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Agenda

O
m This class: join-aggregate queries
— Matrix multiplication and its Variant
- Limitations of Yannakakis algorithm
— Output-optimal algorithm for Chain Matrix Multiplication
— General join-aggregate queries
- General Algorithm
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(Natural) Join Query

m Ajoin query q == Ry(e1) X Ry(ez) ™ -+ ™ Ry(ey)
- eq, ey, , e are subsets of attributes
- R{, Ry, -+, Ry, arerelations
- q= {t € dom(e; Uey U---Ueg):Vi € [k],m, t € Ri}

m Examplesin graphs:
— Listing triangles: E;(A,B) ™ E,(B,C) ™ E5(4,C)
— Listing length-k chains: E; (41, A4;) ™ E; (A, A3) ™ - X E, (A, Aks1)
— Listing k-way stars: E; (A4, B) @ E;(A,,B) ™ --- 4 E,(Ag, B)
- Listing length-4 cycles: E;(A,B) x E,(B,C) x E5;(C,D) x E,(D,A)
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Commutative Semi-ring and Ring

m A commutative semi-ring (D,,&,0,1) m Additional condition for ring:
- (D,®, 0) is a commutative monoid with identity 0 - (D,8,0) is agroup
- (a®b)Dc=a® (b D) . each element a € D has an
. a®b=bDa additive inverse —a: a @
- a®P0=0Da=a (—a)=10

- (D,®,1) is a commutative monoid with identity 1
- (@®Db)R®c=a®@bQc)
-ca®b=bQa
-a®1=1QRQa=a

—- @ distributes over @

- (a@b)D(@®c)=a®@ b Dc)
- a®0=0& a=0foranyelementa € D



]
Join-Aggregate Query = Aggregation over Join Query

m Ajoin-aggregate query under (D,9,%,0,1)
Q(y) =:@By q = By R1(e1) ¥ Ry(ez) ™ -+ 1 Ry (ey)

- (y,y) is a partition of all attributese; Ue, U -+ U e,

- Afulljoinify=e;Ue, U---Ueg,

- Each tuple t is annotated with 6t € D

- The annotation of ajoinresult t is 6t = (87, t) ® (67m,,t) @ -+ ® (87, t)

- Q) = {(t',6t") € (my@)XD : 61" =B g, 17 Ot}



Example of Join-Aggregate Queries on (Z,+,%,0, 1)
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Examples of Commutative Semi-ring

{true, false}
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Boolean

Natural sum-product

Real/Integer
sum-product

Min-sum

Max-sum

Min-product
Max-product

Polynomials over X

Boolean: conjunctive query

Sum-product: counting query;
inference in probabilistic
graphical models; matrix
multiplication; permanent;
discrete fourier transformation

Min-sum: shortest path

Max-product: maximum
posteriori in probabilistic
graphical models;
maximum likelihood
decoder for linear codes

Polynomials: data
provenance
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Join-Aggregate Queries in Disguise
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What is lower and upper bound for acyclic join-
aggregate queries by semi-ring algorithms?

1

Answer: @ (N - OUT"“mitw + OUT ) [H25]
where fnfhtw is the free-connex fractional hypertree width of the query

fnfhtw = 1 for free-connex queries;
fnfhtw = k for star queries with k relations;
fnfhtw = 2 for chain queries with arbitrary relations
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(Recap) Tree Decomposition

m For ajoin-project query ,,Q with Q = (V, E), a B—B—®
tree decomposition for Q is a tree T with the
set of nodes V; and a mapping A1: Vy - 2V C D
such that

- (coverage) for each relation e € E, there exists
anodeu € T withe C 4,

— (connectness) for each attribute x € V, the set

of nodes containing x, i.e., {u € Vq:ix € 1}
forms a connected subtree of T




T
Free-Connex Tree Decomposition

m For ajoin-project query m,,Q with Q = (V, E), a free- O—B—O
connex tree decomposition for Q is a tree T with the © ®
set of nodes V; and a mapping A: V; — 2V such that

- (coverage) for eachrelation e € E, there exists a node
u €T witheC 4,

— (connectness) for each attribute x € V, the set of
nodes containing x, i.e., {u € Vy:x € 4, } forms a
connected subtree of T

- (connex) there exists a connected subtree T.,, S
T containing the root node r of T and the union of
nodes in T,y is exactly the output attributes

Is this a free-connex tree
decomposition of my g ¢ p Q7

m The sub-join query induced by node u is is this a free-connex tree
12 Qu = Ay, {u €Vrrenu = 0}). decomposition of Tty g ¢ Q2
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(Recap) Fractional Hypertree Width

-thw — min max
tree decomposition T node u€eT P (Qu)
®—B—0

A1B; (C ©

T[Al;AZJASJCZIC3

R,(A4,By) BsCh

X R, (A, B;) B1Cx

X R3(A3, B3)

X R4(Bl, BZ; Cl) CZ) B C A

X R5(C1,Bg,B4, CZ) Cl — 2B2
B3A3

fhtw =1

3 fhtw = 1.5



Free-connex Fractional Hypertree Width
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fnfhtw =

TtA;,A5,45,C5,Cs
Rl(AltB)

X RZ(AZIB)

X R3(A3,B)

™ R,(Bq, By, Cy, C;)
X Rs(Cq, B3, C3)

fnfhtw = 4

min
free—connex

max
node ueT

tree decomposition T

A1Bq

B>(Cy
B1C5

C1B3C>

B3As3

AoBo

a tree decomposition but not
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P (Qu)
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Ao Bo(Cq
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AgClBg,CQ

AoBo

B3As3

a free-connex tree
decomposition




fnfhtw = 2 for Chain MM
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Q(A, Aks1) = Ry(A1,43) X Ry(Ap, Az) ™ -+ X Ry (Ag, Agy1 )

Ay Az

A A4

A1 Agiq

A1Ag4q

AzA3

Ap-14y

Ay Az Ajsq

A1 AgAyiq
I

AyAsAyss

Azl

Ag—2A5-1

o0 0

A3A4Ak+1

Ay AgAs

A A4

Ay Az

LN

Ay Az A3

tree decompositions but

not free-connex

A A4

A1,

free-connex

tree decompositions




A Free-Connex Tree Decomposition is A Query Plan

Q(A, Aks1) = Ry(A1,43) X Ry(Ap, Az) ™ -+ X Ry (Ag, Agy1 )

Ry1(Aq,Ay) X Ry(Ay, A3) X -+ 4 Ry (Ag, A1)
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A1 Ay q
|
A1 AR Ay
I

Ay AyAs
|
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|
A4,

Ri(A,Ay) X Ry(Ay, A3) X -+ X Ry (Ag, Ags1)
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Hybrid Yannakakis Algorithm

m Partition the input instance and Find a good query plan for each sub-instance

m What are the candidate plans?
— Choose an arbitrary each leaf node of the join tree
- Augment each node with output attributes in its subtree
- We will get a free-connex tree decomposition
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Minimal Sub-instance in the Partition

m What is the minimal sub-instance and which query plan to choose?

3
m |f every b € B; can be joined with at most OUT+ distinct tuples over (4,, A3, A,)
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]
Partition — Label Edges

m |t is expensive to compute the labels straightforwardly
m Inference rules:

unknown?
A2Bg B3A3 AoBg N B3A3 AoBso
B2Cy | | C1Bs3 B2Cy | | C1Bs ByCh || C1B3
o B1Cy C2 By o B1C> C2 By | B1Co C2 B4y
A1B; . B4As A1Bq B4Au4 A1B;
Rule 1- Large reverse Limited Rule 2 - Limited imply Limited But we can partition!

— unlabeled edge —— large edge small edge —— limited edge
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Summary

m An output-optimal algorithm for computing acyclic join-aggregate queries
- The power of hybrid strategies

m Free-connex fractional hypertree width

m [t remains open how to implement this algorithm in practice!
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