CONJUNCTIVE QUERIES WITH COMPARISONS

Qichen Wang
Nanyang Technological University
CS 848

Conjunctive Queries

$$ans(\bar{y}) \leftarrow R_1(\bar{x}_1), \dots, R_n(\bar{x}_n)$$

- Relations: R_1, \dots, R_n
- Attributes/Variables: $\bar{x}_1, \dots, \bar{x}_n$
- Output attributes: \bar{y}
- Full Query: $\bar{y} = \bar{x}_1 \cup \cdots \cup \bar{x}_n$, the head " $ans(\bar{y}) \leftarrow$ " can be omitted
- Non-full Query: $\bar{y} \subset \bar{x}_1 \cup \cdots \cup \bar{x}_n$

Conjunctive Query and SQL

■ A conjunctive query is equivalent to a (Nature) Join-Project SQL query.

$$ans(\bar{y}) \leftarrow R_1(\bar{x}_1), \dots, R_n(\bar{x}_n)$$

SELECT DISTINCT \overline{y} FROM R_1 NATURAL JOIN R_2 ... NATURAL JOIN R_n

If the query is full:

$$R_1(\bar{x}_1), \dots, R_n(\bar{x}_n)$$

SELECT * FROM R_1 NATURAL JOIN R_2 ... NATURAL JOIN R_n

Conjunctive Queries with Selection

Another important relational operator is selection (predicate)

$$ans(\bar{y}) \leftarrow \psi_c(R_1(\bar{x}_1), ..., R_n(\bar{x}_n))$$

- Predicates: *C*
- We distinguish the predicates into two types:
 - Type-1: involve attributes from one relation R_1 , $x_1 < 5$
 - Type-2: involve attributes from two or more relations $R_1.x_1 < R_2.x_3$
- Type-1 predicate can be checked by scanning the relation in linear time (or using an index if available);
- Note: Equalities can be rewritten into the CQ

Definition: CQC

We consider type-2 filters in the form of

$$C \coloneqq f(\bar{x}_a) \le g(\bar{x}_b)$$

- f, g: a function mapping $\operatorname{\boldsymbol{dom}}(\bar{x}_a)$ (resp. $\operatorname{\boldsymbol{dom}}(\bar{x}_b)$) to $\mathbb R$
- Assume \bar{x}_a (resp. \bar{x}_b) are the attributes for relation R_a (resp. R_b)
- We say the comparison C incident to R_a and R_b

CQC and **SQL**

■ A CQC is equivalent to a Select-Project-Join(SPJ) SQL query.

$$ans(\bar{y}) \leftarrow \psi_c(R_1(\bar{x}_1), \dots, R_n(\bar{x}_n))$$

SELECT DISTINCT \overline{y} FROM R_1 NATURAL JOIN R_2 ... NATURAL JOIN R_n WHERE C

If the query is full:

$$\psi_c(R_1(\bar{x}_1),\dots,R_n(\bar{x}_n))$$

SELECT * FROM R_1 NATURAL JOIN R_2 ... NATURAL JOIN R_n WHERE C

Acyclicity of Conjunctive Queries

- A CQ can be evaluated in polynomial time (data complexity)
- A class of full conjunctive queries can be solved in linear time in data complexity, i.e., O(N + OUT) time.
 - N: size of the database, OUT: size of the query result |q(D)|

acyclic conjunctive queries

The acyclicity of a CQ q is defined by the α -acyclicity of its relation hypergraph

CQ as a Hypergraph

- Relational Hypergraph for query q: H(q) = (V, E)
- *V*: All attributes in query *q*
- E: All relations in query q

$$ans(x_{1}, x_{2}, x_{3}, x_{4}, x_{7}) \leftarrow R_{1}(x_{1}, x_{2}),$$

$$R_{2}(x_{2}, x_{3}, x_{7}),$$

$$R_{3}(x_{2}, x_{3}, x_{4}, x_{5}),$$

$$R_{4}(x_{3}, x_{6}),$$

$$R_{5}(x_{3}, x_{8}),$$

$$C_{1}: x_{1} - x_{2} \leq x_{3}x_{4} + 2,$$

$$C_{2}: \min\{2x_{2}, x_{7}\} \leq x_{6},$$

$$C_{3}: x_{2} \leq x_{8}$$

α -Acyclicity

- lacktriangle A query is α -acyclic if it has a join tree.
- Join tree: an undirected tree whose nodes are in one-to-one correspondence with the edges(relations) in E such that for any vertex(attribute) $v \in V$, all nodes containing v form a connected subtree.

Yannakakis Algorithm [Yannakakis. '81]

 \blacksquare A linear-time algorithm for α -acyclic full queries.

Algorithm:

- Semijoin Phase: O(N)
 - Bottom-up: from leaves to root, semijoin each relation with each of its children
 - Top-down: from root to leaves, semijoin each relation with its parent
- Join Phase: in arbitrary order O(OUT)

Bottom-up:

$$R_3 \coloneqq R_3 \ltimes R_4$$
 $R_3 \coloneqq R_3 \ltimes R_2$
 $R_2 \coloneqq R_2 \ltimes R_3$ $R_4 \coloneqq R_4 \ltimes R_3$
 $R_2 \coloneqq R_2 \ltimes R_1$ $R_1 \coloneqq R_1 \ltimes R_2$
 $R_2 \coloneqq R_2 \ltimes R_1$ $R_3 \coloneqq R_4 \ltimes R_3$

Top-down:

$$R_{3} \coloneqq R_{3} \ltimes R_{4} \qquad R_{3} \coloneqq R_{3} \ltimes R_{2}$$

$$R_{2} \coloneqq R_{2} \ltimes R_{3} \qquad R_{4} \coloneqq R_{4} \ltimes R_{3}$$

$$R_{2} \coloneqq R_{2} \ltimes R_{1} \qquad R_{1} \coloneqq R_{1} \ltimes R_{2}$$

$$R_{2} \coloneqq R_{2} \ltimes R_{5} \qquad R_{5} \coloneqq R_{5} \ltimes R_{2}$$

Type-2 Predicate

The query

$$R_1(x_1,x_2), R_2(x_2,x_3), C_1: x_1 \leq x_2, C_2: x_1 \geq x_3$$
 has two comparisons, where $x_1 \leq x_2$ is a type-1 predicate and $x_1 \geq x_3$ is a type-2 predicate

- Type-2 predicate-> check on every join result and drop all results that cannot pass the predicate
- In this example,
 - compute

$$R_1(x_1, x_2), R_2(x_2, x_3), C: x_1 \le x_2$$

using the Yannakakis algorithm in O(N+J) time, where J is the join size

- For every query result (x_1, x_2, x_3) , check whether the $x_1 \ge x_3$ is satisfied, taking O(J) time
- However, it's possible that OUT (# join results after applying the predicates) $\ll J$

Example

$$R_1(x_1, x_2), R_2(x_2, x_3), C_1: x_1 \ge x_3, C_2: x_1 \le x_2$$

Let R_1 contains n tuples as $(1,2n), \dots, (n,2n), R_2$ contains n tuples as $(2n,2n+1), \dots, (2n,3n)$

R_1			R_2			x_1	x_2	x_3
x_1	x_2		x_2	x_3		1	2n	2n+1
1	2n		2n	2n+1		1	2n	
2	2n		2n	2n+2		1	2n	3n
n-1	2n		2n	3n-1		n	2n	2n+1
\overline{n}	2n		2n	3n		n	2n	

$$J = n^2, OUT = 0$$

The cost is not linear.

Willard's Approach [Willard. '02]

$$R_1(x_1, x_2), R_2(x_2, x_3), C: x_1 \ge x_3$$

1. Group R_1 by x_2 , for each group, sort the x_1 value in descending order.

2. For every tuple $t = (a, b) \in R_2$, enumerate the list linked by $x_2 = a$ from the beginning until it is smaller than b.

For example, t = (2, 60), the enumeration procedure will first find $x_1 = 95$, which corresponds to a join result (95, 2, 60), then it will stop, as the second value 54 < 60.

3. Total running time: $O(N \log N + OUT)$

Willard's Approach [Willard. '02]

- lacktriangle Can support multiple (short) comparisons between R_1 and R_2
- Running time: $O(N \log^d N + OUT)$.
 - d: number of comparisons.

Not appliable for long comparisons across multiple relations.

$$R_1(x_1, x_2), R_2(x_2, x_3), R_3(x_3, x_4), x_1 \le x_4$$

Main Contributions

- We identify the acyclicity conditions for CQCs.
- For any acyclic CQC, our algorithm can evaluate it in $\tilde{O}(N + OUT)$
- We implement the algorithm on top of Spark, the experiment results show the new algorithms can offer an order-of-magnitude improvement over competitors

Acyclicity of CQCs

- Observations: a CQC is ``hard'' if its comparisons form a ``cycle''.
- For example, $R_1(x_1, x_2)$, $R_2(x_2, x_3)$, $R_3(x_3, x_4)$, $x_1 \le x_4$, $x_1 \ge x_4$ cannot be solved in linear time.
- The query is equivalent to the triangle listing query $R_1(x_1, x_2) \bowtie R_2(x_2, x_3) \bowtie R_3(x_3, x_1)$
- The best-known algorithm for the problem: $O(N^{1.5})$
- Lower bound for the problem: $\Omega(N^{\frac{4}{3}})$, which is not linear.
- Comparison Hypergraph: another hypergraph to characterize the acyclicity on the comparisons.

Comparison Hypergraph

- Fixing a join tree T of q, the comparison hypergraph C(q,T)=(V,E)
 - Each vertex $v \in V$ represents an edge on the join tree
 - Each hyperedge $e \in E$ represents a comparison C incident to R_i and R_i
 - A vertex $v \in e$ if v is in the path between R_i and R_j on the join tree T

Acyclicity of CQCs

- A CQC is acyclic if
 - its relational hypergraph is α -acyclic
 - and there exists a join tree such that the comparison hypergraph is Berge-acyclic
- Berge-acyclic: for any pair of vertices v_1, v_2 , there exists at most one simple path between v_1 and v_2
- A counter example:

$$ans(x_{1}, x_{2}, x_{3}) \leftarrow R_{1}(x_{1}, x_{2}, x_{3}),$$

$$R_{2}(x_{1}, x_{4}, x_{5}),$$

$$R_{3}(x_{2}, x_{6}, x_{7}),$$

$$R_{4}(x_{3}, x_{8}, x_{9}),$$

$$C_{1}: x_{4} \leq x_{6},$$

$$C_{2}: x_{7} \leq x_{8},$$

$$C_{3}: x_{9} \leq x_{5}$$

$$R_1(x_1, x_2, x_3) \bowtie R_2(x_3, x_4) \bowtie R_3(x_4, x_5, x_6), x_1 \ge x_5, x_2 \ge x_6$$

$$R_1(x_1, x_2, x_3) \bowtie R_2(x_3, x_4) \bowtie R_3(x_4, x_5, x_6), x_1 \ge x_5, x_2 \ge x_6$$

"Are there any points located in the orthogonal $([a_1, \infty], [b_1, \infty])$?"

$$R_1(x_1, x_2, x_3) \bowtie R_2(x_3, x_4) \bowtie R_3(x_4, x_5, x_6), x_1 \ge x_5, x_2 \ge x_6$$

"Are there any points located in the orthogonal $([a_1, \infty], [b_1, \infty])$?"

$$R_1(x_1, x_2, x_3) \bowtie R_2(x_3, x_4) \bowtie R_3(x_4, x_5, x_6), x_1 \ge x_5, x_2 \ge x_6$$

"Are there any points located in the orthogonal $([a_1, \infty], [b_1, \infty])$?"

- For all acyclic CQC Q, there exists a reducible relation $R \in Q$.
 - A reducible relation is a leaf relation (degree = 1) that incident to at most one long comparison.
- We can perform a reduction from $Q \rightarrow Q'$, $E' \rightarrow E/R$.
 - Q' is still acyclic CQC;
 - Join result in Q can be built in O(1) delay if the result of Q' can be built in O(1) delay;
 - New attribute mf for the comparisons.

Step 1: Group R_1 on the join key and make an orthogonal range searching structure on x_1x_2 .

$$Q := R_1(x_1, x_2, x_3) \bowtie R_2(x_3, x_4, x_5) \bowtie R_3(x_5, x_6), x_1 \le x_4, x_2 < x_6$$

Step 2 (Reduce R_1): Reduction between R_2 and R_1 . R_2' is calculated by the following query:

SELECT $x_3, x_4, x_5, min(x_2)$ as mf_1 FROM R_1 NATURAL JOIN R_2 WHERE $R_1, x_1 \le R_2, x_4$

$$Q := R_1(x_1, x_2, x_3) \bowtie R_2(x_3, x_4, x_5) \bowtie R_3(x_5, x_6), x_1 \le x_4, x_2 < x_6$$
$$Q_1 := R'_2(x_3, x_4, x_5, mf_1) \bowtie R_3(x_5, x_6), mf_1 < x_6$$

Step 3 (Reduce R_3): Reduction between R_2 and R_3 by the following query:

SELECT $x_3, x_4, x_5, mf_1, max(x_6)$ as mf_2 FROM R_3 NATURAL JOIN R_2

Step 4 (Evaluate Q_2): Remove all tuples in R_2'' that does not satisfy the filter condition $mf_1 < mf_2$

Step 5 (Enumeration): Enumerate the query result from top-down.

$$R_1(x_1, x_2, x_3) \bowtie R_2(x_3, x_4, x_5) \bowtie R_3(x_5, x_6), x_1 \le x_4, x_2 < x_6$$

Extensions

- Support of non-full queries:
 - For free-connex queries: $\tilde{O}(N + OUT)$
 - Non-free-connex queries: $\tilde{O}(N^w + OUT)$
- Support for cyclic queries:
 - $\tilde{O}(N^w + OUT)$ with Generalized Hypertree Decomposition (GHD)
 - Thanks to the support of long comparisons, the tree weight \boldsymbol{w} is smaller than previous approaches.

Cyclic Queries

 $R(A, B, w_1), R(A, C, w_2), R(B, C, w_3), R(C, D),$ $R(E, F, w_4), R(D, E, w_5), R(D, F, w_6),$ $w_1w_2w_3 \le w_4w_5w_6$

Cyclic Queries

 $R(A, B, w_1), R(A, C, w_2), R(B, C, w_3), R(C, D),$ $R(E, F, w_4), R(D, E, w_5), R(D, F, w_6),$ $w_1w_2w_3 \le w_4w_5w_6$

 The best GHD contains two bags: ABCD and DEF (or ABC and CDEF)

The width w = 2 for this query.

Cyclic Queries

 $R(A, B, w_1), R(A, C, w_2), R(B, C, w_3), R(C, D),$ $R(E, F, w_4), R(D, E, w_5), R(D, F, w_6),$ $w_1w_2w_3 \le w_4w_5w_6$

- Long comparisons are allowed in the new algorithm
- The best GHD contains three bags: ABC, CD and DEF
- The width w = 1.5 for this query.

Experiment Results

- Build the algorithm on top of Spark.
- It requires only standard RDD operations.
- Compares with Spark SQL and PostgreSQL, we achieve order-of-magnitude improvement.

Experiment Results

Achieve almost linear speedup when increasing the parallelism.

Experiment Results

By evaluating the predicates during joins, the new algorithm can benefit from the low selectivity.

Thank You!