Lecture 19:
Transaction

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003



Announcement

* Midterm appealing

* Check the sample solution on Learn
* Due this Friday, July 18

* Assignment 3
* Due next Tuesday, July 22
 Check Piazza for three online office hours this week

* Group project
* Demo next week: July 21 - July 24

* Schedule an in-person or online live demo with your TA
this week!



Outline

solation
e Different isolation levels

* The lowest isolation level to set while ensuring no
anomalies

* Serializability



Why we need transactions

* A databaseis a resource accessed by many
users and processes

* Both queries and modifications

* Not managing this concurrent access to a shared
resource will cause problems
* Problems due to
* Problems due to



Problems caused by concurrency

* [Inconsistent reads

* If the applications run concurrently, the total balance
returned may be inaccurate

UPDATE Accounts

SET Balance = Balance +100
WHERE AccountNum = 9999

SELECT SUM(Balance)
FROM Account




Another concurrency problem

* Lost Updates

* If the applications run concurrently, one of the updates
may be “lost”, and the database may be inconsistent.

UPDATE Accounts
SET Balance = Balance +100
WHERE AccountNum = 9999

UPDATE Accounts
SET Balance = Balance - 50
WHERE AccountNum = 9999




Yet another concurrency problem

* Non-Repeatable Reads

* If there are employees in D11 with surnames that begin
with “A”, Application 2’s queries may see them with
different salaries.

UPDATE Employee
SET Salary = Salary +1000
WHERE WorkDept = ‘D11’

SELECT * FROM Employee
WHERE WorkDept = ‘D11’

SELECT * FROM Employee
WHERE Lastname like ‘A%’




Problems caused by failures

» Update all account balances at a bank branch.

UPDATE Accounts

SET Balance = Balance * 1.05
WHERE BranchlID = 12345

* What happens if the system crashes while processing
this update?

* What if the system crashes this update is
processed but before all changes are made
permanent?



Another failure-related problem

* Transfer money between accounts:

UPDATE Accounts
SET Balance = Balance — 100
WHERE AccountNum = 8888

UPDATE Accounts
SET Balance = Balance + 100
WHERE AccountNum = 9999

* Problem: If the system fails between these updates,
money may be withdrawn but not redeposited.



- Begins implicitly
" SELECT ...;
Transactions POATE
ROLLBACK | COMMIT

A is a sequence of
database operations (read or write)

properties of (TXs)

: TXs are either completely
done or not done at all

: TXs should leave the
database in a consistent state

: TXs must behave as if they
execute in isolation

: Effects of committed TXs are

resilient against failures Jim Gray, Turing Award 1998,
who coined this term (as

well as data cube and many
other things)
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Outline

 Overview of Transactions
e Motivations
* ACID properties

e |solation

* Serializability



Different Isolation Levels

Stronger Consistency
Higher Overheads

Less Concurrency

|solation Levels in SQL

Standard

Read Uncommitted

Read Committed

Repeatable Read

Serializable

Weaker Consistency
Lower Overheads

More Concurrency
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READ UNCOMMITTED

e Can

* A dataitemis dirty if it is written by an uncommitted
transaction

 Problem: What if the transaction that wrote the
dirty data eventually aborts?

* Example: wrong average

e —-T1: - T2:
UPDATE User
SET pop = 0.99
WHERE uid = 142; SELECT AVG(pop)
FROM User;
ROLLBACK;

COMMIT;



READ COMMITTED

* No dirty reads, but possible
* Reading the same data item twice sees different values

* Example: different averages

e - T1: - T2:

SELECT AVG(pop)
FROM User;

UPDATE User

SET pop = 0.99

WHERE uid = 142;

COMMIT;
SELECT AVG(pop)
FROM User;

COMMIT;



REPEATABLE READ

* Reads are repeatable, but may see
* Reading the same data item twice still see the same value

» Example: different average (still!)

e - T1: - T2:

SELECT AVG(pop)
FROM User;

INSERT INTO User

VALUES(789, ‘Nelson’,10, 0.1);

COMMIT;
SELECT AVG(pop)
FROM User;
COMMIT;



SERIALIZABLE

* All three anomalies can be avoided:
* No dirty reads
* No non-repeatable reads
* No phantoms

* For any two transactions T1 and T2:



SQL: set isolation levels

Isolation level/anomaly

Possible Possible Possible
Possible Possible
Possible

isolation level,

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;
SELECT * FROM Order;

COMMIT TRANSACTION

* PostgreSQL defaults to



The lowest isolation level to set?

Isolation level

INSERT INTO Order

VALUES (03,10)

COMMIT;

* Consider other possible concurrent transactions
* Does not do any reads
* No read concern
* Lowest isolation level:




The lowest isolation level to set?

Isolation level

UPDATE User

Dirty reads

SET pop =0.99

WHERE uid = 142;

COMMIT;

* Consider other possible concurrent transactions
* It reads User only once, i.e. read(User), write(User)
* For example, another transaction is updating the uid and
then aborts
* Lowest isolation level:



The lowest isolation level to set?

Isolation level

SELECT AVG(pop)

FROM User; Dirty reads

COMMIT;

* Consider other possible concurrent transactions
* It reads User only once, i.e., Read(User)

* For example, another transaction is updating pop and
aborts

e Lowest isolation level:



The lowest isolation level to set?

SELECT AVG(pop)
FROM User;

SELECT MAX(pop)
FROM User;
COMMIT;

Isolation level

Dirty reads

Non-repeatable reads

Phantoms

* Consider other possible concurrent transactions
* It reads User twice: READ(User), READ(User)

* For example, another transaction is

inserting/deleting/updating a row to the User
* Lowest isolation level:




Outline

* Transactions
e Motivations
* Properties: ACID

* [solation
e Different isolation levels

* The lowest isolation level to set while ensuring no
anomalies



Execution histories of Transactions

* A is an sequence of or
operations on the database, followed by
or
e Database is a set of data items x, y, z etc.

* T={read(x), write(y), read(z), write(z), write(x), commit}

* An over a set of transactions
T; ...T, is an of
T, .. T,

* Transactions interact with each other only via reads and
writes of the same date item



Examples for valid execution history
* Ty = {wilxlwilyl a1}, T2 = {r2lxl 21y ], c2}

* Hy = wylx]ry[x]wy [yl [ylesc

* Hy = wylx]wylyleirlx]r;lylc;

* He = wylx]ry[x]r; [y]ws[y]esc

* Hy = nplx]rylyle, wylx]wy [yley

* Invalid example: 7, [x|w, [v]r, | y]c, wy|x]cy



Examples for valid execution history

e Ty = {wilx|,wilyl e}, Ty = {rplx], [yl ¢z }

Iy

I

w1(Xx

1

Hq

1 r2(x)
wi(y)

r2(y)

Cc2

no|T. Ti|T T, | T,
W1(X* wi1(x) r2(x)
wi(y) r2(x) r2(y)
C1 r2(y) c2
r2(x) wi(y) W1(X;
r2(y) c wi(y
c2 c2 &
Hy Hg Hg




no interleaving

Serial exeCUtiOn hiStorieS operations from

different transactions

° Tl — {Wl [x]'Wl [y]) Cl}) TZ — {7"2 [X]JTZ [y]) ¢ }

T, | T, Iy ‘ I |1 | T1;
wA1(x W1 (x* wi1(x) r2(x)
1 r2(x)  wi(y) r2(x) r2(y)
wi(y) C1 r2(y) 2
r2(y) r2(x) wi(y) W1 (xj
& r2(y) c wi(y

Cc2 Cc2 Cc2 1 /
H, H, \/ H, H,



Equivalent execution histories

* H, is “equivalent” to H, (a serial execution)
* x=3, y=1before T1and T2

Iy I, Iy I T, sees all the updates by T;
Write 4 Write 4 * T, reads x written by Ty
W1 ( X Write 1( X1 * T, readsy written by T;
Write 5 r;(x?j wi (I)
wi(y) "eY
rz(I) r2(x)Read 4
c1 Read 5 rz(l) Read 5
Cc2 Cc2
H a H b
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Equivalent execution histories

* H_ is not “equivalent” to H,, (a serial execution)
* Xx=3, y=1before T1and T2

T, | T, T, | T,
w1(Xx w1(x)
w1(y;| r2(x)
C1 r2(y)

r2(x) wi(y)

r2(y) C1

c2 c2
Hb Hc




Equivalence of execution histories

* Two operations if
* they belong to ,
* they operate on the , and
* at least one of the operations is
* two types of conflicts: and

* Two execution histories are if
* they are over the same set of transactions

* the ordering of each pair of conflicting operations is the
same in each history



Example

* Are these execution histories conflict equivalent?
* Hy = wylx]ry|x]wylylralyleic;
* Hy = wy[x]wy[ylr;|x]r;[y]eic;

* Check if they are over the same set of transactions
* Ty = {wilx],wilyl, e1}, T = {ralx], o[y, ¢}

* Check if all conflicting pairs have the same order

Conflicting pairs

wy[x], 2 [x] < <

wilyl, 2 [y] < <
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In class exercise

Are these execution histories conflict equivalent?
o Hy: rylx]rslx]walylr [ulwy|z]r [y]rs[ulr | zlwa | 2] s [ 2] [ 2]ws V]
* Hp: ri[x]wylylrslx]r[ulr [ylrs[u]lr[z]lwa | zlwy [ 2] [ 2] 2]ws [ V]

* Check if they are * Check if all conflicting

over the same set of pairs have the same order
transactions

{nlx]rlylnlzl },
{ralu] rylz]ws 2]},
{rslx] r3[u] rs[z]ws[y]},

fwaly] wal 1}




In class exercise

What are the conflicting pairs in Hy?
« Hy: mylx]rslx]wylylmlulwylz]m [yl [ulrz]lwa | 2] [ 2] [ z]ws [ V]

For x: no conflicts For z: w4[z], r2[ z], w2[z], r3[z], r[z]
Fory: waly], ri[y], w3[y] = wals]=ml]
+ waly] <mfy] N
e wu[z] <r
* W4-[y] <W3[y] o Wi: ri[ ]

* byl <wsly] * 1,[z], w,[7] are not, as they are from the
same transactions
© wylz] <r3]Z]
* wylz] <ml7]



In class exercise

Are these execution

nistories conflict equivalent?

o Hy: rylx]rslx]walylr [ulwy|z]r [y]rs[ulr | zlwa | 2] s [ 2] [ 2]ws V]
* Hp: ri[x]wylylrslx]r[ulr [ylrs[u]lr[z]lwa | zlwy [ 2] [ 2] 2]ws [ V]

* Checkif they are

* Check if all conflicting

over the same set of pairs have the same order

transactions

{rilx] iyl mlz] },
{rplu] rp|zlw, [ 2]},
{rslx] r3[u] r3]z]ws[y]

{waly]wylz]}

2
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Serializable

* A history H is said to be if there is
some history H' (conflict) equivalent to H.
T, ‘ T, Iy | T
wi(x wi1(x)
r2(x) r2(x)
wi(y) r2(y)
r2(y) wi(y)
1 C1
c2 c2 7
Hq|= Hp H. P




Serializable

* Serialization graph (V, E') for history H:
« V ={T: T is a committed transaction in H}
* E={T; > T;:3 0; € T; and o; € T; conflict; and 0; < o}

Two operations conflict if
* they belong to different transactions;

* they operate on the same data item;
 atleast one of the operations is write

* A history is serializable if and only if its serialization
graph is acyclic (i.e., no cycles)
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Example

* Example: Hy, = wy [x]r, [x|wq[y]r;[y]cic;

Iy

I

w1(Xx

W1(I

1

Hq

r2(x)

r2(Y)

Cc2

wq[x] and 1, | x| conflict, and wq |x] < 1| x]
wq|y] and 1, [y] conflict, and wq|y] <

»
>

no cycles,
so serializable
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Example

* Example: H, = wy [x]|r, [x]r, [y]wy [y]c ¢,

I | Tz

W1()q\

r2(x)  wy[x] and r;[x] conflict, and w, [x] < 7, [x];
r2(y)  wilylandr;[y] conflict, and r,[y] <w;[y]

wif
C1 ﬂ Not serializable
c2

H
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In class exercise

Is the following execution history serializable?
o rylxlrslxlwalylra[ulwy|z]n [y [ulr[2]wa | z]rs | 2] [ 2lws [V ]

* Conflicting pairs:
* Related to x: no conflicting pairs, as all are reads

» Related to y: w4[y], r1[y], w3[y]
* wuly] <mly] T4 > T1 @ @
* wuly] <wsly T4 2> T3

* rlyl <wsly] T1>T3
* Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]

Wyl Z ) Tz_: T49T2 @
walz] <wplz]  T4->T2

* wylz] < 73]z T42>T3

* wylz] <mlZ] T4 > T

* 1,[7], wy|z] are not, as they are from the same transactions
* wylz] <m3]7] T2> T3

AHESAH T22>T1



In class exercise

Is the following execution history serializable?
ry xlrs[xlwalylrlulwa[2]r [y s [ulrs [2]w, [ 2] s [ 2] [2]ws [y ]

* No cycles in this serialization graph @ @

* Topological sort: T4 -> T2 -> T1->T3
(™)

* The history above is (conflict) equivalent to
walylwalz]r[ulr | zlwo | 2]r [x]r [yl [ 2] s [ x ] s [ulrs [ 2]ws Y]



Summary

* Transactions
* Properties: ACID

e |solation

e Different isolation levels
* The lowest isolation level to set

* Serializability

Isolation level/anomaly

Possible

Possible

Possible

Possible

Possible

Possible




