
CS848 Fall 2025: Algorithmic
Aspects of Query Processing

Traditional Query Processing

Xiao Hu

Sep 10, 2025

1

Agenda

◼ First class: Introduction

◼ Last and This class: Traditional query processing

– Relational Algebra

– Pairwise Framework

– Yannakakis algorithm

– Extensions

2

𝑨 𝑩

𝑎1 𝑏1

𝑎2 𝑏1

𝑎1 𝑏2

𝑎2 𝑏3

𝑎1 𝑏4

𝑩 𝑪

𝑏1 𝑐3

𝑏1 𝑐5

𝑏3 𝑐3

𝑏5 𝑐5

𝑏6 𝑐6

𝑅 𝑆

Semi-Join 𝑅(𝐴, 𝐵) ⋉ 𝑆(𝐵, 𝐶)

3

◼ 𝑅 ⋉ 𝑆 = 𝜋𝐴,𝐵(𝑅 ⋈ 𝑆): all tuples in 𝑅 that
can be joined with at least one tuple in 𝑆

◼ Law of semi-joins: 𝑅 ⋈ 𝑆 = (𝑅 ⋉ 𝑆) ⋈ 𝑆

◼ 𝑂 𝑅 + |𝑆| ignoring log-factors

◼ How to use semi-join to remove dangling
tuples those won’t participate in any join
result?

Yannakakis Algorithm: Semi-Join Reducer

4

Take an arbitrary join tree

◼ In a bottom-up phase:

– pick a non-visited node 𝑒 (with its parent 𝑒′)

– update 𝑅𝑒′ with 𝑅𝑒′ ⋉ 𝑅𝑒

◼ In a top-down phase:

– pick a node 𝑒

– For each child 𝑒′ of 𝑒, update 𝑅𝑒′ with 𝑅𝑒′ ⋉
𝑅𝑒

◼ Data Complexity: 𝑂 𝑁 ignoring log-factors

ABC

BE CF

AD

𝑒1

𝑒0

𝑒2 𝑒3

𝑅𝑒0
≔ 𝑅𝑒0

⋉ 𝑅𝑒2

𝑅𝑒0
≔ 𝑅𝑒0

⋉ 𝑅𝑒3

𝑅𝑒1
≔ 𝑅𝑒1

⋉ 𝑅𝑒0

𝑅𝑒0
≔ 𝑅𝑒0

⋉ 𝑅𝑒1

𝑅𝑒2
≔ 𝑅𝑒2

⋉ 𝑅𝑒0

𝑅𝑒3
≔ 𝑅𝑒3

⋉ 𝑅𝑒0

Example of Semi-join Reducer

5

𝑨 𝑩

𝑎1 𝑏1

𝑎2 𝑏1

𝑎1 𝑏2

𝑎2 𝑏3

𝑎1 𝑏4

𝑩 𝑪

𝑏1 𝑐3

𝑏1 𝑐5

𝑏3 𝑐3

𝑏5 𝑐5

𝑏6 𝑐6

𝑪 𝑫

𝑐1 𝑑1

𝑐2 𝑑2

𝑐5 𝑑1

𝑐6 𝑑2

𝑐6 𝑑3 𝑄: = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷

𝑅 𝑆 𝑇

BC

AB

CD

No Dangling tuples

6

◼ Every remaining tuple participates in at least one join result.

𝑅𝑒

𝑇𝑒: the subtree rooted
at node 𝑒

◼ In the bottom-up phase:

– For every node 𝑒, once 𝑒 is reduced, every
tuple in 𝑅𝑒 participate in at least one result

of the sub-join induced by 𝑇𝑒

◼ In the top-down phase:

– For every node 𝑒, once 𝑒 is reduced, every
tuple in 𝑅𝑒 participate in at least one result
of the whole join query

Yannakakis Algorithm: Pairwise Framework

7

Take an arbitrary join tree

◼ In a bottom-up phase:

– pick a non-visited node 𝑒 (with its parent 𝑒′)

– update 𝑅𝑒′ with 𝑅𝑒′ ⋈ 𝑅𝑒

◼ Output 𝑅𝑟 for the root node 𝑟

◼ The intermediate join size is bounded by 𝑂(𝑂𝑈𝑇)

◼ Data complexity: 𝑂(𝑂𝑈𝑇)

ABC

BE CF

AD

𝑒0

𝑒2 𝑒3

𝑅𝑒0
≔ 𝑅𝑒0

⋈ 𝑅𝑒2

𝑅𝑒0
≔ 𝑅𝑒0

⋈ 𝑅𝑒3

𝑅𝑒1
≔ 𝑅𝑒1

⋈ 𝑅𝑒0

𝑒1

Discussion: How about Semi-join Reducer on Cyclic Joins?

8

𝐴

𝐵 𝐶

AB

BC AC

AC

BC AB

BC

AB AC

◼ No more tuples can be removed but some intermediate join result
does not participate in any full join result

◼ How to find non-dangling tuples for cyclic joins? Open questions!

A Practical version of Yannakakis Algorithm

9

ABC

BE CF

AD

(𝑎1, 𝑑1)Take an arbitrary join tree

◼ In a bottom-up phase:

– pick a non-visited node 𝑒 (with parent 𝑒′)

– update 𝑅𝑒′ with 𝑅𝑒′ ⋉ 𝑅𝑒

◼ For each tuple 𝑡 in the root node 𝑅𝑟:

– Probe tuples in a top-down manner that

can be joined with 𝑡

(𝑎1, 𝑏1, 𝑐1)

(𝑎1, 𝑏2, 𝑐1)

(𝑎1, 𝑏2, 𝑐2)

(𝑏1, 𝑒1)

(𝑏2, 𝑒1)
(𝑏2, 𝑒2)

(𝑐1, 𝑓1)

(𝑐1, 𝑓2)

(𝑐2, 𝑓2)

A Practical version of Yannakakis Algorithm

10

◼ After 𝑂(𝑁) linear preprocessing time, an index
of linear size can be built such that every join
result can be enumerated with 𝑂(1) delay

◼ Application in dynamic query processing

– How to maintain non-dangling tuples in the root
node and probe indexes?

◼ Total complexity: 𝑂(𝑁 + 𝑂𝑈𝑇)

ABC

BE CF

AD

(𝑎1, 𝑑1)

(𝑎1, 𝑏1, 𝑐1)

(𝑎1, 𝑏2, 𝑐1)

(𝑎1, 𝑏2, 𝑐2)

(𝑏1, 𝑒1)

(𝑏2, 𝑒1)
(𝑏2, 𝑒2)

(𝑐1, 𝑓1)

(𝑐1, 𝑓2)

(𝑐2, 𝑓2)

Recap on Acyclicity

11

◼ A join query 𝑄 = (𝑉, 𝐸) is acyclic if it has
a join tree 𝑇 such that

– one-to-one correspondence between
nodes in 𝑇 with the relations in 𝐸;

– for any attribute 𝐴 ∈ 𝑉, all nodes
containing 𝐴 form a connected subtree.

cyclic

ABC

BE CF

AD

acyclic

AB

BC AC

𝐷

𝐴

𝐶𝐵

𝐸 𝐹

𝐴

𝐵 𝐶

BC

CDAB

𝐴

𝐵 𝐶

𝐷
acyclic

ABC

BC ACAB

𝐴

𝐵 𝐶

acyclic

Discussion: How to Build a Join Tree

12

◼ A query 𝑄 = (𝑉, 𝐸) is acyclic if GYO
reduction results in an empty query:
– If there is an attribute 𝐴 ∈ 𝑉 that only

appears in one relation say 𝑒, then remove
𝐴 from 𝑒;

– If there is a pair of relations 𝑒, 𝑒′ ∈ 𝐸
such that 𝑒 ⊆ 𝑒′, then remove 𝑒 from 𝐸.

𝐷

𝐴

𝐶𝐵

𝐸 𝐹

𝐴

𝐵 𝐶

𝐴

𝐵 𝐶

𝐷

𝐴

𝐵 𝐶

GYO sequence:
𝑒1, 𝑒2, 𝑒3, 𝐴, 𝐵, 𝐶, 𝑒0

𝑒0 𝑒1 𝑒2

𝑒3

𝑒1 𝑒2

𝑒1 𝑒2
𝑒3

GYO sequence:
𝐴, 𝑒1, 𝐵, 𝑒2, 𝐶, 𝐷, 𝑒3

GYO sequence:
𝐷, 𝑒1, 𝐸, 𝑒2, 𝐹, 𝑒3, 𝐴, 𝐵, 𝐶, 𝑒0

𝑒1

𝑒2 𝑒3

𝑒0

𝑒3

Equivalence Between Two Definitions

13

◼ 𝑄 is acyclic if it has a join tree 𝑇. ◼ 𝑄 is acyclic if GYO reduction results
in an empty query

ABC

BE CF

AD
GYO sequence:

𝐷, 𝑒1, 𝐸, 𝑒2, 𝐹, 𝑒3, 𝐴, 𝐵, 𝐶, 𝑒0

𝑒1

𝑒2 𝑒3

𝑒0

𝑒1 ⊆ 𝑒0 𝑒2 ⊆ 𝑒0 𝑒3 ⊆ 𝑒0

Always peel off a leaf node
If 𝑒 ⊆ 𝑒′ in the GYO sequence, add 𝑒

as a child node of 𝑒′

Yannakakis for Acyclic Join-Project Queries

14

◼ Chain Matrix Multiplication:

– 𝜋𝐴𝐹𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷 ⋈ 𝑊 𝐷, 𝐸 ⋈ 𝑈 𝐸, 𝐹

◼ Parenthesis algorithm

Yannakakis for Acyclic Join-Project Queries

15

output attributes

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

◼ Let 𝒚 be the set of output attributes

◼ Semi-join Reducer

– If 𝒚 = ∅, output true if and only if 𝑅𝑟 ≠ ∅

◼ In a bottom-up phase:

– Project as early as possible!

– For a non-output attribute, if it does
not appear in any node above, then
project it away

𝜋∅

𝜋𝐵

𝜋𝐷𝜋𝐴 𝜋𝐺

𝜋𝐹

𝜋∅ 𝜋∅

𝜋𝐸𝐽

OCEHJOCEHJI

OBCE

OCEJ

OCHI

Yannakakis for Acyclic Join-Project Query

16

output attributes

◼ Consider an arbitrary node 𝑒 and its parent 𝑢

– Let 𝑣 be the attributes at node 𝑒 after join-projection

– All attributes in 𝑣 are either output attributes or join
attribute with 𝑢

◼ How to bound the intermediate join size?

– 𝑅𝑢 ⋈ 𝑅𝑣 ⊆ 𝑅𝑢 × 𝜋𝑣−𝑢𝑄

– 𝑅𝑢 ⋈ 𝑅𝑣 ≤ 𝑅𝑢 ⋅ 𝑄 ≤ 𝑁 ⋅ 𝑂𝑈𝑇

◼ Time complexity: 𝑂 𝑁 ⋅ 𝑂𝑈𝑇

since 𝑣 − 𝑢 are output attributes
and no dangling tuples

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

𝜋∅

𝜋𝐵

𝜋𝐷𝜋𝐴 𝜋𝐺

𝜋𝐹

𝜋∅ 𝜋∅

𝜋𝐸𝐽 CEHJ

Yannakakis for Acyclic Join-Aggregate Query

17

◼ Annotated Relations are functions mapping tuples to elements from Z

𝑥1 𝑥2 𝑤

𝑎1 𝑏1 2

𝑎2 𝑏1 3

𝑥2 𝑥3 𝑤

𝑏1 𝑐1 2

𝑏1 𝐶2 1

𝑥1 𝑥2 𝑥3 𝑤

𝑎1 𝑏1 𝑐1 2 ⋅ 2 ⋅ 1 = 4

𝑎1 𝑏1 𝑐2 2 ⋅ 1 ⋅ 3 = 6

𝑎2 𝑏1 𝑐2 3 ⋅ 1 ⋅ 3 = 9

𝑅1 𝑥1, 𝑥2 𝑅2 𝑥2, 𝑥3 𝑅3 𝑥1, 𝑥3 𝑅1 𝑥1, 𝑥2 ⋈ 𝑅2 𝑥2, 𝑥3 ⋈ 𝑅3 𝑥1, 𝑥3

∅ 𝑤

() 4 + 6 + 9 = 19

∑𝑥1,𝑥2,𝑥3
𝑅1 𝑥1, 𝑥2 ⋈ 𝑅2 𝑥2, 𝑥3 ⋈ 𝑅3 𝑥1, 𝑥3

◼ Count the full join size: 𝑤 ⋅ = 1

𝑥1 𝑥3 𝑤

𝑎1 𝑐1 1

𝑎1 𝑐2 3

𝑎2 𝑐2 3

Annotation of a join result 𝑡: 𝑤 𝑡 = ς𝑒 𝑤(𝜋𝑒𝑡)

Annotation of a query result 𝑡 ∈ 𝑞(𝐷):

𝑤 𝑡 = ෍

𝑡′∈⋈𝑒𝑅𝑒:𝜋𝐲𝑡′=𝑡

𝑤(𝑡′)

Yannakakis for Acyclic Join-Aggregate Query

18

output attributes

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

◼ Semi-join Reducers

◼ In a bottom-up phase:

– Aggregate as early as possible!

– For a non-output attribute, if it
does not appear in any node above,
then aggregate it away

◼ Same analysis as join-project queries!

◼ Semi-ring model usually does not
have the inverse of the addition ∑∅

∑𝐵

∑𝐷∑𝐴 ∑𝐺

∑𝐹

∑∅ ∑∅

∑𝐸𝐽

Free-Connex Query

19

◼ A join-project query 𝑄 is free-connex if it has a
join tree 𝑇 such that

– There exists a connected subtree 𝑇con ⊆ 𝑇
containing the root node 𝑟 of 𝑇 and the union of
nodes in 𝑇con is exactly the output attributes

output attributes

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

𝑇con

Free-Connex Query

20

◼ Let 𝒚 be the set of output attributes

◼ Consider an arbitrary node 𝑒 and its parent 𝑢

– Let 𝑣 be the attributes at node 𝑒 after join-projection

– Either 𝑣 ⊆ 𝑢 or 𝑣 ⊆ 𝒚 !

◼ How to bound the intermediate join results?

– If 𝑣 ⊆ 𝑢, 𝑅𝑢 ⋈ 𝑅𝑣 ≤ 𝑅𝑢 = 𝑁

– If 𝑣 ⊆ 𝒚 , 𝑅𝑢 ⋈ 𝑅𝑣 ≤ 𝑄 = 𝑂𝑈𝑇 output attributes

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

𝑇con

Case 1: 𝑢 ⊆ 𝒚. We have 𝑣 ⊆ 𝒚.

Case 2: 𝑢 − 𝒚 ≠ ∅. We have 𝑣 ⊆ 𝑢. Suppose not, assume
A ∈ 𝑣 − 𝑢. There must be A ∈ 𝑒 ∩ 𝒚. No such 𝑇con exists.

Summary of Yannakakis Algorithm

21

◼ Semi-join reducer: remove dangling tuples in 𝑂 𝑁 time

◼ Complexity:

– Free-connex Join-Project or Join-Aggregate: 𝑂(𝑁 + 𝑂𝑈𝑇)

• Acyclic Joins

– Acyclic Join-Project or Join-Aggregate: 𝑂(𝑁 ⋅ 𝑂𝑈𝑇)

Acyclic

Cyclic

Join

Join-Project/
Join-Aggregate

Summary of Traditional Query Processing

Practice:

pairwise framework

Theory:
semi-join reducer

Join-tree-based pairwise
framework

	Slide 1: CS848 Fall 2025: Algorithmic Aspects of Query Processing Traditional Query Processing
	Slide 2: Agenda
	Slide 3: Semi-Join cap R open paren cap A. ,cap B close paren left normal factor semidirect product cap S open paren cap B ,cap C close paren
	Slide 4: Yannakakis Algorithm: Semi-Join Reducer
	Slide 5: Example of Semi-join Reducer
	Slide 6: No Dangling tuples
	Slide 7: Yannakakis Algorithm: Pairwise Framework
	Slide 8: Discussion: How about Semi-join Reducer on Cyclic Joins?
	Slide 9: A Practical version of Yannakakis Algorithm
	Slide 10: A Practical version of Yannakakis Algorithm
	Slide 11: Recap on Acyclicity
	Slide 12: Discussion: How to Build a Join Tree
	Slide 13: Equivalence Between Two Definitions
	Slide 14: Yannakakis for Acyclic Join-Project Queries
	Slide 15: Yannakakis for Acyclic Join-Project Queries
	Slide 16: Yannakakis for Acyclic Join-Project Query
	Slide 17: Yannakakis for Acyclic Join-Aggregate Query
	Slide 18: Yannakakis for Acyclic Join-Aggregate Query
	Slide 19: Free-Connex Query
	Slide 20: Free-Connex Query
	Slide 21: Summary of Yannakakis Algorithm
	Slide 22: Summary of Traditional Query Processing

