
ON JOIN SAMPLING AND THE HARDNESS OF

COMBINATORIAL OUTPUT-SENSITIVE JOIN ALGORITHMS

Based on the work of Shiyuan Deng, Shangqi Lu, and Yufei Tao (PODS 2023)

Presented by Jinchao Huang

Available at https://doi.org/10.1145/3584372.3588666

1 / 28

https://doi.org/10.1145/3584372.3588666


INTRODUCTION & MOTIVATION

2 / 28



WHAT IS A JOIN OPERATION?

• A fundamental operation in relational databases.

• Combines tuples from a set Q of multiple relations based on common attribute values.

• Example: Suppose Q = {RAB,RBC,RCA}, then Join(Q) is the set of all combinations of
(a,b, c)where (a,b) is in RAB, (b, c) is in RBC, and (c,a) is in RCA.

RAB

A B

0 1

0 2

1 1

2 1

RBC

B C

1 1

1 2

2 0

2 1

RCA

C A

0 1

1 0

2 1

2 2

Join(Q)

A B

0 1

0 2

1 1

2 1

C

1

1

2

2

3 / 28



THE CHALLENGE: THE OUTPUT SIZE EXPLOSION

Joins are a primary performance bottleneck in database systems.

• The size of the join result, denoted OUT, can be massive.

• The theoretical upper bound on the output size is given by the AGM bound.

• In the worst case, for an input of size IN = ∑ ∣R∣:

OUT =Ω(INρ∗
)

where ρ∗ is the fractional edge covering number of the join query, a constant ≥ 1.

• For a simple 3-relation join, ρ∗ can be 1.5. For more complex joins, it can be much larger.

• Even just writing the output can take Ω(INρ∗
) time, which is prohibitive for large IN.

4 / 28



THE CHALLENGE: THE OUTPUT SIZE EXPLOSION

Joins are a primary performance bottleneck in database systems.

• The size of the join result, denoted OUT, can be massive.

• The theoretical upper bound on the output size is given by the AGM bound.

• In the worst case, for an input of size IN = ∑ ∣R∣:

OUT =Ω(INρ∗
)

where ρ∗ is the fractional edge covering number of the join query, a constant ≥ 1.

• For a simple 3-relation join, ρ∗ can be 1.5. For more complex joins, it can be much larger.

• Even just writing the output can take Ω(INρ∗
) time, which is prohibitive for large IN.

4 / 28



MOTIVATION: WHY SAMPLE FROM A JOIN?
Many applications do not need the full join result. A small set of random samples is often
sufficient.
• Approximate Query Processing: Estimate aggregates like SUM(sales) or
AVG(price) over a large join result quickly.

• Data Exploration & Visualization: Get a quick "feel" for the data distribution without
waiting for the full join.

• Machine Learning: Use samples as a training set for models.
• Fair Representative Reporting: Select a few diverse tuples to represent the overall

distribution.

The Join Sampling Problem
Design a data structure to support sampling query, which extracts a uniform sample from the
join result Join(Q). Additionally, the sample returned by each query must be independent.

5 / 28



MOTIVATION: WHY SAMPLE FROM A JOIN?
Many applications do not need the full join result. A small set of random samples is often
sufficient.
• Approximate Query Processing: Estimate aggregates like SUM(sales) or
AVG(price) over a large join result quickly.

• Data Exploration & Visualization: Get a quick "feel" for the data distribution without
waiting for the full join.

• Machine Learning: Use samples as a training set for models.
• Fair Representative Reporting: Select a few diverse tuples to represent the overall

distribution.

The Join Sampling Problem
Design a data structure to support sampling query, which extracts a uniform sample from the
join result Join(Q). Additionally, the sample returned by each query must be independent.

5 / 28



STATE OF THE ART VS. THE CONTRIBUTION
Let IN be the input size, OUT be the output size, and ρ∗ be the fractional edge covering number.
• State of the Art [Chen and Yi, ICDT’20]:

– After Õ(IN) preprocessing, a sample can be drawn in time:

Õ(INρ∗+1
/max{1, OUT})

– They posed it as an open problem to remove the extra factor of IN.
• The Result [Deng, Lu, and Tao, PODS’23]:

– An Õ(IN)-space fully dynamic data structure that supports tuple insertions/deletions
in Õ(1) time and draws a sample in time:

Õ(INρ∗
/max{1, OUT}) w.h.p.

– A justification for the O(INρ
∗

) running time of the worst-case optimal join evaluation
algorithms even when OUT << INρ∗ .

6 / 28



STATE OF THE ART VS. THE CONTRIBUTION
Let IN be the input size, OUT be the output size, and ρ∗ be the fractional edge covering number.
• State of the Art [Chen and Yi, ICDT’20]:

– After Õ(IN) preprocessing, a sample can be drawn in time:

Õ(INρ∗+1
/max{1, OUT})

– They posed it as an open problem to remove the extra factor of IN.
• The Result [Deng, Lu, and Tao, PODS’23]:

– An Õ(IN)-space fully dynamic data structure that supports tuple insertions/deletions
in Õ(1) time and draws a sample in time:

Õ(INρ∗
/max{1, OUT}) w.h.p.

– A justification for the O(INρ
∗

) running time of the worst-case optimal join evaluation
algorithms even when OUT << INρ∗ .

6 / 28



OUTLINE OF THE TALK

1. Preliminaries: The AGM Bound
– A powerful tool for analyzing the maximum size of a join result.

2. Core Technique: The AGM Split Theorem
– A geometric approach to recursively partition the data space.

3. The Sampling Algorithm
– How to use the split theorem to build a fast sampling algorithm.

4. Hardness Results & Conclusion
– Why the result is likely the best possible for combinatorial algorithms.

7 / 28



PRELIMINARIES: THE AGM BOUND

8 / 28



THE SCHEMA GRAPH AND FRACTIONAL EDGE COVERS
We can model a join query Q as a hypergraph G = (X,E).

• VerticesX: The set of
all attributes in the join
(e.g., A, B, C).

• Hyperedges E: The
schema of each input
relation (e.g., {A,B},
{B,C},{C,A}).

A B

C

A fractional edge cover assigns a weightW(e) ≥ 0 to each edge e ∈ E such that for every vertex
X, the sum of weights of edges covering X is at least 1.

9 / 28



THE SCHEMA GRAPH AND FRACTIONAL EDGE COVERS
We can model a join query Q as a hypergraph G = (X,E).

• VerticesX: The set of
all attributes in the join
(e.g., A, B, C).

• Hyperedges E: The
schema of each input
relation (e.g., {A,B},
{B,C},{C,A}).

A B

C

A fractional edge cover assigns a weightW(e) ≥ 0 to each edge e ∈ E such that for every vertex
X, the sum of weights of edges covering X is at least 1.

9 / 28



THE AGM BOUND
Theorem (AGM Bound, Atserias et al. 2008)
For any fractional edge cover W, the size of the join result is bounded by:

∣Join(Q)∣ ≤ AGMW(Q) := ∏
e∈E
∣Re∣W(e)

where Re is the relation corresponding to edge e.

• This gives an instance-specific upper bound on the output size.
• To get a bound in terms of the total input size IN, we can minimize the total weight∑W(e).
• Let ρ∗ =minW∑e∈EW(e) be the fractional edge covering number.

Corollary

∣Join(Q)∣ ≤ INρ
∗

. (Remark: This bound is known to be tight in the worst case.)
10 / 28



THE AGM BOUND
Theorem (AGM Bound, Atserias et al. 2008)
For any fractional edge cover W, the size of the join result is bounded by:

∣Join(Q)∣ ≤ AGMW(Q) := ∏
e∈E
∣Re∣W(e)

where Re is the relation corresponding to edge e.

• This gives an instance-specific upper bound on the output size.
• To get a bound in terms of the total input size IN, we can minimize the total weight∑W(e).
• Let ρ∗ =minW∑e∈EW(e) be the fractional edge covering number.

Corollary

∣Join(Q)∣ ≤ INρ
∗

. (Remark: This bound is known to be tight in the worst case.)
10 / 28



EXAMPLE: AGM BOUND FOR A TRIANGLE JOIN
Consider the triangle join RAB & RBC & RAC.

• We need to find weightswAB,wBC,wAC such that:
– For attribute A:wAB +wAC ≥ 1
– For attribute B:wAB +wBC ≥ 1
– For attribute C:wBC +wAC ≥ 1

• To minimize the sumwAB +wBC +wAC, we can set:
wAB = wBC = wAC = 1/2

• The fractional edge covering number is
ρ∗ = 1/2 + 1/2 + 1/2 = 1.5.

• The AGM bound is ∣Join(Q)∣ ≤ ∣RAB∣0.5
∣RBC∣0.5

∣RAC∣0.5.

• The worst-case output size is OUT = O(IN1.5
).

A B

C

1/2

1/2

1/2

11 / 28



CORE TECHNIQUE: THE AGM SPLIT THEOREM

12 / 28



A GEOMETRIC VIEWPOINT & BOX-INDUCED SUB-JOINS
• We view each result tuple as a point in d-dimensional spaceNd.
• A box B is a d-dimensional rectangle that acts as a filter.
• The box induces a sub-join Q(B) by keeping only the input tuples that fall within the box.

Example: Box-Induced Sub-Join
Consider a 3D box for attributes (A, B, C): B = [0, 1] × [1, 1] × [1, 2].

RAB(B)

A B

0 1

0 2

1 1

2 1

RBC(B)

B C

1 1

1 2

2 0

2 1

RCA(B)

C A

0 1

1 0

2 1

2 2

Join(Q(B))

A B

0 1

0 2

1 1

2 1

C

1

1

2

2

• We can still compute the AGM bound for sub-joins, which we denote as
AGMW(B) := AGMW(Q(B)). 13 / 28



THE AGM SPLIT THEOREM
Theorem (AGM Split Theorem)
Fix an arbitrary fractional edge cover W, and assume the availability of count and median oracles.
Given any box B with AGMW(B) ≥ 2, we can find in Õ(1) time a set C of at most 2d + 1 smaller
boxes having these nice properties:

1. Partition: The boxes in C are disjoint and their union is B. Formally, B = ⊔B′∈C B′.

2. Shrink: For each B′ ∈ C, AGMW(B′) ≤ 1
2AGMW(B).

3. Conserve:∑B′∈C AGMW(B′) ≤ AGMW(B).

14 / 28



THE SPLITTING STRATEGY
The split proceeds recursively, one dimension at a time, based on a lemma guaranteeing that
any partition created by slicing a box along a single axis satisfies the ‘Conserve’ property (3).

• Step 1: Find a split point. Find the z1 in the domain of X1 that creates a "balanced"
partition.

– We choose the smallest z1 such that the "left" part of the box has an AGM bound
≤

1
2 AGMW(B). As a result, the "right" part also has an AGM bound ≤ 1

2 AGMW(B).

• Step 2: Partition and Recurse. This splits B into three pieces:
– Bleft and Bright: These are guaranteed to be "small" and are added to C.
– Bmid: A thin "slice" where the first attribute is fixed to z1. We recursively apply the

same process to this slice using the next attribute, X2.

• This process is very fast, taking Õ(d) = Õ(1) time per split.

15 / 28



THE SPLITTING STRATEGY
The split proceeds recursively, one dimension at a time, based on a lemma guaranteeing that
any partition created by slicing a box along a single axis satisfies the ‘Conserve’ property (3).

• Step 1: Find a split point. Find the z1 in the domain of X1 that creates a "balanced"
partition.

– We choose the smallest z1 such that the "left" part of the box has an AGM bound
≤

1
2 AGMW(B). As a result, the "right" part also has an AGM bound ≤ 1

2 AGMW(B).

• Step 2: Partition and Recurse. This splits B into three pieces:
– Bleft and Bright: These are guaranteed to be "small" and are added to C.
– Bmid: A thin "slice" where the first attribute is fixed to z1. We recursively apply the

same process to this slice using the next attribute, X2.

• This process is very fast, taking Õ(d) = Õ(1) time per split.

15 / 28



THE SPLITTING STRATEGY
The split proceeds recursively, one dimension at a time, based on a lemma guaranteeing that
any partition created by slicing a box along a single axis satisfies the ‘Conserve’ property (3).

• Step 1: Find a split point. Find the z1 in the domain of X1 that creates a "balanced"
partition.

– We choose the smallest z1 such that the "left" part of the box has an AGM bound
≤

1
2 AGMW(B). As a result, the "right" part also has an AGM bound ≤ 1

2 AGMW(B).

• Step 2: Partition and Recurse. This splits B into three pieces:
– Bleft and Bright: These are guaranteed to be "small" and are added to C.
– Bmid: A thin "slice" where the first attribute is fixed to z1. We recursively apply the

same process to this slice using the next attribute, X2.

• This process is very fast, taking Õ(d) = Õ(1) time per split.

15 / 28



VISUALIZING THE SPLIT (2D EXAMPLE)

1. Start with Box B.

2. Split on X1 at z1.

– Bleft and Bright are final.
– Bmid is the puple slice.

3. Recurse on Bmid.

4. Split Bmid on X2 at z2.

– This creates Bup, Bdown, and the final
point Bmid.

Bleft Bright

Bup

Bmid

Bdown

B

1100 500 210 200

50

50

100

The final set of children for B would be {Bleft,Bright,Bup,Bdown,Bmid}.
16 / 28



THE SAMPLING ALGORITHM

17 / 28



THE CONCEPTUAL AGM SPLIT TREE
We can use the AGM Split Theorem to get a conceptual decomposition tree.

• Root: The entire
attribute spaceNd.

• Children: An
internal box B is
split into its
children using the
theorem.

• Leaves: Boxes with
an AGM bound less
than 2.

1100

500 50 50 100 200

join result tuple empty box

18 / 28



THE CONCEPTUAL AGM SPLIT TREE (CONT.)
1100

500 50 50 100 200

join result tuple empty box

• The height of this tree is O(log IN) because the AGM bound is halved at each level.
• We cannot afford to build this tree explicitly; it could have Ω(INρ∗

) leaves.
19 / 28



THE ALGORITHM IDEA: A RANDOM WALK ON A CONCEPTUAL TREE
• The AGM Split Theorem defines a conceptual AGM Split Tree.
• We cannot build this tree explicitly; it could have Ω(INρ∗

) leaves.
• Solution: We don’t build the tree. Instead, we generate a single random path on the fly.

1100

500 50 50 100 200

join result tuple empty box

20 / 28



STEP 1: TRAVERSING THE TREE
At each internal node, we perform a weighted random choice to pick the next box in the path.

1. Split the current box B into children
{B′1,B′2, . . .}.

2. Assign each child B′j a probability:

Pr[choose B′j] =
AGMW(B′j)
AGMW(B)

3. Randomly select one child based on these
weights to continue the walk.

4. There’s a chance of "failure" if
∑AGMW(B′j) < AGMW(B).

1100

500 50 50 100 200

Pr=500/1100

Pr=50/1100 Pr=50/1100
Pr=100/1100

Pr=200/1100Fail!

Pr=200/1100

This process repeats until a leaf node is reached. Each step takes Õ(1) time.
21 / 28



STEP 2: ARRIVING AT A LEAF
A leaf is a box Bleaf with AGMW(Bleaf ) < 2. It contains at most one join result tuple.

1. Compute the sub-join for Bleaf .

2. If it’s empty, the attempt fails.

3. If it contains a single tuple u:
– We perform one final probabilistic

check.
– Return uwith probability

1/AGMW(Bleaf ).
– Otherwise, the attempt fails.

Bleaf

NOYes
Empty?

Fail!
Return with prob.

1/AGM(Bleaf)

This final step ensures that every tuple in the entire join result has the exact same probability of
being selected.

22 / 28



ANALYSIS OF THE ALGORITHM
• Correctness: The probability of the random walk reaching a specific leaf box Bleaf is

AGMW(Bleaf )/AGMW(Q). The final step cancels out the AGMW(Bleaf ) term.
– This means any given result tuple u is returned with probability exactly 1/AGMW(Q).

All result tuples are equally likely!

• Success Probability: The total probability of returning any tuple is:

∑

u∈Join(Q)
Pr[return u] = ∑

u∈Join(Q)
1

AGMW(Q)
=

OUT
AGMW(Q)

• Running Time:
– A single run of the algorithm takes Õ(1) time.
– We expect to run it AGMW(Q)/OUT times to get one sample.
– By choosing the optimalW, the total time to get a sample is Õ(INρ∗

/OUT)w.h.p.
23 / 28



HARDNESS RESULTS & CONCLUSION

24 / 28



HOW GOOD IS THE RESULT?

We achieved a sampling time of Õ(INρ∗
/OUT).

• When OUT =Ω(INρ∗
), the time is Õ(1), which is clearly optimal.

• But what if OUT is very small, e.g., OUT = 1? The time is Õ(INρ∗
). Can we do better?

The Hardness Question

Can a combinatorial algorithm achieve sampling time Õ(INρ∗−ϵ
/OUT) for some constant ϵ > 0,

at least when 1 ≤ OUT ≤ INϵ?

• A combinatorial algorithm is one that does not use techniques like fast matrix
multiplication. All known practical join algorithms are combinatorial.

25 / 28



HOW GOOD IS THE RESULT?

We achieved a sampling time of Õ(INρ∗
/OUT).

• When OUT =Ω(INρ∗
), the time is Õ(1), which is clearly optimal.

• But what if OUT is very small, e.g., OUT = 1? The time is Õ(INρ∗
). Can we do better?

The Hardness Question

Can a combinatorial algorithm achieve sampling time Õ(INρ∗−ϵ
/OUT) for some constant ϵ > 0,

at least when 1 ≤ OUT ≤ INϵ?

• A combinatorial algorithm is one that does not use techniques like fast matrix
multiplication. All known practical join algorithms are combinatorial.

25 / 28



CONNECTION TO THE COMBINATORIAL K-CLIQUE HYPOTHESIS
Definition (Combinatorial k-Clique Hypothesis)

No combinatorial algorithm can detect if an n-vertex graph has a k-clique in O(nk−ϵ) time for
any constant ϵ > 0. This is a widely believed conjecture in fine-grained complexity.

We show a chain of reductions:
A faster join sampling algorithm

when OUT is small

A faster full join algorithm
when OUT is small

The join sampling algorithm
in this paper

②

A faster algorithm for join emptiness detection

A combinatorial algorithm that breaks the k-clique hypothesis!

①

③

26 / 28



CONCLUSION
• We presented a dynamic data structure for the join sampling problem.

– Achieves a sampling time of Õ(INρ∗
/OUT)w.h.p.

– Supports dynamic updates in Õ(1) time.
• The core technical contribution is the AGM Split Theorem, which enables a geometric,

recursive decomposition of the problem space.
• We established a hardness result, showing that the sampling algorithm and the

worst-case optimal join algorithm are likely the best possible for the class of combinatorial
algorithms, by linking further improvements to the combinatorial k-clique hypothesis.

• This work not only solves a long-standing open problem but also deepens our
understanding of the fundamental limits of join computation.

Thank you!
27 / 28



28 / 28


