CS848 Fall 2025: Algorithmic Aspects of Query Processing

Worst-case Optimal Joins

Xiao Hu Sep 15, 2025

Agenda

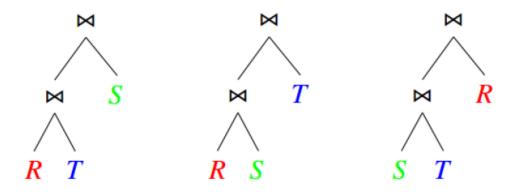
- Last class: Traditional query processing
- This class: Worst-case optimal join algorithms
 - Limitations of Pairwise Framework
 - AGM bound
 - Worst-case Optimal Join Algorithms
 - Applications

Related Pointers

- Skew strikes back: New Developments in the Theory of Join Algorithms. SIGMOD Record 2013.
- A. ATSERIAS, M. GROHE and D. MARX, "Size bounds and query plans for relational joins," FOCS 2008.
- S. ABITEBOUL, R. HULL and V. VIANU, "Foundations of Databases."
- M. YANNAKAKIS, "Algorithms for acyclic database schemes," VLDB 1981.
- G. GOTTLOB, N. LEONE and F. SCARCELLO, "Hypertree Decompositions and Tractable Queries," Journal of Computer and System Sciences 64 (2002).
- M. GROHE, T. SCHWENTICK and L. SEGOUFIN, "When is the evaluation of conjunctive queries tractable?," STOC 2001.
- G. GOTTLOB, G. GRECO and F. SCARCELLO, "Treewidth and Hypertree Width".

Recap on Pairwise Framework

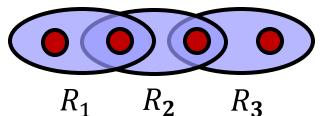
- Join Query: A highly optimized version of Pairwise Framework
 - A join plan is a binary tree
 - Estimate the cost of each query plan using data statistics
 - Pick the one with the minimum cost



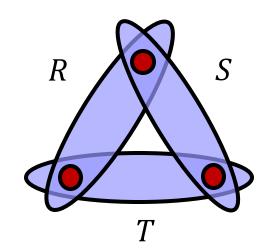
$$Q_{\Delta} := R(A,B) \bowtie S(B,C) \bowtie T(C,A)$$

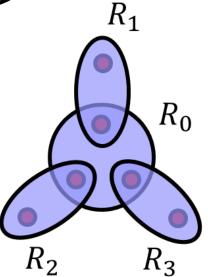
Recap on Yannakakis algorithm and Acyclic Joins

Any acyclic join can be computed efficiently!



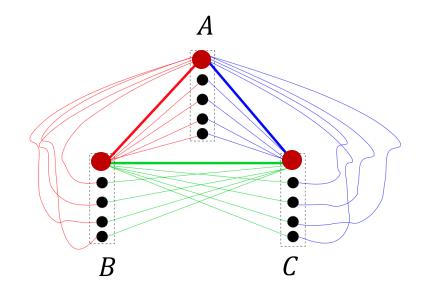
- Path join: $R_1(A, B) \bowtie R_2(B, C) \bowtie R_3(C, D)$
- Star join : $R_0(A, B, C) \bowtie R_1(A, D_1) \bowtie R_2(B, D_2) \bowtie R_3(C, D_3)$
- No optimality on triangle join: $R(A,B) \bowtie S(B,C) \bowtie T(A,C)$
- How worse could Yannakakis algorithm be?





Pathological instance for Yannakakis algorithm

- No more tuples can be removed
- The number of input tuples is 6n + 3
- The number of triangle join results is 3n + 1
- But any pairwise join would generate n^2 intermediate results



$$Q_{\Delta} := R(A, B) \bowtie S(B, C) \bowtie T(C, A)$$

$$R(A,B) = \{(a_0,b_i): i \in [n]\} \cup \{(a_i,b_0): i \in [n]\} \cup \{(a_0,b_0)\}$$

$$S(B,C) = \{(b_0,c_i): i \in [n]\} \cup \{(b_i,c_0): i \in [n]\} \cup \{(b_0,c_0)\}$$

$$T(A,C) = \{(a_0,c_i): i \in [n]\} \cup \{(a_i,c_0): i \in [n]\} \cup \{(a_0,c_0)\}$$

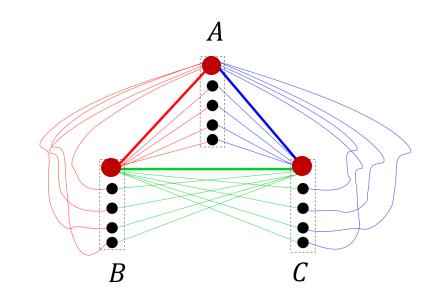
Algorithm 1: The Power of Two Choices

■ Consider each value $a \in (\pi_A R) \cap (\pi_A T)$:

$$R(a,B) \bowtie S(B,C) \bowtie T(C,a)$$

 $\Leftrightarrow ((\pi_B \sigma_{A=a} R) \times (\pi_C \sigma_{A=a} T)) \cap S$

- Choice 1: for each "neighbor" b, and for each "neighbor" c, check if $(b, c) \in S$
- Choice 2: for each $(b, c) \in S$, check if b is "neighbor" of a and c is "neighbor" of a



$$Q_{\Delta} := R(A,B) \bowtie S(B,C) \bowtie T(C,A)$$

Algorithm 1: The Power of Two Choices

Idea: Make an individual choice for each value $a \in (\pi_A R) \cap (\pi_A T)$

- How to make a choice?
 - Always choose the "cheaper" one!
 - Choice 1: for each "neighbor" b, and for each "neighbor" c, check if $(b, c) \in S$
 - Choice 2: for each $(b, c) \in S$, check if b is "neighbor" of a and c is "neighbor" of a

For value a with $|\pi_B \sigma_{A=a} R| \cdot |\pi_C \sigma_{A=a} T| < |S|$

For value a with $|\pi_B \sigma_{A=a} R| \cdot |\pi_C \sigma_{A=a} T| \ge |S|$

Algorithm 1: The Power of Two Choices

- Hashing Indexes
- Analysis: $O(\sqrt{|R| \cdot |S| \cdot |T|} + |R| + |S| + |T|)$
 - $O(N^{1.5}) \text{ if } |R| = |S| = |T| = N$

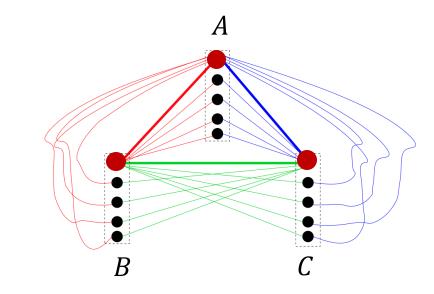
Algorithm 2: The delay of Computation

■ Consider each value $a \in (\pi_A R) \cap (\pi_A T)$:

$$R(\mathbf{a}, B) \bowtie S(B, C) \bowtie T(C, \mathbf{a})$$

- Consider each value $b \in (\pi_B \sigma_{A=a} R) \cap (\pi_B S)$

$$R(a,b) \bowtie S(b,C) \bowtie T(C,a)$$



$$Q_{\Delta} := R(A,B) \bowtie S(B,C) \bowtie T(C,A)$$

□ Consider each value $c \in (\pi_C \sigma_{B=b} S) \cap (\pi_C \sigma_{A=a} T)$, and output (a, b, c)

Algorithm 2: The delay of Computation

- Hashing Indexes
- Analysis: $O(\sqrt{|R| \cdot |S| \cdot |T|} + |R| + |S| + |T|)$
 - $O(N^{1.5}) \text{ if } |R| = |S| = |T| = N$

Worst-case optimality for Triangle Join

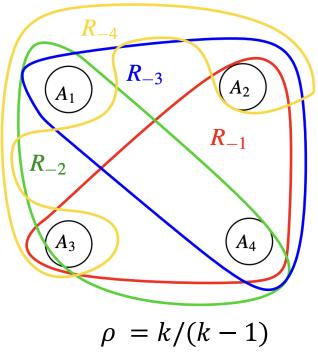
- Consider a hard instance of the triangle join where
 - $|A| = |B| = |C| = \sqrt{N}$
 - R(A, B) is Cartesian product between A and B
 - S(B, C) is Cartesian product between B and C
 - T(C,A) is Cartesian product between A and C
- Input size is N and output size is $N^{\frac{3}{2}}$
- So, any algorithm needs to spend $\Omega(N^{\frac{3}{2}})$ time to compute this instance

AGM bound

- lacktriangle For a join query Q, any database of input size N can produce at most $O(N^{\rho})$ join results
 - ρ : fractional edge covering number of join query

triangle *k*-clique *k*-cycle $\rho = 3/2$ $\rho = k/2$ $\rho = k/2$

k- Loomis-Whitney



$$\rho = k/(k-1)$$

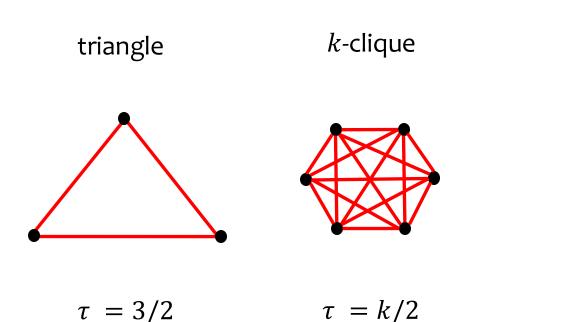
AGM bound is tight

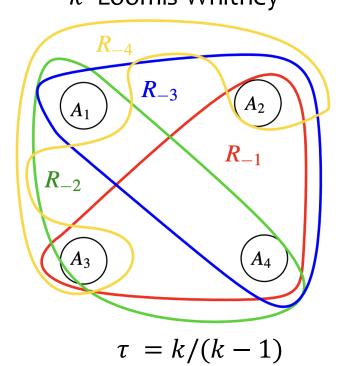
- A hard instance: For a join query Q, and parameter N, there always exists a database of input size N can produce $\Omega(N^{\rho})$ join results
- Duality between fractional edge covering and fractional vertex packing

k-cycle

 $\tau = k/2$

k- Loomis-Whitney





Next Class

- How to prove AGM bound? Many different ways!
- Can we design an algorithm whose running time matches the AGM bound?
- Can we apply the WCOJ algorithm to derive an output-sensitive algorithm for cyclic joins?