L ecture 20:
Transaction

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

Due next Tue, July 22

Schedule a demo time with TA by today
Final report and code due on July 29

Please help submit your feedback about this course!
From today to July 30

- Begins implicitly
(Recap) Transactions |
ROLLBACK | COMMIT

A is a sequence of
database operations (read or write)
properties of (TXs)

: TXs are either completely
done or not done at all

: TXs should leave the
database in a consistent state

: TXs must behave as if they
execute in isolation

: Effects of committed TXs are

resilient against failures Jim Gray, Turing Award 1998,
who coined this term (as

well as data cube and many
other things)

3

Outline for today

* Concurrency control -- Isolation
* Locking-based control

* Recovery -- Atomicity and Durability
* Logging for undo and redo

Concurrency control

* Goal: ensure the “I” (isolation) in ACID

T5:
r1(x);
w1(x);
r1(y);

wi(y);
commit;

T>:
r2(x);
w2(x);
r2(z);
w2(2);
commit;

o —

X

y

Z

(Recap) Serial execution histories

* Ty = {wi (), wy (), 1}, Tp = {1 (%), 12 (y), ¢}

Iy

I

w1(Xx

1

Hq

1 r2(x)
wi(y)

r2(y)

Cc2

no|T. Ti|T T, | T,
W1(X* wi1(x) r2(x)
wi(y) r2(x) r2(y)
C1 r2(y) c2
r2(x) wi(y) W1(X;
r2(y) c wi(y
c2 c2 &
Hy H Hg

Two execution histories are (conflict)

. . equivalent if ... and each pair of
(Re Ca p) S e I'la l 1Zd b I e conflicting operations have the same

ordering in each history

* Ahistory H is said to be (conflict) serializable if there is
some serial history H' (conflict) equivalent to H.

Ty | T T | T T, | T,

w1(x W1(X* w1(x)
r2(x) wi(y) r2(x)

wi(y C1 r2(y)
r2(y) r2(x) wi(y)

C1 r2(y) C1

v N

(Recap) Serializable

* Example: H, = wy [x]|r, [x]r, [y]wy [y]c ¢,

Iy

I

A history is serializable if and only if its

W1(>gL

H

W1(M
C1

serialization graph is acyclic (i.e., no cycles)

r2(x) wy[x]and r,[x] conflict, and w, [x] < 7 [x];
rz(y) wq|y] and 1, [y] conflict, and 7, [v] < wq|y]

m Not serializable
c2

How to help non-serializable history
achieve serializability?

Locking

(Pessimistic) Assume that conflicts will happen and
take preventive action

e If a transaction wants to read x, it must first
request a shared lock (S mode) on x

* If a transaction wants to modify x, it must first
request an exclusive lock (X mode) on x

* Allow one exclusive lock, or multiple shared locks
Mode of the lock requested

e locks |lockx.

Mode of lock currently held m Yes No
by other transactions No No

Compatibility matrix

Grant the lock?

Basic locking is not enough

Possible schedule
under locking

But still not
serializable!

Iy

I

lock-X(x)

r1(x)

unlock(x)

lock-X(y)

W1(X1

r1(y)

wi(y)
unlock(y)

lock-X(x)
r2(x) Ty

w2(x)

unlock(x) T
2

lock-X(y)
3(y)

2
VtYnlcgc):/lg(y)

10

Basic locking is not enough supese ey

Add 1to both xandy Tl

Tz Multiply both x and y by 2

(preserve x=y)
lock-X(x)

r1(x)

Read 100

Write 100+1
unlock(x)

lock-X(y)
r1(y)

Read 200

w1(x)

wi(y)
unlock(y)

Write 200+1

(preserves x=y)

lock-X(x)

FZ(X) Read 101
WZ(X) Write 101%2
unlock(x)

lock-X(y)
r2(y) Readioo

WZ(y) Write 100*2
unlock(y)

11

Two-phase locking (2PL)

* All lock requests precede all unlock requests
* Phase 1: obtain locks; Phase 2: release locks

T; T Iy P!
IOCk_X(r)iz?)) r1(>(<))
wi(x wi(x
lock-X(y) r2(x)
unlock(x) w2(x)
r2(>(<)) "1(()’))
w2(x wi(y
ra(y)
r2(y) w2(y)
w2(y)
r(y)
wi(y)

unlock(y)

Remaining problems of 2PL

T, T,
lock-X(x), (x)
Iock—X(ySM(X)
unlock(x)

r2(x)
w2(x)

r(y)
unlock(yV)W(Y)

r2(y)
w2(y)
commit

abort

* T, has read uncommitted
data written by T,

e If T; aborts, then T, must
abort as well

possible if
other transactions have
read data written by T,

* Even worse, schedule is
if T, commits
before T,

Remaining problems of 2PL

A transaction Ty T,
remains blocked until Iockl:i(((;())
there is an intervention.
wi(x) lock-S(y)
* 2PL may cause r2(y)
deadlocks, requiring the lock-S(x)
abort of one of the r2(x)
transactions lock-X(y)
r1(y)
wi(y)
unlock-X(x) wa()
w2(y)
unlock-S(y)

Strict 2PL no| T
IOCk-X(X},](X)
* Only release X-locks when w1(x)
commit/abort
* A write will block all other r2(x)
reads until the write lock-X(y) w2(x)
commits or aborts ri(y)
* Used in many practical wily)
DBMSs r2(y)
* No cascading aborts w2(y)
abort

* Less concurrency than 2PL 5jock(y)
unlock(x)

Conservative 2PL

T T
* Only acquire locks at the Iock_;(x) :
beginning of the transaction jock-x(y)
and release X-locks when 100
commit/abort wi(x)
ra(y)
* Not practical due to the very ra(x)
limited concurrency VC1((yy))
* No cascading aborts commit
* No deadlocks unlock(x) WA X)
w2(y)

unlock(y)

Outline for today

* Concurrency control -- isolation
* Serializability: all
* Concurrency: conservative 2PL < strict 2PL < 2PL
* No cascading aborts: conservative 2PL, strict 2PL

* No deadlocks: conservative 2PL SPL

Strict 2PL

Conservative
2PL

Failures

* System crashes right after a transaction T1 commits;

* How do we complete/redo T1 ()?

» System crashes in the middle of a transaction T2;

* How do we undo T2 ()?
start T1 end
start T2 end

\;H &r time‘
/4 \\\

Naive approach: Force -- durability

T1 (balance transfer of $100 from A to B)
read(A); A=A -100;

write(A);

read(B); B = B+ 100;

write(B);

But lots of hurt performance!

A =860
B =460

Memory buffer

 Disk

o >
I

AN
Q

\

Co

Naive approach: No steal -- atomicity

T1 (balance transfer of $100 from A to B) Nemory buffer
read(A); A=A -100;
write(A); A =360
read(B); B = B + 100; B =460
write(B);
__Disk 3
A =800
B =400 5(
— .

But lots of requires large memory

Logging

sequence of , recording all
changes made to the database, written to stable
storage (e.g., disk) during normal operation

Database
log

Old stable Update New stable
database state operation database state

* One change turns into two -- bad for performance?
* But writes to log are (append to the end of log)

Log

* When a transaction 7 starts:

 Record values before and after each modification of
data item

 When a transaction 7" commits:
* When a transaction 7" aborts:

(—Llog 3
(T, start)

(T, A, 800,700)
(T, B, 400,500)
(T, commit)

N— -

When to write log records?

 Before X is modified or after?

(): Before X is modified on
disk, the log record pertaining to X must be flushed

* Without WAL, system might crash after X is modified
on disk but before its log record is written to disk—
no way to undo

Undo/redo logging example

T1 (balance transfer of $100 from A to B)
read(A); A=A -100;

Memory buffer
write(A);
read(B); B = B+ 100; A =860
write(B); B =460

_Disk Y f[—_Llog 3

(T, start)
A =800 (T, A, 800,700)
B=400 (T, B, 400,500)

Undo/redo logging example

T1 (balance transfer of $100 from A to B)

d(A,a); a=a-100;
read(A, a);a=a-100; - Memory buffer
write(A, a); % S
read(B, b); b = b + 100; K A = 860
write(B, b); T4 W™ B =460

(Disk 3 f[—Llog
(T, start)

A =800 (T, A, 800,700)
B\: 400 - (T, B, 400,500)

Undo/redo logging example

T1 (balance transfer of $100 from A to B)

read(A, a); a=a-100;

Memory buffer
write(A, a);

read(B, b); b = b + 100; A = 860

M
write(B, b); . { B =460
commit; 7
#* 4 \\

~Disk 3 f[—Log
(T, start)

A =800 (T, A, 800,700)
B\: 400 - (T, B, 400,500)
(T, commit)

N— -

Log example - redo

* Redo phase:

3

X 09

y: 195
Z: 51

w: 1600

N—

_

Start of log

List of active transactions at crash:

T1 T2T3

\V%/

End of log

redo
redo

redo
redo
redo

redo
redo

_ Log

Ty, start

T1) X, 99, 100
T,, start

Tz, Y, 199, 200
T, start

T3) z, 51,50
T, w, 1000, 10
T, commit
T4, start

Ts, abort

T4) y, 200, 50

Log example - redo

* Redo phase:

3

X 09

y: 195
Z: 51

w: 1600

N—

_

Start of log

List of active transactions at crash:

T1 2713

redo
redo

redo
redo
redo

redo
redo

redo

_ Log

3

Ty, start

T1) X, 99, 100
T,, start

Tz, Y, 199, 200
T, start

T3) Z,51, 50
T», w, 1000, 10
T, commit
T4, start

Ts, abort

Ts4, y, 200, 50

Log example - redo

_ Log

e Redo phase; Start of log redo | T, start
redo | Ty, x, 99, 100
< > redo | T, start
X: Q5 redo| T, Yy, 199, 200
y: 109 redo | Ts, start
2 ;;_ redo| Ts, 2z 51,50
w- 1060 redo | T,, w, 1000, 10
redo | T., commit
N— 7 redo | T, start

Ts, abort
T4, y, 200, 50

List of active transactions at crash:
T1 F2T3 T4 WE

End of log

Log example - redo

_ Log

* Redo phase: startoflog | 1 coart
Ty
redo T1) X, 997 100
< > redo | T, start
X: 05 redo| T, Yy, 199, 200
o redo | Ts, start
Z. l?j redo| Ts, z, 51,50
. redo | T, w, 1000, 10
3900 redo | T,, commit
~— — redo | T, start
List of active transactions at crash: redo | T;, abort
T1 7273 T4 T+ ¥, 200, 50

Log example - redo

* Redo phase:

Start of log

redo
redo

redo
redo
redo

redo
redo

redo
redo
redo
redo

_ Log

Ty, start

T+, X, 99, 100
T,, start

Tz, Y, 199) 200
T, start

T3) Z,51, 50
T, w, 1000, 10
T, commit
T4, start

Ts, abort

T4) y, 200, 50

Log example - redo

* Redo phase:

Start of log

redo
redo

redo
redo
redo

redo
redo

redo
redo
redo
redo

_ Log

Ty, start

T+, X, 99, 100
T,, start

Tz, Y, 199) 200
T, start

T3) Z,51, 50
T, w, 1000, 10
T, commit
T4, start

Ts, abort

T4) y, 200, 50

Log example - undo

* Undo phase: T1, T4

3

X 09

y: 195
Z: 51

w: 1600

N—

_

Start of log

List of active transactions at crash:

T1 7215 T4

\V%/

End of log

undo

undo

—

Log

3

Ty, start

T1) X, 99, 100
T,, start

Tz, Y, 199, 200
T, start

T3) z, 51,50
T, w, 1000, 10
T, commit
T4, start

Ts, abort

T4) y, 200, 50

T4, Y, 200
T4, abort

T17 X, 99

\L;, abort

Undo/redo logging -

e U: track the set of active transactions at crash

* Redo phase: scan to the end of the log
* Foralog record ,add Tto U
* Foralog record , Issue
* Foralog record , remove T from U
. {f , undo changes of T i.e., for a log record
ISsue
* Undo phase: scan to the start of the log
* Undo the effects of transactions in U
* Foralog record where Tisin U, issue

, and log this operation too, i.e., add

* Log when all effects of T have been undone

Summary of Transactions

* ACID properties of transactions (TXs)

* Atomicity: TXs are either completely
done or not done at all (logging)

* Consistency: TXs should leave the
database in a consistent state

* |solation: TXs must behave as if they
execute in isolation (serializable;
concurrency control)

» Durability: Effects of committed TXs are 7'M 4ray, Turing Award 1998,

e . . , who coined this term (as
resilient against failures (logging) well as data cube and many

other things)

35

What’s next?

* No lectures next week
* Final review on July 29
* Please help submit your feedback via SCP surveys!

36

Student Course Perceptions Surveys

Your chance to share your learning experience.

Your feedback is important!

* Login using your WatlAM credentials Credentials are
never linked to
* Select your course from the list responses!

* Answer all questions in one sitting

* Check the instructor + course to make sure you had the right
learning experience in mind while responding!

e Hit Submit! perceptions.uwaterloo.ca

Difficulties? /
Contact kabecker@uwaterloo.ca Quick Anonymous Impactful

Student Course Perceptions Surveys

Your chance to share your learning experience.

Your feedback is important!

Who has access to SCP results?
* Written comments: only the course instructor
* Numerical ratings: course instructor and academic leaders

How are SCP results used?
* Help instructors improve teaching and courses
* Inform pay and tenure decisions

* Contribute to decisions about program improvement and future
teaching assignments

perceptions.uwaterloo.ca

Difficulties? /
Contact kabecker@uwaterloo.ca Quick Anonymous Impactful

Student Course Perceptions Surveys

Your chance to share your learning experience.

Your feedback is important!

Giving Effective Feedback

* Be honest: write about your learning experience

* Be specific: provide examples

* Be focused: restrict comments to your own experience
* Be constructive: offer suggestions for improvement

Please always use language that supports your instructors’ well-being.
Abusive comments (e.g., about aspects of instructor identity) may result in
your entire survey response being removed.

perceptions.uwaterloo.ca

Difficulties? ,
Contact kabecker@uwaterloo.ca Quick Anonymous Impactful

