O(n2 · |Σ|2 + n3 · |Σ|) = O(m2). It can be easily checked that
Qline3(D) = U × [n2]× V × [n2] with n6 query results. For any witness D′ for SWP(Qline3, D),
let D′

1, D′
2, D′

3 be the set of tuples chosen from R1, R2, R3 separately.
For a sub-database D′ ⊆ D, let R′

1, R′
3 are the corresponding subset of tuples from

R1, R3 in D′. A solution D′ to SWP(Qline3, D) is integral if for any (u, x) ∈ U × Σ, either
σB=(u,x)R

′
1 = ∅ or σB=(u,x)R

′
1 = {⟨u, i⟩, ⟨u, x⟩ : i ∈ [n2]}, and for any (v, y) ∈ V × Σ, either

σC=(v,y)R
′
3 = ∅ or σC=(v,y)R

′
3 = {⟨v, i⟩, ⟨v, y⟩ : i ∈ [n2]}.

▶ Lemma 47. Every non-integral solution to SWP(Qline3, D) can be transformed into an
integral solution to SWP(Qline3, D).

Proof. Consider an arbitrary non-integral solution D′. W.o.l.g., assume there exists some
(u, x) ∈ U ×X, such that σB=(u,x)R

′
1 ̸= ∅ and σB=(u,x)R

′
1 ̸= {⟨u, i⟩, ⟨u, x⟩ : i ∈ [n]}. There

must exist some pair of (i, j) such that ⟨u, i⟩, ⟨u, x⟩ ∈ D′
1 but ⟨u, j⟩, ⟨u, x⟩ /∈ D′

1. Let
Xi = {x ∈ X : ⟨u, i⟩, ⟨u, x⟩} ∈ D′

1 and Xj = {x ∈ X : ⟨u, i⟩, ⟨u, x⟩} ∈ D′
1. W.l.o.g., assume

|Xi| ≤ |Xj |. As D′ is a solution to SWP(Qline3, D), it is feasible to remove ⟨u, j⟩, ⟨u, x⟩ ∈ D′
1

for x ∈ Xj from D′ and add ⟨u, j⟩, ⟨u, x⟩ ∈ D′
1 for x ∈ Xi to D′, which yields another

solution to SWP(Qline3, D) without increasing the number of tuples. After applying this step
iteratively, we can obtain a solution such that every (u, i) is incident to the same values in
dom(B) over i ∈ [n], i.e., an integral solution. ◀

From now on, it suffices to consider the integral solution to SWP(Qline3, D). Moreover, we
can assume |D′

2| = n2 by picking an arbitrary edge (⟨u, x⟩, ⟨v, y⟩) ∈ R2 with (x, y) ∈ Cuv for
(u, v) ∈ U × V . Observe that there is a solution to label cover of cost at most c if and only if
there is an integral solution to SWP for Qline3 of cost at most n2c + n2 = n2(c + 1).

Direction Only-If: Let S = (MU , MV ) be the solution to label cover. We define an integral
solution DS to SWP(Qline3, D) based S. For each vertex u ∈ U , we add the set of tuples
(⟨u, ∗⟩, x) ∈ R1 to DS if x ∈ MU (u). Similarly, for each vertex v ∈ V , we add the set of
tuples (⟨v, ∗⟩, y) ∈ R3 to DS if y ∈MV (v). Together with the n2 tuples chosen from R2,
we have obtained a witness DS of size c · n2 + n2 = (c + 1)n2.
Direction If: Let DS be an integral witness to SWP(Qline3, D) of cost c′. We construct a
solution (MU , MV ) to label cover as follows. If (⟨u, ∗⟩, x) ∈ R1 is included by DS , we add
x to MU (u). Similarly, if (⟨v, ∗⟩, y) ∈ R3 is included by DS , then we add y to MV (v). It
can be easily checked that we have obtained a solution to label cover of size c′−1

n2 .

If there is a poly-time algorithm that can approximate SWP for Qline3 within 2(log
√

N)1−ϵ

factor, then there is a poly-time algorithm that can approximate label cover within 2(log
√

N)1−ϵ =
2(log m)1−ϵ factor, coming to a contradiction of Lemma 46.

◀
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