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Agenda

m |ast and This class: Traditional query processing
— Relational Algebra
— Pairwise Framework
— Yannakakis algorithm
- Extensions



I
Semi-Join R(A,B) x S(B, C)

B RXS=m,pg(R x §):alltuplesin R that
can be joined with at least one tuplein §

m Law of semi-joins:R X S =(RXS) X S
m O(|R| + |S]) ignoring log-factors

m How to use semi-join to remove dangling
tuples those won’t participate in any join
result?
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Yannakakis Algorithm: Semi-Join Reducer .

— pick a non-visited node e (with its parent e')

€o
- update R,, with R,, X R, e, a/ e e3

Take an arbitrary join tree
m In a bottom-up phase:

m Inatop-down phase: R, =R, ¥R,
R, =R, X R,

- pickanodee
Re1 = Re1 X Reo

~ For each child e’ of e, update R,, with R,,, X
R, Re, == Ro, X R,,
R., = R,, X R,

m Data Complexity: O(N) ignoring log-factors Res = Rey X Re,
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Example of Semi-join Reducer

R S T

a, by by 3 ¢, dq @

a, b1 b1 Cc Co d2
a; b, bs ¢ cs dy @

a; b4- b6 Cé Ce d3 Q: — R(A) B) X S(B) C) X T(CJ D)
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No Dangling tuples

m Every remaining tuple participates in at least one join result.

m [n the bottom-up phase:

R,
- For every node ¢, once e is reduced, every
tuple in R, participate in at least one result
of the sub-join induced by T,
® In the top-down phase: Te: the subtree rooted
atnodee

- For every node ¢, once e is reduced, every
tuple in R, participate in at least one result
of the whole join query



]
Yannakakis Algorithm: Pairwise Framework

Take an arbitrary join tree

e

m In a bottom-up phase:
— pick a non-visited node e (with its parent e')

— update R,, with R,, X R, eg @

m Output R, for the root node r

m The intermediate join size is bounded by O(OUT)

m Data complexity: 0(OUT) Re, = Rey ™ R,



I
Discussion: How about Semi-join Reducer on Cyclic Joins?

m No more tuples can be removed but some intermediate join result
does not participate in any full join result

m How to find non-dangling tuples for cyclic joins? Open questions!



]
A Practical version of Yannakakis Algorithm

Take an arbitrary join tree (a;,ds)
m In a bottom-up phase:
— pick a non-visited node e (with parent e’)
- update R,, with R,, X R,

m Foreachtupletintheroot nodeR,:
— Probe tuples in a top-down manner that
can be joined with

(bli 81)




]
A Practical version of Yannakakis Algorithm

m After O(N) linear preprocessing time, an index (a1, d1)
of linear size can be built such that every join
result can be enumerated with 0(1) delay

m Application in dynamic query processing

- How to maintain non-dangling tuples in the root
node and probe indexes?

m Total complexity: O(N + OUT)
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4 acyclic b
Recap on Acyclicity N @eﬂb

m AjoinqueryQ = (V,E)isacyclicifit has D O
a join tree T such that o0
- one-to-one correspondence between
: P d: :b

nodes in T with the relations in E;

acyclic

— forany attribute A € V, all nodes

containing A form a connected subtree. /A\
VAR Lo

cyclic

D

1 acyclic




Discussion: How to Build a Join Tree

m AqueryQ = (V,E)isacyclicif GYO
reduction results in an empty query:

— If thereis an attribute A4 € VV that only
appears in one relation say e, then remove

12

A from e;

~ If thereis a pair of relations e,e’ € E
such that e € e’, then remove e from E.

A D
o~
e e
1 e, 3

GYO sequence:
A,e,B,e,,C,D,e;

GYO sequence:
D,e. E,e,, F,e3,A,B,C, e

GYO sequence:
e, e,,e3,4A,B,C, e,



]
Equivalence Between Two Definitions

m QisacyclicifithasajointreeT. m Q isacyclicif GYO reduction results
In an empty query

@ GYO sequence:
D,e E,e;, F,e3,A,B,C, e,

“ (aBC P N

@@ e1 € ey e, S ey e3Ce

If e C e’ inthe GYO sequence, add e

Always peel off a leaf node 35 a child node of e’
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Yannakakis for Acyclic Join-Project Queries

m Chain Matrix Multiplication:
- 1,+R(4,B) x S(B,C) x T(C,D) x W(D,E) w U(E, F)

m Parenthesis algorithm

14
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Yannakakis for Acyclic Join-Project Queries

m Let y be the set of output attributes
m Semi-join Reducer
- Ify = @, output trueifand only if R, # @

m |[na bottom-up phase:
— Project as early as possible!

- For a non-output attribute, if it does
not appear in any node above, then
project it away

output attributes
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Yannakakis for Acyclic Join-Project Query

m Consider an arbitrary node e and its parent u
- Let v be the attributes at node e after join-projection Mg

— All attributes in v are either output attributes or join
attribute with u

m How to bound the intermediate join size?
- Ry @M R, © Ry X (1,_,,Q)

since v — u are output attributes
and no dangling tuples

- |Ru Nva < |Ru| |Q| <N-0UT

m Time complexity: O(N - OUT)
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output attributes
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Yannakakis for Acyclic Join-Aggregate Query

m Annotated Relations are functions mapping tuples to elements from Z

Annotation of ajoinresult t: w(t) = [[, w(m,t)

R1(xq, x2) R, (x32, x3) R3(x1, x3) R1(x1,%2) ™ Ry(x2,x3) > R3(xq, X3)
X1 Xy w Xy X3 w X1 X3 w X1 Xy X3 w
aq b4 2 b4 C1 2 aq C1 1 aq b4 C1 2 - 1=4
a, b4 3 b4 C, 1 aq Cy 3 aq b4 Cy 2-1-3=
a, Cy 3 a, b4 Coy 3- 3=9

le,xz,x3R1(x1:x2) X Ry (x3,x3) ™ R3(xq,x3)

1) w
0| 4+6+9=19

m Count the full join size: w(:) =1

Annotation of a query resultt € q(D):

w(t) = w(t))

t'€xeRemyt! =t
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Yannakakis for Acyclic Join-Aggregate Query

m Semi-join Reducers D.E]
m In a bottom-up phase:
- Aggregate as early as possible!

- For a non-output attribute, if it
does not appearin any node above,
then aggregate it away

m Same analysis as join-project queries!

m Semi-ring model usually does not
have the inverse of the addition

output attributes
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Free-Connex Query

m Ajoin-project query Q is free-connex if it has a Teon
jointree T such that @

- There exists a connected subtree T,,, © T
containing the root node r of T and the union of

nodes in T, is exactly the output attributes @ @

output attributes
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Free-Connex Query

m Let y be the set of output attributes Tcon

m Consider an arbitrary node e and its parent u
- Let v be the attributes at node e after join-projection
- Eitherv Cuorvcy!

Case1:u S y.Wehavev C y.

Case2:u —y # 0. We have v € u. Suppose not, assume
A €v—u.Theremustbe A € e Ny. No such T,,, exists.

m How to bound the intermediate join results?
~fvCu|R, MR, <|R, =N
- Ifvey,|R, xR, <|Q| =0UT

output attributes
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Summary of Yannakakis Algorithm

m Semi-join reducer: remove dangling tuples in O(N) time

m Complexity:
- Free-connex Join-Project or Join-Aggregate: O(N + OUT)
- Acyclic Joins
- Acyclic Join-Project or Join-Aggregate: O(N - OUT)

Join-Project/
Join Join-Aggregate

Acyclic

Cyclic
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Summary of Traditional Query Processing

Debunking the Myth of Join Ordering: Toward Robust SQL
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