
CS848 Fall 2025: Algorithmic
Aspects of Query Processing

Output-Optimal Algorithms for
Join-Aggregate Queries

Xiao Hu
Sep 24, 2025

1

Agenda

n Last class: Worst-case optimal join algorithms
n This class: join-aggregate queries

– Matrix multiplication and its Variant
– Limitations of Yannakakis algorithm
– Output-optimal algorithm for Chain Matrix Multiplication
– General join-aggregate queries
– General Algorithm

2

Related Pointers

n X. HU, “Output-optimal Algorithms for Join-Aggregate Queries,” PODS 2025.
n S. ABITEBOUL, R. HULL and V. VIANU, “Foundations of Databases.”
n M. YANNAKAKIS, “Algorithms for acyclic database schemes,” VLDB 1981.
n G. GOTTLOB, N. LEONE and F. SCARCELLO, “Hypertree Decompositions and

Tractable Queries,” Journal of Computer and System Sciences 64 (2002) .
n M. GROHE, T. SCHWENTICK and L. SEGOUFIN, “When is the evaluation of

conjunctive queries tractable ?,” STOC 2001 .
n G. GOTTLOB, G. GRECO and F. SCARCELLO, “Treewidth and Hypertree Width”.

3

(Natural) Join Query

4

n A join query 𝑞 ≔ 𝑅! 𝑒! ⋈ 𝑅" 𝑒" ⋈ ⋯ ⋈ 𝑅# 𝑒#
– 𝑒!, 𝑒", ⋯ , 𝑒# are subsets of attributes
– 𝑅!, 𝑅", ⋯ , 𝑅# are relations
– 𝑞 = 𝑡 ∈ dom 𝑒! ∪ 𝑒" ∪⋯∪ 𝑒# : ∀𝑖 ∈ 𝑘 , 𝜋$!𝑡 ∈ 𝑅%

n Examples in graphs:
– Listing triangles: 𝐸! 𝐴, 𝐵 ⋈ 𝐸" 𝐵, 𝐶 ⋈ 𝐸#(𝐴, 𝐶)
– Listing length-𝑘 chains: 𝐸! 𝐴!, 𝐴" ⋈ 𝐸" 𝐴", 𝐴# ⋈ ⋯ ⋈ 𝐸$ 𝐴$, 𝐴$%!
– Listing 𝑘-way stars: 𝐸! 𝐴!, 𝐵 ⋈ 𝐸" 𝐴", 𝐵 ⋈ ⋯ ⋈ 𝐸$(𝐴$, 𝐵)
– Listing length-4 cycles: 𝐸! 𝐴, 𝐵 ⋈ 𝐸" 𝐵, 𝐶 ⋈ 𝐸#(𝐶, 𝐷) ⋈ 𝐸&(𝐷, 𝐴)

Commutative Semi-ring and Ring

5

n A commutative semi-ring (𝐃,⊕,⊗, 𝟎, 𝟏)
– 𝐃,⊕, 𝟎 is a commutative monoid with identity 𝟎

• 𝑎 ⊕ 𝑏 ⊕ 𝑐 = 𝑎 ⊕ 𝑏 ⊕ 𝑐
• 𝑎 ⊕ 𝑏 = 𝑏 ⊕ 𝑎
• 𝑎 ⊕ 𝟎 = 𝟎⊕ 𝑎 = 𝑎

– 𝐃,⊗, 𝟏 is a commutative monoid with identity 𝟏
• 𝑎 ⊗ 𝑏 ⊗ 𝑐 = 𝑎 ⊗ 𝑏 ⊗ 𝑐
• 𝑎 ⊗ 𝑏 = 𝑏 ⊗ 𝑎
• 𝑎 ⊗ 𝟏 = 𝟏⊗ 𝑎 = 𝑎

– ⊗ distributes over ⊕
• 𝑎 ⊗ 𝑏 ⊕ 𝑎⊗ 𝑐 = 𝑎 ⊗ 𝑏⊕ 𝑐

– 𝑎 ⊗ 𝟎 = 𝟎⊗ 𝑎 = 𝟎 for any element 𝑎 ∈ 𝐃

n Additional condition for ring:
– 𝐃,⊕, 𝟎 is a group

• each element 𝑎 ∈ 𝐃 has an
additive inverse−𝑎: 𝑎 ⊕
(−𝑎) = 𝟎

Join-Aggregate Query = Aggregation over Join Query

6

n A join-aggregate query under 𝐃,⊕,⊗, 𝟎, 𝟏

𝑄 y =:⊕&' 𝑞 =⊕&' 𝑅! 𝑒! ⋈ 𝑅" 𝑒" ⋈ ⋯ ⋈ 𝑅# 𝑒#

– y, =y 	is a partition of all attributes 𝑒! ∪ 𝑒" ∪⋯∪ 𝑒#
– A full join if y = 𝑒! ∪ 𝑒" ∪⋯∪ 𝑒#
– Each tuple 𝑡 is annotated with 𝛿𝑡 ∈ 𝐃
– The annotation of a join result 𝑡 is 𝛿𝑡 = 𝛿𝜋$"𝑡 ⊗ 𝛿𝜋$#𝑡 ⊗⋯⊗ 𝛿𝜋$$𝑡

– 𝑄 y = 𝑡(, 𝛿𝑡(∈ (𝜋)𝑞)×𝐃 ∶ 𝛿𝑡(=⊕*∈,:.%*/*& 𝛿𝑡

Example of Join-Aggregate Queries on (ℤ,+,×, 𝟎, 𝟏)

7

0 0
1 0

0 1
4 0

3 0
0 1

0 0
0 0

×
3 2
0 3

0 0
0 1

0 5
0 0

0 0
1 0

=
0 0
3 22

1 0
0 0

9 6
0 3

0 0
0 1

𝑅' 𝐴, 𝐵 𝑅(𝐵, 𝐶

A B 𝜹(⋅)

1 4 1
2 1 1
2 3 4
3 1 3
4 2 1

B C 𝜹 ⋅

1 1 3
1 2 2
2 2 3
2 4 1
3 2 5
4 3 1

0
)

𝑅' ⋈ 𝑅(

A C 𝜹(⋅)
1 3 1
2 1 3
2 2 2 + 20 = 22
3 1 9
3 2 6
4 2 3
4 4 1

A B C 𝜹 ⋅

1 4 3 1 ⋅ 1 = 1
2 1 1 1 ⋅ 3 = 3
2 1 2 1 ⋅ 2 = 2
2 3 2 4 ⋅ 5 = 20
3 1 1 3 ⋅ 3 = 9
3 1 2 3 ⋅ 2 = 6
4 2 2 1 ⋅ 3 = 3
4 2 4 1 ⋅ 1 = 1

𝑅' ⋈ 𝑅(

Examples of Commutative Semi-ring

8

𝐃 ⊕ ⊗ 0 1 Name

{true, false} ∨ ∧ false true Boolean

ℕ + × 0 1 Natural sum-product

ℝ/ℤ + × 0 1 Real/Integer
sum-product

(−∞,+∞] min + +∞ 0 Min-sum

[−∞,+∞) max + −∞ 0 Max-sum

(0, +∞] min × +∞ 1 Min-product

[0, +∞) max × 0 1 Max-product

ℕ[X] + × 0 1 Polynomials over X

Boolean: conjunctive query

Sum-product: counting query;
inference in probabilistic
graphical models; matrix
multiplication; permanent;
discrete fourier transformation

Min-sum: shortest path

Max-product: maximum
posteriori in probabilistic
graphical models;
maximum likelihood
decoder for linear codes

Polynomials: data
provenance

Join-Aggregate Queries in Disguise

9

maximum reliability colorabilityshortest path

10

What is lower and upper bound for acyclic join-
aggregate queries by semi-ring algorithms?

Answer: 𝛩 𝑁 ⋅ 𝑂𝑈𝑇!"
/

012345 +𝑂𝑈𝑇 [H25]
where fn*htw is the free-connex fractional hypertree width of the query

fnDhtw = 1 for free-connex queries;
fnDhtw = 𝑘 for star queries with 𝑘 relations;

fnDhtw = 2 for chain queries with arbitrary relations

n For a join-project query 𝜋)𝑄 with 𝑄 = 𝑉, 𝐸 , a
tree decomposition for 𝑄 is a tree 𝑇 with the
set of nodes 𝑉0 and a mapping 𝜆: 𝑉0 → 21
such that
– (coverage) for each relation 𝑒 ∈ 𝐸, there exists

a node 𝑢 ∈ 𝑇 with e ⊆ 𝜆6
– (connectness) for each attribute 𝑥 ∈ 𝑉, the set

of nodes containing 𝑥, i.e., 𝑢 ∈ 𝑉7: 𝑥 ∈ 𝜆6
forms a connected subtree of 𝑇

(Recap) Tree Decomposition

Free-Connex Tree Decomposition

12

n For a join-project query 𝜋)𝑄 with 𝑄 = 𝑉, 𝐸 , a free-
connex tree decomposition for 𝑄 is a tree 𝑇 with the
set of nodes 𝑉0 and a mapping 𝜆: 𝑉0 → 21 such that
– (coverage) for each relation 𝑒 ∈ 𝐸, there exists a node
𝑢 ∈ 𝑇 with e ⊆ 𝜆6

– (connectness) for each attribute 𝑥 ∈ 𝑉, the set of
nodes containing 𝑥, i.e., 𝑢 ∈ 𝑉7: 𝑥 ∈ 𝜆6 forms a
connected subtree of 𝑇

– (connex) there exists a connected subtree 𝑇234 ⊆
𝑇 containing the root node 𝑟 of 𝑇 and the union of
nodes in 𝑇234 is exactly the output attributes

n The sub-join query induced by node 𝑢 is
𝑄6 = 𝜆6, 𝑢 ∈ 𝑉7: 𝑒 ∩ 𝑢 ≠ ∅ .

Is this a free-connex tree
decomposition of 𝜋!,#,$,%,&𝑄?

Is this a free-connex tree
decomposition of 𝜋!,#,$,'𝑄?

(Recap) Fractional Hypertree Width

13

fhtw = 1

B3A3

C1B3

A1B1

B2C1

A2B2

B1C2

C2

Ctw = min
#$%% &%'()*(+,#,(- 𝑻	

max
-(&% 0∈𝑻

𝜌	(𝑄0)

𝜋2/,28,29,48,49
𝑅(𝐴(, 𝐵(
⋈ 𝑅) 𝐴), 𝐵)
⋈ 𝑅* 𝐴*, 𝐵*
⋈ 𝑅+ 𝐵(, 𝐵), 𝐶(, 𝐶)
⋈ 𝑅, 𝐶(, 𝐵*, 𝐵+, 𝐶)

fhtw = 1.5

Free-connex Fractional Hypertree Width

14

a tree decomposition but not
free-connex

a free-connex tree
decomposition

fnfhtw = 4

B3A3

C1B3

A1B1

B2C1

A2B2

B1C2

C2

B3A3

C1B3

A1 B1

B2C1

A2B2

B1C2

C2A3

A3

A2

A2A3 C2

A1A2A3C2

𝜋2/,28,29,48,49
𝑅(𝐴(, 𝐵
⋈ 𝑅) 𝐴), 𝐵
⋈ 𝑅* 𝐴*, 𝐵
⋈ 𝑅+ 𝐵(, 𝐵), 𝐶(, 𝐶)
⋈ 𝑅, 𝐶(, 𝐵*, 𝐶)

fnCtw = min
5$%%"'(--%6

#$%% &%'()*(+,#,(- 𝑻

max
-(&% 0∈𝑻

𝜌∗(𝑄0)

fnfhtw = 2 for Chain MM

15

𝑄 𝐴!, 𝐴#=! ≔	𝑅! 𝐴!, 𝐴" ⋈ 𝑅" 𝐴", 𝐴> ⋈ ⋯ ⋈ 𝑅# 𝐴#, 𝐴#=!

𝐴!𝐴"	

𝐴! 𝐴" 𝐴#

𝐴!𝐴$𝐴$%!

𝐴!𝐴$%!

⋯

𝐴! 𝐴&𝐴(
𝐴#𝐴&𝐴$%!

𝐴$𝐴$%!

𝐴"𝐴#𝐴$%!

𝐴! 𝐴"𝐴$%!

𝐴!𝐴$%!

⋯

𝐴#𝐴&

𝐴$𝐴$%!

𝐴"𝐴#

𝐴! 𝐴"

⋯

tree decompositions but
not free-connex

free-connex
tree decompositions

𝐴$)"𝐴$)!

𝐴! 𝐴"

𝐴$)!𝐴$

𝐴$𝐴$%!

⋯

A Free-Connex Tree Decomposition is A Query Plan

16

𝑄 𝐴!, 𝐴#=! ≔	𝑅! 𝐴!, 𝐴" ⋈ 𝑅" 𝐴", 𝐴> ⋈ ⋯ ⋈ 𝑅# 𝐴#, 𝐴#=!

𝐴!𝐴"	

𝐴! 𝐴" 𝐴#

𝐴!𝐴$𝐴$%!

𝐴!𝐴$%!

⋯

𝐴! 𝐴&𝐴(
𝐴#𝐴&𝐴$%!

𝐴$𝐴$%!

𝐴"𝐴#𝐴$%!

𝐴! 𝐴"𝐴$%!

𝐴!𝐴$%!

⋯

𝑅(𝐴(, 𝐴) ⋈ 𝑅) 𝐴), 𝐴* ⋈ ⋯ ⋈ 𝑅- 𝐴- , 𝐴-.(𝑅(𝐴(, 𝐴) ⋈ 𝑅) 𝐴), 𝐴* ⋈ ⋯ ⋈ 𝑅- 𝐴- , 𝐴-.(

Hybrid Yannakakis Algorithm

17

n Partition the input instance and Find a good query plan for each sub-instance

n What are the candidate plans?
– Choose an arbitrary each leaf node of the join tree
– Augment each node with output attributes in its subtree
– We will get a free-connex tree decomposition

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

e2

e1

e3

e4

e5 e6

A1B1

B2C1
B1C2

e5

C1B3
C2B4

e6

e1

A2B2

B3A3
A4B4

e4
e3

e2

A1B1

B2C1
B1C2

C1B3
C2B4

A2B2

B3A3
A4B4

A3
A4

A3
A4

A2

A2A3A4

Minimal Sub-instance in the Partition

18

n What is the minimal sub-instance and which query plan to choose?

n If every 𝑏 ∈ 𝐵! can be joined with at most 𝑂𝑈𝑇
*
+ distinct tuples over (𝐴", 𝐴>, 𝐴@)

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

e2

e1

e3

e4

e5 e6

A1B1

B2C1
B1C2

e5

C1B3
C2B4

e6

e1

A2B2

B3A3
A4B4

e4
e3

e2

A1B1

B2C1
B1C2

C1B3
C2B4

A2B2

B3A3
A4B4

A3
A4

A3
A4

A2

A2A3A4

Edge Labeling

19

“budget” 𝜙$,,$"	 =
|#	DEFGEH	I4	0-,,-"	|

J4KLMNO = >
@

n Edge 𝑒P, 𝑒! is large if every 𝑏 ∈ 𝐵! joins ≥ 𝑂𝑈𝑇Q-,,-"	tuples over (𝐴", 𝐴>, 𝐴@)
n Edge 𝑒P, 𝑒! is small if every 𝑏 ∈ 𝐵! joins < 	𝑂𝑈𝑇Q-,,-"	 tuples over (𝐴", 𝐴>, 𝐴@)

– Edge 𝑒!, 𝑒" is limited if there are ≤ 𝑂𝑈𝑇#-,,-"	tuples over (𝐴$, 𝐴%, 𝐴&)

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

e2

e1

e3

e4

e5 e6

A1B1

B2C1
B1C2

e5

C1B3
C2B4

e6

e1

A2B2

B3A3
A4B4

e4
e3

e2

A1B1

B2C1
B1C2

C1B3
C2B4

A2B2

B3A3
A4B4

A3
A4

A3
A4

A2

A2A3A4

𝑇*!,*"	

Partition – Label Edges

20

n It is expensive to compute the labels straightforwardly
n Inference rules:

Rule 1 - Large reverse Limited Rule 2 - Limited imply Limited

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

But we can partition!

unknown?

large edge limited edgesmall edgeunlabeled edge

21

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

B3A3

A4B4

C1B3
C1B4

A1B1

A2B2

B1C2

B2C1

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

A1B1

A2B2 B3A3

A4B4

C1B3
C2B4

B2C1
B1C2

A1B1

A2B2 B3A3

A4B4

C1B3
C1B4

B2C1
B1C2

A1B1

A2B2 B3A3

A4B4

A4B4
B3C1

B2A4
B1B3

B3A3

A4B4

C1B3
C2B4

A1B1

B2C1

A2B2

B1C2

u2

u1

u3

u4

u5 u6

A1B1

A2B2 B3A3

A4B4

C1B3
C2B4

B2C1
B1C2

…

…

Guided Walking on Tree

large edge limited edgesmall edgeunlabeled edge

Summary

22

n An output-optimal algorithm for computing acyclic join-aggregate queries
– The power of hybrid strategies

n Free-connex fractional hypertree width

n It remains open how to implement this algorithm in practice!

