
CS848 Fall 2025: Algorithmic
Aspects of Query Processing

Worst-case Optimal Joins

Xiao Hu
Sep 17, 2025

1

Agenda

n Last class: Traditional query processing
n This class: Worst-case optimal join algorithms

– Limitations of Pairwise Framework
– AGM bound
– Worst-case Optimal Join Algorithms
– Applications

2

Related Pointers

n Skew strikes back: New Developments in the Theory of Join Algorithms. SIGMOD
Record 2013.

n A. ATSERIAS, M. GROHE and D. MARX, “Size bounds and query plans for
relational joins,” FOCS 2008.

n S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”
n M. YANNAKAKIS, “Algorithms for acyclic database schemes,” VLDB 1981.
n G. GOTTLOB, N. LEONE and F. SCARCELLO, “Hypertree Decompositions and

Tractable Queries,” Journal of Computer and System Sciences 64 (2002) .
n M. GROHE, T. SCHWENTICK and L. SEGOUFIN, “When is the evaluation of

conjunctive queries tractable ?,” STOC 2001 .
n G. GOTTLOB, G. GRECO and F. SCARCELLO, “Treewidth and Hypertree Width”.

3

Algorithm 1: The Power of Two Choices

4

𝐴

𝐵 𝐶

n Consider each value 𝑎 ∈ 𝜋!𝑅 ∩ 𝜋!𝑇 :

𝑅 𝑎, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝑎
ó 𝜋"𝜎!#$𝑅 × 𝜋%𝜎!#$𝑇 ∩ 𝑆

– Choose the better choice of:
– Choice 1: for each “neighbor” b, and for

each “neighbor” c, check if 𝑏, 𝑐 ∈ 𝑆
– Choice 2: for each (𝑏, 𝑐) ∈ 𝑆, check if b is

“neighbor’’ of a and c is “neighbor” of a

𝑄!: = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐴

Algorithm 2: The delay of Computation

5

𝐴

𝐵 𝐶

n Consider each value 𝑎 ∈ 𝜋"𝑅 ∩ 𝜋"𝑇 :

												𝑅 𝑎, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝑎

– Consider each value 𝑏 ∈ 𝜋#𝜎"$%𝑅 ∩ 𝜋#𝑆

 𝑅 𝑎, 𝑏 ⋈ 𝑆 𝑏, 𝐶 ⋈ 𝑇 𝐶, 𝑎

¨ Consider each value 𝑐 ∈ 𝜋&𝜎#$'𝑆 ∩ 𝜋&𝜎"$%𝑇 ,
	 and output 𝑎, 𝑏, 𝑐

𝑄!: = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐴

AGM bound

6

n For a join query 𝑄, any database of input size 𝑁 can produce at most
𝑂 𝑁! join results
– 𝜌: fractional edge covering number of join query

𝜌 = 𝑘/2𝜌 = 3/2

triangle 𝑘-clique 𝑘-cycle

𝑘- Loomis-Whitney

𝜌 = 𝑘/2

𝜌 = 𝑘/(𝑘 − 1)

AGM bound

7

n For a join query 𝑄 = (𝑉, 𝐸), any database of input size |𝑅"|	: 𝑒 ∈ 𝐸

𝑄 ≤0
"∈%

𝑅" 	
!!

 where 𝜌": 𝑒 ∈ 𝐸 is any fractional edge covering of 𝑄.

n If all relations have the same size 𝑁,

𝑄 ≤0
"∈%

𝑅" 	
!! = 𝑁∑! !!

where 𝜌 = 	min∑" 𝜌" is the fractional edge covering number of 𝑄.

min	 ,
!∈#

𝜌!

𝑠. 𝑡. 	 ,
!:%∈!

𝜌! ≥ 1, ∀	𝑣 ∈ 𝑉

 𝜌! ≥ 0, ∀	𝑒 ∈ 𝐸

Prove AGM bound ---- Entropy

8

n Recall that the Shannon entropy of a random variable 𝑋 that has 𝑛 outcomes with
probabilities 𝑝;, 𝑝<, ⋯ , 𝑝= is defined as

𝐻 𝑋 = −=
>$;

=

𝑝> ⋅ log 𝑝>

n Let 𝑡;, 𝑡<, ⋯ , 𝑡= be the join result of 𝑄 on any instance of input size 𝑁. For each 𝑡>,
we define a random variable 𝑋>	such that 𝑋 = 𝑋;, 𝑋<, ⋯ , 𝑋= has a uniform
distribution over the join results of 𝑄

𝐻 𝑋 = log |𝑄|

Prove AGM bound ---- Entropy

9

n For each relation 𝑅", let 𝑌" be the marginal distribution of 𝑋 onto e

𝐻 𝑌" ≤ log |𝑅"|

n Shearer’s lemma: for every fractional edge covering {𝜌": 𝑒 ∈ 𝐸}

𝐻 𝑋 ≤?
"

𝜌 𝑒 ⋅ 𝐻 𝑌"

n Putting everything together:

log 𝑄 = 𝐻 𝑋 ≤6
0

𝜌 𝑒 ⋅ 𝐻 𝑌0 ≤6
0

𝜌 𝑒 ⋅ log |𝑅0|

Notations for join query 𝑉, 𝐸

10

𝑣!

𝑣"
𝑣#

𝑣$

𝑣%

𝑣&

n 𝑉 = 𝑣', 𝑣(, 𝑣), 𝑣*, 𝑣+, 𝑣,
n 𝐸 = 𝑒', 𝑒(, 𝑒)

– 𝑒; = 𝑣;, 𝑣<, 𝑣?, 𝑣@ 	
– 𝑒< = 𝑣<, 𝑣?, 𝑣A
– 𝑒? = 𝑣?, 𝑣A, 𝑣B, 𝑣@

𝑒!
𝑒&

𝑒"

n For a subset of attributes 𝐼 ⊆ 𝑉

𝐸- = 𝑒: 𝑒 ∩ 𝐼 ≠ ∅

i.e., the set of relations that have
non-empty intersection of 𝐼

𝐸{/$,/%} = 𝑒', 𝑒(
	 𝐸{/&} = 𝑒', 𝑒(, 𝑒)
 𝐸{/'} = 𝑒)

Worst-case Optimal Joins

11

GenericJoin (⋈C∈D 𝑅C):
// suppose 𝑉 is the set of all attributes, 𝐸 is the set of all relations

n If 𝑉 = 1: Compute the intersection ∩C∈D 𝑅C
n Let 𝐼 and 𝐽 be the partition of 𝑉
n 𝑄E ← GenericJoin (⋈C∈D! 𝜋E𝑅C)

// Recursively compute the sub-join induced by attributes 𝐼

𝑣!

𝑣"
𝑣#

𝑣$

𝑣%

𝑣&

𝑒!

𝑒&

𝑒"

𝐼 = {𝑣&, 𝑣'}
𝐽 = {𝑣(, 𝑣), 𝑣*, 𝑣+}

𝑄, ← 𝜋%!,%"𝑅& ⋈ 𝜋%"𝑅'

Worst-case Optimal Joins

12

GenericJoin (⋈C∈D 𝑅C):
// suppose 𝑉 is the set of all attributes, 𝐸 is the set of all relations

n If 𝑉 = 1: Compute the intersection ∩C∈D 𝑅C
n Let 𝐼 and 𝐽 be the partition of 𝑉
n 𝑄E ← GenericJoin (⋈C∈D! 𝜋E𝑅C)

// Recursively compute the sub-join induced by attributes 𝐼
n For each tuple 𝑡 ∈ 𝑄E:

– 𝑄(←	 GenericJoin (⋈)∈+. 𝜋,(𝑅) ⋉ 𝒕))

// Recursively compute all the join results participated by 𝑡
– Output 𝑡 ×	𝑄(

Alice

𝑣#

𝑣$

𝑣%

𝑣&

𝑒!

𝑒&

𝑒"

𝐼 = {𝑣&, 𝑣'}
𝐽 = {𝑣(, 𝑣), 𝑣*, 𝑣+}

𝑄, ← 𝜋%!,%"𝑅& ⋈ 𝜋%"𝑅'
𝑄/ ← 𝜋%#,%$𝜎%!012345	∩%"089:9;<𝑅&
⋈ 𝑅' ⋈ 𝜋%#,%%𝜎%"089:9;<𝑅'

hiking

Worst-case Optimal Joins

13

GenericJoin (⋈C∈D 𝑅C):
// suppose 𝑉 is the set of all attributes, 𝐸 is the set of all relations

n If 𝑽 = 𝟏: Compute the intersection ∩𝒆∈𝑬 𝑹𝒆
n Let 𝐼 and 𝐽 be the partition of 𝑉
n 𝑄E ← GenericJoin (⋈C∈D! 𝜋E𝑅C)

// Recursively compute the sub-join induced by attributes 𝐼
n For each tuple 𝑡 ∈ 𝑄E:

– 𝑄(←	 GenericJoin (⋈)∈+. 𝜋,(𝑅) ⋉ 𝒕))

// Recursively compute all the join results participated by 𝑡
– Output 𝑡 ×	𝑄(

If there exists 𝒆∗ ∈ 𝑬 such that 𝒆∗ =
𝑽, pick one of the following choices:
Choice 1:
• 𝑄> ← GenericJoin (⋈!∈#? !∗ 𝑅!)
• For each tuple 𝑡 ∈ 𝑄′, check

whether 𝑡 ∈ 𝑅!∗
Choice 2:
• For each tuple 𝑡 ∈ 𝑅!∗, check

whether 𝜋!𝑡 ∈ 𝑅! for all 𝑒 ∈ 𝐸

Worst-case Optimal Joins – Triangle Join Revisited

14

GenericJoin for 𝑅(𝐴, 𝐵) ⋈ 𝑆(𝐵, 𝐶) ⋈ 𝑇(𝐴, 𝐶):

n If 𝑉 = 1: Compute the intersection ∩C∈D 𝑅C
n Let 𝐼 and 𝐽 be the partition of 𝑉
n 𝑄E ← GenericJoin (⋈C∈D! 𝜋E𝑅C)

// Recursively compute the sub-join induced by attributes 𝐼
n For each tuple 𝑡 ∈ 𝑄E:

– 𝑄(←	 GenericJoin (⋈)∈+. 𝜋,(𝑅) ⋉ 𝒕))

// Recursively compute all the join results participated by 𝑡
– Output 𝑡 ×	𝑄(

𝐴

𝐵 𝐶

Let 𝐼 = {𝐴}	and 𝐽 = 𝐵, 𝐶 be the partition

𝑄E ← GenericJoin 𝜋"𝑅 ⋈ 𝜋"𝑇

For each value 𝑎 ∈ 𝜋"𝑅 ⋈ 𝜋"𝑇 :
𝑄% ← GenericJoin 𝜋#𝜎"$%𝑅 ⋈ 𝜋&𝜎"$%𝑇 ⋈ 𝑆

// Recursively compute all the join results participated by 𝑎
Output 𝑎 ×	𝑄%

Worst-case Optimal Joins – Triangle Join Revisited

15

GenericJoin for 𝜋#𝜎"$%𝑅 ⋈ 𝜋&𝜎"$%𝑇 ⋈ 𝑆:

n If 𝑉 = 1: Compute the intersection ∩C∈D 𝑅C
n Let 𝐼 and 𝐽 be the partition of 𝑉
n Choice 1:

– 𝑄- ← GenericJoin (⋈)∈+@ 𝜋-𝑅))

– For each tuple (𝑏, 𝑐) ∈ 𝑄E, whether (𝑏, 𝑐) ∈ 𝑆
n Choice 2 :

– For each tuple 𝑏, 𝑐 ∈ 𝑆, check if 𝑏 ∈ 𝜋#𝜎"$%𝑅
and 𝑐 ∈ 𝜋&𝜎"$%𝑇

𝐴 = 𝑎

𝐵 𝐶

Pick one of the two choices:

𝑄E ← GenericJoin 𝜋#𝜎"$%𝑅 ⋈ 𝜋&𝜎"$%𝑇

Algorithm 1: The power of two choices
For each 𝑎 ∈ 𝜋A𝑅 ∩ 𝜋A𝑇 :
 If 𝜋B𝜎A0C𝑅 ⋅ 𝜋D𝜎A0C𝑇 ≤ 𝑆 : choice 1

Else: choice 2

𝑆 ← the relation containing 𝐵, 𝐶

Worst-case Optimal Joins – Triangle Join Revisited

16

GenericJoin for 𝑅(𝐴, 𝐵) ⋈ 𝑆(𝐵, 𝐶) ⋈ 𝑇(𝐴, 𝐶):

n If 𝑉 = 1: Compute the intersection ∩C∈D 𝑅C
n Let 𝐼 and 𝐽 be the partition of 𝑉
n 𝑄E ← GenericJoin (⋈C∈D! 𝜋E𝑅C)

// Recursively compute the sub-join induced by attributes 𝐼
n For each tuple 𝑡 ∈ 𝑄E:

– 𝑄(←	 GenericJoin (⋈)∈+. 𝜋,(𝑅) ⋉ 𝒕))

// Recursively compute all the join results participated by 𝑡
– Output 𝑡 ×	𝑄(

𝐴

𝐵 𝐶

Let 𝐼 = {𝐴, 𝐵}	and 𝐽 = 𝐶 be the partition

𝑄E ← GenericJoin 𝑅 ⋈ 𝜋#𝑆 ⋈ 𝜋"𝑇

For each tuple 𝑎, 𝑏 ∈ 𝑄E:
𝑄%' ← GenericJoin 𝜋&𝜎"$%𝑇 ⋈ 𝜋&𝜎#$'𝑆

// Recursively compute all the join results participated by (𝑎, 𝑏)
Output 𝑎, 𝑏 ×	𝑄%'

Worst-case Optimal Joins – Triangle Join Revisited

17

GenericJoin for 𝑅 ⋈ 𝜋#𝑆 ⋈ 𝜋"𝑇 :

n If 𝑉 = 1: Compute the intersection ∩C∈D 𝑅C
n Let 𝐼 and 𝐽 be the partition of 𝑉
n 𝑄E ← GenericJoin (⋈C∈D! 𝜋E𝑅C)

// Recursively compute the sub-join induced by attributes 𝐼
n For each tuple 𝑡 ∈ 𝑄E:

– 𝑄(←	 GenericJoin (⋈)∈+. 𝜋,(𝑅) ⋉ 𝒕))

// Recursively compute all the join results participated by 𝑡
– Output 𝑡 ×	𝑄(

𝐴

𝐵 𝐶

Let 𝐼 = {𝐴}	and 𝐽 = 𝐵 be the partition

𝑄E ← GenericJoin 𝜋"𝑅 ⋈ 𝜋"𝑇

For each tuple 𝑎 ∈ 𝑄E:
𝑄% ← GenericJoin 𝜋#𝜎"$%𝑅 ⋈ 𝜋#𝑆

// Recursively compute all the join results participated by (𝑎)
Output 𝑎 ×	𝑄% Algorithm 2: The delay of Computation

For each 𝑎 ∈ 𝜋A𝑅 ∩ 𝜋A𝑇 :
 For each value 𝑏 ∈ 𝜋B𝜎A0C𝑅 ∩ 𝜋B𝑆

For each value 𝑐 ∈ 𝜋D𝜎B0E𝑆 ∩ 𝜋D𝜎A0C𝑇
Output 𝑎, 𝑏, 𝑐

Worst-case Optimal Join Algorithm

18

n Query Decomposition Lemma

=
a∈b!

R
C∈D"

𝑅C ⋉ 𝑡 c# ≤R
C∈D

𝑅C c#

– where (𝐼, 𝐽) is the partition of 𝑉 and 𝑄E ≔	⋈C∈D! 𝜋E𝑅C

Worst-case Optimal Joins – Complexity

19

n For any fractional edge covering 𝜌 of 𝑄, GenericJoin(𝑄) can compute 𝑄
within 𝑂 ∏C∈D 𝑅C c# time.
– Base case: if 𝑉 = 1, computing ∩C∈D 𝑅C takes

min
C

𝑅C ≤R
C∈D

𝑅C c#

 where ∑C 𝜌C ≥ 1 for covering the only attribute in 𝑉.
– By hypothesis, computing 𝑄E takes ∏C∈D! 𝜋E𝑅C

c# ≤ ∏C∈D 𝑅C c# time.

– By hypothesis, computing 𝑄a takes ∏C∈D" 𝑅C ⋉ 𝑡
c#

– General case (implied by the query decomposition lemma):

=
a∈b!

R
C∈D"

𝑅C ⋉ 𝑡 c# ≤R
C∈D

𝑅C c#

𝜌 is also a fractional edge
covering of (𝐼, 𝐸,) and (𝐽, 𝐸F)

n For a join query 𝑄 = 𝑉, 𝐸 , a generalized
hypertree decomposition for 𝑄 is a tree 𝑇
with the set of nodes 𝑉f and a mapping
𝜆: 𝑉f → 2g such that
– (coverage) for each relation 𝑒 ∈ 𝐸, there

exists a node 𝑢 ∈ 𝑇 with e ⊆ 𝜆.
– (connectness) for each attribute 𝑥 ∈ 𝑉, the

set of nodes containing 𝑥, i.e., {
}

𝑢 ∈ 𝑉/: 𝑥 ∈
𝜆. forms a connected subtree of 𝑇

n The sub-join query induced by node 𝑢 is
𝑄. = 𝜆., 𝑢 ∈ 𝑉/: 𝑒 ∩ 𝑢 ≠ ∅ .

Generalized Hypertree Decomposition (GHD)

𝑅) ⋈ 𝑅* ⋈ 𝑅+ ⋈ 𝜋D𝑅' ⋈ 𝜋D𝑅(
⋈ 𝜋#𝑅&' ⋈ 𝜋#𝑅&(⋈ 𝜋#𝑅&)

𝑅&

𝑅' 𝑅(

𝑅)

𝑅*

𝑅+ 𝑅&(

𝑅G

𝑅H𝑅&I

𝑅&&

𝑅&'

𝑅&)

n The fractional hypertree width of 𝑄 is defined as

𝑤 𝑄 = min
/,1 23 4 567 89: ;

max
.∈/

𝜌(𝑄.)

– 𝜌(⋅) is the optimal fractional edge covering number

n Algorithm for a GHD 𝑇, 𝜆 :
– Step 1: Compute the join results for each node 𝑢 ∈ 𝑉! using

WCOJ algorithm and materialize it as a table
– Step 2: Invoke the Yannakakis algorithm on 𝑇

n Total complexity is 𝑂 𝑁< + 𝑂𝑈𝑇
– The time complexity of step 1 is 𝑂 𝑁"#$

'∈)
% &'

– the input size of 𝑇 in step 2 is 𝑂 𝑁"#$
'∈)

% &'

Generalized Hypertree Decomposition (GHD)

𝑤 𝑄 = 1.5

n For any join, the WCOJ algorithm can compute it in 𝑂(𝑁c)	time
– 𝜌 is the fractional edge covering number

n For all joins, the WCOJ algorithm and Yannakakis algorithm together can
compute it in 𝑂(𝑁h + 𝑂𝑈𝑇)	time
– 𝑤 ≤ 𝜌 is the fractional hypertree width
– 𝑤 = 1 for acyclic joins

Summary of Worst-case Optimal Joins

