
Fast Join Project Query Evaluation 
using Matrix Multiplication

Minsi Lu

Week12: Nov 17, 2025



Introduction | Why do we care about Join-Project queries?

• There are many efficient algorithms that achieve worst-case optimal 

runtime for full join queries

• However, there is not much support for queries involve projections

• Standard approach: Compute full join → Project → Deduplicate

• Inefficient if the Full join results much larger than final result

• Critical since many tasks can be formulated as Join-Project queries



Introduction | Example 1 

• Consider relation R(x,y) of size N denotes that x and y are friends. 

• We wish to enumerate all users pairs who have at least one friend in common 

• This task can be captured by the query Q¨(x, z) = R(x,y), R(z,y)

• Suppose that the graph contains a constant number of communities and the 

users are spread evenly across them,  Each community has O(√N) users

• Full join ouput: Θ(N3/2), Final output: Θ(N)

SELECT DISTINCT R1.x, R2.x
FROM R1 as R, R2 as R 
WHERE R1.y = R2.y



Introduction | Other Applications 

• Set Similarity Join (Entity Matching, Recommender Systems) 

• Find all set pairs with ≥c common elements 

• Previous best: O(|D|2-1/c · |OUT|1/2c), near to O(|D|2) as the c increase

• Set Containment Join

• Find all pairs where one set contains another 

• Both tasks can be answered using the query
SELECT R1.x, R2.x count(*) 
FROM R1 as R, R2 as R 
WHERE R1.y = R2.y
GROUP BY R1.x, R2.x



Introduction | Other Applications 

• Graph Analytics(Collaborative Networks) 

• Co-authorship graphs: V(x,y) = R(x,p), R(y,p) 

• Batched boolean queries: "Do authors a₁ and a₂ share papers? "



Problem Setting | Definitions

• 2-path query

• Star Join

• Key Metrics

• |D| = max(|R|, |S|) - input size 

• |OUT| - projected output size 

• |OUT⋈| - full join size (before projection)



Problem Setting | Definitions

• Set Similarity (SSJ): given two families of sets R(x,y) and S (z,y).  R(x,y) means 

set x contains element y,  S (z,y) means set z contains element y, c ≥ 1.

When  c = 1, SSJ = 2-path query 

• Set Containment (SCJ): 

• Complexity Model:

• Uniform-cost RAM model: Data values and pointers are constant size

• Data complexity: Query is fixed, complexity measured in database size



Problem Setting | Matrix Multiplication

• view the 2-path query as a matrix computation over the boolean field  



Problem Setting | Matrix Multiplication

• Complexity

• For matrices U×V and V×W:

where β = min{U, V, W}

• Special case (ω = 2):



Problem Setting | The Baseline 

• Worst-Case Optimal Joins (WCOJ)

• Any CQ Q with fractional edge cover ρ* can be computed in O(|D|ρ*)

• For star join Qᵏ
*: O(|D|k)

• Problem: Oblivious to actual |OUT|!

• Combinatorial Improvement (Amossen & Pagh 2009)

• Qᵏ computable in O(|D| · |OUT|1-1/k) For star join Qᵏ
* O(|D|k) 

• For k=2: O(|D| · |OUT|1/2)



Problem Setting | The Baseline 

• Worst-Case Optimal Joins (WCOJ)

• Any CQ Q with fractional edge cover ρ* can be computed in O(|D|ρ*)

• For star join Qᵏ
*: O(|D|k)

• Problem: Oblivious to actual |OUT|!

• Combinatorial Improvement (Amossen & Pagh 2009)

• Qᵏ computable in O(|D| · |OUT|1-1/k) For star join Qᵏ
* O(|D|k) 

• For k=2: O(|D| · |OUT|1/2)



Join-Project | Key Ideas

When does WCOJ and matrix multiplication work well?

Graph vertices have low degree(i.e sparse) Graph vertices have large degree(i.e dense)

R1 R2

WCOJ good

MM bad

WCOJ bad

MM good



Join-Project | Assumptions

• know the output size |OUT| (drop this assumption later)

• removed any tuples that do not contribute to the query result (linear time)

• In 2 path query, assume that NS ≤ NR



Join-Project | The 2-Path Query Algorithm 

• Partition the relations based on degree of vertices to achieve best of both worlds

S- S+R- R+

(R⁻ ⋈ S) ∪ (R ⋈ S⁻) , WOCJ

R+ ⋈ S+, MM



Join-Project | The 2-Path Query Algorithm 

WOCJ for sparse component:

• |OUT⋈| bounded by Nₛ · Δ₁ + |OUT| · Δ₂

• Why? 

• Each light y-value contributes ≤ Δ₁ tuples

• Each output tuple has x-degree ≤ Δ₂

• Runtime: 

• O(Nᴿ + Nₛ + |OUT⋈| )

• = O(Nᴿ + Nₛ · Δ₁ + |OUT| · Δ₂)



Join-Project | The 2-Path Query Algorithm 

MM for dense component:

• M₁: Nᴿ/Δ₂ × Nₛ/Δ₁ (for R⁺)

• M₂: Nₛ/Δ₁ × Nₛ/Δ₂ (for S⁺)

• Cost: M(Nᴿ/Δ₂, Nₛ/Δ₁, Nₛ/Δ₂)



Join-Project | The 2-Path Query Algorithm 

Total Cost

For ω = 2 (theoretical optimal MM), assume Nᴿ = Nₛ = N

while ensuring 1 ≤ ∆1, ∆2 ≤ N. 

If ∆1 > ∆2, we can always improve the solution by decreasing the value of ∆1 to ∆2.  So 

impose the constraint 1 ≤ ∆1 ≤ ∆2 ≤ N



Join-Project | The 2-Path Query Algorithm 

• Case 1: |OUT| ≤ N

• Optimal: Δ₁ = |OUT|1/3, Δ₂ = N/|OUT|2/3

• Runtime: O(N + N · |OUT|1/3)

• Case 2: |OUT| > N

• Optimal: Δ₁ = Δ₂ = (2N²/(N + |OUT|)) 1/3

• Runtime: O(N2/3 · |OUT|2/3)

• Lemma 3. Assuming that the exponent in matrix multiplication is ω = 2, the query Q¨ can 

be computed in time

• Compare to baseline: O(|D| · |OUT|1/2)



Join-Project | The 2-Path Query Algorithm Optimization 

• Two Key issue:

• How to estimate |OUT|

• |dom(x)| ≤ |OUT| ≤ min{|dom(x)|², |OUT⋈|}

• |OUT⋈| ≤ N · √|OUT| -> OUT >= (|OUT⋈|/N)²

• Paper suggests:  geometric mean of max{|dom(x)|, (|OUT⋈|/N)²} and 

min{|dom(x)|², |OUT⋈|}

• How to estimate MM cost
Rationale:

•MM has overhead (matrix construction, 

memory allocation)

•Only beneficial when avoiding large 

intermediate results

•Threshold of 20× is empirically determined



Join-Project | The 2-Path Query Algorithm Optimization 

• How to estimate MM cost



Join-Project | The 2-Path Query Algorithm Optimization 

• How to estimate MM cost

Challenge: M̂(u,v,w,co) is hardware and library dependent!

Solution: Precomputed Lookup Table

1.Offline phase: Benchmark M̂(p,p,p,co) for: 

1. p ∈ {1000, 2000, 3000, ..., 20000}

2. co ∈ {1, 2, 3, 4, 5}

2.Online phase: Given arbitrary (u,v,w,co): 

1. Find nearest p in table

2. Extrapolate using scaling rules

3. Example: M̂(1500, 8000, 1500, 4) ≈ interpolate from nearby values

Why this works:

•MM performance scales predictably within ranges

•Don't need exhaustive table (memory efficient)

•Captures hardware-specific optimizations (AVX, SIMD, cache effects)



Join-Project | Start Query

• Partition

• Algorithm:

• 1. Compute joins with R⁻ⱼ using WCOJ (for each j), O(|OUT| · ∆2) 

• 2. Compute joins with R⋄ⱼ using WCOJ (for each j), O(N · ∆1
k-1)

• 3. Matrix multiplication for R⁺₁, ..., R⁺ₖ

Light xᵢ values

y-values light in ALL other relations

Heavy values only



Join-Project | Start Query

Star Join Matrix Construction

For k relations, create two matrices:

Matrix V: (N/Δ₂)⌈k/2⌉× N/Δ₁

Matrix W: (N/Δ₂) ⌊k/2⌋× N/Δ₁

Total Cost:



Experiments

• on 150GB RAM, Intel Xeon CPU E5 with 20 cores

• use AVX and OpenMp for vectorized, multicore execution support

• Intel MKL is the underiying linear algebra library

• Use 6 datasets with different characteristics



Experiments

• MMjoin is up to two orders of 

magnitude Faster

• Matrix multiplication avoids 

materializing large intermediate 

results

• Intel MKL is highly optimized for 

vectorized execution



Experiments

• MMjoin is s faster that SCJ algorithrms

on dense datasets

• Matrix multiplication allows for 

coordination-free parallelization



Experiments

• SSJ



Experiments

• SSJ



Reference

• Deep, Shaleen, Xiao Hu, and Paraschos Koutris. "Fast join project query evaluation using matrix multiplication." 
Proceedings of the 2020 ACM SIGMOD International Conference on Management of Data. 2020.

• Amossen, Rasmus Resen, and Rasmus Pagh. "Faster join-projects and sparse matrix multiplications." Proceedings 
of the 12th International Conference on Database Theory. 2009.

• Xiao Hu. "Output-Optimal Algorithms for Join-Aggregate Queries." CS848: Advanced Database Systems, University 
of Waterloo, Lecture slides, Sep 22, 2025.



Thank you!


