
Lecture 20:
Transaction

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Assignment 3
• Due next Tue, July 22

• Group Project
• Schedule a demo time with TA by today
• Final report and code due on July 29

• Student Course Perception Surveys
• Please help submit your feedback about this course!
• From today to July 30

2

(Recap) Transactions

• A transaction is a sequence of
database operations (read or write)
• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely

done or not done at all
• Consistency: TXs should leave the

database in a consistent state
• Isolation: TXs must behave as if they

execute in isolation
• Durability: Effects of committed TXs are

resilient against failures

3

Jim Gray, Turing Award 1998,
who coined this term (as
well as data cube and many
other things)

-- Begins implicitly
SELECT …;
UPDATE …;
ROLLBACK | COMMIT;

Outline for today

• Concurrency control -- Isolation
• Locking-based control

• Recovery -- Atomicity and Durability
• Logging for undo and redo

4

Concurrency control

• Goal: ensure the “I” (isolation) in ACID

5

x y z

𝑇!:
r1(x);
w1(x);
r1(y);
w1(y);
commit;

𝑇":
r2(x);
w2(x);
r2(z);
w2(z);
commit;

(Recap) Serial execution histories

• 𝑇! = {𝑤! 𝑥 , 𝑤!(𝑦), 𝑐!}, 𝑇" = {𝑟" 𝑥 , 𝑟"(𝑦), 𝑐"}

6

𝑇! 𝑇"

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝐻# 𝐻$ 𝐻% 𝐻&

𝑇! 𝑇"

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

𝑇! 𝑇"

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝑇! 𝑇"

 r2(x)
 r2(y)
 c2
w1(x)
w1(y)
c1

(Recap) Serializable

• A history 𝐻 is said to be (conflict) serializable if there is
some serial history 𝐻′ (conflict) equivalent to 𝐻.

7

𝑇! 𝑇"

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝐻# 	 = 	 𝐻$ 𝐻%

Two execution histories are (conflict)
equivalent if … and each pair of
conflicting operations have the same
ordering in each history

𝑇! 𝑇"

w1(x)
 r2(x)
w1(y)
 r2(y)
c1
 c2

𝑇! 𝑇"

w1(x)
w1(y)
c1
 r2(x)
 r2(y)
 c2

(Recap) Serializable

• Example: 𝐻% = 𝑤! 𝑥 𝑟" 𝑥 𝑟"[𝑦]𝑤! 𝑦 c!c"

8

𝑇! 𝑇" Not serializable

𝐻%

𝑇! 𝑇"

w1(x)
 r2(x)
 r2(y)
w1(y)
c1
 c2

𝑤! 𝑥 and 𝑟" 𝑥 conflict, and 𝑤! 𝑥 < 𝑟" 𝑥 ;
𝑤! 𝑦 and 𝑟"[𝑦] conflict, and 𝑟"[𝑦] < 𝑤! 𝑦

A history is serializable if and only if its
serialization graph is acyclic (i.e., no cycles)

How to help non-serializable history
achieve serializability?

Locking

(Pessimistic) Assume that conflicts will happen and
take preventive action
• If a transaction wants to read x , it must first

request a shared lock (S mode) on x
• If a transaction wants to modify x, it must first

request an exclusive lock (X mode) on x
• Allow one exclusive lock, or multiple shared locks

9

Mode of lock currently held
by other transactions

Mode of the lock requested

Grant the lock?

Compatibility matrix

lockS lockX

lockS

lockX

Yes No

No No

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)

r1(y)
w1(y)

Basic locking is not enough

10

lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Possible schedule
under locking

But still not
serializable!

𝑇!

𝑇"

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)

r1(y)
w1(y)

Basic locking is not enough

11

lock-X(x)

lock-X(y)

unlock(y)

unlock(x)
lock-X(x)

unlock(x)

unlock(y)
lock-X(y)

Read 100

Write 100+1

Read 101

Write 101*2

Read 100

Write 100*2

Read 200

Write 200+1

Add 1 to both x and y
(preserve x=y)

Multiply both x and y by 2
(preserves x=y)

Suppose x=y=100

x != y

Two-phase locking (2PL)

• All lock requests precede all unlock requests
• Phase 1: obtain locks; Phase 2: release locks

12

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)

 r2(y)
 w2(y)
 r1(y)
w1(y)

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

Cannot obtain the lock on y
until 𝑇! unlocks

𝑇! 𝑇"

r1(x)
w1(x)
 r2(x)
 w2(x)
 r1(y)
w1(y)
 r2(y)
 w2(y)

2PL guarantees
serializable

history

Remaining problems of 2PL

• 𝑇" has read uncommitted
data written by 𝑇!
• If 𝑇! aborts, then 𝑇" must

abort as well
• Cascading aborts possible if

other transactions have
read data written by 𝑇"
• Even worse, schedule is not

recoverable if 𝑇" commits
before 𝑇!

13

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)
 r1(y)
w1(y)

 r2(y)
 w2(y)

abort

lock-X(x)

lock-X(y)

unlock(y)

unlock(x) lock-X(x)

lock-X(y)

unlock(x)
unlock(y)
commit

Remaining problems of 2PL

• Deadlock: A transaction
remains blocked until
there is an intervention.
• 2PL may cause

deadlocks, requiring the
abort of one of the
transactions

14

𝑇! 𝑇"

r1(x)
w1(x)
 r2(y)

 r2(x)

 r1(y)
w1(y)
…
 w2(x)
 w2(y)

lock-X(x)

lock-X(y)

lock-S(y)

lock-S(x)

Cannot obtain
the lock on x
until 𝑇! unlocks

Cannot obtain
the lock on y
until 𝑇" unlocks unlock-X(x)

unlock-S(y)

Strict 2PL

• Only release X-locks when
commit/abort
• A write will block all other

reads until the write
commits or aborts

• Used in many practical
DBMSs
• No cascading aborts
• But it can still lead to

deadlocks! (see slide 14)

• Less concurrency than 2PL

15

𝑇! 𝑇"

r1(x)
w1(x)

 r2(x)
 w2(x)
 r1(y)
w1(y)

 r2(y)
 w2(y)

abort

lock-X(x)

lock-X(y)

unlock(y)
unlock(x)

lock-X(x)

lock-X(y)

Cannot obtain
the lock on x
until 𝑇! unlocks

Cannot obtain
the lock on y
until 𝑇! unlocks

Conservative 2PL

• Only acquire locks at the
beginning of the transaction
and release X-locks when
commit/abort

• Not practical due to the very
limited concurrency
• No cascading aborts
• No deadlocks

16

𝑇! 𝑇"

r1(x)
w1(x)
 r2(y)

 r2(x)
 r1(y)
w1(y)
commit
 w2(x)
 w2(y)

lock-X(x)
lock-X(y)

lock-S(y)

lock-S(x)

unlock(x)
unlock(y)

Cannot obtain
locks on x or y
until 𝑇! unlocks

Outline for today

• Concurrency control -- isolation
• Serializability: all
• Concurrency: conservative 2PL < strict 2PL < 2PL
• No cascading aborts: conservative 2PL, strict 2PL
• No deadlocks: conservative 2PL

• Recovery – atomicity and durability
• Logging for undo and redo

17

Conservative
2PL

Strict 2PL

2PL

Failures

• System crashes right after a transaction T1 commits;
but not all effects of T1 were written to disk
• How do we complete/redo T1 (durability)?

• System crashes in the middle of a transaction T2;
partial effects of T2 were written to disk
• How do we undo T2 (atomicity)?

18

T1start end

time

T2start end

Naïve approach: Force -- durability

19

read(A); A = A – 100;

write(A);
read(B); B = B+ 100;
write(B);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

commit;

500
Force: All updates are immediately written
to the disk, so when a transaction commits
all changes are reflected on disk

But lots of random writes hurt performance!

Naïve approach: No steal -- atomicity

20

read(A); A = A – 100;

write(A);
read(B); B = B + 100;
write(B);

A = 800
B = 400

700
500

T1 (balance transfer of $100 from A to B) Memory buffer

A = 800
B = 400

Disk

700

commit;

500

No steal: all writes are held in memory until
the transaction commits, so it is always
possible to revert to a consistent state, as
uncommitted changes are never lost.

But lots of dirty data requires large memory

Logging

• Database log: sequence of log records, recording all
changes made to the database, written to stable
storage (e.g., disk) during normal operation

• One change turns into two -- bad for performance?
• But writes to log are sequential (append to the end of log)

21

Update
operation

Old stable
database state

New stable
database state

Database
log

Log

• When a transaction 𝑇 starts: 〈𝑇, start〉
• Record values before and after each modification of

data item 𝑋: 〈𝑇, 𝑋, old_value_of_X, new_value_of_X〉
• When a transaction 𝑇 commits: 〈𝑇, commit〉
• When a transaction 𝑇 aborts: 〈𝑇, abort〉

22

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

Log

When to write log records?

• Before X is modified or after?

• Write-ahead logging (WAL): Before X is modified on
disk, the log record pertaining to X must be flushed

• Without WAL, system might crash after X is modified
on disk but before its log record is written to disk—
no way to undo

23

Undo/redo logging example

24

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

WAL: Before A,B are modified on disk, their log info must be flushed

read(A); A = A – 100;

write(A);
read(B); B = B+ 100;
write(B);
commit;

Undo/redo logging example

25

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

700Steal: can flush
before commit

If system crashes before T1 commits, we have
the old value of A stored on the log to undo T1

Undo/redo logging example

26

read(A, a); a = a – 100;

write(A, a);

read(B, b); b = b + 100;

write(B, b);

A = 800
B = 400

700
500

〈	T1, start 〉
〈	T1, A, 800, 700 〉
〈	T1, B, 400, 500 〉
〈	T1, commit 〉

T1 (balance transfer of $100 from A to B)

Memory buffer

A = 800
B = 400

Disk Log

commit;

No force: can flush
after commit

If system crashes before we flush the changes
of A, B to the disk, we have their new
committed values on the log to redo T1

Log example - redo

27

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log
Start of log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3

Log example - redo

28

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10 redo

List of active transactions at crash:
T1 T2T3

redo

Start of log

Log example - redo

29

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo

50 redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo

T4

Start of log

End of log

Log example - redo

30

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo

Start of log

5150

T4

when T aborts,
we reverse all

operations
before abort

Log example - redo

31

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo

Start of log

5150

T4 redo

Log example - redo

32

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Redo phase:

x: 99
y: 199
z: 51
w: 1000

100

redo
redo
redo

200

redo
redo
redo

10
redo

List of active transactions at crash:
T1 T2T3

redo
redo
redo
redo

50

Start of log

5150

T4

Log example - undo

33

T1, start
T1, x, 99, 100
T2, start
T2, y, 199, 200
T3, start
T3, z, 51, 50
T2, w, 1000, 10
T2, commit
T4, start
T3, abort
T4, y, 200, 50

Log

End of log

• Undo phase: T1, T4

x: 99
y: 199
z: 51
w: 1000

100

undo

200

10

List of active transactions at crash:
T1 T2T3 T4 undo

50

Start of log

99
200

50 51

T4, abort

T1, abort

*

*

T4, y, 200

T1, x, 99

Undo/redo logging - repeat history!
• U: track the set of active transactions at crash
• Redo phase: scan forward to the end of the log
• For a log record 〈 T, start 〉, add T to U
• For a log record 〈 T, X, old, new 〉, issue write(X, new)
• For a log record 〈 T, commit | abort 〉, remove T from U

• If abort, undo changes of T i.e., for a log record 〈 T, X, old, new 〉,
issue write(X, old)

• Undo phase: scan backward to the start of the log
• Undo the effects of transactions in U
• For a log record 〈 T, X, old, new 〉 where T is in U, issue

write(X, old), and log this operation too, i.e., add 〈 T, X,
old 〉
• Log 〈T, abort 〉 when all effects of T have been undone

34

Summary of Transactions

• ACID properties of transactions (TXs)
• Atomicity: TXs are either completely

done or not done at all (logging)
• Consistency: TXs should leave the

database in a consistent state
• Isolation: TXs must behave as if they

execute in isolation (serializable;
concurrency control)
• Durability: Effects of committed TXs are

resilient against failures (logging)

35

Jim Gray, Turing Award 1998,
who coined this term (as
well as data cube and many
other things)

What’s next?

• No lectures next week
• Final review on July 29
• Please help submit your feedback via SCP surveys!

36

• Login using your WatIAM credentials

• Select your course from the list

• Answer all questions in one sitting

• Check the instructor + course to make sure you had the right
learning experience in mind while responding!

• Hit Submit!

Credentials are
never linked to

responses!

Difficulties?
Contact kabecker@uwaterloo.ca

perceptions.uwaterloo.ca

Your chance to share your learning experience.
Your feedback is important!

Student Course Perceptions Surveys

Who has access to SCP results?
• Written comments: only the course instructor
• Numerical ratings: course instructor and academic leaders

How are SCP results used?
• Help instructors improve teaching and courses
• Inform pay and tenure decisions
• Contribute to decisions about program improvement and future

teaching assignments

Difficulties?
Contact kabecker@uwaterloo.ca

perceptions.uwaterloo.ca

Your chance to share your learning experience.
Your feedback is important!

Student Course Perceptions Surveys

Giving Effective Feedback
• Be honest: write about your learning experience
• Be specific: provide examples
• Be focused: restrict comments to your own experience
• Be constructive: offer suggestions for improvement

Difficulties?
Contact kabecker@uwaterloo.ca

perceptions.uwaterloo.ca

Your chance to share your learning experience.
Your feedback is important!

Student Course Perceptions Surveys

Please always use language that supports your instructors’ well-being.
Abusive comments (e.g., about aspects of instructor identity) may result in
your entire survey response being removed.

