
Paper Presentation:
Reservoir Sampling over Joins

Yuxin Kang

Background

PAGE 2

(1) Fully materializing the join can be extremely expensive in both time and
space. Uniform sample of the join results would suffice for many purposes, (eg.
answer analytical queries, train ML models.

(2) Real-world data arrives continuously, so the database is always growing.
We need a method that keeps a uniform random sample of the join results as
new tuples stream in, rather than sampling after everything is collected.

Previous Results

PAGE 3

(1) Static Join Sampling:
Acyclic joins : Build an index in O(N), draw one sample in O(1).

Cyclic joins: Build an index in O(N), draw one sample in .

(2) Reservoir Sampling (Classical):
The total number of elements in the stream is unknown; Each element can only be accessed once. We want each
element has an equal probability of being sampled.

Each item has the probability:

N: the total size of all input relations

|Q(R)|: the number of tuples in the join
result.

ρ*: the fractional edge cover number

For item number t: If t ≤ k: store it directly in the sample.

 If t > k:Draw i uniformly at random from {0, 1, ..., t-1}.

 If i < k, replace sample[i] with the new item.

Otherwise, do nothing.

Reservoir Sampling (Classical) , cont.

PAGE 4

Without skip optimization: O(N)

With skip optimization:

The skip optimization:

Suppose we have N > 100,000 and k = 10. The probability that the t =
100,000 th item will be accepted is: 0.0001.

99.99% of items will be rejected. So, checking each one is a
waste of time.

The probability of keeping the t-th item in the reservoir is .

So, —-> q ~Geom (pt)

The skip-based algorithm does not examine every item, so we can not
compute t.

So the algorithm maintains a value of w such that

And w behave like

Reservoir Sampling (Classical) — the skip optimization, cont.

PAGE 5

The expectation of the acceptance of the t-th item is:

The expected number of acceptances over the entire
stream:

Each skip and replacement both take O(1) time. So the
total expected time is :

Algorithm:

drawing u from a uniform distribution and
comparing it to w gives: Pr[u<w] = w.

Previous Results

PAGE 6

(3) Attempts of Applying Reservoir Sampling to Joins: Zhao et al. investigated the problem
over acyclic joins. But their solution takes O(N^2) time in the worst case since their index needs
costly maintenance when new tuples arrive. This is essentially no better than a naive approach that
re-build the static join sampling index and re-draw the samples after each tuple has arrived (N *O(N)
= O(N^2)).

Motivation

Can we build a new reservoir sampling algorithm that
maintains a sample over joins with a near-linear running time?

Reservoir Sampling with Predicate
Goal: We want to maintain a reservoir sample of size k only over items that satisfy a predicate θ. (Items
that satisfy θ are called real items. Items that do not satisfy θ are called dummy items.)

Key changes: The skip counts real items only. Dummy items do not count.

PAGE 7

Reservoir Sampling with Predicate
Why It Remains Correct:

We never adjust w when seeing dummy items, So,

 where r is the counts of only the real items.

Each real item is accepted with probability , ensuring every real item is equally likely to appear in
the reservoir.

PAGE 8

Upper bound: Reservoir Sampling with Predicate

Let: rᵢ= number of real items among the first (i−1) items

▪ If xᵢ is not dummy, then: It cannot enter the reservoir; It does not update w. So, the cost is 0.
▪ If xᵢ is real, it could enter the reservoir, The probability that a real item enters the sample at this moment is:

So, expected work at step i is:

(If we haven't filled the reservoir yet, cost is 1; once full, it becomes)

Sum over all items:

PAGE 9

Lower bound: Reservoir Sampling with Predicate
To output a uniform sample of size k over only the real items, a real item at position i must be given
probability to enter the reservoir.

Therefore, any correct algorithm must stop and examine position i with probability at least .

If it stops less often than this, it would miss some real items that should have been considered. Those items
would have too small a chance of entering the reservoir. The resulting sample would not be uniform
anymore.

PAGE 10

Sampling over Acyclic Joins

Goal: We want to build a data structure that allows us to:

a. Incrementally update the join when new tuples arrive
b. Efficiently retrieve or skip join results later.

(1) Two-table join

a.We maintain one bucket per value of Y

b. Each tuple is stored exactly once in its bucket. So, it uses linear space:

PAGE 11

X Y

a 2

b 3

Y Z

2 P

2 Q

3 R

Example:

Sampling over Acyclic Joins

(1) Two-table join —cont

c. If a new tuple t arrives:

● If t ∈ R₁, insert it into bucket R₁ ⋈ t.Y
● If t ∈ R₂, insert it into bucket R₂ ⋈ t.Y

This is just an append → O(1) time.

d. If t ∈ R1, then new join results are:

ΔJ = R2 ⋈ t.Y

because the lists are directly stored, accessing any joined result is O(1)

PAGE 12

Example:

Sampling over Acyclic Joins

(2) Line-3 Join

a. Index Rebuild:
Initialization:

PAGE 13

Sampling over Acyclic Joins

PAGE 14

Sampling over Acyclic Joins

PAGE 15

Sampling over Acyclic Joins

PAGE 16

b. Get a sample:

Step 1: Sample (a,b) from R1 (but not uniformly)

We prefer (a, b) pairs that lead to more join results.

Step 2 : Sample (b, c) from

Binary search over cumulative weights

Step 3: Sample (c,d) uniformly from

Reservoir Sampling over Joins

For acyclic:
(1) Update the join index

Cost per tuple:

Total over N tuples:

(2)Possibly update the reservoir sample
Retrieve a random join result via the index:

Number of times we perform a reservoir replacement:

Total reservoir sampling cost:

PAGE 17

Reservoir Sampling over Joins

For cyclic :
Cyclic joins can create many more join results, much larger than N

By the Generalized Hypertree Decomposition:

Fractional Hypertree Width tells us how cyclic the query is,

If w = 1, the join is acyclic.

If w > 1, the join is cyclic.

The worst -case join size is

So the index maintenance time become:

And the reservoir sampling part does not change.

PAGE 18

Experimental Results
Dataset:
Graph dataset: Epinions;
Relational dataset: TPC‑DS for decision-support joins ;
Relational dataset: LDBC‑SNB for join-heavy complex queries.

Join queries tested:
Multiple acyclic joins (e.g., line-3, line-4, line-5, star joins).
Some cyclic joins to evaluate the extension that uses fractional hypertree width.

Baseline:
Zhao et al.

PAGE 19

Experimental Results
Key Results:

(1) The proposed (RSJoin) update time is stable and stays around 10

microseconds, while the method from Zhao et al. (SJoin) update time is
unpredictable and can jump to hundreds of milliseconds, which makes it
unreliable in streaming environments.

(2）Although the number of join results grows rapidly as more data is
 processed, RSJoin’s runtime increases almost linearly with the input,
 while SJoin’s runtime grows roughly in proportion to the join size.

PAGE 20

Experimental Results
Key Results:

(3) RSJoin achieves 4.6×–147.6× speedups over prior methods and successfully completes all join queries,
including cyclic ones where SJoin may fail. It also does not depend on foreign-key constraints, making it
more scalable and robust across both graph and relational workloads.

PAGE 21

Experimental Results
Key Results:

(4) RSJoin uses much less memory than SJoin as input grows. For complex relational joins (e.g., Q10), SJoin’s
memory usage increases to tens of GB, while RSJoin remains low and stable.

PAGE 22

Conclusion

PAGE 23

(1) Introduce reservoir sampling with a predicate, and prove an instance-optimal running time of

(2) Present a dynamic index for acyclic joins supporting O(log N) amortized updates and O(log N)
sampling.

(3) Combine both to solve reservoir sampling over joins in

(4) Extend to cyclic joins with fractional hypertree width , achieving

References

PAGE 24

https://arxiv.org/abs/2404.03194

http://xhslink.com/o/47rnsirYAcF

https://arxiv.org/abs/2404.03194

