CS848 Fall 2025: Algorithmic
Aspects of Query Processing

Traditional Query Processing

Xiao Hu
Sep 10, 2025

_
Agenda

m |ast and This class: Traditional query processing
— Relational Algebra
— Pairwise Framework
— Yannakakis algorithm
- Extensions

I
Semi-Join R(A,B) x S(B, C)

B RXS=m,pg(R x §):alltuplesin R that
can be joined with at least one tuplein §

m Law of semi-joins:R X S =(RXS) X S
m O(|R| + |S]) ignoring log-factors

m How to use semi-join to remove dangling
tuples those won’t participate in any join
result?

_
Yannakakis Algorithm: Semi-Join Reducer .

— pick a non-visited node e (with its parent e')

€o
- update R,, with R,, X R, e, a/ e e3

Take an arbitrary join tree
m In a bottom-up phase:

m Inatop-down phase: R, =R, ¥R,
R, =R, X R,

- pickanodee
Re1 = Re1 X Reo

~ For each child e’ of e, update R,, with R,,, X
R, Re, == Ro, X R,,
R., = R,, X R,

m Data Complexity: O(N) ignoring log-factors Res = Rey X Re,

]
Example of Semi-join Reducer

R S T

a, by by 3 ¢, dq @

a, b1 b1 Cc Co d2
a; b, bs ¢ cs dy @

a; b4- b6 Cé Ce d3 Q: — R(A) B) X S(B) C) X T(CJ D)

]
No Dangling tuples

m Every remaining tuple participates in at least one join result.

m [n the bottom-up phase:

R,
- For every node ¢, once e is reduced, every
tuple in R, participate in at least one result
of the sub-join induced by T,
® In the top-down phase: Te: the subtree rooted
atnodee

- For every node ¢, once e is reduced, every
tuple in R, participate in at least one result
of the whole join query

]
Yannakakis Algorithm: Pairwise Framework

Take an arbitrary join tree

e

m In a bottom-up phase:
— pick a non-visited node e (with its parent e')

— update R,, with R,, X R, eg @

m Output R, for the root node r

m The intermediate join size is bounded by O(OUT)

m Data complexity: 0(OUT) Re, = Rey ™ R,

I
Discussion: How about Semi-join Reducer on Cyclic Joins?

m No more tuples can be removed but some intermediate join result
does not participate in any full join result

m How to find non-dangling tuples for cyclic joins? Open questions!

]
A Practical version of Yannakakis Algorithm

Take an arbitrary join tree (a;,ds)
m In a bottom-up phase:
— pick a non-visited node e (with parent e’)
- update R,, with R,, X R,

m Foreachtupletintheroot nodeR,:
— Probe tuples in a top-down manner that
can be joined with

(bli 81)

]
A Practical version of Yannakakis Algorithm

m After O(N) linear preprocessing time, an index (a1, d1)
of linear size can be built such that every join
result can be enumerated with 0(1) delay

m Application in dynamic query processing

- How to maintain non-dangling tuples in the root
node and probe indexes?

m Total complexity: O(N + OUT)

10

4 acyclic b
Recap on Acyclicity N @eﬂb

m AjoinqueryQ = (V,E)isacyclicifit has D O
a join tree T such that o0
- one-to-one correspondence between
: P d: :b

nodes in T with the relations in E;

acyclic

— forany attribute A € V, all nodes

containing A form a connected subtree. /A\
VAR Lo

cyclic

D

1 acyclic

Discussion: How to Build a Join Tree

m AqueryQ = (V,E)isacyclicif GYO
reduction results in an empty query:

— If thereis an attribute A4 € VV that only
appears in one relation say e, then remove

12

A from e;

~ If thereis a pair of relations e,e’ € E
such that e € e’, then remove e from E.

A D
o~
e e
1 e, 3

GYO sequence:
A,e,B,e,,C,D,e;

GYO sequence:
D,e. E,e,, F,e3,A,B,C, e

GYO sequence:
e, e,,e3,4A,B,C, e,

]
Equivalence Between Two Definitions

m QisacyclicifithasajointreeT. m Q isacyclicif GYO reduction results
In an empty query

@ GYO sequence:
D,e E,e;, F,e3,A,B,C, e,

“ (aBC P N

@@ e1 € ey e, S ey e3Ce

If e C e’ inthe GYO sequence, add e

Always peel off a leaf node 35 a child node of e’

13

]
Yannakakis for Acyclic Join-Project Queries

m Chain Matrix Multiplication:
- 1,+R(4,B) x S(B,C) x T(C,D) x W(D,E) w U(E, F)

m Parenthesis algorithm

14

]
Yannakakis for Acyclic Join-Project Queries

m Let y be the set of output attributes
m Semi-join Reducer
- Ify = @, output trueifand only if R, # @

m |[na bottom-up phase:
— Project as early as possible!

- For a non-output attribute, if it does
not appear in any node above, then
project it away

output attributes

15

T
Yannakakis for Acyclic Join-Project Query

m Consider an arbitrary node e and its parent u
- Let v be the attributes at node e after join-projection Mg

— All attributes in v are either output attributes or join
attribute with u

m How to bound the intermediate join size?
- Ry @M R, © Ry X (1,_,,Q)

since v — u are output attributes
and no dangling tuples

- |Ru Nva < |Ru| |Q| <N-0UT

m Time complexity: O(N - OUT)

16

output attributes

]
Yannakakis for Acyclic Join-Aggregate Query

m Annotated Relations are functions mapping tuples to elements from Z

Annotation of ajoinresult t: w(t) = [[, w(m,t)

R1(xq, x2) R, (x32, x3) R3(x1, x3) R1(x1,%2) ™ Ry(x2,x3) > R3(xq, X3)
X1 Xy w Xy X3 w X1 X3 w X1 Xy X3 w
aq b4 2 b4 C1 2 aq C1 1 aq b4 C1 2 - 1=4
a, b4 3 b4 C, 1 aq Cy 3 aq b4 Cy 2-1-3=
a, Cy 3 a, b4 Coy 3- 3=9

le,xz,x3R1(x1:x2) X Ry (x3,x3) ™ R3(xq,x3)

1) w
0| 4+6+9=19

m Count the full join size: w(:) =1

Annotation of a query resultt € q(D):

w(t) = w(t))

t'€xeRemyt! =t

17

]
Yannakakis for Acyclic Join-Aggregate Query

m Semi-join Reducers D.E]
m In a bottom-up phase:
- Aggregate as early as possible!

- For a non-output attribute, if it
does not appearin any node above,
then aggregate it away

m Same analysis as join-project queries!

m Semi-ring model usually does not
have the inverse of the addition

output attributes

18

T
Free-Connex Query

m Ajoin-project query Q is free-connex if it has a Teon
jointree T such that @

- There exists a connected subtree T,,, © T
containing the root node r of T and the union of

nodes in T, is exactly the output attributes @ @

output attributes

19

I
Free-Connex Query

m Let y be the set of output attributes Tcon

m Consider an arbitrary node e and its parent u
- Let v be the attributes at node e after join-projection
- Eitherv Cuorvcy!

Case1:u S y.Wehavev C y.

Case2:u —y # 0. We have v € u. Suppose not, assume
A €v—u.Theremustbe A € e Ny. No such T,,, exists.

m How to bound the intermediate join results?
~fvCu|R, MR, <|R, =N
- Ifvey,|R, xR, <|Q| =0UT

output attributes

20

_
Summary of Yannakakis Algorithm

m Semi-join reducer: remove dangling tuples in O(N) time

m Complexity:
- Free-connex Join-Project or Join-Aggregate: O(N + OUT)
- Acyclic Joins
- Acyclic Join-Project or Join-Aggregate: O(N - OUT)

Join-Project/
Join Join-Aggregate

Acyclic

Cyclic

21

_
Summary of Traditional Query Processing

Debunking the Myth of Join Ordering: Toward Robust SQL
Analytics

JUNYI1 ZHAO, Tsinghua University, China

KAI SU, Tsinghua University, China

YIFEI YANG, University of Wisconsin-Madison, USA
XIANGYAO YU, University of Wisconsin-Madison, USA
PARASCHOS KOUTRIS, University of Wisconsin-Madison, USA
HUANCHEN ZHANG?®, Tsinghua University, China

Practice: Theory:

semi-join reducer
pairwise framework Join-tree-based pairwise

framework

Structure-Guided Query Evaluation:

s
Towards Bridging the Gap from Theory to Practice Instance-Optimal Acyclic Join Processing Without Regret:
Engineering the Yannakakis Algorithm in Column Stores
Georg Gottlob Davide Mario Longo Cem Okulmus
Matthias Lanzinger Reinhard Pichler Umea University Liese Bekkers Frank Neven
University of Oxford Alexander Selzer Sweden UHasselt, Data Science Institute
United Kingdom TU Wien okulmus@cs.umu.se !

UHasselt, Data Science Institute
georg.gottlob@cs.ox.ac.uk

liese.bekkers@uhasselt.be frank.neven@uhasselt.be
Austria
matthias lanzinger@cs.ox ac.uk firstname lastname@tuwien.ac.at Yannakakis*: Practical Acyclic Query Evaluation with Stijn Vansummeren Yisu Remy Wang
. UHasselt, Data Science Institute University of California, Los Angeles
Theoretical Guarantees stijn.vansummeren@uhasselt.be remywang@cs.ucla.edu
Predicate Transfer: Efficient Pre-Filtering on Multi-Join Queries QICHEN WANG', Hong Kong Baptist University, Hong Kong SAR

BINGNAN CHEN", Hong Kong University of Science and Technology, Hong Kong SAR
Yifei Yang, Hangdong Zhao, Xiangyao Yu, Paraschos Koutris

Ul'l_iVCl” sity of Wisconsin-Mad_ison) KE Y1, Hong Kong University of Science and Technology, Hong Kong SAR
yyang673@wisc.edu,{hangdong, yxy,paris}@cs.wisc.edu FEIFEI LI, Alibaba Group, China

LIANG LIN, Alibaba Group, China

BINYANG DAI, Hong Kong University of Science and Technology, Hong Kong SAR

	Slide 1: CS848 Fall 2025: Algorithmic Aspects of Query Processing Traditional Query Processing
	Slide 2: Agenda
	Slide 3: Semi-Join cap R open paren cap A. ,cap B close paren left normal factor semidirect product cap S open paren cap B ,cap C close paren
	Slide 4: Yannakakis Algorithm: Semi-Join Reducer
	Slide 5: Example of Semi-join Reducer
	Slide 6: No Dangling tuples
	Slide 7: Yannakakis Algorithm: Pairwise Framework
	Slide 8: Discussion: How about Semi-join Reducer on Cyclic Joins?
	Slide 9: A Practical version of Yannakakis Algorithm
	Slide 10: A Practical version of Yannakakis Algorithm
	Slide 11: Recap on Acyclicity
	Slide 12: Discussion: How to Build a Join Tree
	Slide 13: Equivalence Between Two Definitions
	Slide 14: Yannakakis for Acyclic Join-Project Queries
	Slide 15: Yannakakis for Acyclic Join-Project Queries
	Slide 16: Yannakakis for Acyclic Join-Project Query
	Slide 17: Yannakakis for Acyclic Join-Aggregate Query
	Slide 18: Yannakakis for Acyclic Join-Aggregate Query
	Slide 19: Free-Connex Query
	Slide 20: Free-Connex Query
	Slide 21: Summary of Yannakakis Algorithm
	Slide 22: Summary of Traditional Query Processing

