
CS848 Fall 2025: Algorithmic
Aspects of Query Processing

Traditional Query Processing

Xiao Hu

Sep 8, 2025

1

Agenda

◼ First class: Introduction

◼ This class: Traditional query processing

– Relational Algebra

– Pairwise Framework

– Yannakakis algorithm

– Extensions

2

Pointers to Related Work

◼ Abiteboul, Hull, Vianu. Foundations of Databases. Addison Wesley, 1995.
http://webdam.inria.fr/Alice/ , Ch 6.4: Acyclic joins, semi-join reduction, Yannakakis,
GYO algorithm.

◼ Yannakakis. Algorithms for acyclic database schemes. VLDB 1981
https://dl.acm.org/doi/10.5555/1286831.1286840

◼ Bernstein, Chiu. Using semi-joins to solve relational queries. JACM 1981.
https://doi.org/10.1145/322234.322238

◼ Bernstein, Goodman. Power of natural semi-joins. SIAM J. 1981.
https://doi.org/10.1137/0210059

◼ Beeri, Fagin, Maier, Yannakakis. On the desirability of acyclic database schemes.
1983 https://doi.org/10.1145/2402.322389

3

http://webdam.inria.fr/Alice/
https://dl.acm.org/doi/10.5555/1286831.1286840
https://doi.org/10.1145/322234.322238
https://doi.org/10.1137/0210059
https://doi.org/10.1145/2402.322389

Recap on Natural Join

◼ Input: Two relations with common attributes

◼ Output: All pairs of tuples with the same value on the common attribute

◼ Nested-loop join

– 𝑂 𝑅 ⋅ |𝑆|

◼ Sort-merge join

– 𝑂 𝑅 + 𝑆 + |𝑅 ⋈ 𝑆|

ignoring the log factor

◼ Hash join

4

Multi-way Joins as a Hypergraph

◼ Path join: 𝑅1 𝐴, 𝐵 ⋈ 𝑅2 𝐵, 𝐶 ⋈ 𝑅3 𝐶, 𝐷

– Results = all paths from A to D

◼ Triangle join: 𝐶3: 𝑅1 𝐴, 𝐵 ⋈ 𝑅2 𝐵, 𝐶 ⋈ 𝑅3 𝐴, 𝐶

– Results = all triangles

◼ Star join ∶ 𝑅0 𝐴, 𝐵, 𝐶 ⋈ 𝑅1 𝐴, 𝐷1 ⋈ 𝑅2 𝐵, 𝐷2 ⋈ 𝑅3 𝐶, 𝐷3

5

vertices: values
hyperedges: tuples

𝑨

𝑪𝑩

𝑨

𝑩 𝑪

Query Pattern

◼ Path join: 𝑅1 𝐴, 𝐵 ⋈ 𝑅2 𝐵, 𝐶 ⋈ 𝑅3 𝐶, 𝐷

◼ Triangle join: 𝑅1 𝐴, 𝐵 ⋈ 𝑅2 𝐵, 𝐶 ⋈ 𝑅3 𝐴, 𝐶

◼ Star join: 𝑅0 𝐴, 𝐵, 𝐶 ⋈ 𝑅1 𝐴, 𝐷1 ⋈ 𝑅2 𝐵, 𝐷2 ⋈ 𝑅3 𝐶, 𝐷3

6

vertices: attributes
hyperedges: relations

𝑅1 𝑅𝟐 𝑅𝟑

𝑅1 𝑅𝟐

𝑅𝟑

The Logic Perspective

◼ 𝑅1 𝐴, 𝐵 ⋈ 𝑅2 𝐵, 𝐶 ⋈ 𝑅3 𝐴, 𝐶 ≡ 𝑅1 𝐴, 𝐵 ∧ 𝑅2 𝐵, 𝐶 ∧ 𝑅3 𝐴, 𝐶

– 𝑅1 𝐴, 𝐵 : “relation” or “atom”; 𝐴, 𝐵: “attributes” or “variables”

◼ 3SAT as a join:

– 𝜓 = 𝑥1 ∨ 𝑥2 ∨ 𝑥3 ∧ 𝑥2 ∨ 𝑥3 ∨ 𝑥4 ∧ 𝑥1 ∨ 𝑥3 ∨ 𝑥4

– Satisfiable truth assignments of 𝜓 are the join results of
𝑅1 𝑥1, 𝑥2, 𝑥3 ⋈ 𝑅2 𝑥2, 𝑥3, 𝑥4 ⋈ 𝑅3 𝑥1, 𝑥3, 𝑥4

on the instance:
𝑅1 = 𝑥1, 𝑥2, 𝑥3 𝑥1 ∨ 𝑥2 ∨ 𝑥3 = 1}
𝑅2 = 𝑥2, 𝑥3, 𝑥4 𝑥2 ∨ 𝑥3 ∨ 𝑥4 = 1}
𝑅3 = 𝑥1, 𝑥3, 𝑥4 𝑥1 ∨ 𝑥3 ∨ 𝑥4 = 1}

7

Database
Theory

Logic

Query size
Constant
(usually)

Large

Domain Infinite {0,1}

Instance size Large Constant

Graph Pattern Matching as Join

◼ Store all edges in a relation 𝐸 𝑥, 𝑦

– Note: every edge {𝑢, 𝑣} should be stored twice: 𝑢, 𝑣 , (𝑣, 𝑢)

◼ Find all triangles (each 3 times):

– 𝐸 𝐴, 𝐵 ⋈ 𝐸 𝐵, 𝐶 ⋈ 𝐸(𝐶, 𝐴)

– Also called a “self-join”

◼ Find all length-3 paths:

– 𝐸 𝐴, 𝐵 ⋈ 𝐸 𝐵, 𝐶 ⋈ 𝐸(𝐶, 𝐷)

– 𝜎𝐴≠𝐶∧𝐴≠𝐷∧𝐵≠𝐷 𝐸 𝐴, 𝐵 ⋈ 𝐸 𝐵, 𝐶 ⋈ 𝐸 𝐶, 𝐷

– Allowing inequalities pushes us to full relational algebra (first-order logic)!

8

Queries studied

Select + Projection + Join + Union + Difference + Aggregation (SPJUDA)

◼ Relations:

– Movies(Title, Director, Actor)

– Location(Theater, Address, Phone Number)

– Pariscope(Theater, Title, Schedule)

◼ Selection: Find all showings after 22:00

– 𝜎𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒>22:00Pariscope

◼ Projection: Find all directors directing a movie shown after 22:00

– 𝜋𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟(Movies ⋈ 𝜎𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒>22:00Pariscope)

◼ Aggregation: How many late-night movies has each director directed?

– 𝜋𝐷𝑖𝑟𝑒𝑐𝑡𝑜𝑟, 𝐶𝑂𝑈𝑁𝑇(∗)(Movies ⋈ 𝜋𝑇𝑖𝑡𝑙𝑒𝜎𝑆𝑐ℎ𝑒𝑑𝑢𝑙𝑒>22:00Pariscope)

9

Problems studied

◼ Given a SPJUDA query 𝑄

◼ Listing: Return 𝑄

◼ Enumeration: After some pre-processing, enumerate tuples in 𝑄 one by one.

◼ Boolean: Is 𝑄 = ∅?

◼ Counting: Find |𝑄|

◼ Approximate counting: 1 + 𝜖 -approximation of |𝑄|

◼ Sampling: return a uniform sample from 𝑄

◼ We first focus on join queries in the next two lectures!

10

Data Complexity

◼ Computing join query is NP-hard in terms of both query size and data size
[Chandra-Merlin, STOC’77]

◼ We focus on the data complexity [Vardi, STOC’82]

– Input size 𝑁 = # tuples in the database

– Output size 𝑂𝑈𝑇 = # query results

11

Query Processing in Traditional Database Systems

12

◼ Join Query: A highly optimized version
of Pairwise Framework

– A query plan is a binary tree

– Estimate the cost of each query plan
using data statistics

– Pick the one with the minimum cost

◼ Join is commutative and associative

– 𝑅 ⋈ 𝑆 = 𝑆 ⋈ 𝑅

– 𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ (𝑆 ⋈ 𝑇)

𝑄: = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷

Theoretical Insights

13

𝑨 𝑩

𝑎1 𝑏1

𝑎2 𝑏1

𝑎1 𝑏2

𝑎2 𝑏3

𝑎1 𝑏4

𝑩 𝑪

𝑏1 𝑐3

𝑏1 𝑐5

𝑏3 𝑐3

𝑏5 𝑐5

𝑏6 𝑐6

𝑪 𝑫

𝑐1 𝑑1

𝑐2 𝑑2

𝑐5 𝑑1

𝑐6 𝑑2

𝑐6 𝑑3 𝑄: = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷

𝑅 𝑆 𝑇

𝑨 𝑩

𝑎1 𝑏1

𝑎2 𝑏1

𝑎1 𝑏2

𝑎2 𝑏3

𝑎1 𝑏4

𝑩 𝑪

𝑏1 𝑐3

𝑏1 𝑐5

𝑏3 𝑐3

𝑏5 𝑐5

𝑏6 𝑐6

𝑅 𝑆

Semi-Join 𝑅(𝐴, 𝐵) ⋉ 𝑆(𝐵, 𝐶)

14

◼ 𝑅 ⋉ 𝑆 = 𝜋𝐴,𝐵(𝑅 ⋈ 𝑆): all tuples in 𝑅 that
can be joined with at least one tuple in 𝑆

◼ Law of semi-joins: 𝑅 ⋈ 𝑆 = (𝑅 ⋉ 𝑆) ⋈ 𝑆

◼ 𝑂 𝑅 + |𝑆| ignoring log-factors

◼ How to use semi-join to remove dangling
tuples those won’t participate in any join
result?

Acyclic Join

15

◼ A join query 𝑄 = (𝑉, 𝐸) is acyclic if it has
a join tree 𝑇 such that

– one-to-one correspondence between
nodes in 𝑇 with the relations in 𝐸;

– for any attribute 𝐴 ∈ 𝑉, all nodes
containing 𝐴 form a connected subtree.

cycli
c

ABC

BE CF

AD

acyclic

AB

BC AC

𝐷

𝐴

𝐶𝐵

𝐸 𝐹

𝐴

𝐵 𝐶

BC

CDAB

𝐴

𝐵 𝐶

𝐷
acyclic

ABC

BC ACAB

𝐴

𝐵 𝐶

acyclic

Yannakakis Algorithm: Semi-Join Reducer

16

Take an arbitrary join tree

◼ In a bottom-up phase:

– pick a non-visited node 𝑒 (with its parent 𝑒′)

– update 𝑅𝑒′ with 𝑅𝑒′ ⋉ 𝑅𝑒

◼ In a top-down phase:

– pick a node 𝑒

– For each child 𝑒′ of 𝑒, update 𝑅𝑒′ with 𝑅𝑒′ ⋉
𝑅𝑒

◼ Data Complexity: 𝑂 𝑁 ignoring log-factors

ABC

BE CF

AD

𝑅1

𝑅0

𝑅2 𝑅3

𝑅0 ≔ 𝑅0 ⋉ 𝑅2

𝑅0 ≔ 𝑅0 ⋉ 𝑅3

𝑅1 ≔ 𝑅1 ⋉ 𝑅0

𝑅0 ≔ 𝑅0 ⋉ 𝑅1

𝑅2 ≔ 𝑅2 ⋉ 𝑅0

𝑅3 ≔ 𝑅3 ⋉ 𝑅0

Yannakakis Algorithm: Pairwise Framework

17

Take an arbitrary join tree

◼ In a bottom-up phase:

– pick a non-visited node 𝑒 (with its parent 𝑒′)

– update 𝑅𝑒′ with 𝑅𝑒′ ⋈ 𝑅𝑒

◼ Output 𝑅𝑟 for the root node 𝑟

◼ The intermediate join size is bounded by 𝑂(𝑂𝑈𝑇)

◼ Data complexity: 𝑂(𝑂𝑈𝑇)

ABC

BE CF

AD

𝑅0

𝑅2 𝑅3

𝑅0 ≔ 𝑅0 ⋈ 𝑅2

𝑅0 ≔ 𝑅0 ⋈ 𝑅3

𝑅1 ≔ 𝑅1 ⋈ 𝑅0

𝑅1

Recap Presentation Guide

◼ Every class will have 1 paper presentation.

◼ Any change in presentation schedule needs to be announced 2 weeks
before the presentation.

◼ Each presentation should be prepared for 50 mins + 20 mins

◼ The presenter should expect the audience to have general knowledge
about the field but not expects – sufficient background is needed in the
beginning!

◼ Please start preparation as early as possible!

18

	Slide 1: CS848 Fall 2025: Algorithmic Aspects of Query Processing Traditional Query Processing
	Slide 2: Agenda
	Slide 3: Pointers to Related Work
	Slide 4: Recap on Natural Join
	Slide 5: Multi-way Joins as a Hypergraph
	Slide 6: Query Pattern
	Slide 7: The Logic Perspective
	Slide 8: Graph Pattern Matching as Join
	Slide 9: Queries studied
	Slide 10: Problems studied
	Slide 11: Data Complexity
	Slide 12: Query Processing in Traditional Database Systems
	Slide 13: Theoretical Insights
	Slide 14: Semi-Join cap R open paren cap A. ,cap B close paren left normal factor semidirect product cap S open paren cap B ,cap C close paren
	Slide 15: Acyclic Join
	Slide 16: Yannakakis Algorithm: Semi-Join Reducer
	Slide 17: Yannakakis Algorithm: Pairwise Framework
	Slide 18: Recap Presentation Guide

