CS848 Fall 2025: Algorithmic Aspects of Query Processing

Output-Optimal Algorithms for Join-Aggregate Queries

Xiao Hu

Sep 22, 2025

Agenda

- Last class: Worst-case optimal join algorithms
- This class: join-aggregate queries
 - Matrix multiplication and its Variant
 - Limitations of Yannakakis algorithm
 - Output-optimal algorithm for Chain Matrix Multiplication
 - General join-aggregate queries
 - General Algorithm

Related Pointers

- X. HU, "Output-optimal Algorithms for Join-Aggregate Queries," PODS 2025.
- S. ABITEBOUL, R. HULL and V. VIANU, "Foundations of Databases."
- M. YANNAKAKIS, "Algorithms for acyclic database schemes," VLDB 1981.
- G. GOTTLOB, N. LEONE and F. SCARCELLO, "Hypertree Decompositions and Tractable Queries," Journal of Computer and System Sciences 64 (2002).
- M. GROHE, T. SCHWENTICK and L. SEGOUFIN, "When is the evaluation of conjunctive queries tractable?," STOC 2001.
- G. GOTTLOB, G. GRECO and F. SCARCELLO, "Treewidth and Hypertree Width".

Matrix Multiplication = $\pi_{A,C} R_1(A,B) \bowtie R_2(B,C)$

Variants of Matrix Multiplication

• Chain Matrix Multiplication: $\pi_{A_1,A_{k+1}}R_1(A_1,A_2) \bowtie R_2(A_2,A_3) \bowtie \cdots \bowtie R_k(A_k,A_{k+1})$

■ Star Matrix Multiplication: $\pi_{A_1,A_2,\cdots,A_k}R_1(A_1,B)\bowtie R_2(A_2,B)\bowtie\cdots\bowtie R_k(A_k,B)$

Yannakakis for Acyclic Join-Project/Aggregate Queries

- Let y be the set of output attributes
- Semi-join Reducer
 - If $y = \emptyset$, output true if and only if $R_r \neq \emptyset$
- In a bottom-up phase:
 - Project as early as possible!
 - For a non-output attribute, if it does not appear in any node above, then project it away

output attributes

Yannakakis Algorithm Revisited

- Yannakakis algorithm [Y81] for acyclic queries [BFMY83]
 - Acyclic join queries: $\Theta(N + OUT)$ [Lecture 2-3]
 - Free-connex queries: $\Theta(N + OUT)$ [Lecture 3]
 - Acyclic but non-free-connex queries:
 - Matrix multiplication: $\Theta(N \cdot \sqrt{OUT})$ [APo9]
 - □ Output-optimal
 - Star Matrix Multiplication : $\Theta\left(N \cdot \frac{OUT^{1-\frac{1}{k}}}{}\right)$ [APo9]
 - □ Output-optimal
 - Chain Matrix Multiplication and all other queries: $O(N \cdot OUT)$ [Lecture 3]

The limitation of Yannakakis Algorithm

Consider $\pi_{A_1,A_4} R_1(A_1,A_2) \bowtie R_2(A_2,A_3) \bowtie R_3(A_3,A_4)$

Query plan 1: $\pi_{A_1,A_4} \left(\pi_{A_1,A_3} R_1 \bowtie R_2 \right) \bowtie R_3$

Query plan 2: $\pi_{A_1,A_4}R_1 \bowtie \left(\pi_{A_2,A_4}R_2 \bowtie R_3\right)$

The limitation of Yannakakis Algorithm

Consider $\pi_{A_1,A_4} R_1(A_1,A_2) \bowtie R_2(A_2,A_3) \bowtie R_3(A_3,A_4)$

- Plan 1 = $\Theta(N \cdot OUT)$ but Plan 2 = O(N)
- Plan 2 = $\Theta(N \cdot OUT)$ but Plan 1 = O(N)
- Both plans = $\Theta(N \cdot OUT)$

Hybrid Yannakakis Algorithm

Consider $\pi_{A_1,A_4} R_1(A_1,A_2) \bowtie R_2(A_2,A_3) \bowtie R_3(A_3,A_4)$

Assume the value of *OUT* is known

- A value $b \in A_2$ is heavy if it appears in more than \sqrt{OUT} tuples in R_1 and light otherwise.
- $\blacksquare \pi_{A_1,A_4} R_1 \left(A_1, A_2^{\text{heavy}} \right) \bowtie R_2 \left(A_2^{\text{heavy}}, A_3 \right) \bowtie R_3 \left(A_3, A_4 \right)$
 - There are at most \sqrt{OUT} distinct values in A_4

 $\pi_{A_1 A_4} R_1 \bowtie (\pi_{A_2,A_4} R_2 \bowtie R_3)$

Query plan 2:

$$\blacksquare \quad \pi_{A_1,A_4} R_1 \left(A_1, A_2^{\text{light}} \right) \bowtie R_2 \left(A_2^{\text{light}}, A_3 \right) \bowtie R_3 (A_3, A_4)$$

Hybrid Yannakakis Algorithm

Consider
$$\pi_{A_1,A_4}R_1\left(A_1,A_2^{\text{light}}\right)\bowtie R_2\left(A_2^{\text{light}},A_3\right)\bowtie R_3(A_3,A_4)$$
Compute $S_1(A_1,A_3)=\pi_{A_1,A_3}R_1\left(A_1,A_2^{\text{light}}\right)\bowtie R_2\left(A_2^{\text{light}},A_3\right)$

- A value $c \in A_3$ is heavy if it appears in more than \sqrt{OUT} tuples in S_1 and light otherwise.
- $\blacksquare \pi_{A_1,A_4} R_1\left(A_1,A_2^{\text{light}}\right) \bowtie R_2\left(A_2^{\text{light}},A_3^{\text{heavy}}\right) \bowtie R_3\left(A_3^{\text{heavy}},A_4\right)$
 - There are at most \sqrt{OUT} distinct values in A_4
- $\blacksquare \quad \pi_{A_1,A_4} R_1 \left(A_1, A_2^{\text{light}} \right) \bowtie R_2 \left(A_2^{\text{light}}, A_3^{\text{light}} \right) \bowtie R_3 \left(A_3^{\text{light}}, A_4 \right)$
 - Each tuple in R_2 and R_3 can be joined with at most \sqrt{OUT} distinct values in A_1

Query plan 2: $\pi_{A_1, A_4} R_1 \bowtie (\pi_{A_2, A_4} R_2 \bowtie R_3)$

Query plan 1: π_{A_1,A_4} $\left(\pi_{A_1,A_3}R_1\bowtie R_2\right)$ $\bowtie R_3$

Hybrid Yannakakis Algorithm for Chain MM

Compute $\pi_{A_1,A_{k+1}}R_1(A_1,A_2)\bowtie R_2(A_2,A_3)\bowtie \cdots\bowtie R_k(A_k,A_{k+1})$

Challenges

- What to partition?
- How to partition?
- Which plan to pick?

Candidate Plans for Chain MM

Compute $\pi_{A_1,A_{k+1}}$ $R_1(A_1,A_2) \bowtie R_2(A_2,A_3) \bowtie \cdots \bowtie R_k(A_k,A_{k+1})$

$$V_1(A_1, A_2, A_{k+1}) = R_1 \bowtie (\pi_{A_2, A_{k+1}} V_2)$$

Candidate Plans for Chain MM

Compute $\pi_{A_1,A_{k+1}}R_1(A_1,A_2)\bowtie R_2(A_2,A_3)\bowtie \cdots\bowtie R_k(A_k,A_{k+1})$

How and What to Partition?

 $a \in A_3$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_3}R_1^{\text{light}} \bowtie R_2$

 $a \in A_3$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_3}R_1^{\text{light}} \bowtie R_2$

 $a \in A_4$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_4}R_1^{\text{light}} \bowtie R_2^{\text{light}} \bowtie R_3$

 $a \in A_3$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_3}R_1^{\text{light}} \bowtie R_2$

 $a \in A_4$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_4}R_1^{\text{light}} \bowtie R_2^{\text{light}} \bowtie R_3$

 $a \in A_3$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_2}R_1^{\text{light}}\bowtie R_2$

 $a \in A_4$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_4}R_1^{\text{light}}\bowtie R_2^{\text{light}}\bowtie R_3$

Which plan to choose?

- \blacksquare Case 1: Some A_i is heavy
 - |# active values in $A_{k+1}| \le \frac{OUT}{\tau}$
 - $|V_i(A_i, A_{i+1}, A_{k+1})| \le |R_i(A_i, A_{i+1})| \cdot |A_{k+1}| \le N \cdot \frac{out}{\tau}$

- Case 2: All A_i are light
 - Each value in A_i^{light} joins with $\leq \tau$ values in A_1
 - $-|V_{i-1}(A_1, A_i, A_{i+1})| \le |R_i(A_i, A_{i+1})| \cdot \deg(A_i^{\text{light}}, A_1) \le N \cdot \tau$

N

 $N \cdot \tau$

 $a \in A_2$ is heavy if it appears in $\geq \tau$ tuples in R_1

 $a \in A_3$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_3}R_1^{\text{light}} \bowtie R_2$

 $N \cdot \tau$

 $a \in A_4$ is heavy if it appears in $\geq \tau$ tuples in $\pi_{A_1,A_4}R_1^{\text{light}} \bowtie R_2^{\text{light}} \bowtie R_3$

Partition A_k

 $A_1A_2^{\text{light}}$ R_2^{light} $A_2^{\text{light}} A_3^{\text{light}}$ $A_3^{\text{light}} A_4^{\text{light}}$ $N \cdot \tau$ $A_{k-1}^{\text{light}} A_k^{\text{light}}$ R_{k-1}^{light} R_k $A_k A_{k+1}$

light

- Minimize $N \cdot \frac{OUT}{\tau} + N \cdot \tau$
- Setting $\tau = \sqrt{OUT}$

Output-Optimality of Hybrid Yannakakis Algorithm

Intuition 1: Partition does not help this hard instance

Intuition 2: Any query plan needs to materialize $\Omega(N \cdot \sqrt{OUT})$ intermediate join results

What is next?

- Hybrid Yannakakis Algorithm for Chain MM
 - Output-optimal: $O(N \cdot \sqrt{OUT})$
- Hybrid Yannakakis Algorithm for General Join-Aggregate Queries: $O(N \cdot OUT^? + OUT)$
 - Acyclic join queries: $\Theta(N + OUT)$
 - Free-connex queries: $\Theta(N + OUT)$
 - MM: $\Theta(N \cdot \sqrt{OUT})$
 - Star MM: $\Theta\left(N \cdot OUT^{1-\frac{1}{k}}\right)$
 - Chain MM: $O(N \cdot \sqrt{OUT})$

