on JOIN SAMPLING anotHe HARDNESS of
COMBINATORIAL OUTPUT-SENSITIVE JOIN ALGORITHMS

Based on the work of Shiyuan Deng, Shangqi Lu, and Yufei Tao (PODS 2023)

Presented by Jinchao Huang

https://doi.org/10.1145/3584372.3588666

INTRODUCTION & MOTIVATION

WHAT IS A JOIN OPERATION?

A fundamental operation in relational databases.
Combines tuples from a set Q of multiple relations based on common attribute values.

Example: Suppose Q = {Rag, Rgc,Rca}, then Join(Q) is the set of all combinations of
(a,b,c) where (a,b) isin Rag, (b,c) isin Rgc,and (c,a) isin R¢a.

Rap Rpc Rea Join(Q)
A B B C C A A B C
0 1 1 1 0 1 0 1 1
0 2 1 2 1 0 0 2 1
1 1 2 0 2 1 1 1 2
2 1 2 1 2 2 2 1 2

THE CHALLENGE: THE OUTPUT SIZE EXPLOSION

Joins are a primary performance bottleneck in database systems.
The size of the join result, denoted OUT, can be massive.

The theoretical upper bound on the output size is given by the

THE CHALLENGE: THE OUTPUT SIZE EXPLOSION

Joins are a primary performance bottleneck in database systems.
The size of the join result, denoted OUT, can be massive.
The theoretical upper bound on the output size is given by the AGM bound.

In the worst case, for an input of size IN = " |R):
OUT = Q(IN®")

where p* is the fractional edge covering number of the join query, a constant > 1.
For a simple 3-relation join, p* can be 1.5. For more complex joins, it can be much larger.

Even just writing the output can take Q(INp*) time, which is prohibitive for large IN.

MOTIVATION: WHY SAMPLE FROM A JOIN?

Many applications do not need the full join result. A small set of random samples is often
sufficient.
Approximate Query Processing: Estimate aggregates like SUM(sales) or
AVG (price) overa large join result quickly.
Data Exploration & Visualization: Get a quick "feel" for the data distribution without
waiting for the full join.
Machine Learning: Use samples as a training set for models.

Fair Representative Reporting: Select a few diverse tuples to represent the overall
distribution.

MOTIVATION: WHY SAMPLE FROM A JOIN?

Many applications do not need the full join result. A small set of random samples is often
sufficient.

Approximate Query Processing: Estimate aggregates like SUM(sales) or

AVG (price) overa large join result quickly.

Data Exploration & Visualization: Get a quick "feel" for the data distribution without
waiting for the full join.

Machine Learning: Use samples as a training set for models.

Fair Representative Reporting: Select a few diverse tuples to represent the overall
distribution.
The Join Sampling Problem

Design a data structure to support sampling query, which extracts a uniform sample from the
join result Join(Q). Additionally, the sample returned by each query must be independent.

STATE OF THE ART VS. THE CONTRIBUTION

Let IN be the input size, OUT be the output size, and p* be the fractional edge covering number.
State of the Art [Chen and Vi, ICDT’20]:

After O(IN) preprocessing, a sample can be drawn in time:
O(IN® 1/ max{1,0UT})

They posed it as an open problem to remove the extra factor of IN.

STATE OF THE ART VS. THE CONTRIBUTION
Let IN be the input size, OUT be the output size, and p* be the fractional edge covering number.
State of the Art [Chen and Vi, ICDT’20]:
After O(IN) preprocessing, a sample can be drawn in time:
O(IN® "1/ max{1,0UT})

They posed it as an open problem to remove the extra factor of IN.

The Result [Deng, Lu, and Tao, PODS’23]:
An O(IN)-space fully dynamic data structure that supports tuple insertions/deletions
in O(1) time and draws a sample in time:

O(IN® /max{1,0UT}) w.h.p.

Ajustification for the O(/Np*) running time of the worst-case optimal join evaluation
algorithms even when OUT << INP".

OUTLINE OF THE TALK

Preliminaries: The AGM Bound

A powerful tool for analyzing the maximum size of a join result.
Core Technique: The AGM Split Theorem

A geometric approach to recursively partition the data space.
The Sampling Algorithm

How to use the split theorem to build a fast sampling algorithm.
Hardness Results & Conclusion

Why the result is likely the best possible for combinatorial algorithms.

PRELIMINARIES: THE AGM BOUND

THE SCHEMA GRAPH AND FRACTIONAL EDGE COVERS

We can model a join query Q as a hypergraph G = (X,).

Vertices X: The set of
all attributes in the join ‘
Q

/]
(e.g.,A,B,C). _ﬂ’
Hyperedges &: The
schema of each input

relation (e.g., {A, B}, 6
{B,C}{C,A}). <)

THE SCHEMA GRAPH AND FRACTIONAL EDGE COVERS

We can model a join query Q as a hypergraph G = (X,).

Vertices X: The set of

all attributes in the join ‘)
(e.g., A, B, C). ‘_ﬂ’
Hyperedges &: The

schema of each input

relation (e.g., {A, B}, 6
{B,C}{C,A}). <)

A fractional edge cover assigns a weight IW/(e) > 0 to each edge e € € such that for every vertex
X, the sum of weights of edges covering X is at least 1.

THE AGM BOUND

Theorem (AGM Bound, Atserias et al. 2008)
For any fractional edge cover W, the size of the join result is bounded by:

[Join(Q)| < AGMw (Q) = [T IRe|"(®)
eet
where Re is the relation corresponding to edge e.
This gives an instance-specific upper bound on the output size.

To get a bound in terms of the total input size IN, we can minimize the total weight 3" W (e).

Let p* = miny Yoce W(e) be the fractional edge covering number.

THE AGM BOUND

Theorem (AGM Bound, Atserias et al. 2008)
For any fractional edge cover W, the size of the join result is bounded by:

[Join(Q)| < AGMy (Q) := [T IRe|"(®)

ecé

where Re is the relation corresponding to edge e.

This gives an instance-specific upper bound on the output size.
To get a bound in terms of the total input size IN, we can minimize the total weight 3" W (e).
Let p* = miny Yoce W(e) be the fractional edge covering number.

Corollary

|[Join(Q)| < IN®" . (Remark: This bound is known to be tight in the worst case.)

EXAMPLE: AGM BOUND FOR A TRIANGLE JOIN

Consider the triangle join Rgag % Rge % Ryc.
We need to find weights wag, wgc, wac such that:

For attribute A: wag + wac > 1
For attribute B: wyg + wge > 1
For attribute C: wge + wyc > 1

To minimize the sum wyg + Wpc + Wxc, We can set:
WaB = WBc = Wyc = 1/2

The fractional edge covering number is
p*=1/2+1/2+1/2=

The AGM bound is |[Join(Q)| < |Rag|®°|Rac|®>|Rac|%.
The worst-case output size is OUT = O(IN*~).

CORE TECHNIQUE: THE AGM SPLIT THEOREM

A GEOMETRIC VIEWPOINT & BOX-INDUCED SUB-JOINS

We view each result tuple as a point in d-dimensional space NY,
Abox Bis a d-dimensional rectangle that acts as a filter.
The box induces a sub-join Q(B) by keeping only the input tuples that fall within the box.

Example: Box-Induced Sub-Join
Consider a 3D box for attributes (A, B, C): B=[0,1] x [1,1] x [1,2].

RAB(B) Rpc(B) Rea(B) Join(Q(B))
A B B € C A A B C
0 1 1 1 01— 0 1 1
—-0——2— 1 2 1 0 6 2 4
1 1 20— 2 1 | 1 2
22— 22— 2——2- 2 t 2

We can still compute the AGM bound for sub-joins, which we denote as
AGMy, (B) := AGMy,(Q(B)).

THE AGM SPLIT THEOREM
Theorem (AGM Split Theorem)

Fix an arbitrary fractional edge cover W, and assume the availability of count and median oracles.

Given any box B with AGMy(B) > 2, we can find in O(1) time a set € of at most 2d + 1 smaller
boxes having these nice properties:

Partition: The boxes in C are disjoint and their union is B. Formally, B = | |g/cc B'.
Shrink: For each B' € €, AGMy/(B') < 3AGMyy(B).
Conserve: Y gr.c AGMy (B') < AGMy(B).

=

THE SPLITTING STRATEGY

The split proceeds recursively, one dimension at a time, based on a lemma guaranteeing that
any partition created by slicing a box along a single axis satisfies the ‘Conserve’ property (3).

THE SPLITTING STRATEGY

The split proceeds recursively, one dimension at a time, based on a lemma guaranteeing that
any partition created by slicing a box along a single axis satisfies the ‘Conserve’ property (3).

Step 1: Find a split point. Find the z; in the domain of X that creates a "balanced"
partition.

We choose 77 such that the "left" part of the box has an AGM bound
< %AGMW(B). As a result, the "right" part also has an AGM bound < %AGMW(B).

THE SPLITTING STRATEGY

The split proceeds recursively, one dimension at a time, based on a lemma guaranteeing that
any partition created by slicing a box along a single axis satisfies the ‘Conserve’ property (3).
Step 1: Find a split point. Find the z; in the domain of X that creates a "balanced"
partition.
We choose 77 such that the "left" part of the box has an AGM bound
< %AGMW(B). As a result, the "right" part also has an AGM bound < %AGMW(B).
Step 2: Partition and Recurse. This splits B into three pieces:

Bieft and Byight: These are guaranteed to be "small" and are added to C.
Bmid: A thin "slice" where the first attribute is fixed to z;. We
to this slice using the next attribute, X5.

This process is very fast, taking 0(d) = 0(1) time per split.

VISUALIZING THE SPLIT (2D EXAMPLE)

Start with Box B.
Spliton X; at z;.
Bleft and Byjgp are final.
Bpid is the puple slice.
Recurse on B,,;;.
Split B,,;; on X; at z,.
This creates Byp, Byoyn, and the final

point Bp,;g-

B > Bieft

1100 500

Bij ght

210

200

50 [B4 e

50 | Bmid

1OOM

The final set of children for B would be {Byeft, Bright: Bups Bdowns Bmid }-

THE SAMPLING ALGORITHM

THE CONCEPTUAL AGM SPLIT TREE

We can use the AGM Split Theorem to get a conceptual decomposition tree.

Root: The entire

attribute space N, 1o

Children: An

internal box B is T
splitinto its 500 50 50 100 200
children using the TN TN o
theorem.

P70 SN PN

Leaves: Boxes with
an AGM bound less

join result tuple empty box

J'JXJXJXXXJXQ/JXQ/Q/XJXJJXJ‘-VX

than 2.

THE CONCEPTUAL AGM SPLIT TREE (CONT.)

1100 \

-
500 50 D 50 100 D 200
AR TR
PSS
AR AR

join result tuple empty box

J”JXJXJXXX:/XJJXJJXJXJJXJMX

The height of this tree is O(log IN) because the AGM bound is halved at each level.
We cannot afford to build this tree explicitly; it could have Q(INp*) leaves.

THE ALGORITHM IDEA: A RANDOM WALK ON A CONCEPTUAL TREE

The AGM Split Theorem defines a conceptual AGM Split Tree.
We cannot build this tree explicitly; it could have Q(INP*) leaves.
Solution: We don’t build the tree. Instead, we generate a single random path on the fly.

1100

T

500 50 50 100 200
A S N
AN
PSS / PSS
join result tuple D empty box

FIRIXRIAXKSI KL SRS YIRS XS I KL K

STEP 1: TRAVERSING THE TREE

At each internal node, we perform a weighted random choice to pick the next box in the path.

Split the current box B into children
{B},B5,...}.
Assign each child B} a probability:

1100

AGMy, (B%)
Pr[choose B/] = — L~
I AGMy(B)
500 50 D 5‘6 100 200
Randomly select one child based on these Pr=s0/1100 Pr=50/1100

Pr=100/1100

weights to continue the walk.

There’s a chance of "failure" if Pr=500/1100 Pr=200/1100
ZAGMW(B}) < AGMy/(B). Pr=200/1100
This process repeats until a leaf node is reached. Each step takes O(1) time.

STEP 2: ARRIVING AT A LEAF
Aleafis a box Bjggr With AGMyy (Bjeqf) < 2. It contains at most one join result tuple.

Compute the sub-join for Bjgyf.

If it’s empty, the attempt fails. w

If it contains a single tuple u: []
We perform one final probabilistic

heck. Empty?

chec Yes ey NO
Return u with probability l
l/AGMW(B[eaf)' @ Return with prob.
Otherwise, the attempt fails. 1/AGM(Bycap)

This final step ensures that every tuple in the entire join result has the exact same probability of
being selected.

ANALYSIS OF THE ALGORITHM

Correctness: The probability of the random walk reaching a specific leaf box Bjg4f is
AGMyy (Bjaaf) /AGMy (Q). The final step cancels out the AGMyy (Bjgqf) term.

This means any given result tuple u is returned with probability exactly 1/AGMy,(Q).
All result tuples are equally likely!

Success Probability: The total probability of returning any tuple is:
1 ouT

Prlreturnu] = =
ueJoZir;(Q) ueJoZir%(Q) AGMy (Q) AGMy(Q)

Running Time:
A single run of the algorithm takes O(1) time.
We expect to run it AGMy, (Q)/OUT times to get one sample.
By choosing the optimal W, the total time to get a sampleis (N)(INp*/OUT) w.h.p.

HARDNESS RESULTS & CONCLUSION

HOW GOOD IS THE RESULT?

We achieved a sampling time of (N)(INp*/OUT).
When OUT = Q(INP*), the time is O(1), which is clearly optimal.
But what if OUT is very small, e.g., OUT = 1? The time is (N)(IN"*). Can we do better?

HOW GOOD IS THE RESULT?

We achieved a sampling time of CNJ(INp*/OUT).
When OUT = Q(INP*), the time is O(1), which is clearly optimal.
But what if OUT is very small, e.g., OUT = 1? The time is (N)(IN"*). Can we do better?

The Hardness Question

Can a combinatorial algorithm achieve sampling time é(le*‘e/OUT) for some constant € > 0,
at least when 1 < OUT < IN€?

A combinatorial algorithm is one that does not use techniques like fast matrix
multiplication. All known practical join algorithms are combinatorial.

CONNECTION TO THE COMBINATORIAL K-CLIQUE HYPOTHESIS

Definition (Combinatorial k-Clique Hypothesis)

No combinatorial algorithm can detect if an n-vertex graph has a k-clique in O(nk=€) time for
any constant € > 0. This is a widely believed conjecture in fine-grained complexity.

We show a chain of reductions:

A faster join sampling algorithm
when OUT is small
® The join sampling algorithm
in this paper
A faster full join algorithm
when OUT is small

|

@
A faster algorithm for join emptiness detection
|@

A combinatorial algorithm that breaks the k-clique hypothesis!

CONCLUSION

We presented a dynamic data structure for the join sampling problem.

Achieves a sampling time of é(INp*/OUT) w.h.p.

Supports dynamic updates in O(1) time.
The core technical contribution is the AGM Split Theorem, which enables a geometric,
recursive decomposition of the problem space.
We established a hardness result, showing that the sampling algorithm and the
worst-case optimal join algorithm are likely the best possible for the class of combinatorial
algorithms, by linking further improvements to the combinatorial k-clique hypothesis.
This work not only solves a long-standing open problem but also deepens our
understanding of the fundamental limits of join computation.

Thank you!

28/28

