
LISTING TRIANGLES

A. Bjorklund, R. Pagh, V. Vassilevska Williams, and U. Zwick – Presented by Saba Molaei,

Cheriton School of Computer Science

11/19/2025

Problem definition
▪ Input:

A graph G = (V, E) with n vertices and m edges.

Optional parameter t: number of triangles.

▪ Output:

List of all triangles in G, or

Any t triangles when full enumeration is unnecessary.

▪ Triangle:

A triple (u, v, w) with edges (u,v), (v, w), (w, u).

Listing Triangles PAGE 2

Introduction

Listing Triangles PAGE 3 11/19/2
025

Why Triangles?
Triangles are fundamental in:

▪ The study of social processes

▪ Community detection

▪ Dense subgraph mining

Triangle listing is a core primitive, but extremely computationally
heavy in dense graphs.

Listing Triangles PAGE 4

Previous Work

Listing Triangles PAGE 5

Preliminaries

Listing Triangles PAGE 6 11/19/2
025

Preliminaries

We use ෨𝒪(.) notation to suppress multiplicative factors of size 𝑛𝑜 1 .

Square matrix products take ෨𝒪 𝑛𝜔 time. ω≈2.373.

For rectangular matrices, we consider multiplying an n× 𝑛𝛼 matrix
by an 𝑛𝛼 × 𝑛 matrix for some 0 < 𝛼 < 1. The product can be

computed in ෨𝒪 𝑛𝜔(1,𝛼,1) time.

When α > 0.303, 𝜔(1, α, 1) = 2.

Listing Triangles PAGE 7

Preliminaries
• 𝐴 : adjacency matrix of the graph.

• ഥA : the matrix obtained by replacing 1s in the 𝑘-th column with 𝑘.

• For a set 𝑆 ⊆ 𝑉:

𝐴[∗, S] :matrix with columns indexed by 𝑆.

𝐴[S,∗] :matrix with rows indexed by 𝑆.

• The Boolean product 𝐴[∗, 𝑆]. 𝐴[𝑆.∗] reveals whether a 2-path via a vertex in 𝑆

exists.

• If there is only one such 2-path, then the (i, j)-th entry of the product

ҧ𝐴[∗,S].A[S,∗] identifies the k for which (i, k), (k, j) ∈ E.

Listing Triangles PAGE 8

Light and Heavy
For an edge 𝑖 𝑗 ,let

𝑇𝑖,𝑗 = {k ∈ V |(i, k), (k, j) ∈ E}

be the set of midpoints of triangles through (i,j).

The edge is Λ-light if ∣ 𝑇𝑖,𝑗 ∣≤ 𝛬.

The edge is Λ-heavy otherwise.

A triangle is Λ-light if at least one of the edges participating in it is
light, otherwise it is Λ-heavy.

Listing Triangles PAGE 9

Listing light triangles
algorithm

Listing Triangles PAGE 10 11/19/2
025

Listing all Λ-light triangles – Key idea

Choose random subsets 𝑆 of size 𝑛/Λ.

For a light edge 𝑖 𝑗 ,the probability that ∣ 𝑆 ∩ 𝑇𝑖,𝑗 ∣= 1 is at least:

1

Λ
1 −

1

Λ

Λ−1

≥
1

𝑒Λ
.

Repeating with

𝑂 Λ log 𝑛

subsets identifies all Λ-light triangles with high probability.

Listing Triangles PAGE 11

Listing all Λ-light triangles (Monte Carlo)
LIST_LIGHT_TRIANGLES(G, Λ):

A ← adjacency-matrix(G) # n × n, entries in {0,1}

ҧ𝐴 ← labeled-adjacency-matrix(G) # n × n, column k has label k's instead of 1's

T ← empty set of triangles

R ← c * Λ * log(n) # number of random samples (c is a constant)

for r in 1 .. R: # Repeat for 𝑂 Λ log 𝑛 different subsets.

S ← RANDOM_SUBSET(V, size = n/Λ) # Step 1: pick a random vertex subset S of size ≈ n/Λ

B ← BOOLEAN_PRODUCT(A[*, S], A[S, *]) # Step 3: compute rectangular matrix products

C ← LABELED_PRODUCT(ҧ𝐴 [*, S], A[S, *]) # to detect 2-paths with midpoint in S

for each edge (i, j) in E: # Step 4: scan all edges (i,j) and report triangles

if B[i][j] == 1: # There is one 2-path via S

k ← C[i][j] # C[i][j] identifies the midpoint if unique

T.add(sorted-tuple(i, j, k))

return UNIQUE(T)

Listing Triangles PAGE 12

Las Vegas Version
To convert this pseudocode into a Las Vegas version:

1. After collecting T, verify:

▪ every reported triangle is valid

▪ for every edge (i, j), the number of discovered midpoints equals 𝐴2
𝑖j

2. If any mismatch:

repeat whole process

Listing Triangles PAGE 13

Time complexity

Listing Triangles PAGE 14

Listing all triangles

Listing Triangles PAGE 15 11/19/2
025

Listing all triangles
We assume that these algorithms receive an upper bound t on the

number of triangles in the input graph.

This upper bound can be computed before calling our algorithms,

either in 𝒪 𝑛𝜔 time, or in 𝒪(m2ω/(ω+1)) time -> [N. Alon et.al.
Color-coding, 1995].

Listing Triangles PAGE 16

Sparse(m, t) algorithm
SPARSE_LIST(G, t):

m ← number-of-edges(G)

Δ ← choose-parameter-Delta(m, t) # Choose Δ depending on m and t

T ← empty set

for each vertex v in G: # Step 1: List triangles containing any low-degree vertex

if degree(v) ≤ Δ:

for each pair (u, w) in neighbors(v): # enumerate triangles through v

if edge(u, w) exists:

T.add(sorted-tuple(u, v, w))

G-high ← induced-high-degree-subgraph(G, Δ) # Step 2: Remove edges incident to low-degree vertices

if G-high has no edges:

return UNIQUE(T)

return UNIQUE(T ∪ DENSE_LIST(G-high, t)) # Step 3: Call Dense on high-degree subgraph, vertices count is ≤ 2m/∆

Listing Triangles PAGE 17

Dense(2m/∆, t) algorithm
DENSE_LIST(G, t):

n ← number-of-vertices(G)

Λ ← choose-parameter-Lambda(n, t) # Choose Λ depending on n and t

T ← empty set

If n < 3

Return T

LightTriangles ← LIST_LIGHT_TRIANGLES(G, Λ): # Step 1: Find all Λ-light triangles

T ← T ∪ LightTriangles

G-heavy ← remove-light-edges (G, LightTriangles, Λ) # Step 2: Remove Λ-light edges, remaining graph has ≤ 3t/Λ edges.

if G-heavy has no edges:

return UNIQUE(T)

return UNIQUE(T ∪ SPARSE_LIST(G-heavy, t)) # Step 3: Remaining triangles are Λ-heavy; call Sparse

Listing Triangles PAGE 18

Time complexity
We use D(n, t) to denote the running time of Dense(n, t), and S(m, t) to
denote the running time of Sparse(m, t).

In Sparse(m,t) finding all triangles that contain a low degree vertex can be
easily done in O (m∆) time by examining for every edge incident on a low
degree vertex x, the length 2-paths formed by taking another edge out of x.

S(m, t) ≤ m∆ + D(2m/∆, t)

In Dense(n,t) we find all Λ-light triangles in ෨𝒪(𝑛𝜔Λ3−𝜔) time.

D(n, t) ≤ 𝑛𝜔Λ3−𝜔 + S(3t/Λ, t)

Listing Triangles PAGE 19

Time complexity

▪ Λ = ⌈max(3, 6n−(𝜔+1)/(5−𝜔)t2/(5−𝜔))⌉

▪ ∆ = ⌈2 max(m(𝜔−1)/(𝜔+1), m2(𝜔−2)/(𝜔+1)t(3−𝜔)/(𝜔+1))⌉

Listing Triangles PAGE 20

Time complexity

Listing Triangles PAGE 21

S(m, t) ∈ ൝
S(m, t) ∈ O(m3(𝜔−1)/(𝜔+1)t(3−𝜔)/(𝜔+1)) t ≥ m

S(m, t) ∈ O(m2𝜔/(𝜔+1)) t < m

D(n, t) ∈ ൝
O 𝑛𝜔 t ≤ n(𝜔+1)/2

O(n3(𝜔−1)/(5−𝜔)t2(3−𝜔)/(5−𝜔)) t > n(𝜔+1)/2

Deterministic algorithm

Listing Triangles PAGE 22 11/19/2
025

Listing all Λ-light triangles (Deterministic)

- Randomization was only used by the algorithm for listing light triangles.

- For each light edge 𝑎 𝑏 ,define:

𝑥 ∈ 0 1}𝑛 𝑥𝑘 = 1 ⟺ (a, k) ∈ 𝐸 and (k, b) ∈ 𝐸.

 This is the set of midpoints of triangles on edge (a,b).

- Let 𝑃Λ denote the set of such vectors that we would like to compute.

Listing Triangles PAGE 23

Listing all Λ-light triangles (Deterministic)

We want a matrix 𝑇such that:

𝑇has only few rows:

𝑑 = Θ Λ ⋅ 𝑓 𝑛 , 𝑓 𝑛 = 𝑛𝑜 1 .

Each row of 𝑇 has very few non-zero entries.

Total non-zeros:

≤ 𝑛𝑓 𝑛 .

For every Λ-sparse vector 𝑥, we can recover 𝑥 from the sketch 𝑇𝑥 in

𝑂 Λ𝑓 𝑛 time.

Thus, 𝑇 acts as a deterministic substitute for random sampling.

Listing Triangles PAGE 24

Listing all Λ-light triangles (Deterministic)
LIST_LIGHT_TRIANGLES_DETERMINISTIC(G, Λ):

A ← adjacency-matrix(G)

T ← BUILD-RECOVERY-MATRIX(n, f(n), Λ) # Step 1: Build sparse-recovery matrix T

d ← number-of-rows(T)

for i in 1..d:

D-i← diagonal-matrix-from-row(T[i, *]) # Compute diagonal matrices

M[i] ← MATRIX-PRODUCT(A, D-i, A) # Step 2: Computes A * D-i* A

Tx ← BUILD_VECTOR_TX (M) # Step 3: Build Tx, 𝑇x 𝑖 = 𝐴𝐷𝑖𝐴 𝑎,𝑏

Triangles ← empty set

for each edge (a, b) in G:

x[a,b]← SPARSE-RECOVERY (Tx[a,b]) # Step 4: Recover x from vector Tx

for k in 1..n:

if x[a,b][k] == 1: # x[k] = 1 when k is midpoint of a triangle (a, k, b)

Triangles.add(sorted-tuple(a, b, k))

return UNIQUE(Triangles)

Listing Triangles PAGE 25

Time complexity

Listing Triangles PAGE 26

We can recover each x ∈ 𝑃Λ in time O (Λf (n)).

Listing some triangles

Listing Triangles PAGE 27 11/19/2
025

List some triangles(G, t) algorithm

Listing Triangles PAGE 28

• Make the graph tripartite (three copies of each vertex v in Part A,B,C).

• Recursively partition each of the 3 sides in half (𝐴1, 𝐴2, 𝐵1, 𝐵2, 𝐶1, 𝐶2).

• Count triangles in each of the 8 sub-instances.

• Recurse only on the subgraph with most triangles.

• Stop when the the subgraph with the most triangles contains < t triangles.

▪ Run the full triangle-listing algorithm only once on G’ (have at least t
triangles, but each of the 8 triples of subgraphs of G′ have < t).

Time complexity

Listing Triangles PAGE 29

We get a running time of:

Hardness motivation

Listing Triangles PAGE 30 11/19/2
025

Quadratic Equation Systems (QES)

Listing Triangles PAGE 31

Let F be a finite field and ∣F∣ its number of elements.

A quadratic equation system over 𝐹ℓ is a set of k quadratic equations

in ℓ variables over F.

It is stated in the paper that:

“It is easy to see that QES is NP-complete.”

Hardness Motivation

Listing Triangles PAGE 32

Unless QES has faster algorithms, our two runtime bounds are tight, even for

graphs that contain more triangles.

QES Reduction Outline

Listing Triangles PAGE 33

1. Start with a QES instance:
Equations of the form 𝑥′𝑄𝑖𝑥 + 𝐸𝑖𝑥 + 𝑆𝑖 = 0.

2. Hash the equations by forming random linear combinations using random vectors 𝑅𝑖.

3. Property of hashing:

▪ Every solution of the original system remains a solution of the hashed system.

▪ A non-solution becomes a solution with probability 𝑞−ℎ.

▪ With good probability, the hashed system has very few false solutions.

4. Build a graph 𝑮 whose triangles correspond to solutions of the hashed system.

5. List triangles in 𝐺 using the assumed faster triangle-listing algorithm.

6. Check each found triangle to see whether it corresponds to a solution of the original

system.

Listing Triangles PAGE 34

Thank you!

11/19/
2025

	Slide 1: Listing Triangles
	Slide 2: Problem definition
	Slide 3: Introduction
	Slide 4: Why Triangles?
	Slide 5: Previous Work
	Slide 6: Preliminaries
	Slide 7: Preliminaries
	Slide 8: Preliminaries
	Slide 9: Light and Heavy
	Slide 10: Listing light triangles algorithm
	Slide 11: Listing all Λ-light triangles – Key idea
	Slide 12: Listing all Λ-light triangles (Monte Carlo)
	Slide 13: Las Vegas Version
	Slide 14: Time complexity
	Slide 15: Listing all triangles
	Slide 16: Listing all triangles
	Slide 17: Sparse(m, t) algorithm
	Slide 18: Dense(2m/∆, t) algorithm
	Slide 19: Time complexity
	Slide 20: Time complexity
	Slide 21: Time complexity
	Slide 22: Deterministic algorithm
	Slide 23: Listing all Λ-light triangles (Deterministic)
	Slide 24: Listing all Λ-light triangles (Deterministic)
	Slide 25: Listing all Λ-light triangles (Deterministic)
	Slide 26: Time complexity
	Slide 27: Listing some triangles
	Slide 28: List some triangles(G, t) algorithm
	Slide 29: Time complexity
	Slide 30: Hardness motivation
	Slide 31: Quadratic Equation Systems (QES)
	Slide 32: Hardness Motivation
	Slide 33: QES Reduction Outline
	Slide 34: Thank you!

