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Agenda

O
m This class: Worst-case optimal join algorithms
— Limitations of Pairwise Framework
- AGM bound
— Worst-case Optimal Join Algorithms
— Applications
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Tractable Queries,” Journal of Computer and System Sciences 64 (2002) .

m M. GROHE, T. SCHWENTICK and L. SEGOUFIN, “When is the evaluation of
conjunctive queries tractable ?,” STOC 2001.

m G.GOTTLOB, G. GRECO and F. SCARCELLO, “Treewidth and Hypertree Width”.
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Recap on Pairwise Framework

m Join Query: A highly optimized version g v ¢

of Pairwise Framework /\ /\ /\

— Ajoin planis a binary tree A N 7\ g
- Estimate the cost of each query plan R/\T R/\ T

using data statistics
- Pick the one with the minimum cost 0x:= R(A,B) » S(B,C) x T(C,A)
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Recap on Yannakakis algorithm and Acyclic Joins

m Any acyclic join can be computed efficiently! ®IOD

~ Pathjoin: R;(4,B) x R,(B,C) = R;(C,D)
~ Starjoin: Ry(4,B,C) x R{(A,D;) x R,(B,D,) x R3;(C,D3)

m No optimality on triangle join: R(4,B) = S(B,C) x T(A4,C)

m How worse could Yannakakis algorithm be?

R S
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Pathological instance for Yannakakis algorithm

m No more tuples can be removed
m The number of input tuplesis 6n + 3

m The number of triangle join resultsis 3n + 1

m But any pairwise join would generate n*
intermediate results

Qx:= R(4,B) x S(B,C) x T(C, A)

R(A,B) ={(ay, b;):i € [n]} U{(a;, by):i € [n]} U{(ay, by)}
S(B,C) ={(bg,c;):i € [n]} U{(b;, co):i € [n]} U{(bg, o)}
T(A,C) ={(ap,cy):i € [n]} Ui(a; co):i € [n]} U {(ay, o)}
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Algorithm 1: The Power of Two Choices

m Consider eachvaluea € (m,R) N (w,T):

R(a,B) x S(B,C) x T(C, a)
& ((T[BO-A=aR) X (T[CO-A:aT)) nsS

— Choice 1: for each “neighbor” b, and for
each “neighbor” ¢, checkif (b,c) € S Qa:=R(4,B) = S(B,C) = T(C,A)

— Choice 2: foreach (b,c) € S, checkifbis
“neighbor’” of a and cis “neighbor” of a



]
Algorithm 1: The Power of Two Choices

m |dea: Make an individual choice for each
value a € (m4R) N (,T)

m How to make a choice?
— Always choose the “cheaper” one!

~ Choice 1: for each “neighbor” b, and for For value a with
each “neighbor” ¢, check if (b,c) € S [Tgoa=aR| - [TTcO=aT| < |S]

~ Choice 2: for each (b, ¢) € S, checkif bis For value a with
“neighbor” of a and c is “neighbor” of a [mp0a=aR| - ITTco4=4T| = |S]
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Algorithm 1: The Power of Two Choices

m Hashing Indexes

m Analysis: 0(\/|R| |S| - |T| + |R| + |S]| + |T|)
- ONY®)if|R|=|S|=IT|=N
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Algorithm 2: The delay of Computation

m Consider eachvaluea € (myR) N (m,T):

R(a,B) x S(B,C) x T(C,a)

—~  Consider eachvalue b € (mgo,-4R) N (5S)

R(a,b) x S(b,C) m T(C,q) Qx:= R(4,B) x S(B,C) = T(C,A)

Consider each value ¢ € (m.05-,5) N (p04-,T),
and output (a, b, ¢)
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Algorithm 2: The delay of Computation

m Hashing Indexes

m Analysis: 0(\/|R| |S| - |T| + |R| + |S]| + |T|)
- ONY®)if|R|=|S|=IT|=N




T
Worst-case optimality for Triangle Join

m Consider a hard instance of the triangle join where
- |Al =Bl = |C| =VN
- R(A, B) is Cartesian product between A and B

- S(B, C) is Cartesian product between B and C
- T(C,A) is Cartesian product between A and C

3
m [nput sizeis N and output size is N2

3
m So, any algorithm needs to spend Q(NE) time to compute this instance
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AGM bound

m For ajoin query Q, any database of input size N can produce at most
O(NP) join results

— p: fractional edge covering number of join query

k- Loomis-Whitney

triangle k-clique k-cycle

p =3/2 p =k/2 p =k/2
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]
AGM bound is tight

m A hardinstance: For ajoin query Q, and parameter N, there always
exists a database of input size N can produce Q(N”) join results

m Duality between fractional edge covering and fractional vertex packing
k- Loomis-Whitney

triangle k-clique k-cycle
T =3/2 T =k/2 T =k/2

T =k/(k-1)
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o
Next Class

m How to prove AGM bound? - Many different ways!

m Can we design an algorithm whose running time matches the AGM
bound?

m Can we apply the WCOJ algorithm to derive an output-sensitive
algorithm for cyclic joins?
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