CS848 Fall 2025: Algorithmic Aspects of Query Processing

Traditional Query Processing

Xiao Hu Sep 8, 2025

Agenda

- First class: Introduction
- This class: Traditional query processing
 - Relational Algebra
 - Pairwise Framework
 - Yannakakis algorithm
 - Extensions

Pointers to Related Work

- Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995. http://webdam.inria.fr/Alice/, Ch 6.4: Acyclic joins, semi-join reduction, Yannakakis, GYO algorithm.
- Yannakakis. Algorithms for acyclic database schemes. VLDB 1981 https://dl.acm.org/doi/10.5555/1286831.1286840
- Bernstein, Chiu. Using semi-joins to solve relational queries. JACM 1981. https://doi.org/10.1145/322234.322238
- Bernstein, Goodman. Power of natural semi-joins. SIAM J. 1981.
 https://doi.org/10.1137/0210059
- Beeri, Fagin, Maier, Yannakakis. On the desirability of acyclic database schemes. 1983 https://doi.org/10.1145/2402.322389

Recap on Natural Join

- Input: Two relations with common attributes
- Output: All pairs of tuples with the same value on the common attribute
- Nested-loop join
 - $-O(|R|\cdot|S|)$
- Sort-merge join
 - $O(|R| + |S| + |R| \bowtie S|)$ ignoring the log factor
- Hash join

Multi-way Joins as a Hypergraph

- Path join: $R_1(A,B) \bowtie R_2(B,C) \bowtie R_3(C,D)$
 - Results = all paths from A to D

Results = all triangles

■ Star join : $R_0(A, B, C) \bowtie R_1(A, D_1) \bowtie R_2(B, D_2) \bowtie R_3(C, D_3)$

vertices: values hyperedges: tuples

Query Pattern

■ Path join: $R_1(A,B) \bowtie R_2(B,C) \bowtie R_3(C,D)$

■ Triangle join: $R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(A, C)$

Star join: $R_0(A, B, C) \bowtie R_1(A, D_1) \bowtie R_2(B, D_2) \bowtie R_3(C, D_3)$

vertices: attributes hyperedges: relations

The Logic Perspective

- $R_1(A,B) \bowtie R_2(B,C) \bowtie R_3(A,C) \equiv R_1(A,B) \land R_2(B,C) \land R_3(A,C)$
 - $R_1(A, B)$: "relation" or "atom"; A, B: "attributes" or "variables"
- 3SAT as a join:
 - $\psi = (x_1 \vee \overline{x_2} \vee x_3) \wedge (x_2 \vee \overline{x_3} \vee x_4) \wedge (\overline{x_1} \vee x_3 \vee \overline{x_4})$
 - Satisfiable truth assignments of ψ are the join results of $R_1(x_1, x_2, x_3) \bowtie R_2(x_2, x_3, x_4) \bowtie R_3(x_1, x_3, x_4)$ on the instance:

$$R_1 = \{(x_1, x_2, x_3) \mid x_1 \lor \overline{x_2} \lor x_3 = 1\}$$

$$R_2 = \{(x_2, x_3, x_4) \mid x_2 \lor \overline{x_3} \lor x_4 = 1\}$$

$$R_3 = \{(x_1, x_3, x_4) \mid \overline{x_1} \lor x_3 \lor \overline{x_4} = 1\}$$

	Database Theory	Logic
Query size	Constant (usually)	Large
Domain	Infinite	{0,1}
Instance size	Large	Constant

Graph Pattern Matching as Join

- Store all edges in a relation E(x, y)
 - Note: every edge $\{u, v\}$ should be stored twice: (u, v), (v, u)
- Find all triangles (each 3 times):
 - $E(A,B) \bowtie E(B,C) \bowtie E(C,A)$
 - Also called a "self-join"
- Find all length-3 paths:
 - $E(A,B) \bowtie E(B,C) \bowtie E(C,D)$
 - $\sigma_{A \neq C \land A \neq D \land B \neq D} (E(A, B) \bowtie E(B, C) \bowtie E(C, D))$
 - Allowing inequalities pushes us to full relational algebra (first-order logic)!

Queries studied

Select + Projection + Join + Union + Difference + Aggregation (SPJUDA)

- Relations:
 - Movies(Title, Director, Actor)
 - Location(Theater, Address, Phone Number)
 - Pariscope(Theater, Title, Schedule)
- Selection: Find all showings after 22:00
 - $\sigma_{Schedule>22:00}$ Pariscope
- Projection: Find all directors directing a movie shown after 22:00
 - $\pi_{Director}$ (Movies $\bowtie \sigma_{Schedule > 22:00}$ Pariscope)
- Aggregation: How many late-night movies has each director directed?
 - $\pi_{Director, COUNT(*)}(Movies \bowtie \pi_{Title}\sigma_{Schedule>22:00}Pariscope)$

Problems studied

- Given a **SPJUDA** query *Q*
- Listing: Return *Q*
- ullet Enumeration: After some pre-processing, enumerate tuples in Q one by one.
- Boolean: Is $Q = \emptyset$?
- Counting: Find |Q|
- Approximate counting: $(1 + \epsilon)$ -approximation of |Q|
- Sampling: return a uniform sample from *Q*
- We first focus on join queries in the next two lectures!

Data Complexity

- Computing join query is NP-hard in terms of both query size and data size
 [Chandra-Merlin, STOC'77]
- We focus on the data complexity [Vardi, STOC'82]
 - Input size N = # tuples in the database
 - Output size OUT = # query results

Query Processing in Traditional Database Systems

- Join Query: A highly optimized version of Pairwise Framework
 - A query plan is a binary tree
 - Estimate the cost of each query plan using data statistics
 - Pick the one with the minimum cost

$$Q := R(A,B) \bowtie S(B,C) \bowtie T(C,D)$$

- Join is commutative and associative
 - $-R\bowtie S=S\bowtie R$
 - $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Theoretical Insights

R

S

В	C
b_1	c_3
b_1	<i>c</i> ₅
b_3	c_3
b_5	<i>C</i> ₅
b_6	<i>c</i> ₆

T

C	D
c_1	d_1
c_2	d_2
c_5	d_1
<i>c</i> ₆	d_2
c_6	d_3

$$Q := R(A,B) \bowtie S(B,C) \bowtie T(C,D)$$

Semi-Join $R(A, B) \ltimes S(B, C)$

- $R \bowtie S = \pi_{A,B}(R \bowtie S)$: all tuples in R that can be joined with at least one tuple in S
- Law of semi-joins: $R \bowtie S = (R \bowtie S) \bowtie S$
- O(|R| + |S|) ignoring log-factors
- How to use semi-join to remove dangling tuples those won't participate in any join result?

Acyclic Join

- A join query Q = (V, E) is acyclic if it has a join tree T such that
 - one-to-one correspondence between nodes in *T* with the relations in *E*;
 - for any attribute $A \in V$, all nodes containing A form a connected subtree.

Yannakakis Algorithm: Semi-Join Reducer

R_1

Take an arbitrary join tree

- In a bottom-up phase:
 - pick a non-visited node e (with its parent e')
 - update R_e , with R_e , $\ltimes R_e$
- In a top-down phase:
 - pick a node *e*
 - For each child e' of e, update R_e , with R_e , \bowtie R_e
- Data Complexity: O(N) ignoring log-factors

$$R_0 \coloneqq R_0 \ltimes R_2$$

$$R_0 \coloneqq R_0 \ltimes R_3$$

$$R_1 \coloneqq R_1 \ltimes R_0$$

$$R_0 \coloneqq R_0 \bowtie R_1$$

 $R_2 \coloneqq R_2 \bowtie R_0$
 $R_3 \coloneqq R_3 \bowtie R_0$

Yannakakis Algorithm: Pairwise Framework

Take an arbitrary join tree

- In a bottom-up phase:
 - pick a non-visited node e (with its parent e')
 - update R_e , with R_e , $\bowtie R_e$
- Output R_r for the root node r
- The intermediate join size is bounded by O(OUT)
- Data complexity: O(OUT)

$$R_0 \coloneqq R_0 \bowtie R_2$$

 $R_0 \coloneqq R_0 \bowtie R_3$
 $R_1 \coloneqq R_1 \bowtie R_0$

Recap Presentation Guide

- Every class will have 1 paper presentation.
- Any change in presentation schedule needs to be announced 2 weeks before the presentation.
- Each presentation should be prepared for 50 mins + 20 mins
- The presenter should expect the audience to have general knowledge about the field but not expects **sufficient background** is needed in the beginning!
- Please start preparation as early as possible!