Fast Join Project Query Evaluation using Matrix Multiplication

Minsi Lu

Week12: Nov 17, 2025

Introduction | Why do we care about Join-Project queries?

- There are many efficient algorithms that achieve worst-case optimal runtime for full join queries
- However, there is not much support for queries involve projections
 - Standard approach: Compute full join → Project → Deduplicate
 - Inefficient if the Full join results much larger than final result
 - Critical since many tasks can be formulated as Join-Project queries

Introduction | Example 1

- Consider relation R(x,y) of size N denotes that x and y are friends.
- We wish to enumerate all users pairs who have at least one friend in common
- This task can be captured by the query Q''(x, z) = R(x,y), R(z,y)

```
SELECT DISTINCT R1.x, R2.x
FROM R1 as R, R2 as R
WHERE R1.y = R2.y
```

- Suppose that the graph contains a constant number of communities and the users are spread evenly across them, Each community has $O(\sqrt{N})$ users
- Full join ouput: $\Theta(N^{3/2})$, Final output: $\Theta(N)$

Introduction | Other Applications

- Set Similarity Join (Entity Matching, Recommender Systems)
 - Find all set pairs with ≥c common elements
 - Previous best: $O(|D|^{2-1/c} \cdot |OUT|^{1/2c})$, near to $O(|D|^2)$ as the c increase
- Set Containment Join
 - Find all pairs where one set contains another
- Both tasks can be answered using the query

```
SELECT R1.x, R2.x count(*)
FROM R1 as R, R2 as R
WHERE R1.y = R2.y
GROUP BY R1.x, R2.x
```

Introduction | Other Applications

- Graph Analytics(Collaborative Networks)
 - Co-authorship graphs:V(x,y) = R(x,p), R(y,p)
 - Batched boolean queries: "Do authors a₁ and a₂ share papers? "

Problem Setting | Definitions

• 2-path query

$$\ddot{Q}(x,z) = R(x,y), S(z,y)$$

• Star Join

$$Q_k^{\star}(x_1, x_2, \dots, x_k) = R_1(x_1, y), R_2(x_2, y), \dots, R_k(x_k, y)$$

- Key Metrics
 - $|D| = \max(|R|, |S|)$ input size
 - |OUT| projected output size
 - |OUT⋈| full join size (before projection)

Problem Setting | Definitions

• Set Similarity (SSJ): given two families of sets R(x,y) and S(z,y). R(x,y) means set x contains element y, S(z,y) means set z contains element y, $C \ge I$.

$$\{(a,b)\mid |\pi_y(\sigma_{x=a}(R))\cap \pi_y(\sigma_{z=b}(S))|\geq c\}$$

When c = I, SSJ = 2-path query

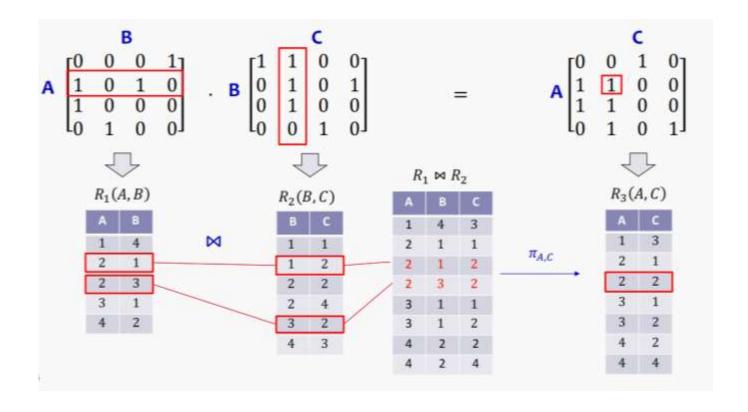
• Set Containment (SCJ):

$$\{(a,b) \mid \pi_y(\sigma_{x=a}(R)) \subseteq \pi_y(\sigma_{z=b}(S))\}$$

- Complexity Model:
 - Uniform-cost RAM model: Data values and pointers are constant size
 - Data complexity: Query is fixed, complexity measured in database size

Problem Setting | Matrix Multiplication

• view the 2-path query as a matrix computation over the boolean field



Problem Setting | Matrix Multiplication

- Complexity
 - For matrices U×V and V×W:

$$O(UVW\beta^{\omega-3})$$

where
$$\beta = \min\{U, V, W\}$$

• Special case ($\omega = 2$):

 $O(UVW/\beta)$

Problem Setting | The Baseline

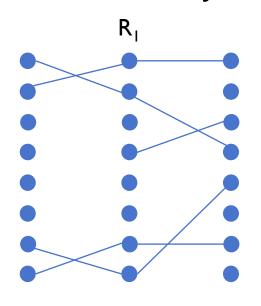
- Worst-Case Optimal Joins (WCOJ)
- Any CQ Q with fractional edge cover ρ^* can be computed in $O(|D|^{\rho^*})$
 - For star join Q_k^* : $O(|D|^k)$
 - Problem: Oblivious to actual |OUT|!
- Combinatorial Improvement (Amossen & Pagh 2009)
 - Q^k computable in $O(|D| \cdot |OUT|^{1-1/k})$ For star join $Q_k^* \cdot O(|D|^k)$
 - For k=2: O(|D| · |OUT|^{1/2})

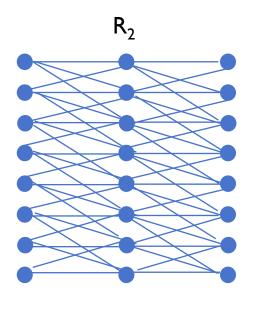
Problem Setting | The Baseline

- Worst-Case Optimal Joins (WCOJ)
- Any CQ Q with fractional edge cover ρ^* can be computed in $O(|D|^{\rho^*})$
 - For star join Q_k^* : $O(|D|^k)$
 - Problem: Oblivious to actual |OUT|!
- Combinatorial Improvement (Amossen & Pagh 2009)
 - Q^k computable in $O(|D| \cdot |OUT|^{1-1/k})$ For star join $Q_k^* \cdot O(|D|^k)$
 - For k=2: O(|D| · |OUT|^{1/2})

Join-Project | Key Ideas

When does WCOJ and matrix multiplication work well?





Graph vertices have low degree(i.e sparse)

WCOJ good MM bad Graph vertices have large degree(i.e dense)

WCOJ bad MM good

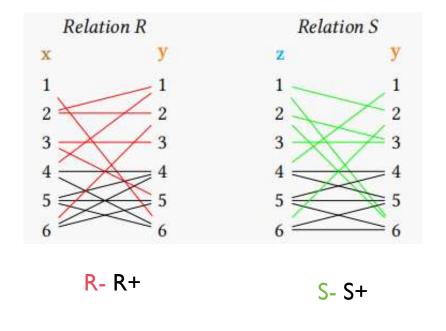
Join-Project | Assumptions

- know the output size |OUT| (drop this assumption later)
- removed any tuples that do not contribute to the query result (linear time)
- In 2 path query, assume that $N_S \le N_R$

• Partition the relations based on degree of vertices to achieve best of both worlds

$$R^- = \{R(a,b) \mid |\sigma_{x=a}R(x,y)| \le \Delta_2 \text{ or } |\sigma_{y=b}S(z,y)| \le \Delta_1\}$$

 $S^- = \{S(c,b) \mid |\sigma_{z=c}S(z,y)| \le \Delta_2 \text{ or } |\sigma_{y=b}S(z,y)| \le \Delta_1\}$



$$(R^- \bowtie S) \cup (R \bowtie S^-)$$
, WOCJ $R^+ \bowtie S^+$, MM

Algorithm 1: Computing $\pi_{xz}R(x,y)\bowtie S(z,y)$

- 1 $R^- \leftarrow \{R(a,b) \mid |\sigma_{x=a}R(x,y)| \le \Delta_2 \text{ or } |\sigma_{y=b}S(z,y)| \le \Delta_1\}, R^+ \leftarrow R \setminus R^-$
- $S^- \leftarrow \{S(c,b) \mid |\sigma_{z=c}S(z,y)| \le \Delta_2 \text{ or } |\sigma_{y=b}S(z,y)| \le \Delta_1\}, S^+ \leftarrow S \setminus S^+$
- $T \leftarrow (R^- \bowtie S) \cup (R \bowtie S^-)$ /* use wcoj */
- 4 $M_1(x,y)$ ← R^+ adj matrix, $M_2(y,z)$ ← S^+ adj matrix
- $5 M \leftarrow M_1 \times M_2$ /* matrix multiplication */
- 6 $T \leftarrow T \cup \{(a,c) \mid M_{ac} > 0\}$
- 7 return T

WOCJ for sparse component:

- $|OUT\bowtie|$ bounded by $N_s \cdot \Delta_1 + |OUT| \cdot \Delta_2$
 - Why?
 - Each light y-value contributes $\leq \Delta_1$ tuples
 - Each output tuple has x-degree $\leq \Delta_2$
- Runtime:
 - $O(N_R + N_S + |OUT \bowtie |)$
 - = $O(N_R + N_s \cdot \Delta_1 + |OUT| \cdot \Delta_2)$

Algorithm 1: Computing $\pi_{xz}R(x,y)\bowtie S(z,y)$

- 1 $R^- \leftarrow \{R(a,b) \mid |\sigma_{x=a}R(x,y)| \le \Delta_2 \text{ or } |\sigma_{y=b}S(z,y)| \le \Delta_1\}, R^+ \leftarrow R \setminus R^-$
- $S^- \leftarrow \{S(c,b) \mid |\sigma_{z=c}S(z,y)| \le \Delta_2 \text{ or } |\sigma_{y=b}S(z,y)| \le \Delta_1\}, S^+ \leftarrow S \setminus S^+$
- $T \leftarrow (R^- \bowtie S) \cup (R \bowtie S^-)$ /* use wcoj */
- $4 \ M_1(x,y) \leftarrow R^+ \text{ adj matrix}, M_2(y,z) \leftarrow S^+ \text{ adj matrix}$
- $5 M \leftarrow M_1 \times M_2$ /* matrix multiplication */
- 6 $T \leftarrow T \cup \{(a,c) \mid M_{ac} > 0\}$
- 7 return T

MM for dense component:

- $M_1: N_R/\Delta_2 \times N_s/\Delta_1$ (for R^+)
- M_2 : $N_s/\Delta_1 \times N_s/\Delta_2$ (for S⁺)
- Cost: $M(N_R/\Delta_2, N_s/\Delta_1, N_s/\Delta_2)$

Total Cost

$$N_R + N_S \Delta_1 + |\mathsf{OUT}|\Delta_2 + M\left(\frac{N_R}{\Delta_2}, \frac{N_S}{\Delta_1}, \frac{N_S}{\Delta_2}\right) + C$$

For $\omega = 2$ (theoretical optimal MM), assume $N_R = N_S = N$

$$f(\Delta_1, \Delta_2) = N + N \cdot \Delta_1 + |\mathsf{OUT}| \cdot \Delta_2 + \frac{N^2}{\Delta_2 \min{\{\Delta_1, \Delta_2\}}}$$

while ensuring $I \leq \Delta I$, $\Delta 2 \leq N$.

If $\Delta I > \Delta 2$, we can always improve the solution by decreasing the value of ΔI to $\Delta 2$. So impose the constraint $I \leq \Delta I \leq \Delta 2 \leq N$

- Case I: |OUT| ≤ N
 - Optimal: $\Delta_1 = |OUT|^{1/3}$, $\Delta_2 = N/|OUT|^{2/3}$
 - Runtime: $O(N + N \cdot |OUT|^{1/3})$
- Case 2: |OUT| > N
 - Optimal: $\Delta_1 = \Delta_2 = (2N^2/(N + |OUT|))^{-1/3}$
 - Runtime: O(N^{2/3} · |OUT|^{2/3})
- Lemma 3. Assuming that the exponent in matrix multiplication is $\omega = 2$, the query Q can be computed in time

$$O(|\mathbf{D}| + |\mathbf{D}|^{2/3} \cdot |\mathsf{OUT}|^{1/3} \cdot \max\{|\mathbf{D}|, |\mathsf{OUT}|\}^{1/3})$$

Compare to baseline: O(|D| · |OUT|^{1/2})

Join-Project | The 2-Path Query Algorithm Optimization

- Two Key issue:
 - How to estimate |OUT|
 - $|dom(x)| \le |OUT| \le min\{|dom(x)|^2, |OUT\bowtie|\}$
 - $|OUT\bowtie| \le N \cdot \sqrt{|OUT|} -> OUT >= (|OUT\bowtie|/N)^2$
 - Paper suggests: geometric mean of max{|dom(x)|, (|OUT | N)²} and min{|dom(x)|², |OUT |
 - How to estimate MM cost

```
if |OUT_{\bowtie}| \le 20 \cdot N then 
| use worst-case optimal join algorithm
```

Rationale:

- •MM has overhead (matrix construction, memory allocation)
- •Only beneficial when avoiding large intermediate results
- •Threshold of 20× is empirically determined

Join-Project | The 2-Path Query Algorithm Optimization

How to estimate MM cost

```
Algorithm 3: Cost Based Optimizer
     Output: degree threshold \Delta_1, \Delta_2
1 Estimate full join result |OUT<sub>⋈</sub>| and |OUT|
_2 if |OUT_{\bowtie}| \leq 20 \cdot N then
           use worst-case optimal join algorithm
4 t_{\text{light}} \leftarrow |\text{OUT}_{\bowtie}|, t_{\text{heavy}} \leftarrow 0, \text{prev}_{\text{light}} \leftarrow \infty, \text{prev}_{\text{heavy}} \leftarrow
     0, \Delta_1 = N
5 while true do
            prev_{light} \leftarrow t_{light}, prev_{heavy} \leftarrow t_{heavy}
           \operatorname{prev}_{\Lambda_1} \leftarrow \Delta_1, \operatorname{prev}_{\Lambda_2} \leftarrow \Delta_2
            \Delta_1 \leftarrow (1 - \epsilon)\Delta_1, \Delta_2 \leftarrow N \cdot \Delta_1/|\mathsf{OUT}|
            \mathsf{t}_{\mathsf{light}} \leftarrow T_I \cdot \mathsf{sum}(y_{\Delta_1}) + \cdot T_I \cdot \mathsf{sum}(x_{\Delta_2}) +
                           T_m \cdot |\mathbf{dom}(x)| + T_s \cdot \mathbf{cdfx}(y_{\Delta_1}) \cdot |\mathbf{dom}(x)|
10
            u, v, w \leftarrow \text{\#heavy } x, y, z \text{ values using count}(w_{\delta})
11
            \mathsf{t}_{\mathsf{heavy}} \leftarrow \hat{M}(u, v, w, co) + T_m \cdot (u \cdot v + u \cdot w)
12
            if prev_{light} + prev_{heavy} \le t_{light} + t_{heavy} then
13
                    return prev_{\Delta_1}, prev_{\Delta_2}
14
```

Symbol	Description		
T_{s}	avg time for sequential access		
T_m	avg time for allocating 32 bytes of memory		
co	number of cores available		
$\hat{M}(u, v, w, co)$	estimate of time required to multiply matrices of dimension $u \times v$ and $v \times w$ using co cores		
T_I	avg time for random access and insert		

Join-Project | The 2-Path Query Algorithm Optimization

How to estimate MM cost

Challenge: M(u,v,w,co) is hardware and library dependent!

Solution: Precomputed Lookup Table

- **I.Offline phase:** Benchmark M(p,p,p,co) for:
 - I. $p \in \{1000, 2000, 3000, ..., 20000\}$
 - 2. $co \in \{1, 2, 3, 4, 5\}$
- **2.Online phase:** Given arbitrary (u,v,w,co):
 - I. Find nearest p in table
 - 2. Extrapolate using scaling rules
 - 3. Example: M(1500, 8000, 1500, 4) \approx interpolate from nearby values

Why this works:

- •MM performance scales predictably within ranges
- Don't need exhaustive table (memory efficient)
- •Captures hardware-specific optimizations (AVX, SIMD, cache effects)

Join-Project | Start Query

Partition

$$R_i^- = \{R_i(a,b) \mid |\sigma_{x_i=a}R_i(x_i,y)| \le \Delta_2\}$$

$$R_i^{\diamond} = \{R_i(a,b) \mid |\sigma_{y=b}R_j(x_j,y)| \le \Delta_1, \text{ for each } j \in [k] \setminus i\}$$

$$R_i^+ = R_i \setminus (R_i^- \cup R_i^{\diamond})$$

Light x_i values y-values light in ALL other relations Heavy values only

• Algorithm:

- I. Compute joins with R^-_j using WCOJ (for each j), O(|OUT| $\cdot \Delta 2$)
- 2. Compute joins with $R \circ_j$ using WCOJ (for each j), $O(N \cdot \Delta_1^{k-1})$
- 3. Matrix multiplication for R⁺₁, ..., R⁺_k

Join-Project | Start Query

Star Join Matrix Construction

For k relations, create two matrices:

Matrix V: $(N/\Delta_2)^{[k/2]} \times N/\Delta_1$

$$V_{(a_1, a_2, \dots a_{\lceil k/2 \rceil}), b} = \begin{cases} 1, & (a_1, b) \in R_1, \dots, (a_{\lceil k/2 \rceil}, b) \in R_{\lceil k/2 \rceil}, \\ 0, & \text{otherwise} \end{cases}$$

Matrix W: $(N/\Delta_2)^{\lfloor k/2 \rfloor} \times N/\Delta_1$

$$W_{(a_{\lceil k/2 \rceil+1}...a_k),b} = \begin{cases} 1, & (a_{\lceil k/2 \rceil+1},b) \in R_{\lceil k/2 \rceil+1},...,(a_k,b) \in R_k \\ 0, & \text{otherwise} \end{cases}$$

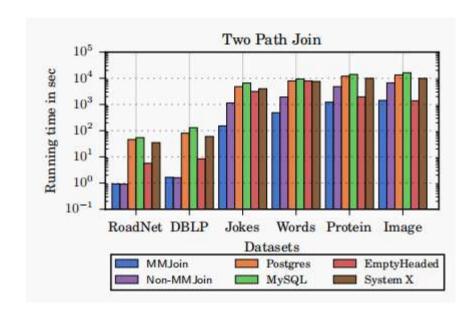
Total Cost:

$$N \cdot \Delta_1^{k-1} + |\mathsf{OUT}| \cdot \Delta_2 + M\Big(\Big(\frac{N}{\Delta_2}\Big)^{\lceil k/2 \rceil}, \frac{N}{\Delta_1}, \Big(\frac{N}{\Delta_2}\Big)^{\lfloor k/2 \rfloor}\Big)$$

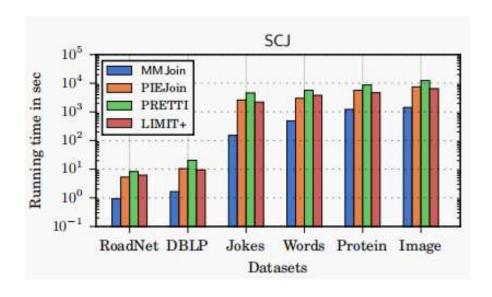
- on I50GB RAM, Intel Xeon CPU E5 with 20 cores
 - use AVX and OpenMp for vectorized, multicore execution support
 - Intel MKL is the underlying linear algebra library
 - Use 6 datasets with different characteristics

Dataset	R	No. of sets	dom	Avg set size	Min set size	Max set size
DBLP	10M	1.5M	3M	6.6	1	500
RoadNet	1.5M	1M	1M	1.5	1	20
Jokes	400M	70K	50K	5.7K	130	10K
Words	500M	1M	150K	500	1	10K
Protein	900M	60K	60K	15K	50	50K
Image	800M	70K	50K	11.4K	10K	50K

Table 2: Dataset Characteristics

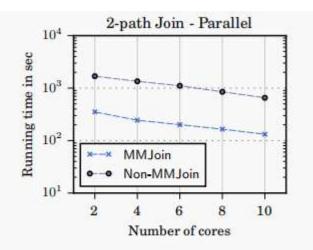


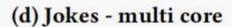
- MMjoin is up to two orders of magnitude Faster
- Matrix multiplication avoids materializing large intermediate results
- Intel MKL is highly optimized for vectorized execution

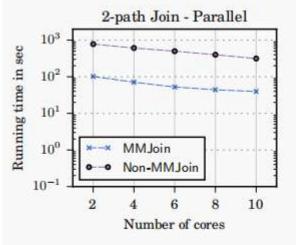


- MMjoin is s faster that SCJ algorithmms on dense datasets
- Matrix multiplication allows for coordination-free parallelization



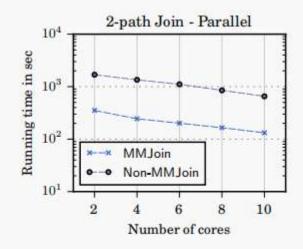






(d) Jokes - multi core

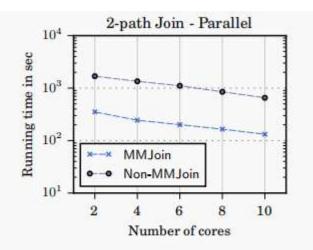
(e) Words - multi core

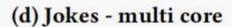


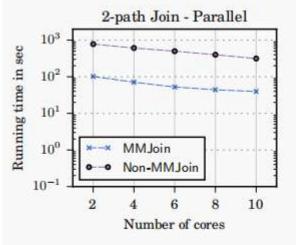
(e) Words - multi core

SSJ



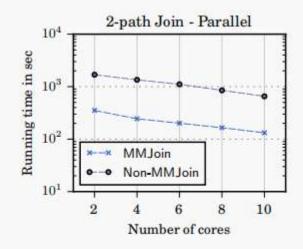






(d) Jokes - multi core

(e) Words - multi core



(e) Words - multi core

SSJ

Reference

- Deep, Shaleen, Xiao Hu, and Paraschos Koutris. "Fast join project query evaluation using matrix multiplication."
 Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020.
- Amossen, Rasmus Resen, and Rasmus Pagh. "Faster join-projects and sparse matrix multiplications." Proceedings of the 12th International Conference on Database Theory. 2009.
- Xiao Hu. "Output-Optimal Algorithms for Join-Aggregate Queries." CS848: Advanced Database Systems, University of Waterloo, Lecture slides, Sep 22, 2025.

Thank you!