LISTING TRIANGLES

11/19/2025

A. Bjorklund, R. Pagh, V. Vassilevska Williams, and U. Zwick – Presented by Saba Molaei, Cheriton School of Computer Science

Problem definition

Input:

A graph G = (V, E) with n vertices and m edges.

Optional parameter t: number of triangles.

Output:

List of all triangles in G, or

Any t triangles when full enumeration is unnecessary.

Triangle:

A triple (u, v, w) with edges (u, v), (v, w), (w, u).

Introduction

Why Triangles?

Triangles are fundamental in:

- The study of social processes
- Community detection
- Dense subgraph mining

Triangle listing is a core primitive, but extremely computationally heavy in dense graphs.

Previous Work

Reference	Time bounds	If $\omega = 2$
Itai and Rodeh [13]	$egin{aligned} ilde{\mathcal{O}}\left(n^{\omega}+\min(n^3,nt,t^{3/2}) ight) \ ilde{\mathcal{O}}\left(m^{3/2} ight) \end{aligned}$	$\left ilde{\mathcal{O}} \left(n^2 + \min(nt, t^{3/2}) ight) ight $
Williams and Williams [28]	$ ilde{\mathcal{O}}\left(n^{\omega}t^{1-\omega/3} ight)$	$ ilde{\mathcal{O}}\left(n^2t^{1/3} ight)$
Pătrașcu [23]	$ ilde{\Omega}(\min(m^{4/3},n^2,t^{4/3}))^{-*}$	
This paper	$\tilde{\mathcal{O}}\left(n^{\omega}+n^{\frac{3(\omega-1)}{5-\omega}}t^{\frac{2(3-\omega)}{5-\omega}}\right)$ $\tilde{\mathcal{O}}\left(m^{\frac{2\omega}{\omega+1}}+m^{\frac{3(\omega-1)}{\omega+1}}t^{\frac{3-\omega}{\omega+1}}\right)$	$ ilde{\mathcal{O}}\left(n^2+nt^{2/3} ight) \ ilde{\mathcal{O}}\left(m^{4/3}+mt^{1/3} ight)$

Preliminaries

Preliminaries

We use $\tilde{\mathcal{O}}(.)$ notation to suppress multiplicative factors of size $n^{o(1)}$.

Square matrix products take $\tilde{\mathcal{O}}(n^{\omega})$ time. $\omega \approx 2.373$.

For rectangular matrices, we consider multiplying an $n \times n^{\alpha}$ matrix by an $n^{\alpha} \times n$ matrix for some $0 < \alpha < 1$. The product can be computed in $\tilde{\mathcal{O}}(n^{\omega(1,\alpha,1)})$ time.

When $\alpha > 0.303$, $\omega(1, \alpha, 1) = 2$.

Preliminaries

- A: adjacency matrix of the graph.
- \overline{A} : the matrix obtained by replacing 1s in the k-th column with k.
- For a set $S \subseteq V$:

A[*,S]: matrix with columns indexed by S.

A[S,*]: matrix with rows indexed by S.

- The Boolean product A[*,S]. A[S.*] reveals whether a 2-path via a vertex in S exists.
- If there is only one such 2-path, then the (i, j)-th entry of the product $\bar{A}[*,S].A[S,*]$ identifies the k for which (i, k), (k, j) \in E.

Light and Heavy

For an edge (i, j), let

$$T_{i,j} = \{ k \in V \mid (i, k), (k, j) \in E \}$$

be the set of midpoints of triangles through (i,j).

The edge is Λ -light if $|T_{i,j}| \leq \Lambda$.

The edge is Λ -heavy otherwise.

A triangle is Λ -light if at least one of the edges participating in it is light, otherwise it is Λ -heavy.

Listing light triangles algorithm

Listing all Λ -light triangles – Key idea

Choose random subsets S of size n/Λ .

For a light edge (i, j), the probability that $|S \cap T_{i,j}| = 1$ is at least:

$$\frac{1}{\Lambda} \left(1 - \frac{1}{\Lambda} \right)^{\Lambda - 1} \ge \frac{1}{e\Lambda}.$$

Repeating with

$$O(\Lambda \log n)$$

subsets identifies all Λ -light triangles with high probability.

Listing all Λ -light triangles (Monte Carlo)

LIST_LIGHT_TRIANGLES(G, Λ):

```
A \leftarrow adjacency-matrix(G)

\bar{A} \leftarrow labeled-adjacency-matrix(G)

T \leftarrow empty set of triangles

R \leftarrow c * \Lambda * log(n)

for r in 1 .. R:

S \leftarrow RANDOM_SUBSET(V, size = n/\Lambda)

B \leftarrow BOOLEAN_PRODUCT(A[*, S], A[S, *])

C \leftarrow LABELED_PRODUCT(\bar{A} [*, S], A[S, *])

for each edge (i, j) in E:

if B[i][j] == 1:

k \leftarrow C[i][j]

T.add( sorted-tuple(i, j, k) )
```

```
# n × n, entries in {0,1}

# n × n, column k has label k's instead of 1's

# number of random samples (c is a constant)

# Repeat for O(Λ log n) different subsets.

# Step 1: pick a random vertex subset S of size ≈ n/Λ

# Step 3: compute rectangular matrix products

# to detect 2-paths with midpoint in S

# Step 4: scan all edges (i,j) and report triangles

# There is one 2-path via S

# C[i][j] identifies the midpoint if unique
```


Las Vegas Version

To convert this pseudocode into a *Las Vegas* version:

- 1. After collecting T, verify:
 - every reported triangle is valid
 - for every edge (i, j), the number of discovered midpoints equals $(A^2)_{ij}$
- 2. If any mismatch:

repeat whole process

Theorem 4 Let G = (V, E) be a graph on n vertices and let $1 \le \Lambda \le n$. Then, all Λ -light triangles in G can be found in $\tilde{\mathcal{O}}\left(n^{\omega}\Lambda^{3-\omega}\right)$ time, with high probability.

Listing all triangles

Listing all triangles

We assume that these algorithms receive an upper bound t on the number of triangles in the input graph.

This upper bound can be computed before calling our algorithms, either in $\mathcal{O}(n^{\omega})$ time, or in $\mathcal{O}(m^{2\omega/(\omega+1)})$ time -> [N. Alon et.al. Color-coding, 1995].

Sparse(m, t) algorithm

```
SPARSE LIST(G, t):
     m \leftarrow number-of-edges(G)
     \Delta \leftarrow choose-parameter-Delta(m, t)
                                                                    # Choose \Delta depending on m and t
     T \leftarrow \text{empty set}
     for each vertex v in G:
                                                                   # Step 1: List triangles containing any low-degree vertex
            if degree(v) \leq \Delta:
                   for each pair (u, w) in neighbors(v):
                                                                   # enumerate triangles through v
                          if edge(u, w) exists:
                                 T.add(sorted-tuple(u, v, w))
     G-high \leftarrow induced-high-degree-subgraph(G, \Delta)
                                                                   # Step 2: Remove edges incident to low-degree vertices
     if G-high has no edges:
            return UNIQUE(T)
     return UNIQUE( T ∪ DENSE_LIST(G-high, t) )
                                                                    # Step 3: Call Dense on high-degree subgraph, vertices count is \leq 2m/\Delta
```


Dense($2m/\Delta$, t) algorithm

```
DENSE LIST(G, t):
      n \leftarrow number-of-vertices(G)
      \Lambda \leftarrow \text{choose-parameter-Lambda}(n, t)
                                                                          # Choose \Lambda depending on n and t
      T \leftarrow \text{empty set}
      If n < 3
             Return T
      LightTriangles \leftarrow LIST LIGHT TRIANGLES(G, \Lambda):
                                                                         # Step 1: Find all Λ-light triangles
      T \leftarrow T \cup LightTriangles
      G-heavy \leftarrow remove-light-edges (G, LightTriangles, \Lambda)
                                                                          # Step 2: Remove \Lambda-light edges, remaining graph has \leq 3t/\Lambda edges.
      if G-heavy has no edges:
             return UNIQUE(T)
                                                                         # Step 3: Remaining triangles are Λ-heavy; call Sparse
      return UNIQUE( T \cup SPARSE LIST(G-heavy, t) )
```


We use D(n, t) to denote the running time of Dense(n, t), and S(m, t) to denote the running time of Sparse(m, t).

In Sparse(m,t) finding all triangles that contain a low degree vertex can be easily done in O (m Δ) time by examining for every edge incident on a low degree vertex x, the length 2-paths formed by taking another edge out of x.

$$S(m, t) \le m\Delta + D(2m/\Delta, t)$$

In Dense(n,t) we find all Λ -light triangles in $\tilde{\mathcal{O}}(n^{\omega}\Lambda^{3-\omega})$ time.

$$D(n, t) \le n^{\omega} \Lambda^{3-\omega} + S(3t/\Lambda, t)$$

- $\Lambda = [\max(3, 6n^{-(\omega+1)/(5-\omega)}t^{2/(5-\omega)})]$
- $\Delta = \left[2 \max(m^{(\omega-1)/(\omega+1)}, m^{2(\omega-2)/(\omega+1)} t^{(3-\omega)/(\omega+1)}) \right]$

$$S(m,t) \in \begin{cases} S(m,t) \in O(m^{3(\omega-1)/(\omega+1)}t^{(3-\omega)/(\omega+1)}) & t \ge m \\ S(m,t) \in O(m^{2\omega/(\omega+1)}) & t < m \end{cases}$$

$$D(n,t) \in \begin{cases} O(n^{\omega}) & t \le n^{(\omega+1)/2} \\ O(n^{3(\omega-1)/(5-\omega)}t^{2(3-\omega)/(5-\omega)}) & t > n^{(\omega+1)/2} \end{cases}$$

Deterministic algorithm

Listing all Λ -light triangles (Deterministic)

- Randomization was only used by the algorithm for listing light triangles.

- For each light edge (a, b), define:

$$x \in \{0, 1\}^n x_k = 1 \iff (a, k) \in E \text{ and } (k, b) \in E$$

This is the set of midpoints of triangles on edge (a,b).

- Let P_{Λ} denote the set of such vectors that we would like to compute.

Listing all Λ -light triangles (Deterministic)

We want a matrix *T* such that:

Thas only few rows:

$$d = \Theta(\Lambda \cdot f(n)), f(n) = n^{o(1)}.$$

Each row of *T* has very few non-zero entries.

Total non-zeros:

$$\leq nf(n)$$
.

For every Λ -sparse vector x, we can recover x from the sketch Tx in $O(\Lambda f(n))$ time.

Thus, *T* acts as a *deterministic* substitute for random sampling.

Listing all Λ -light triangles (Deterministic)

```
LIST LIGHT TRIANGLES DETERMINISTIC(G, \Lambda):
     A \leftarrow adjacency-matrix(G)
     T \leftarrow BUILD-RECOVERY-MATRIX(n, f(n), \Lambda)
                                                                       # Step 1: Build sparse-recovery matrix T
     d \leftarrow number-of-rows(T)
     for i in 1..d:
            D-i \leftarrow diagonal-matrix-from-row(T[i, *])
                                                                       # Compute diagonal matrices
            M[i] \leftarrow MATRIX-PRODUCT(A, D-i, A)
                                                                       # Step 2: Computes A * D-i* A
                                                                       # Step 3: Build Tx, (Tx)_i = (AD_iA)_{a,b}
     Tx \leftarrow BUILD VECTOR TX(M)
     Triangles \leftarrow empty set
     for each edge (a, b) in G:
                                                                       # Step 4: Recover x from vector Tx
            x[a,b] \leftarrow SPARSE-RECOVERY(Tx[a,b])
            for k in 1..n:
                   if x[a,b][k] == 1:
                                                                       \# x[k] = 1 when k is midpoint of a triangle (a, k, b)
                         Triangles.add(sorted-tuple(a, b, k))
     return UNIQUE(Triangles)
```


We can recover each $x \in P_{\Lambda}$ in time O ($\Lambda f(n)$).

Theorem 1 There exists a deterministic algorithm that lists all t triangles in a graph of n vertices in time $\tilde{\mathcal{O}}\left(n^{\omega} + n^{3(\omega-1)/(5-\omega)}t^{2(3-\omega)/(5-\omega)}\right)$.

With the bound $\omega < 2.373$ | we get a time bound of $\mathcal{O}\left(n^{2.373} + n^{1.568}t^{0.478}\right)$.

Theorem 2 There exists a deterministic algorithm that lists all t triangles in a graph of m edges in time $\tilde{\mathcal{O}}\left(m^{2\omega/(\omega+1)}+m^{3(\omega-1)/(\omega+1)}t^{(3-\omega)/(\omega+1)}\right)$.

Listing some triangles

List some triangles(G, t) algorithm

- Make the graph tripartite (three copies of each vertex v in Part A,B,C).
- Recursively partition each of the 3 sides in half $(A_1, A_2, B_1, B_2, C_1, C_2)$.
- Count triangles in each of the 8 sub-instances.
- Recurse only on the subgraph with most triangles.
- Stop when the subgraph with the most triangles contains < t triangles.
- Run the full **triangle-listing** algorithm only once on G' (have at least t triangles, but each of the 8 triples of subgraphs of G' have < t).

We get a running time of:

$$\tilde{\mathcal{O}}\left(n^{\omega} + \left(\left(\frac{t}{T}\right)^{1/3}n\right)^{3(\omega-1)/(5-\omega)}t^{2(3-\omega)/(5-\omega)}\right)$$

Hardness motivation

Quadratic Equation Systems (QES)

Let F be a finite field and |F| its number of elements.

A quadratic equation system over F^{ℓ} is a set of k quadratic equations in ℓ variables over F.

It is stated in the paper that:

"It is easy to see that QES is NP-complete."

Hardness Motivation

Unless QES has faster algorithms, our two runtime bounds are tight, even for graphs that contain more triangles.

Theorem 3 Suppose that for some $\epsilon_1 \geq 0$, $\epsilon_2 \geq 0$ with $\epsilon_1 + \epsilon_2 > 0$, there exists an algorithm that lists all t triangles in an m-edge graph in $O(m^{1-\epsilon_1}t^{(1-\epsilon_2)/3})$ time or in an n-vertex graph in $O(n^{1-\epsilon_1}t^{(1-\epsilon_2)2/3})$ time. Then, for any finite field F, there exists an $|F|^{(1-\delta)l}$ poly(l,k) time algorithm for $\delta > 0$ that solves l-variate quadratic equation systems with k equations over F^l .

QES Reduction Outline

- 1. Start with a QES instance:
 - Equations of the form $x'Q_ix + E_ix + S_i = 0$.
- **2. Hash the equations** by forming random linear combinations using random vectors R_i .
- 3. Property of hashing:
 - Every solution of the original system remains a solution of the hashed system.
 - A non-solution becomes a solution with probability q^{-h} .
 - With good probability, the hashed system has very few false solutions.
- 4. Build a graph G whose triangles correspond to solutions of the hashed system.
- **5. List triangles in** *G* using the assumed faster triangle-listing algorithm.
- **6. Check each found triangle** to see whether it corresponds to a solution of the original system.

UNIVERSITY OF WATERLOO

Thank you!