LISTING TRIANGLES

11/19/2025

A. Bjorklund, R. Pagh, V. Vassilevska Williams, and U. Zwick — Presented by Saba Molaei,

Cheriton School of Computer Science

%1 WATERLOO

Problem definition

= Input:
A graph G = (V, E) with n vertices and m edges.
Optional parameter t: number of triangles.
= Output:
List of all triangles in G, or
Any t triangles when full enumeration is unnecessary.
= Triangle:

A triple (u, v, w) with edges (u,v), (v, w), (w, u).

Listing Triangles PAGE 2 % WATE RLOO

Introduction

Listing Triangles PAGE 3 11/19/2
025

Why Triangles?

Triangles are fundamental in:

= The study of social processes
= Community detection

= Dense subgraph mining

Triangle listing is a core primitive, but extremely computationally
heavy in dense graphs.

Listing Triangles PAGE 4 % WATE RLOO

Previous Work

Reference

Time bounds

If w=2

Itai and Rodeh [13]

O (n“’ + min(n®, nt, t3/2))

0 (")

~

O (n2 + min(nt, t3/2))

Williams and Williams [28] O (rn,“’tl_“’/ 3) O (nztl/ 3)
Patragcu [23] 2(min(m*/3,n?,¢4/?)) *

- 3(w—1) 2(3—w)

O (n“’ +n 5—w t 5-w) %, (n2 —|—nt2/3)
This paper

~ 2w 3(w—1) 3—w
O (mw+1 +m w+l tw+1)

O (m4/3 -+ mt1/3)

Listing Triangles

PAGE 5

UNIVERSITY OF

2 WATERLOO

Preliminaries

Listing Triangles PAGE 6 11/19/2
025

Preliminaries

We use O(.) notation to suppress multiplicative factors of size n°®.
Square matrix products take O(n®) time. w=2.373.

For rectangular matrices, we consider multiplying an nx n* matrix
by an n* X n matrix for some 0 < a < 1. The product can be

computed in O(n®®*D) time.

When a > 0.303, w(1,a,1) = 2.

Listing Triangles PAGE 7 % WATE RLOO

Preliminaries

A : adjacency matrix of the graph.
A : the matrix obtained by replacing 1s in the k-th column with k.
ForasetS C V:

A[*,S] :matrix with columns indexed by S.

A[S,*] :matrix with rows indexed by S.

The Boolean product A[*, S]. A[S.x] reveals whether a 2-path via a vertexin S

exists.

If there is only one such 2-path, then the (i, j)-th entry of the product
A[*,S].A[S,*] identifies the k for which (i, k), (k, j) € E.

Listing Triangles PAGE 8 % WATE R LOO

Light and Heavy

For an edge (i’j) ,let
T,; ={ke V|G, &) €E)

be the set of midpoints of triangles through (i,j).
The edge is A-light if | T; ; |< A.

The edge is A-heavy otherwise.

A triangle is A-light if at least one of the edges participating in it is
light, otherwise it is A-heavy.

Listing Triangles PAGE 9 % WATE RLOO

Listing light triangles
algorithm

11/19/2
0

Listing all A-light triangles - Key idea

Choose random subsets S of size n/A.

For a light edge (i j) ,the probability that | S N T; ; |= 11is at least:
1/ 1\"7' 1
“(1-=] ==.
A A e\

O(Alogn)

Repeating with

subsets identifies all A-light triangles with high probability.

Listing Triangles PAGE 11 % WATERLOO

Listing all A-light triangles (Monte Carlo)

LIST_LIGHT_TRIANGLES(G, A):

A « adjacency-matrix(G) # n x n, entries in {0,1}
A « labeled-adjacency-matrix(G) # n x n, column k has label k's instead of 1's
T «— empty set of triangles
R« c* A *log(n) # number of random samples (c is a constant)
forrini1..R: # Repeat for O(Alogn) different subsets.
S — RANDOM_SUBSET(V, size = n/A) # Step 1: pick a random vertex subset S of size = n/A
B — BOOLEAN_ PRODUCT(A[*, S], A[S, *1) # Step 3: compute rectangular matrix products
C «— LABELED_PRODUCT(4 [*, S], A[S, *1) # to detect 2-paths with midpoint in S
for each edge (i, j) in E: # Step 4: scan all edges (i,j) and report triangles
if B[i][j] == 1: # There is one 2-path via S
k — CI[i][j] # C[i][j] identifies the midpoint if unique
T.add(sorted-tuple(i, j, k))
return UNIQUE(T)

Listing Triangles PAGE 12 % WATERLOO

Las Vegas Version

To convert this pseudocode into a Las Vegas version:
1. After collecting T, verify:

= every reported triangle is valid

« for every edge (i, j), the number of discovered midpoints equals (4%);;
2. If any mismatch:

repeat whole process

Listing Triangles PAGE 13 % WATERLOO

Time complexity

Theorem 4 Let G = (V, E) be a graph on n vertices and let 1 < A < n. Then,
all A-light triangles in G can be found in O (n""’A?’_“’) time, with high probability.

Listing Triangles PAGE 14 % WATE R LOO

Listing all triangles

Listing Triangles PAGE 15 11/19/2
025

Listing all triangles

We assume that these algorithms receive an upper bound t on the
number of triangles in the input graph.

This upper bound can be computed before calling our algorithms,
either in O (n®) time, or in 0(m2°)/ ((‘)"'1)) time -> [N. Alon et.al.
Color-coding, 1995].

Listing Triangles PAGE 16 % WATERLOO

Sparse(m, t) algorithm

SPARSE_LIST(G, t):
m « number-of-edges(G)
A < choose-parameter-Delta(m, t) # Choose A depending on m and t
T «— empty set
for each vertex vin G: # Step 1: List triangles containing any low-degree vertex
if degree(v) < A:
for each pair (u, w) in neighbors(v): # enumerate triangles through v
if edge(u, w) exists:

T.add(sorted-tuple(u, v, w))

G-high « induced-high-degree-subgraph(G, A) # Step 2: Remove edges incident to low-degree vertices
if G-high has no edges:

return UNIQUE(T)
return UNIQUE(T u DENSE_ LIST(G-high, t)) # Step 3: Call Dense on high-degree subgraph, vertices count is < 2m/A

Listing Triangles PAGE 17 % WATERLOO

Dense(2m/A, t) algorithm

DENSE_LIST(G, t):
n « number-of-vertices(G)
A « choose-parameter-Lambda(n, t) # Choose A depending on n and t
T «— empty set
Ifn<g
Return T
LightTriangles « LIST_LIGHT_TRIANGLES(G, A): # Step 1: Find all A-light triangles
T « T U LightTriangles
G-heavy « remove-light-edges (G, LightTriangles, A) # Step 2: Remove A-light edges, remaining graph has < 3t/A edges.
if G-heavy has no edges:
return UNIQUE(T)
return UNIQUE(T u SPARSE_ LIST(G-heavy, t)) # Step 3: Remaining triangles are A-heavy; call Sparse

Listing Triangles PAGE 18 % WATERLOO

Time complexity

We use D(n, t) to denote the running time of Dense(n, t), and S(m, t) to
denote the running time of Sparse(m, t).

In Sparse(m,t) finding all triangles that contain a low degree vertex can be
easily done in O (mA) time by examining for every edge incident on a low
degree vertex x, the length 2-paths formed by taking another edge out of x.

S(m, t) < mA + D(2m/A, t)
In Dense(n,t) we find all A-light triangles in O (n®A3~¢) time.
D(n, t) < n®A37¢ + S(3t/A, t)

Listing Triangles PAGE 19 % WATERLOO

Time complexity

s A= [max(g, 6n_(w+1)/(5_w)t2/(5_w))'|

. A = [2 max(m@-D/(@+1) 12(0=2)/(@+1)B-w)/(@+1))]

Listing Triangles PAGE 20 % WATERLOO

Time complexity

S(m,t) € O(m3(w—l)/(w+1)t(3—w)/(w+1)) t>m
S(m, t) € , . =
S(m,t) € O(m?®/(@+1)) t<m
@ < n(w+1)/2
pmyel 0D t<n
O(n?’(w 1)/(5-w)2(B3-w)/(5 w)) t > ple+1)/2

Listing Triangles PAGE 21 % WATERLOO

Deterministic algorithm

Listing Triangles PAGE 22 11/19/2
025

Listing all A-light triangles (Deterministic)

- Randomization was only used by the algorithm for listing light triangles.

- For each light edge (a’ b) ,define:
x€{01}'x, =1 & (a,k)€Eand (kb) EE.’

This is the set of midpoints of triangles on edge (a,b).

- Let P, denote the set of such vectors that we would like to compute.

Listing Triangles PAGE 23 % WATERLOO

Listing all A-light triangles (Deterministic)

We want a matrix Tsuch that:

Thas only few rows:
d=0(A-f(n)),f(n) =n°W,

Each row of T has very few non-zero entries.
Total non-zeros:

< nf(n).
For every A-sparse vector x, we can recover x from the sketch Tx in
0(Af(n)) time.

Thus, T acts as a deterministic substitute for random sampling,.

Listing Triangles PAGE 24 % WATERLOO

Listing all A-light triangles (Deterministic)

LIST_LIGHT_TRIANGLES_DETERMINISTIC(G, A):
A — adjacency-matrix(G)
T «— BUILD-RECOVERY-MATRIX(n, f(n), A)
d < number-of-rows(T)
foriin1..d:
D-i« diagonal-matrix-from-row(T[i, *])
MT[i] «— MATRIX-PRODUCT(A, D-i, A)
Tx «— BUILD_VECTOR_TX (M)
Triangles < empty set
for each edge (a, b) in G:
x[a,b]< SPARSE-RECOVERY (Tx[a,b])
forkin 1..n:
if x[a,b][k] == 1:
Triangles.add(sorted-tuple(a, b, k))
return UNIQUE(Triangles)

Listing Triangles PAGE 25

Step 1: Build sparse-recovery matrix T

Compute diagonal matrices
Step 2: Computes A * D-i* A
Step 3: Build Tx, (Tx); = (AD;A) qp

Step 4: Recover x from vector Tx

x[k] = 1 when k is midpoint of a triangle (a, k, b)

& WATERLOO

Time complexity

We can recover each x € P, in time O (Af (n)).

Theorem 1 There exists a Ndetermz'nistic algorithm that lists all t triangles in a
graph of n vertices in time O (n‘*’ + n3(w—1)/(5—w)t2(3—w)/(5—w)).

With the bound w < 2.373 | we get a time bound of O (n?:37% 4 n1-568 {0-478)

Theorem 2 There exists a deterministic algorithm that lists all t triangles in a
graph of m edges in time O (m?*/ (1) 4 m3w=1)/(w+)§B-w)/(W+1))

Listing Triangles PAGE 26 % WATE R LOO

Listing some triangles

Listing Triangles PAGE 27 11/19/2
025

List some triangles(G, t) algorithm

« Make the graph tripartite (three copies of each vertex v in Part A,B,C).

» Recursively partition each of the 3 sides in half (4,, 4,, B;, B,, C;, C,).

» Count triangles in each of the 8 sub-instances.

« Recurse only on the subgraph with most triangles.

 Stop when the the subgraph with the most triangles contains < t triangles.

= Run the full triangle-listing algorithm only once on G’ (have at least t
triangles, but each of the 8 triples of subgraphs of G’ have < t).

Listing Triangles PAGE 28 % WATERLOO

Time complexity

We get a running time of:

1/3 3(w—1)/(5—w)
A | ne + ((t) n) 42(3—w)/ (5-w)
T

Listing Triangles PAGE 29 % WATERLOO

Hardness motivation

Listing Triangles PAGE 30 11/19/2
025

N
Quadratic Equation Systems (QES)

Let F be a finite field and |F| its number of elements.

A quadratic equation system over F* is a set of k quadratic equations

in { variables over F.

It is stated in the paper that:
“It is easy to see that QES is NP-complete.”

A WATERLOO

Listing Triangles PAGE 31 @

Hardness Motivation

Unless QES has faster algorithms, our two runtime bounds are tight, even for

graphs that contain more triangles.

Theorem 3 Suppose that for some €1 > 0, €2 > 0 with €1 + €3 > 0, there exists
an algorithm that lists all t triangles in an m-edge graph in O(ml_elt(l_EZ)/‘?’)
time or in an n-vertexr graph in O(nl_flt(1_€2)2/3) time. Then, for any finite
field F, there exists an |F|(2='poly(l, k) time algorithm for § > 0 that solves
l-variate quadratic equation systems with k equations over F'.

Listing Triangles PAGE 32 % WATE R LOO

OES Reduction Outline

1. Start with a QES instance:
Equations of the form x'Q;x + E;x + S; = 0.

2. Hash the equations by forming random linear combinations using random vectors R;.
3. Property of hashing:

= Every solution of the original system remains a solution of the hashed system.

= A non-solution becomes a solution with probability g ~".

= With good probability, the hashed system has very few false solutions.
4. Build a graph G whose triangles correspond to solutions of the hashed system.
5. List triangles in G using the assumed faster triangle-listing algorithm.

6. Check each found triangle to see whether it corresponds to a solution of the original
system.

Listing Triangles PAGE 33 % WATE R LOO

UNIVERSITY OF

WATERLOO

Thank you!

Listing Triangles PAGE 34 11/19/

ONO=

	Slide 1: Listing Triangles
	Slide 2: Problem definition
	Slide 3: Introduction
	Slide 4: Why Triangles?
	Slide 5: Previous Work
	Slide 6: Preliminaries
	Slide 7: Preliminaries
	Slide 8: Preliminaries
	Slide 9: Light and Heavy
	Slide 10: Listing light triangles algorithm
	Slide 11: Listing all Λ-light triangles – Key idea
	Slide 12: Listing all Λ-light triangles (Monte Carlo)
	Slide 13: Las Vegas Version
	Slide 14: Time complexity
	Slide 15: Listing all triangles
	Slide 16: Listing all triangles
	Slide 17: Sparse(m, t) algorithm
	Slide 18: Dense(2m/∆, t) algorithm
	Slide 19: Time complexity
	Slide 20: Time complexity
	Slide 21: Time complexity
	Slide 22: Deterministic algorithm
	Slide 23: Listing all Λ-light triangles (Deterministic)
	Slide 24: Listing all Λ-light triangles (Deterministic)
	Slide 25: Listing all Λ-light triangles (Deterministic)
	Slide 26: Time complexity
	Slide 27: Listing some triangles
	Slide 28: List some triangles(G, t) algorithm
	Slide 29: Time complexity
	Slide 30: Hardness motivation
	Slide 31: Quadratic Equation Systems (QES)
	Slide 32: Hardness Motivation
	Slide 33: QES Reduction Outline
	Slide 34: Thank you!

