CS848 Fall 2025: Algorithmic Aspects of Query Processing

Worst-case Optimal Joins

Xiao Hu

Sep 17, 2025

Agenda

- Last class: Traditional query processing
- This class: Worst-case optimal join algorithms
 - Limitations of Pairwise Framework
 - AGM bound
 - Worst-case Optimal Join Algorithms
 - Applications

Related Pointers

- Skew strikes back: New Developments in the Theory of Join Algorithms. SIGMOD Record 2013.
- A. ATSERIAS, M. GROHE and D. MARX, "Size bounds and query plans for relational joins," FOCS 2008.
- S. ABITEBOUL, R. HULL and V. VIANU, "Foundations of Databases."
- M. YANNAKAKIS, "Algorithms for acyclic database schemes," VLDB 1981.
- G. GOTTLOB, N. LEONE and F. SCARCELLO, "Hypertree Decompositions and Tractable Queries," Journal of Computer and System Sciences 64 (2002).
- M. GROHE, T. SCHWENTICK and L. SEGOUFIN, "When is the evaluation of conjunctive queries tractable?," STOC 2001.
- G. GOTTLOB, G. GRECO and F. SCARCELLO, "Treewidth and Hypertree Width".

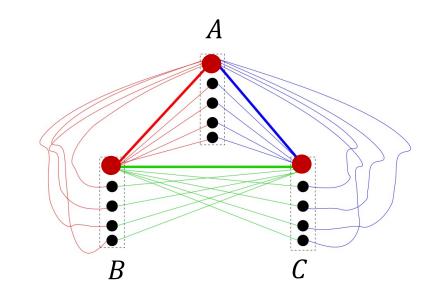
Algorithm 1: The Power of Two Choices

■ Consider each value $a \in (\pi_A R) \cap (\pi_A T)$:

$$R(a,B) \bowtie S(B,C) \bowtie T(C,a)$$

 $\Leftrightarrow ((\pi_B \sigma_{A=a} R) \times (\pi_C \sigma_{A=a} T)) \cap S$

- Choose the better choice of:
- Choice 1: for each "neighbor" b, and for each "neighbor" c, check if $(b, c) \in S$
- Choice 2: for each $(b, c) \in S$, check if b is "neighbor" of a and c is "neighbor" of a



$$Q_{\Delta} := R(A,B) \bowtie S(B,C) \bowtie T(C,A)$$

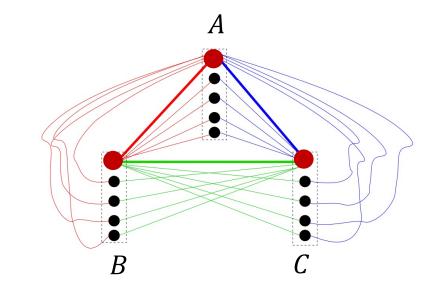
Algorithm 2: The delay of Computation

■ Consider each value $a \in (\pi_A R) \cap (\pi_A T)$:

$$R(\mathbf{a}, B) \bowtie S(B, C) \bowtie T(C, \mathbf{a})$$

- Consider each value $b \in (\pi_B \sigma_{A=a} R) \cap (\pi_B S)$

$$R(a,b) \bowtie S(b,C) \bowtie T(C,a)$$



$$Q_{\Delta} := R(A,B) \bowtie S(B,C) \bowtie T(C,A)$$

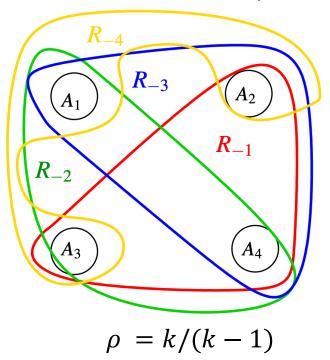
□ Consider each value $c \in (\pi_C \sigma_{B=b} S) \cap (\pi_C \sigma_{A=a} T)$, and output (a, b, c)

AGM bound

- For a join query Q, any database of input size N can produce at most $O(N^{\rho})$ join results
 - ρ : fractional edge covering number of join query

triangle k-clique k-cycle $\rho = 3/2 \qquad \rho = k/2 \qquad \rho = k/2$

k- Loomis-Whitney



AGM bound

■ For a join query Q = (V, E), any database of input size $\{|R_e| : e \in E\}$

$$|Q| \le \prod_{e \in E} |R_e|^{\rho_e}$$

where $\{\rho_e : e \in E\}$ is any fractional edge covering of Q.

 \blacksquare If all relations have the same size N,

$$|Q| \le \prod_{e \in E} |R_e|^{\rho_e} = N^{\sum_e \rho_e}$$

$$\min \sum_{e \in E} \rho_e$$

$$s.t. \sum_{e:v \in e} \rho_e \ge 1, \forall v \in V$$

$$\rho_e \ge 0, \forall e \in E$$

where $\rho = \min \sum_{e} \rho_{e}$ is the fractional edge covering number of Q.

Prove AGM bound ---- Entropy

Recall that the Shannon entropy of a random variable X that has n outcomes with probabilities p_1, p_2, \cdots, p_n is defined as

$$H(X) = -\sum_{i=1}^{n} p_i \cdot \log p_i$$

Let t_1, t_2, \dots, t_n be the join result of Q on any instance of input size N. For each t_i , we define a random variable X_i such that $X = (X_1, X_2, \dots, X_n)$ has a uniform distribution over the join results of Q

$$H(X) = \log |Q|$$

Prove AGM bound ---- Entropy

■ For each relation R_e , let Y_e be the marginal distribution of X onto e

$$H(Y_e) \le \log |R_e|$$

■ Shearer's lemma: for every fractional edge covering $\{\rho_e : e \in E\}$

$$H(X) \le \sum_{e} \rho(e) \cdot H(Y_e)$$

Putting everything together:

$$\log |Q| = H(X) \le \sum_{e} \rho(e) \cdot H(Y_e) \le \sum_{e} \rho(e) \cdot \log |R_e|$$

Notations for join query (V, E)

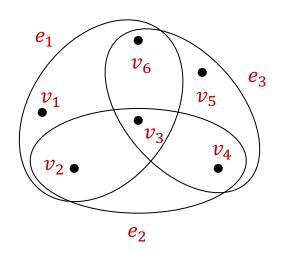
$$V = \{v_1, v_2, v_3, v_4, v_5, v_6\}$$

$$E = \{e_1, e_2, e_3\}$$

$$- e_1 = \{v_1, v_2, v_3, v_6\}$$

$$-e_2 = \{v_2, v_3, v_4\}$$

$$-e_3 = \{v_3, v_4, v_5, v_6\}$$



For a subset of attributes $I \subseteq V$

$$E_I = \{e : e \cap I \neq \emptyset\}$$

i.e., the set of relations that have non-empty intersection of *I*

$$E_{\{v_1,v_2\}} = \{e_1, e_2\}$$

$$E_{\{v_3\}} = \{e_1, e_2, e_3\}$$

$$E_{\{v_5\}} = \{e_3\}$$

Worst-case Optimal Joins

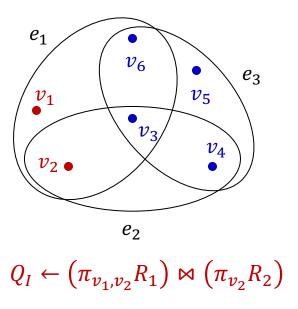
```
GenericJoin (\bowtie_{e \in E} R_e):

// suppose V is the set of all attributes, E is the set of all relations

J = \{v_1, v_2\}

J = \{v_3, v_4, v_5, v_6\}
```

- If |V| = 1: Compute the intersection $\cap_{e \in E} R_e$
- Let I and J be the partition of V
- $Q_I \leftarrow \text{GenericJoin} (\bowtie_{e \in E_I} \pi_I R_e)$ // Recursively compute the sub-join induced by attributes I



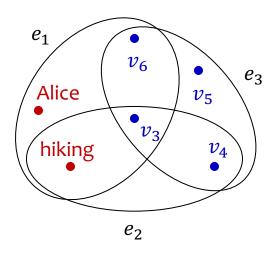
Worst-case Optimal Joins

```
GenericJoin (\bowtie_{e \in E} R_e):

// suppose V is the set of all attributes, E is the set of all relations
```

 $I = \{v_1, v_2\}$ $J = \{v_3, v_4, v_5, v_6\}$

- If |V| = 1: Compute the intersection $\bigcap_{e \in E} R_e$
- Let I and J be the partition of V
- $Q_I \leftarrow \text{GenericJoin} (\bowtie_{e \in E_I} \pi_I R_e)$ // Recursively compute the sub-join induced by attributes I
- For each tuple $t \in Q_I$:
 - $Q_t \leftarrow \text{GenericJoin} \left(\bowtie_{e \in E_J} \pi_J (R_e \bowtie t) \right)$ // Recursively compute all the join results participated by t
 - Output $\{t\} \times Q_t$



$$\begin{aligned} Q_I &\leftarrow \left(\pi_{v_1, v_2} R_1\right) \bowtie \left(\pi_{v_2} R_2\right) \\ Q_t &\leftarrow \left(\pi_{v_3, v_6} \sigma_{v_1 = \text{Alice } \cap v_2 = \text{hiking } R_1\right) \\ \bowtie R_2 &\bowtie \left(\pi_{v_3, v_4} \sigma_{v_2 = \text{hiking } R_2\right) \end{aligned}$$

Worst-case Optimal Joins

```
GenericJoin (\bowtie_{e \in E} R_e):

// suppose V is the set of all attributes, E is the set of all relations
```

- If |V| = 1: Compute the intersection $\bigcap_{e \in E} R_e$
- Let I and J be the partition of V
- $Q_I \leftarrow \text{GenericJoin} (\bowtie_{e \in E_I} \pi_I R_e)$ // Recursively compute the sub-join induced by attr
- For each tuple $t \in Q_I$:
 - Q_t ← GenericJoin ($\bowtie_{e ∈ E_I} π_J(R_e ⋈ t)$)
 - // Recursively compute all the join results participated by t
 - Output $\{t\} \times Q_t$

If there exists $e^* \in E$ such that $e^* = V$, pick one of the following choices:

- $Q' \leftarrow \text{GenericJoin} (\bowtie_{e \in E \{e^*\}} R_e)$
- For each tuple $t \in Q'$, check whether $t \in R_{e^*}$

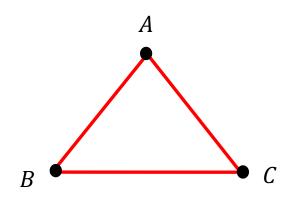
Choice 2:

• For each tuple $t \in R_{e^*}$, check whether $\pi_e t \in R_e$ for all $e \in E$

GenericJoin for $R(A, B) \bowtie S(B, C) \bowtie T(A, C)$:

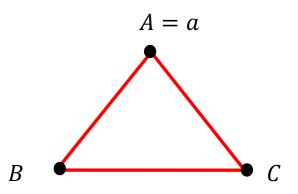
- If |V| = 1: Compute the intersection $\cap_{e \in E} R_e$
- Let $I = \{A\}$ and $J = \{B, C\}$ be the partition

- $Q_a \leftarrow \text{GenericJoin}\left((\pi_B \sigma_{A=a} R) \bowtie (\pi_C \sigma_{A=a} T) \bowtie S\right)$
- // Recursively compute all the join results participated by a
- Output $\{a\} \times Q_a$



GenericJoin for $(\pi_B \sigma_{A=a} R) \bowtie (\pi_C \sigma_{A=a} T) \bowtie S$:

- $S \leftarrow$ the relation containing B, C
- Pick one of the two choices:
- Choice 1:
 - $-Q_I$ ← GenericJoin $((\pi_B \sigma_{A=a} R) \bowtie (\pi_C \sigma_{A=a} T))$
 - For each tuple (b, c) ∈ Q_I , whether (b, c) ∈ S
- Choice 2:
 - For each tuple $(b, c) \in S$, check if $b \in \pi_B \sigma_{A=a} R$ and $c \in \pi_C \sigma_{A=a} T$



Algorithm 1: The power of two choices

For each $a \in (\pi_A R) \cap (\pi_A T)$: If $|\pi_B \sigma_{A=a} R| \cdot |\pi_C \sigma_{A=a} T| \leq |S|$: choice 1 Else: choice 2

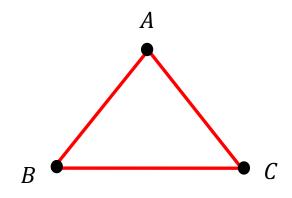
GenericJoin for $R(A, B) \bowtie S(B, C) \bowtie T(A, C)$:

- If |V| = 1: Compute the intersection $\bigcap_{e \in E} R_e$
- Let $I = \{A, B\}$ and $J = \{C\}$ be the partition
- $Q_I \leftarrow \text{GenericJoin}\left(R \bowtie (\pi_B S) \bowtie (\pi_A T)\right)$ #Recursively compute the sub-join induced by attributes I

-
$$Q_{ab}$$
 ← GenericJoin $((\pi_C \sigma_{A=a} T) \bowtie (\pi_C \sigma_{B=b} S))$

// Recursively compute all the join results participated by (a, b)

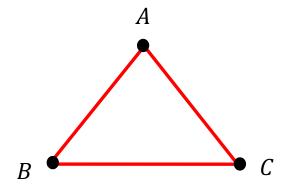
- Output $\{a, b\} \times Q_{ab}$



GenericJoin for $R \bowtie (\pi_B S) \bowtie (\pi_A T)$:

- If |V| = 1: Compute the intersection $\cap_{e \in E} R_e$
- Let $I = \{A\}$ and $J = \{B\}$ be the partition
- $Q_I \leftarrow \text{GenericJoin}\left((\pi_A R) \bowtie (\pi_A T)\right)$ —// Recursively compute the sub-join induced by attributes I

- $-Q_a$ ← GenericJoin $((π_B σ_{A=a} R) ⋈ (π_B S))$
- // Recursively compute all the join results participated by (a)
- Output $\{a\} \times Q_a$



```
Algorithm 2: The delay of Computation
```

```
For each a \in (\pi_A R) \cap (\pi_A T):

For each value b \in (\pi_B \sigma_{A=a} R) \cap (\pi_B S)

For each value c \in (\pi_C \sigma_{B=b} S) \cap (\pi_C \sigma_{A=a} T)

Output (a,b,c)
```

Worst-case Optimal Join Algorithm

Query Decomposition Lemma

$$\sum_{t \in Q_I} \prod_{e \in E_J} |R_e \ltimes t|^{\rho_e} \leq \prod_{e \in E} |R_e|^{\rho_e}$$

- where (I,J) is the partition of V and $Q_I := \bowtie_{e \in E_I} \pi_I R_e$

Worst-case Optimal Joins – Complexity

- For any fractional edge covering ρ of Q, GenericJoin(Q) can compute Q within $O(\prod_{e \in E} |R_e|^{\rho_e})$ time.
 - Base case: if |V| = 1, computing $\bigcap_{e \in E} R_e$ takes

$$\min_{e} |R_e| \le \prod_{e \in E} |R_e|^{\rho_e}$$

where $\sum_{e} \rho_{e} \geq 1$ for covering the only attribute in V.

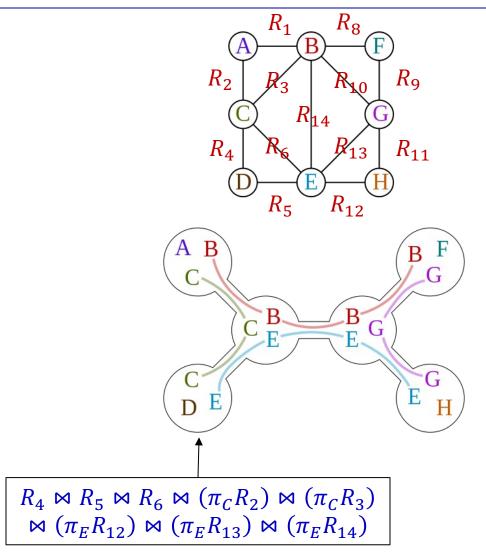
 ρ is also a fractional edge covering of (I, E_I) and (J, E_I)

- By hypothesis, computing Q_I takes $\prod_{e \in E_I} |\pi_I R_e|^{\rho_e} \le \prod_{e \in E} |R_e|^{\rho_e}$ time.
- By hypothesis, computing Q_t takes $\prod_{e \in E_I} |R_e \ltimes t|^{\rho_e}$
- General case (implied by the query decomposition lemma):

$$\sum_{t \in Q_I} \prod_{e \in E_I} |R_e \ltimes t|^{\rho_e} \leq \prod_{e \in E} |R_e|^{\rho_e}$$

Generalized Hypertree Decomposition (GHD)

- For a join query Q = (V, E), a generalized hypertree decomposition for Q is a tree Twith the set of nodes V_T and a mapping $\lambda: V_T \to 2^V$ such that
 - (coverage) for each relation $e \in E$, there exists a node $u \in T$ with $e \subseteq \lambda_u$
 - (connectness) for each attribute $x \in V$, the set of nodes containing x, i.e., $\{u \in V_T : x \in \lambda_u\}$ forms a connected subtree of T
- The sub-join query induced by node u is $Q_u = (\lambda_u, \{u \in V_T : e \cap u \neq \emptyset\}).$

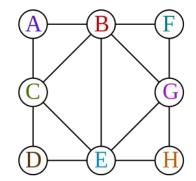


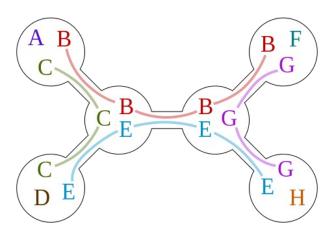
Generalized Hypertree Decomposition (GHD)

 \blacksquare The fractional hypertree width of Q is defined as

$$w(Q) = \min_{(T,\lambda) \text{ is a GHD for } Q} \max_{u \in T} \rho(Q_u)$$

- $\rho(\cdot)$ is the optimal fractional edge covering number
- Algorithm for a GHD (T, λ) :
 - Step 1: Compute the join results for each node $u \in V_T$ using WCOJ algorithm and materialize it as a table
 - Step 2: Invoke the Yannakakis algorithm on T
- Total complexity is $O(N^w + OUT)$
 - The time complexity of step 1 is $O\left(N_{u \in T}^{\max \rho(Q_u)}\right)$
 - the input size of T in step 2 is $O\left(N_{u \in T}^{\max \rho(Q_u)}\right)$





$$w(Q) = 1.5$$

Summary of Worst-case Optimal Joins

- For any join, the WCOJ algorithm can compute it in $O(N^{\rho})$ time
 - ρ is the fractional edge covering number
- For all joins, the WCOJ algorithm and Yannakakis algorithm together can compute it in $O(N^w + OUT)$ time
 - $w \le \rho$ is the fractional hypertree width
 - w = 1 for acyclic joins