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Agenda

◼ First class: Introduction

◼ Last and This class: Traditional query processing

– Relational Algebra

– Pairwise Framework

– Yannakakis algorithm

– Extensions
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Semi-Join 𝑅(𝐴, 𝐵) ⋉ 𝑆(𝐵, 𝐶)
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◼ 𝑅 ⋉ 𝑆 = 𝜋𝐴,𝐵(𝑅 ⋈ 𝑆): all tuples in 𝑅 that 
can be joined with at least one tuple in 𝑆

◼ Law of semi-joins: 𝑅 ⋈ 𝑆 = (𝑅 ⋉ 𝑆) ⋈ 𝑆

◼ 𝑂 𝑅 + |𝑆| ignoring log-factors

◼ How to use semi-join to remove dangling
tuples those won’t participate in any join
result?



Yannakakis Algorithm: Semi-Join Reducer 
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Take an arbitrary join tree 

◼ In a bottom-up phase:

– pick a non-visited node 𝑒 (with its parent 𝑒′)

– update 𝑅𝑒′ with 𝑅𝑒′ ⋉ 𝑅𝑒

◼ In a top-down phase:

– pick a node 𝑒

– For each child 𝑒′ of 𝑒, update 𝑅𝑒′ with 𝑅𝑒′ ⋉
𝑅𝑒

◼ Data Complexity: 𝑂 𝑁 ignoring log-factors
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Example of Semi-join Reducer
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No Dangling tuples
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◼ Every remaining tuple participates in at least one join result.

𝑅𝑒

𝑇𝑒: the subtree rooted
at node 𝑒

◼ In the bottom-up phase:

– For every node 𝑒, once 𝑒 is reduced, every
tuple in 𝑅𝑒 participate in at least one result

of the sub-join induced by 𝑇𝑒

◼ In the top-down phase:

– For every node 𝑒, once 𝑒 is reduced, every
tuple in 𝑅𝑒 participate in at least one result
of the whole join query



Yannakakis Algorithm: Pairwise Framework
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Take an arbitrary join tree 

◼ In a bottom-up phase:

– pick a non-visited node 𝑒 (with its parent 𝑒′)

– update 𝑅𝑒′ with 𝑅𝑒′ ⋈ 𝑅𝑒

◼ Output 𝑅𝑟 for the root node 𝑟

◼ The intermediate join size is bounded by 𝑂(𝑂𝑈𝑇)

◼ Data complexity: 𝑂(𝑂𝑈𝑇)
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𝑒2 𝑒3

𝑅𝑒0
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Discussion: How about Semi-join Reducer on Cyclic Joins?
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𝐴

𝐵 𝐶
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BC AC

AC

BC AB
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◼ No more tuples can be removed but some intermediate join result
does not participate in any full join result

◼ How to find non-dangling tuples for cyclic joins? Open questions!



A Practical version of Yannakakis Algorithm
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BE CF
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(𝑎1, 𝑑1)Take an arbitrary join tree 

◼ In a bottom-up phase:

– pick a non-visited node 𝑒 (with parent 𝑒′)

– update 𝑅𝑒′ with 𝑅𝑒′ ⋉ 𝑅𝑒

◼ For each tuple 𝑡 in the root node 𝑅𝑟:

– Probe tuples in a top-down manner that

can be joined with 𝑡

(𝑎1, 𝑏1, 𝑐1)

(𝑎1, 𝑏2, 𝑐1)

(𝑎1, 𝑏2, 𝑐2)

(𝑏1, 𝑒1)

(𝑏2, 𝑒1)
(𝑏2, 𝑒2)

(𝑐1, 𝑓1)

(𝑐1, 𝑓2)

(𝑐2, 𝑓2)



A Practical version of Yannakakis Algorithm
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◼ After 𝑂(𝑁) linear preprocessing time, an index
of linear size can be built such that every join
result can be enumerated with 𝑂(1) delay

◼ Application in dynamic query processing

– How to maintain non-dangling tuples in the root
node and probe indexes?

◼ Total complexity: 𝑂(𝑁 + 𝑂𝑈𝑇)
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(𝑐1, 𝑓1)

(𝑐1, 𝑓2)

(𝑐2, 𝑓2)



Recap on Acyclicity
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◼ A join query 𝑄 =  (𝑉, 𝐸) is acyclic if it has 
a join tree 𝑇 such that

– one-to-one correspondence between 
nodes in 𝑇 with the relations in 𝐸;

– for any attribute 𝐴 ∈ 𝑉, all nodes 
containing 𝐴 form a connected subtree. 
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𝐴
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Discussion: How to Build a Join Tree
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◼ A query 𝑄 =  (𝑉, 𝐸) is acyclic if GYO
reduction results in an empty query:
– If there is an attribute 𝐴 ∈ 𝑉 that only

appears in one relation say 𝑒, then remove
𝐴 from 𝑒;

– If there is a pair of relations 𝑒, 𝑒′ ∈ 𝐸
such that 𝑒 ⊆ 𝑒′, then remove 𝑒 from 𝐸.

𝐷

𝐴

𝐶𝐵

𝐸 𝐹

𝐴

𝐵 𝐶

𝐴

𝐵 𝐶

𝐷

𝐴

𝐵 𝐶

GYO sequence: 
𝑒1, 𝑒2, 𝑒3, 𝐴, 𝐵, 𝐶, 𝑒0

𝑒0 𝑒1 𝑒2

𝑒3

𝑒1 𝑒2

𝑒1 𝑒2
𝑒3

GYO sequence: 
𝐴, 𝑒1, 𝐵, 𝑒2, 𝐶, 𝐷, 𝑒3

GYO sequence:
𝐷, 𝑒1, 𝐸, 𝑒2, 𝐹, 𝑒3, 𝐴, 𝐵, 𝐶, 𝑒0

𝑒1

𝑒2 𝑒3

𝑒0

𝑒3



Equivalence Between Two Definitions
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◼ 𝑄 is acyclic if it has a join tree 𝑇. ◼ 𝑄 is acyclic if GYO reduction results 
in an empty query

ABC

BE CF

AD
GYO sequence: 

𝐷, 𝑒1, 𝐸, 𝑒2, 𝐹, 𝑒3, 𝐴, 𝐵, 𝐶, 𝑒0

𝑒1

𝑒2 𝑒3

𝑒0

𝑒1 ⊆ 𝑒0 𝑒2 ⊆ 𝑒0 𝑒3 ⊆ 𝑒0

Always peel off a leaf node
If 𝑒 ⊆ 𝑒′ in the GYO sequence, add 𝑒

as a child node of 𝑒′



Yannakakis for Acyclic Join-Project Queries
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◼ Chain Matrix Multiplication:

– 𝜋𝐴𝐹𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷  ⋈ 𝑊 𝐷, 𝐸  ⋈ 𝑈 𝐸, 𝐹

◼ Parenthesis algorithm



Yannakakis for Acyclic Join-Project Queries
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output attributes

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

◼ Let 𝒚 be the set of output attributes

◼ Semi-join Reducer

– If 𝒚 = ∅, output true if and only if 𝑅𝑟 ≠ ∅

◼ In a bottom-up phase:

– Project as early as possible!

– For a non-output attribute, if it does 
not appear in any node above, then 
project it away

𝜋∅

𝜋𝐵

𝜋𝐷𝜋𝐴 𝜋𝐺

𝜋𝐹

𝜋∅ 𝜋∅

𝜋𝐸𝐽

OCEHJOCEHJI

OBCE

OCEJ

OCHI



Yannakakis for Acyclic Join-Project Query
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output attributes

◼ Consider an arbitrary node 𝑒 and its parent 𝑢

– Let 𝑣 be the attributes at node 𝑒 after join-projection

– All attributes in 𝑣 are either output attributes or join
attribute with 𝑢

◼ How to bound the intermediate join size?

– 𝑅𝑢 ⋈ 𝑅𝑣 ⊆ 𝑅𝑢 × 𝜋𝑣−𝑢𝑄

– 𝑅𝑢 ⋈ 𝑅𝑣 ≤ 𝑅𝑢 ⋅ 𝑄 ≤ 𝑁 ⋅ 𝑂𝑈𝑇 

◼ Time complexity: 𝑂 𝑁 ⋅ 𝑂𝑈𝑇

since 𝑣 − 𝑢 are output attributes
and no dangling tuples

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

𝜋∅

𝜋𝐵

𝜋𝐷𝜋𝐴 𝜋𝐺

𝜋𝐹

𝜋∅ 𝜋∅

𝜋𝐸𝐽 CEHJ



Yannakakis for Acyclic Join-Aggregate Query
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◼ Annotated Relations are functions mapping tuples to elements from Z

𝑥1 𝑥2 𝑤

𝑎1 𝑏1 2

𝑎2 𝑏1 3

𝑥2 𝑥3 𝑤

𝑏1 𝑐1 2

𝑏1 𝐶2 1

𝑥1 𝑥2 𝑥3 𝑤

𝑎1 𝑏1 𝑐1 2 ⋅  2 ⋅  1 = 4

𝑎1 𝑏1 𝑐2 2 ⋅  1 ⋅  3 = 6

𝑎2 𝑏1 𝑐2 3 ⋅  1 ⋅  3 = 9

𝑅1 𝑥1, 𝑥2 𝑅2 𝑥2, 𝑥3 𝑅3 𝑥1, 𝑥3 𝑅1 𝑥1, 𝑥2 ⋈ 𝑅2 𝑥2, 𝑥3 ⋈ 𝑅3 𝑥1, 𝑥3

∅ 𝑤

() 4 + 6 + 9 = 19

∑𝑥1,𝑥2,𝑥3
𝑅1 𝑥1, 𝑥2 ⋈ 𝑅2 𝑥2, 𝑥3 ⋈ 𝑅3 𝑥1, 𝑥3

◼ Count the full join size: 𝑤 ⋅ = 1

𝑥1 𝑥3 𝑤

𝑎1 𝑐1 1

𝑎1 𝑐2 3

𝑎2 𝑐2 3

Annotation of a join result 𝑡: 𝑤 𝑡 = ς𝑒 𝑤(𝜋𝑒𝑡)

Annotation of a query result 𝑡 ∈ 𝑞(𝐷):

𝑤 𝑡 = ෍

𝑡′∈⋈𝑒𝑅𝑒:𝜋𝐲𝑡′=𝑡

𝑤(𝑡′)



Yannakakis for Acyclic Join-Aggregate Query
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output attributes

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

◼ Semi-join Reducers

◼ In a bottom-up phase:

– Aggregate as early as possible!

– For a non-output attribute, if it 
does not appear in any node above, 
then aggregate it away

◼ Same analysis as join-project queries!

◼ Semi-ring model usually does not
have the inverse of the addition ∑∅

∑𝐵

∑𝐷∑𝐴 ∑𝐺

∑𝐹

∑∅ ∑∅

∑𝐸𝐽



Free-Connex Query
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◼ A join-project query 𝑄 is free-connex if it has a 
join tree 𝑇 such that

– There exists a connected subtree 𝑇con ⊆ 𝑇 
containing the root node 𝑟 of 𝑇 and the union of
nodes in 𝑇con is exactly the output attributes

output attributes

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

𝑇con



Free-Connex Query
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◼ Let 𝒚 be the set of output attributes

◼ Consider an arbitrary node 𝑒 and its parent 𝑢

– Let 𝑣 be the attributes at node 𝑒 after join-projection

– Either 𝑣 ⊆ 𝑢 or 𝑣 ⊆ 𝒚 !

◼ How to bound the intermediate join results?

– If 𝑣 ⊆ 𝑢, 𝑅𝑢 ⋈ 𝑅𝑣 ≤ 𝑅𝑢 = 𝑁

– If 𝑣 ⊆ 𝒚 , 𝑅𝑢 ⋈ 𝑅𝑣 ≤ 𝑄 = 𝑂𝑈𝑇 output attributes

EHJ

HICEJ

BCE CEF

EFGBO ABC BD

𝑇con

Case 1: 𝑢 ⊆ 𝒚. We have 𝑣 ⊆ 𝒚.

Case 2: 𝑢 − 𝒚 ≠ ∅. We have 𝑣 ⊆ 𝑢. Suppose not, assume
A ∈ 𝑣 − 𝑢. There must be A ∈ 𝑒 ∩ 𝒚. No such 𝑇con exists.



Summary of Yannakakis Algorithm
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◼ Semi-join reducer: remove dangling tuples in 𝑂 𝑁 time

◼ Complexity:

– Free-connex Join-Project or Join-Aggregate: 𝑂(𝑁 + 𝑂𝑈𝑇)

• Acyclic Joins

– Acyclic Join-Project or Join-Aggregate: 𝑂(𝑁 ⋅ 𝑂𝑈𝑇)

Acyclic

Cyclic

Join

Join-Project/
Join-Aggregate



Summary of Traditional Query Processing

Practice:

pairwise framework

Theory:
semi-join reducer

Join-tree-based pairwise
framework
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