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Agenda

n Last class: Worst-case optimal join algorithms
n This class: join-aggregate queries

– Matrix multiplication and its Variant
– Limitations of Yannakakis algorithm
– Output-optimal algorithm for Chain Matrix Multiplication
– General join-aggregate queries
– General Algorithm
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(Natural) Join Query
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n A join query 𝑞 ≔ 𝑅! 𝑒! ⋈ 𝑅" 𝑒" ⋈ ⋯ ⋈ 𝑅# 𝑒#
– 𝑒!, 𝑒", ⋯ , 𝑒# are subsets of attributes
– 𝑅!, 𝑅", ⋯ , 𝑅# are relations
– 𝑞 = 𝑡 ∈ dom 𝑒! ∪ 𝑒" ∪⋯∪ 𝑒# : ∀𝑖 ∈ 𝑘 , 𝜋$!𝑡 ∈ 𝑅%

n Examples in graphs:
– Listing triangles: 𝐸! 𝐴, 𝐵 ⋈ 𝐸" 𝐵, 𝐶 ⋈ 𝐸#(𝐴, 𝐶)
– Listing length-𝑘 chains: 𝐸! 𝐴!, 𝐴" ⋈ 𝐸" 𝐴", 𝐴# ⋈ ⋯ ⋈ 𝐸$ 𝐴$ , 𝐴$%!
– Listing 𝑘-way stars: 𝐸! 𝐴!, 𝐵 ⋈ 𝐸" 𝐴", 𝐵 ⋈ ⋯ ⋈ 𝐸$(𝐴$ , 𝐵)
– Listing length-4 cycles: 𝐸! 𝐴, 𝐵 ⋈ 𝐸" 𝐵, 𝐶 ⋈ 𝐸#(𝐶, 𝐷) ⋈ 𝐸&(𝐷, 𝐴)



Commutative Semi-ring and Ring
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n A commutative semi-ring (𝐃,⊕,⊗, 𝟎, 𝟏)
– 𝐃,⊕, 𝟎 is a commutative monoid with identity 𝟎

• 𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑎 ⊕ 𝑏 ⊕ 𝑐
• 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎
• 𝑎 ⊕ 𝟎 = 𝟎⊕ 𝑎 = 𝑎

– 𝐃,⊗, 𝟏 is a commutative monoid with identity 𝟏
• 𝑎 ⊗ 𝑏 ⊗ 𝑐 = 𝑎 ⊗ 𝑏 ⊗ 𝑐
• 𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎
• 𝑎 ⊗ 𝟏 = 𝟏⊗ 𝑎 = 𝑎

– ⊗ distributes over ⊕
• 𝑎 ⊗ 𝑏 ⊕ 𝑎⊗ 𝑐 = 𝑎 ⊗ 𝑏⊕ 𝑐

– 𝑎 ⊗ 𝟎 = 𝟎⊗ 𝑎 = 𝟎 for any element 𝑎 ∈ 𝐃

n Additional condition for ring:
– 𝐃,⊕, 𝟎 is a group

• each element 𝑎 ∈ 𝐃 has an
additive inverse−𝑎: 𝑎 ⊕
(−𝑎) = 𝟎



Join-Aggregate Query = Aggregation over Join Query
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n A join-aggregate query under 𝐃,⊕,⊗, 𝟎, 𝟏

𝑄 y =:⊕&' 𝑞 =⊕&' 𝑅! 𝑒! ⋈ 𝑅" 𝑒" ⋈ ⋯ ⋈ 𝑅# 𝑒#
  
– y, =y 	is a partition of all attributes 𝑒! ∪ 𝑒" ∪⋯∪ 𝑒#
– A full join if y = 𝑒! ∪ 𝑒" ∪⋯∪ 𝑒#
– Each tuple 𝑡 is annotated with 𝛿𝑡 ∈ 𝐃
– The annotation of a join result 𝑡 is 𝛿𝑡 = 𝛿𝜋$"𝑡 ⊗ 𝛿𝜋$#𝑡 ⊗⋯⊗ 𝛿𝜋$$𝑡

– 𝑄 y = 𝑡(, 𝛿𝑡( ∈ (𝜋)𝑞)×𝐃 ∶ 𝛿𝑡( =⊕*∈,:.%*/*& 𝛿𝑡



Example of Join-Aggregate Queries on (ℤ,+,×, 𝟎, 𝟏)
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0 0
1 0

0 1
4 0

3 0
0 1

0 0
0 0

×
3 2
0 3

0 0
0 1

0 5
0 0

0 0
1 0

=
0 0
3 22

1 0
0 0

9 6
0 3

0 0
0 1

𝑅' 𝐴, 𝐵 𝑅( 𝐵, 𝐶

A B 𝜹(⋅)

1 4 1
2 1 1
2 3 4
3 1 3
4 2 1

B C 𝜹 ⋅

1 1 3
1 2 2
2 2 3
2 4 1
3 2 5
4 3 1

0
)

𝑅' ⋈ 𝑅(

A C 𝜹(⋅)
1 3 1
2 1 3
2 2 2 + 20 = 22
3 1 9
3 2 6
4 2 3
4 4 1

A B C 𝜹 ⋅

1 4 3 1 ⋅ 1 = 1
2 1 1 1 ⋅ 3 = 3
2 1 2 1 ⋅ 2 = 2
2 3 2 4 ⋅ 5 = 20
3 1 1 3 ⋅ 3 = 9
3 1 2 3 ⋅ 2 = 6
4 2 2 1 ⋅ 3 = 3
4 2 4 1 ⋅ 1 = 1

𝑅' ⋈ 𝑅(



Examples of Commutative Semi-ring
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𝐃 ⊕ ⊗ 0 1 Name

{true, false} ∨ ∧ false true Boolean

ℕ + × 0 1 Natural sum-product

ℝ/ℤ + × 0 1 Real/Integer
sum-product

(−∞,+∞] min + +∞ 0 Min-sum

[−∞,+∞) max + −∞ 0 Max-sum

(0, +∞] min × +∞ 1 Min-product

[0, +∞) max × 0 1 Max-product

ℕ[X] + × 0 1 Polynomials over X

Boolean: conjunctive query

Sum-product: counting query;
inference in probabilistic 
graphical models; matrix
multiplication; permanent;
discrete fourier transformation

Min-sum: shortest path

Max-product: maximum
posteriori in probabilistic 
graphical models;
maximum likelihood 
decoder for linear codes

Polynomials: data
provenance



Join-Aggregate Queries in Disguise
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maximum reliability colorabilityshortest path
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What is lower and upper bound for acyclic join-
aggregate queries by semi-ring algorithms?

Answer: 𝛩 𝑁 ⋅ 𝑂𝑈𝑇!"
/

012345 +𝑂𝑈𝑇 [H25]
where fn*htw is the free-connex fractional hypertree width of the query

fnDhtw = 1 for free-connex queries;
fnDhtw = 𝑘 for star queries with 𝑘 relations;

fnDhtw = 2 for chain queries with arbitrary relations



n For a join-project query 𝜋)𝑄 with 𝑄 = 𝑉, 𝐸 , a 
tree decomposition for 𝑄 is a tree 𝑇 with the
set of nodes 𝑉0 and a mapping 𝜆: 𝑉0 → 21
such that
– (coverage) for each relation 𝑒 ∈ 𝐸, there exists

a node 𝑢 ∈ 𝑇 with e ⊆ 𝜆6
– (connectness) for each attribute 𝑥 ∈ 𝑉, the set

of nodes containing 𝑥, i.e., 𝑢 ∈ 𝑉7: 𝑥 ∈ 𝜆6
forms a connected subtree of 𝑇

(Recap) Tree Decomposition



Free-Connex Tree Decomposition
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n For a join-project query 𝜋)𝑄 with 𝑄 = 𝑉, 𝐸 , a free-
connex tree decomposition for 𝑄 is a tree 𝑇 with the
set of nodes 𝑉0 and a mapping 𝜆: 𝑉0 → 21 such that
– (coverage) for each relation 𝑒 ∈ 𝐸, there exists a node
𝑢 ∈ 𝑇 with e ⊆ 𝜆6

– (connectness) for each attribute 𝑥 ∈ 𝑉, the set of
nodes containing 𝑥, i.e., 𝑢 ∈ 𝑉7: 𝑥 ∈ 𝜆6 forms a
connected subtree of 𝑇

– (connex) there exists a connected subtree 𝑇234 ⊆
𝑇 containing the root node 𝑟 of 𝑇 and the union of
nodes in 𝑇234 is exactly the output attributes

n The sub-join query induced by node 𝑢 is
𝑄6 = 𝜆6, 𝑢 ∈ 𝑉7: 𝑒 ∩ 𝑢 ≠ ∅ .

Is this a free-connex tree 
decomposition of 𝜋!,#,$,%,&𝑄?

Is this a free-connex tree 
decomposition of 𝜋!,#,$,'𝑄?



(Recap) Fractional Hypertree Width
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fhtw = 1

B3A3

C1B3

A1B1

B2C1

A2B2

B1C2

C2

Ctw = min
#$%% &%'()*(+,#,(- 𝑻	

max
-(&% 0∈𝑻

𝜌	(𝑄0)

𝜋2/,28,29,48,49
𝑅( 𝐴(, 𝐵(
⋈ 𝑅) 𝐴), 𝐵)
⋈ 𝑅* 𝐴*, 𝐵*
⋈ 𝑅+ 𝐵(, 𝐵), 𝐶(, 𝐶)  
⋈ 𝑅, 𝐶(, 𝐵*, 𝐵+, 𝐶)

fhtw = 1.5



Free-connex Fractional Hypertree Width
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a tree decomposition but not 
free-connex

a free-connex tree 
decomposition

fnfhtw = 4

B3A3

C1B3

A1B1

B2C1

A2B2

B1C2

C2

B3A3

C1B3

A1 B1

B2C1

A2B2

B1C2

C2A3

A3

A2

A2A3 C2

A1A2A3C2

𝜋2/,28,29,48,49
𝑅( 𝐴(, 𝐵
⋈ 𝑅) 𝐴), 𝐵
⋈ 𝑅* 𝐴*, 𝐵
⋈ 𝑅+ 𝐵(, 𝐵), 𝐶(, 𝐶)  
⋈ 𝑅, 𝐶(, 𝐵*, 𝐶)

fnCtw = min
5$%%"'(--%6

#$%% &%'()*(+,#,(- 𝑻

max
-(&% 0∈𝑻

𝜌∗(𝑄0)



fnfhtw = 2 for Chain MM
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𝑄 𝐴!, 𝐴#=! ≔	𝑅! 𝐴!, 𝐴" ⋈ 𝑅" 𝐴", 𝐴> ⋈ ⋯ ⋈ 𝑅# 𝐴#, 𝐴#=!

𝐴!𝐴"	

𝐴! 𝐴" 𝐴#

𝐴!𝐴$𝐴$%!

𝐴!𝐴$%!

⋯

𝐴! 𝐴&𝐴(
𝐴#𝐴&𝐴$%!

𝐴$𝐴$%!

𝐴"𝐴#𝐴$%!

𝐴! 𝐴"𝐴$%!

𝐴!𝐴$%!

⋯

𝐴#𝐴&

𝐴$𝐴$%!

𝐴"𝐴#

𝐴! 𝐴"

⋯

tree decompositions but 
not free-connex

free-connex 
tree decompositions

𝐴$)"𝐴$)!

𝐴! 𝐴"

𝐴$)!𝐴$

𝐴$𝐴$%!

⋯



A Free-Connex Tree Decomposition is A Query Plan
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𝑄 𝐴!, 𝐴#=! ≔	𝑅! 𝐴!, 𝐴" ⋈ 𝑅" 𝐴", 𝐴> ⋈ ⋯ ⋈ 𝑅# 𝐴#, 𝐴#=!

𝐴!𝐴"	

𝐴! 𝐴" 𝐴#

𝐴!𝐴$𝐴$%!

𝐴!𝐴$%!

⋯

𝐴! 𝐴&𝐴(
𝐴#𝐴&𝐴$%!

𝐴$𝐴$%!

𝐴"𝐴#𝐴$%!

𝐴! 𝐴"𝐴$%!

𝐴!𝐴$%!

⋯

𝑅( 𝐴(, 𝐴) ⋈ 𝑅) 𝐴), 𝐴* ⋈ ⋯ ⋈ 𝑅- 𝐴- , 𝐴-.( 𝑅( 𝐴(, 𝐴) ⋈ 𝑅) 𝐴), 𝐴* ⋈ ⋯ ⋈ 𝑅- 𝐴- , 𝐴-.(



Hybrid Yannakakis Algorithm 
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n Partition the input instance and Find a good query plan for each sub-instance

n What are the candidate plans?
– Choose an arbitrary each leaf node of the join tree
– Augment each node with output attributes in its subtree
– We will get a free-connex tree decomposition
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Minimal Sub-instance in the Partition
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n What is the minimal sub-instance and which query plan to choose?

n If every 𝑏 ∈ 𝐵! can be joined with at most 𝑂𝑈𝑇
*
+ distinct tuples over (𝐴", 𝐴>, 𝐴@)  
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Edge Labeling
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“budget” 𝜙$,,$"	 =
|#	DEFGEH	I4	0-,,-"	|

J4KLMNO = >
@

n Edge 𝑒P, 𝑒!  is large if every 𝑏 ∈ 𝐵! joins ≥ 𝑂𝑈𝑇Q-,,-"	tuples over (𝐴", 𝐴>, 𝐴@) 
n Edge 𝑒P, 𝑒!  is small if every 𝑏 ∈ 𝐵! joins < 	𝑂𝑈𝑇Q-,,-"	 tuples over (𝐴", 𝐴>, 𝐴@) 

– Edge 𝑒!, 𝑒"  is limited if there are ≤ 𝑂𝑈𝑇#-,,-"	tuples over (𝐴$, 𝐴%, 𝐴&)
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Partition – Label Edges
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n It is expensive to compute the labels straightforwardly 
n Inference rules: 

Rule 1 - Large reverse Limited Rule 2 - Limited imply Limited
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But we can partition!

unknown?

large edge limited edgesmall edgeunlabeled edge
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…

…

Guided Walking on Tree

large edge limited edgesmall edgeunlabeled edge



Summary 
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n An output-optimal algorithm for computing acyclic join-aggregate queries
– The power of hybrid strategies

n Free-connex fractional hypertree width

n It remains open how to implement this algorithm in practice!


