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Problem definition
▪ Input:

A graph G = (V, E) with n vertices and m edges.

Optional parameter t: number of triangles.

▪ Output:

List of all triangles in G, or

Any t triangles when full enumeration is unnecessary.

▪ Triangle:

A triple (u, v, w) with edges (u,v), (v, w), (w, u).
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Introduction
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Why Triangles?
Triangles are fundamental in:

▪ The study of social processes

▪ Community detection

▪ Dense subgraph mining

Triangle listing is a core primitive, but extremely computationally 
heavy in dense graphs.
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Previous Work
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Preliminaries
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Preliminaries

We use ෨𝒪(. ) notation to suppress multiplicative factors of size 𝑛𝑜 1 .

Square matrix products take ෨𝒪 𝑛𝜔  time. ω≈2.373.

For rectangular matrices, we consider multiplying an n× 𝑛𝛼  matrix 
by an 𝑛𝛼 × 𝑛 matrix for some 0 < 𝛼 < 1. The product can be 

computed in ෨𝒪 𝑛𝜔(1,𝛼,1)  time.

When α > 0.303, 𝜔(1, α, 1) = 2.
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Preliminaries
• 𝐴 : adjacency matrix of the graph.

• ഥA : the matrix obtained by replacing 1s in the 𝑘-th column with 𝑘.

• For a set 𝑆 ⊆ 𝑉:

𝐴[∗, S] :matrix with columns indexed by 𝑆.

𝐴[S,∗] :matrix with rows indexed by 𝑆.

• The Boolean product 𝐴[∗, 𝑆]. 𝐴[𝑆.∗] reveals whether a 2-path via a vertex in 𝑆 

exists.

• If there is only one such 2-path, then the (i, j)-th entry of the product 

ҧ𝐴[∗,S].A[S,∗] identifies the k for which (i, k), (k, j) ∈ E.
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Light and Heavy
For an edge 𝑖 𝑗  ,let

𝑇𝑖,𝑗 = {k ∈ V |(i, k), (k, j) ∈ E}

be the set of midpoints of triangles through (i,j).

The edge is Λ-light if ∣ 𝑇𝑖,𝑗 ∣≤ 𝛬.

The edge is Λ-heavy otherwise.

A triangle is Λ-light if at least one of the edges participating in it is 
light, otherwise it is Λ-heavy.
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Listing light triangles 
algorithm
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Listing all Λ-light triangles – Key idea

Choose random subsets 𝑆 of size 𝑛/Λ.

For a light edge 𝑖 𝑗  ,the probability that ∣ 𝑆 ∩ 𝑇𝑖,𝑗 ∣= 1 is at least:

1

Λ
1 −

1

Λ

Λ−1

≥
1

𝑒Λ
.

Repeating with

𝑂 Λ log 𝑛

subsets identifies all Λ-light triangles with high probability.
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Listing all Λ-light triangles (Monte Carlo)
LIST_LIGHT_TRIANGLES(G, Λ):

A    ← adjacency-matrix(G)                                                        # n × n, entries in {0,1}

ҧ𝐴 ← labeled-adjacency-matrix(G)                                            # n × n, column k has label k's instead of 1's

T ← empty set of triangles                                                    

R ← c * Λ * log(n)                                                                         # number of random samples (c is a constant)

for r in 1 .. R:                                                                                  # Repeat for 𝑂 Λ log 𝑛  different subsets.

S ← RANDOM_SUBSET(V, size = n/Λ)                      # Step 1: pick a random vertex subset S of size ≈ n/Λ

B ← BOOLEAN_PRODUCT(A[*, S], A[S, *])             # Step 3: compute rectangular matrix products 

C ← LABELED_PRODUCT( ҧ𝐴 [*, S], A[S, *])             # to detect 2-paths with midpoint in S

for each edge (i, j) in E:                                                    # Step 4: scan all edges (i,j) and report triangles

if B[i][j] == 1:                                                          # There is one 2-path via S

k ← C[i][j]                                                    # C[i][j] identifies the midpoint if unique

T.add( sorted-tuple(i, j, k) )

return UNIQUE(T)
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Las Vegas Version
To convert this pseudocode into a Las Vegas version:

1. After collecting T, verify:

▪ every reported triangle is valid

▪ for every edge (i, j), the number of discovered midpoints equals 𝐴2
𝑖j

2. If any mismatch:

repeat whole process
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Time complexity
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Listing all triangles
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Listing all triangles
We assume that these algorithms receive an upper bound t on the 

number of triangles in the input graph. 

This upper bound can be computed before calling our algorithms, 

either in 𝒪 𝑛𝜔  time, or in 𝒪(m2ω/(ω+1)) time -> [N. Alon et.al. 
Color-coding, 1995].
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Sparse(m, t) algorithm
SPARSE_LIST(G, t):

m ← number-of-edges(G)

Δ ← choose-parameter-Delta(m, t)                                      # Choose Δ depending on m and t

T ← empty set                                                                           

for each vertex v in G:                                                             # Step 1: List triangles containing any low-degree vertex

if degree(v) ≤ Δ:

for each pair (u, w) in neighbors(v):             # enumerate triangles through v

if edge(u, w) exists:

T.add(sorted-tuple(u, v, w))

G-high ← induced-high-degree-subgraph(G, Δ)              # Step 2: Remove edges incident to low-degree vertices 

if G-high has no edges:

return UNIQUE(T) 

return UNIQUE( T ∪ DENSE_LIST(G-high, t) )              # Step 3: Call Dense on high-degree subgraph, vertices count is ≤ 2m/∆
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Dense(2m/∆, t) algorithm
DENSE_LIST(G, t):

n ← number-of-vertices(G)

Λ ← choose-parameter-Lambda(n, t)                                     # Choose Λ depending on n and t

T ← empty set

If n < 3

Return T

LightTriangles ← LIST_LIGHT_TRIANGLES(G, Λ):        # Step 1: Find all Λ-light triangles

T ← T ∪ LightTriangles

G-heavy ← remove-light-edges (G, LightTriangles, Λ)       # Step 2: Remove Λ-light edges, remaining graph has ≤ 3t/Λ edges.

if G-heavy has no edges:

return UNIQUE(T) 

return UNIQUE( T ∪ SPARSE_LIST(G-heavy, t) )             # Step 3: Remaining triangles are Λ-heavy; call Sparse 
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Time complexity
We use D(n, t) to denote the running time of Dense(n, t), and S(m, t) to 
denote the running time of Sparse(m, t).

In Sparse(m,t) finding all triangles that contain a low degree vertex can be 
easily done in O (m∆) time by examining for every edge incident on a low 
degree vertex x, the length 2-paths formed by taking another edge out of x.

S(m, t) ≤ m∆ + D(2m/∆, t)

In Dense(n,t) we find all Λ-light triangles in ෨𝒪(𝑛𝜔Λ3−𝜔) time.

D(n, t) ≤ 𝑛𝜔Λ3−𝜔  + S(3t/Λ, t)

Listing Triangles PAGE  19



Time complexity

▪ Λ = ⌈max(3, 6n−(𝜔+1)/(5−𝜔)t2/(5−𝜔))⌉ 

▪ ∆ = ⌈2 max(m(𝜔−1)/(𝜔+1), m2(𝜔−2)/(𝜔+1)t(3−𝜔)/(𝜔+1))⌉
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Time complexity
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S(m, t) ∈ ൝
S(m, t) ∈ O(m3(𝜔−1)/(𝜔+1)t(3−𝜔)/(𝜔+1)) t ≥ m

S(m, t) ∈ O(m2𝜔/(𝜔+1)) t < m

D(n, t) ∈ ൝
O 𝑛𝜔  t ≤ n(𝜔+1)/2

O(n3(𝜔−1)/(5−𝜔)t2(3−𝜔)/(5−𝜔)) t > n(𝜔+1)/2



Deterministic algorithm
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Listing all Λ-light triangles (Deterministic)

- Randomization was only used by the algorithm for listing light triangles.

- For each light edge 𝑎 𝑏  ,define:

𝑥 ∈ 0 1}𝑛 𝑥𝑘 = 1 ⟺ (a, k) ∈ 𝐸 and (k, b) ∈ 𝐸.

  This is the set of midpoints of triangles on edge (a,b).

- Let 𝑃Λ denote the set of such vectors that we would like to compute.
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Listing all Λ-light triangles (Deterministic)

We want a matrix 𝑇such that:

𝑇has only few rows:

𝑑 = Θ Λ ⋅ 𝑓 𝑛 , 𝑓 𝑛 = 𝑛𝑜 1 .

Each row of 𝑇 has very few non-zero entries.

Total non-zeros:

≤ 𝑛𝑓 𝑛 .

For every Λ-sparse vector 𝑥, we can recover 𝑥 from the sketch 𝑇𝑥 in

𝑂 Λ𝑓 𝑛 time.

Thus, 𝑇 acts as a deterministic substitute for random sampling.
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Listing all Λ-light triangles (Deterministic)
LIST_LIGHT_TRIANGLES_DETERMINISTIC(G, Λ):

A ← adjacency-matrix(G)

T ← BUILD-RECOVERY-MATRIX(n, f(n), Λ)                             # Step 1: Build sparse-recovery matrix T

d ← number-of-rows(T)

for i in 1..d:     

D-i← diagonal-matrix-from-row(T[i, *])                            # Compute diagonal matrices

M[i] ← MATRIX-PRODUCT(A, D-i, A)                              # Step 2: Computes A * D-i* A

Tx ← BUILD_VECTOR_TX (M)                                                     # Step 3: Build Tx, 𝑇x 𝑖 = 𝐴𝐷𝑖𝐴 𝑎,𝑏

Triangles ← empty set

for each edge (a, b) in G:

x[a,b]← SPARSE-RECOVERY (Tx[a,b])                            # Step 4: Recover x from vector Tx 

for k in 1..n:

if x[a,b][k] == 1:                                                           # x[k] = 1 when k is midpoint of a triangle (a, k, b)

Triangles.add( sorted-tuple(a, b, k) )

return UNIQUE(Triangles)
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Time complexity
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We can recover each x ∈ 𝑃Λ  in time O (Λf (n)).



Listing some triangles
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List some triangles(G, t) algorithm

Listing Triangles PAGE  28

• Make the graph tripartite (three copies of each vertex v in Part A,B,C).

• Recursively partition each of the 3 sides in half (𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, 𝐶2).

• Count triangles in each of the 8 sub-instances.

• Recurse only on the subgraph with most triangles.

• Stop when the the subgraph with the most triangles contains < t triangles.

▪ Run the full triangle-listing algorithm only once on G’ (have at least t 
triangles, but each of the 8 triples of subgraphs of G′ have < t).



Time complexity
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We get a running time of:



Hardness motivation
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Quadratic Equation Systems (QES)
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Let F be a finite field and ∣F∣ its number of elements.

A quadratic equation system over 𝐹ℓ is a set of k quadratic equations 

in ℓ variables over F.

It is stated in the paper that:

“It is easy to see that QES is NP-complete.”



Hardness Motivation
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Unless QES has faster algorithms, our two runtime bounds are tight, even for 

graphs that contain more triangles.



QES Reduction Outline
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1. Start with a QES instance:
Equations of the form 𝑥′𝑄𝑖𝑥 + 𝐸𝑖𝑥 + 𝑆𝑖 = 0.

2. Hash the equations by forming random linear combinations using random vectors 𝑅𝑖.

3. Property of hashing:

▪ Every solution of the original system remains a solution of the hashed system.

▪ A non-solution becomes a solution with probability 𝑞−ℎ.

▪ With good probability, the hashed system has very few false solutions.

4. Build a graph 𝑮 whose triangles correspond to solutions of the hashed system.

5. List triangles in 𝐺 using the assumed faster triangle-listing algorithm.

6. Check each found triangle to see whether it corresponds to a solution of the original 

system.
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Thank you!
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