Paper Presentation:
Reservoir Sampling over Joins

Yuxin Kang

UNIVERSITY OF
%@ WATERLOO | mcuLrvor

Background

(1) Fully materializing the join can be extremely expensive in both time and
space. Uniform sample of the join results would suffice for many purposes, (eg.
answer analytical queries, train ML models.

(2) Real-world data arrives continuously, so the database is always growing.
We need a method that keeps a uniform random sample of the join results as
new tuples stream in, rather than sampling after everything is collected.

UNIVERSITY OF
W FACULTY OF
PAGE 2 @ WATERLOO | matHeMATICS

° (\
P rev I o u s R esu Its N: the total size of all input relations

|Q(R)|: the number of tuples in the join
result.

(1) Static Join Sampling:
Acyclic joins : Build an index in O(N), draw one sample in O(1). p*: the fractional edge cover number

- J

Cyclic joins: Build an index in O(N), draw one sample in O (|g{);)|>

(2) Reservoir Sampling (Classical):

The total number of elements in the stream is unknown; Each element can only be accessed once. We want each
element has an equal probability of being sampled.

N=15 For item number t: If t < k: store it directly in the sample.

@ @ @ @ @ @ @ @ @ @ @ @ @ If t > k:Draw i uniformly at random from {o, 1, ..., t-1}.

Ifi < k, replace sample[i] with the new item.

Otherwise, do nothing.

Each item has the probability:
k k+1 k42 N-2 N-1 k

% X X oo X X =
E+1 k+2 k+3 N-1 N N

el UNIVERSITY OF

214

PAGE 3 WATERLOO

I FACULTY OF
MATHEMATICS

Reservoir Sampling (Classical) , cont. The skip optimization:

N=15

©.0/0]0.0/010,0/0]0:6/0000)

Suppose we have N > 100,000 and k = 10. The probability that the t =
100,000 th item will be accepted is: 0.0001.

The probability of keeping the t-th item in the reservoir is p; = 5
So, Pr(skip exactly q items) = (1 —p;)?-pr —-> q ~Geom (pt)

The skip-based algorithm does not examine every item, so we can not
compute t.

So the algorithm maintains a value of w such that

. . L. w w- («')Y* where u' ~ Unif(0,1)
Without skip optimization: O(N)

o~ |

And w behave like w ~

N
With skip optimization: O (k log Z)

0 10000 20000 30000 40000 50000
t (real item:

(rea tms seen) 7Y OF
PAGE 4 @ WAT ERLOOQO | mardAemaTics

Reservoir Sampling (Classical) — the skip optimization, cont.

) The expectation of the acceptance of the t-th item is:
Algorithm:
0 i B
Initialize reservoir S with the first k items. . S — Z
Initialize w after filling the reservoir.
Repeat for the rest of the stream: The expected number of acceptances over the entire
Draw ¢ ~ Geom(w). stream:

Skip the next ¢ items in the stream.
Let x be the next item.

N N 1
Draw u ~ Unif(0, 1). Z Z Z k(Hy — Hk)
If u < w, then: t=k+ k+1

replace a random item in § with x; ~k (log N —log k)

draw u’ ~ Unif(0, 1) and update w + w - (u')}/*. N
\ / = klog(-k-) ;

Each skip and replacement both take O(1) time. So the
total expected time is :

N
O(k log ;)
UNIVERSITY OF FACULTY OF

PAGE 5 @ WATERLOOQO | MaTHEMATICS

[
H-I?r‘

Previous Results

(3) Attempts of Applying Reservoir Sampling to Joins: Zhao et al. investigated the problem
over acyclic joins. But their solution takes O(N"2) time in the worst case since their index needs
costly maintenance when new tuples arrive. This is essentially no better than a naive approach that
re-build the static join sampling index and re-draw the samples after each tuple has arrived (N *O(N)

= O(N"2)).

Motivation

Can we build a new reservoir sampling algorithm that
maintains a sample over joins with a near-linear running time?

UNIVERSITY OF
PAGE 6 %‘g@ WATERLOO | Hsurror

Reservoir Sampling with Predicate

Goal: We want to maintain a reservoir sample of size k only over items that satisfy a predicate 0. (Items
that satisfy O are called real items. Items that do not satisfy 0 are called dummy items.)

Key changes: The skip counts real items only. Dummy items do not count.

/ Repeat for the rest of the stream: \

Draw a skip length ¢ ~ Geom(w).

Skip the next ¢ items in the stream.

Let & be the next item,

If O(2) is {alse, then continue to the next iteration,

Draw u ~ Unif(0,1).

If u < w, then:

Choose a random position in S and replace its item with z.

\ Draw u' ~ Unif(0, 1) and update w « w - (u/)}/*, /

UNIVERSITY OF
PAGE 7 %‘g@ WATERLOO | Hsurror

Reservoir Sampling with Predicate

Why It Remains Correct:

We never adjust w when seeing dummy items, So,

t t
WR = = W -
. 7‘

k
where r is the counts of only the real items.

Each real item is accepted with probability . » ensuring every real item is equally likely to appear in

the reservoir.

UNIVERSITY OF
E@ FACULTY OF
PAGE 8 @ WATERLOO | matHeMATICS

Upper bound: Reservoir Sampling with Predicate

Let: ri= number of real items among the first (i—1) items

» Ifx;is not dummy, then: It cannot enter the reservoir; It does not update w. So, the cost is 0.
= Ifx;isreal, it could enter the reservoir, The probability that a real item enters the sample at this moment is:

Pr(real z; enters) =

Ti+1 / \

k) If every item is real, then r; =1 — 1:

So, expected work at step i is:

Cost; = min (1,
Ti+1

2 ‘i;é—()(klogi:_—r)
ZIN Y

N
Total Time = O min| 1,
(St

)

(If we haven't filled the reservoir yet, cost is 1; once full, it becomes

Sum over all items:

FACULTY OF

PAGE 9 %ﬂ‘ WAT E R LOO MATHEMATICS

Lower bound: Reservoir Sampling with Predicate

To output a uniform sample of size k over only the real items, a real item at position i must be given
probability & to enter the reservoir.

Tiv1

Therefore, any correct algorithm must stop and examine position i with probability at least min(l, =)
;i + 1

1

If it stops less often than this, it would miss some real items that should have been considered. Those items
would have too small a chance of entering the reservoir. The resulting sample would not be uniform

anymore.

4)

Q(zm o 1))

- J

UNIVERSITY OF
E@ FACULTY OF
PAGE 10 @ WATERLOO | matHeMATICS

Sampling over Acyclic Joins / R Ry \

Example:
X Y Y [Z
Goal: We want to build a data structure that allows us to: 2 |2 5 ' p
a. Incrementally update the join when new tuples arrive o |3 2 Q
b. Efficiently retrieve or skip join results later.
3 | R
(1) Two-table join R,(X,Y) < Ry(Y,2) y value | List Ry ay | List Rytay
2 ‘ {(a,2)} | {(2,P),(2,Q)}
{(b,3)}

3 (3, R)}
a.We maintain one bucket per value of Y \ /

b. Each tuple is stored exactly once in its bucket. So, it uses linear space: Z(|R1 ><1 b| 4+ | Ry > b|) = O(N)
b

UNIVERSITY OF
%@ FACULTY OF
PAGE 11 @ WATERLOO | matHeMATICS

R
Sampling over Acyclic Joins / \

Example:

(1) Two-table join —cont
y value | List Rypay | List Roay

c. If a new tuple t arrives: 2 {(a,2)} | {(2,P),(2,Q)}
3 {(b,3)} {(3,R)}

i = (0,2) ER]

AJ=H(¢e,2,P), (e:2,Q)}
d. Ift € R1, then new join results are:

AJ = R2=t.Y

because the lists are directly stored, accessing any joined result is O(1)

e Ift € Ry, insert it into bucket R:>=t.Y
e Ift € R, insert it into bucket R:>=t.Y

This is just an append — O(1) time.

UNIVERSITY OF
%@ FACULTY OF
PAGE 12 @ WATERLOO | matHeMATICS

Sampling over Acyclic Joins Ri(X,Y) M Ry(Y, Z) M R3(Z, W)

X|Y Y|z Z | W
215 1]1 = b5 S
4| 4 1 | 2 2| 3
° ° 5 5 | 4 2 4
(2) Line-3 Join 5|1 2 |3 aE
5 6 6) R 5
6 3 7 7 3 6
6 6 3 7
o T 4 4| 4
a. Index Rebuild: O(log N) 7|5 45
{4 6
Initialization:
RSITY OF

FACULTY OF

PAGE 13 ?’/égi WATERLOOQO | MaTHEMATICS

Sampling over Acyclic Joins

Ly
i=0 (1,1)

i=1 (1,2)(1,4)

i=1 [

i=2 (2,3)

(ii) After inserting (2,2) into Ry W UNIVERSITY OF | pacyity oF
N

@ WAT E R Loo MATHEMATICS

Sampling over Acyclic Joins

iii) After inserting (2,5) into R3

E\/Q/y\j Hme we st
® New tuple mto R

U

Tne (ount 3<{ SOwme (. IWCrdse

)

(br o) pairs w the MAe
MAy move T a Now buokes

PAGE 15

The Laygm cnt 15 at most & Go 4he nvunWb(
of buckets 15 ot man //03;/"_*1”

me{sw) each Cp,) moves gl nNag at most WjN

meé@f‘f o etv].

Sttt in deX mb"tno\ 0(W3N>

am ortized vime

% WATERLOO | Facuavor

Sampling over Acyclic Joins

b. Get a sample:

Step 1: Sample (a,b) from R1 (but not uniformly)
We prefer (a, b) pairs that lead to more join results. > O(log N)

Step 2 : Sample (b, ¢) from R ><b =) O(log N)

Binary search over cumulative weights

Step 3: Sample (c¢,d) uniformly from Rj3p<ic — 0(1)

[Total: O(log N)]

UNIVERSITY OF
E@ FACULTY OF
PAGE 16 @ WATERLOO | matHeMATICS

Reservoir Sampling over Joins

For acyclic:

(1) Update the join index
Cost per tuple: O(log N)
Total over N tuples: O(Nlog N)

(2)Possibly update the reservoir sample
Retrieve a random join result via the index: O(log N)
Number of times we perform a reservoir replacement: glog %

: : N
Total reservoir sampling cost: 0 (k log N log ?>

O(NlogN)| + |O(klog Nlog(N/k))|=|O(Nlog N + klog Nlog(N/k))

UNIVERSITY OF
%@ FACULTY OF
PAGE 17 @ WATERLOO | matHeMATICS

Reservoir Sampling over Joins

For cyclic :

Cyclic joins can create many more join results, much larger than N

By the Generalized Hypertree Decomposition:
Fractional Hypertree Width w(Q) tells us how cyclic the query is,

If w = 1, the join is acyclic.

If w > 1, the join is cyclic.

O(N“@ log N + klog Nlog(N/k))

The worst -case join size is O(N“(@)

So the index maintenance time become: O(N*(@ log N)

And the reservoir sampling part does not change.

UNIVERSITY OF
%@ FACULTY OF
PAGE 18 @ WATERLOO | matHeMATICS

*
Experimental Results

Dataset:

Graph dataset: Epinions;

Relational dataset: TPC-DS for decision-support joins ;
Relational dataset: LDBC-SNB for join-heavy complex queries.

Join queries tested:
Multiple acyclic joins (e.g., line-3, line-4, line-5, star joins).

Some cyclic joins to evaluate the extension that uses fractional hypertree width.

Baseline:
Zhao et al.

UNIVERSITY OF
W FACULTY OF
PAGE 19 @ WATERLOO | matHeMATICS

Experimental Results

Key Results:

RSJoin
100000 A ESS Sjoin

(1) The proposed (RSJoin) update time is stable and stays around 10 :Zzzz
microseconds, while the method from Zhao et al. (SJoin) update timeis

unpredictable and can jump to hundreds of milliseconds, which makes it 20000 -

unreliable in streaming environments. T 100 100 100 100 108 10°

Update time (ns)

Fig. 6. Update time distribution

[e)]
o

—— RSJoin
T —®— Sjoin
1 —®- Join size

w
o

(2) Although the number of join results grows rapidly as more data is
processed, RSJoin’s runtime increases almost linearly with the input,
while SJoin’s runtime grows roughly in proportion to the join size.

S
o

30 A

Running time (sec)

— T T T T T T T 0
10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Progress

Fig. 7. Running time v.s. input size and join size

FACULTY OF

PAGE 20 WATERLOO | MATHEMATICS

*
Experimental Results

Key Results:

(3) RSJoin achieves 4.6x—-147.6x speedups over prior methods and successfully completes all join queries,

1ncludin% cyclic ones where SJoin may fail. It also does not depend on foreign-key constraints, making it
more scalable and robust across both graph and relational workloads.
10° :
RSJoin RSJoin_opt 3 :
S 10° 1 SJ:in e Sjciin_c;ps §
g 10 N % % v / %Z;I;I; : / % = / E % \ E
ol NN § N NB N& Z%g% R é%%i
1 INONG NeNeNV INEOINEZ B O]
Line-3 Line-4 Line-5 Star-4 Star-5 Star-6 Dumbbell QX QY Q10

Fig. 5. Running time over different join queries

UNIVERSITY OF
%@ FACULTY OF
PAGE 21 @ WATERLOO | matHeMATICS

Experimental Results

Key Results:

(4) RSJoin uses much less memory than SJoin as input grows. For complex relational joins (e.g., Q10), SJoin’s
memory usage increases to tens of GB, while RSJoin remains low and stable.

10000 +- —&— RSJoin Line-3
) —@— Sjoin Line-3
2 8000 - RSJoin_opt Q10
]
o) SJoin_opt Q10
© 6000 A Join_op
>
>
o 4000 -
=
]
= 2000+~

0 2, —) = b —— ——y = =i ¢ — 2|

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%
Progress

Fig. 11. Memory usage v.s. input size
e UNIVERSITY OF
PAGE 22 WATERLOO | watHemarics

Conclusion

(1) Introduce reservoir sampling with a predicate, and prove an instance-optimal running time of
O(X,min(1,5;))

(2) Present a dynamic index for acyclic joins supporting O(log N) amortized updates and O(log N)
sampling.

(3) Combine both to solve reservoir sampling over joins in O(Nlog N + klog N log %).

(4) Extend to cyclic joins with fractional hypertree width , achieving O(N" log N + klog N log %)

UNIVERSITY OF
E@ FACULTY OF
PAGE 23 @ WATERLOO | matHeMATICS

References

https://arxiv.org/abs/2404.03194

http://xhslink.com/o/47rnsirYAcF

UNIVERSITY OF
%@ FACULTY OF
PAGE 24 @ WATERLOO | matHeMATICS

https://arxiv.org/abs/2404.03194

