Lecture 19:
Transaction

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcement

* Midterm appealing

* Check the sample solution on Learn
* Due this Friday, July 18

* Assignment 3
* Due next Tuesday, July 22
 Check Piazza for three online office hours this week

* Group project
* Demo next week: July 21 - July 24

* Schedule an in-person or online live demo with your TA
this week!

Outline

solation
e Different isolation levels

* The lowest isolation level to set while ensuring no
anomalies

* Serializability

Why we need transactions

* A databaseis a resource accessed by many
users and processes

* Both queries and modifications

* Not managing this concurrent access to a shared
resource will cause problems
* Problems due to
* Problems due to

Problems caused by concurrency

* [Inconsistent reads

* If the applications run concurrently, the total balance
returned may be inaccurate

UPDATE Accounts

SET Balance = Balance +100
WHERE AccountNum = 9999

SELECT SUM(Balance)
FROM Account

Another concurrency problem

* Lost Updates

* If the applications run concurrently, one of the updates
may be “lost”, and the database may be inconsistent.

UPDATE Accounts
SET Balance = Balance +100
WHERE AccountNum = 9999

UPDATE Accounts
SET Balance = Balance - 50
WHERE AccountNum = 9999

Yet another concurrency problem

* Non-Repeatable Reads

* If there are employees in D11 with surnames that begin
with “A”, Application 2’s queries may see them with
different salaries.

UPDATE Employee
SET Salary = Salary +1000
WHERE WorkDept = ‘D11’

SELECT * FROM Employee
WHERE WorkDept = ‘D11’

SELECT * FROM Employee
WHERE Lastname like ‘A%’

Problems caused by failures

» Update all account balances at a bank branch.

UPDATE Accounts

SET Balance = Balance * 1.05
WHERE BranchlID = 12345

* What happens if the system crashes while processing
this update?

* What if the system crashes this update is
processed but before all changes are made
permanent?

Another failure-related problem

* Transfer money between accounts:

UPDATE Accounts
SET Balance = Balance — 100
WHERE AccountNum = 8888

UPDATE Accounts
SET Balance = Balance + 100
WHERE AccountNum = 9999

* Problem: If the system fails between these updates,
money may be withdrawn but not redeposited.

- Begins implicitly
" SELECT ...;
Transactions POATE
ROLLBACK | COMMIT

A is a sequence of
database operations (read or write)

properties of (TXs)

: TXs are either completely
done or not done at all

: TXs should leave the
database in a consistent state

: TXs must behave as if they
execute in isolation

: Effects of committed TXs are

resilient against failures Jim Gray, Turing Award 1998,
who coined this term (as

well as data cube and many
other things)

10

Outline

 Overview of Transactions
e Motivations
* ACID properties

e |solation

* Serializability

Different Isolation Levels

Stronger Consistency
Higher Overheads

Less Concurrency

|solation Levels in SQL

Standard

Read Uncommitted

Read Committed

Repeatable Read

Serializable

Weaker Consistency
Lower Overheads

More Concurrency

12

READ UNCOMMITTED

e Can

* A dataitemis dirty if it is written by an uncommitted
transaction

 Problem: What if the transaction that wrote the
dirty data eventually aborts?

* Example: wrong average

e —-T1: - T2:
UPDATE User
SET pop = 0.99
WHERE uid = 142; SELECT AVG(pop)
FROM User;
ROLLBACK;

COMMIT;

READ COMMITTED

* No dirty reads, but possible
* Reading the same data item twice sees different values

* Example: different averages

e - T1: - T2:

SELECT AVG(pop)
FROM User;

UPDATE User

SET pop = 0.99

WHERE uid = 142;

COMMIT;
SELECT AVG(pop)
FROM User;

COMMIT;

REPEATABLE READ

* Reads are repeatable, but may see
* Reading the same data item twice still see the same value

» Example: different average (still!)

e - T1: - T2:

SELECT AVG(pop)
FROM User;

INSERT INTO User

VALUES(789, ‘Nelson’,10, 0.1);

COMMIT;
SELECT AVG(pop)
FROM User;
COMMIT;

SERIALIZABLE

* All three anomalies can be avoided:
* No dirty reads
* No non-repeatable reads
* No phantoms

* For any two transactions T1 and T2:

SQL: set isolation levels

Isolation level/anomaly

Possible Possible Possible
Possible Possible
Possible

isolation level,

SET TRANSACTION ISOLATION LEVEL REPEATABLE READ;
BEGIN TRANSACTION;
SELECT * FROM Order;

COMMIT TRANSACTION

* PostgreSQL defaults to

The lowest isolation level to set?

Isolation level

INSERT INTO Order

VALUES (03,10)

COMMIT;

* Consider other possible concurrent transactions
* Does not do any reads
* No read concern
* Lowest isolation level:

The lowest isolation level to set?

Isolation level

UPDATE User

Dirty reads

SET pop =0.99

WHERE uid = 142;

COMMIT;

* Consider other possible concurrent transactions
* It reads User only once, i.e. read(User), write(User)
* For example, another transaction is updating the uid and
then aborts
* Lowest isolation level:

The lowest isolation level to set?

Isolation level

SELECT AVG(pop)

FROM User; Dirty reads

COMMIT;

* Consider other possible concurrent transactions
* It reads User only once, i.e., Read(User)

* For example, another transaction is updating pop and
aborts

e Lowest isolation level:

The lowest isolation level to set?

SELECT AVG(pop)
FROM User;

SELECT MAX(pop)
FROM User;
COMMIT;

Isolation level

Dirty reads

Non-repeatable reads

Phantoms

* Consider other possible concurrent transactions
* It reads User twice: READ(User), READ(User)

* For example, another transaction is

inserting/deleting/updating a row to the User
* Lowest isolation level:

Outline

* Transactions
e Motivations
* Properties: ACID

* [solation
e Different isolation levels

* The lowest isolation level to set while ensuring no
anomalies

Execution histories of Transactions

* A is an sequence of or
operations on the database, followed by
or
e Database is a set of data items x, y, z etc.

* T={read(x), write(y), read(z), write(z), write(x), commit}

* An over a set of transactions
T; ...T, is an of
T, .. T,

* Transactions interact with each other only via reads and
writes of the same date item

Examples for valid execution history
* Ty = {wilxlwilyl a1}, T2 = {r2lxl 21y], c2}

* Hy = wylx]ry[x]wy [yl [ylesc

* Hy = wylx]wylyleirlx]r;lylc;

* He = wylx]ry[x]r; [y]ws[y]esc

* Hy = nplx]rylyle, wylx]wy [yley

* Invalid example: 7, [x|w, [v]r, | y]c, wy|x]cy

Examples for valid execution history

e Ty = {wilx|,wilyl e}, Ty = {rplx], [yl ¢z }

Iy

I

w1(Xx

1

Hq

1 r2(x)
wi(y)

r2(y)

Cc2

no|T. Ti|T T, | T,
W1(X* wi1(x) r2(x)
wi(y) r2(x) r2(y)
C1 r2(y) c2
r2(x) wi(y) W1(X;
r2(y) c wi(y
c2 c2 &
Hy Hg Hg

no interleaving

Serial exeCUtiOn hiStorieS operations from

different transactions

° Tl — {Wl [x]'Wl [y]) Cl}) TZ — {7"2 [X]JTZ [y]) ¢ }

T, | T, Iy ‘ I |1 | T1;
wA1(x W1 (x* wi1(x) r2(x)
1 r2(x) wi(y) r2(x) r2(y)
wi(y) C1 r2(y) 2
r2(y) r2(x) wi(y) W1 (xj
& r2(y) c wi(y

Cc2 Cc2 Cc2 1 /
H, H, \/ H, H,

Equivalent execution histories

* H, is “equivalent” to H, (a serial execution)
* x=3, y=1before T1and T2

Iy I, Iy I T, sees all the updates by T;
Write 4 Write 4 * T, reads x written by Ty
W1 (X Write 1(X1 * T, readsy written by T;
Write 5 r;(x?j wi (I)
wi(y) "eY
rz(I) r2(x)Read 4
c1 Read 5 rz(l) Read 5
Cc2 Cc2
H a H b

27

Equivalent execution histories

* H_ is not “equivalent” to H,, (a serial execution)
* Xx=3, y=1before T1and T2

T, | T, T, | T,
w1(Xx w1(x)
w1(y;| r2(x)
C1 r2(y)

r2(x) wi(y)

r2(y) C1

c2 c2
Hb Hc

Equivalence of execution histories

* Two operations if
* they belong to ,
* they operate on the , and
* at least one of the operations is
* two types of conflicts: and

* Two execution histories are if
* they are over the same set of transactions

* the ordering of each pair of conflicting operations is the
same in each history

Example

* Are these execution histories conflict equivalent?
* Hy = wylx]ry|x]wylylralyleic;
* Hy = wy[x]wy[ylr;|x]r;[y]eic;

* Check if they are over the same set of transactions
* Ty = {wilx],wilyl, e1}, T = {ralx], o[y, ¢}

* Check if all conflicting pairs have the same order

Conflicting pairs

wy[x], 2 [x] < <

wilyl, 2 [y] < <

30

In class exercise

Are these execution histories conflict equivalent?
o Hy: rylx]rslx]walylr [ulwy|z]r [y]rs[ulr | zlwa | 2] s [2] [2]ws V]
* Hp: ri[x]wylylrslx]r[ulr [ylrs[u]lr[z]lwa | zlwy [2] [2] 2]ws [V]

* Check if they are * Check if all conflicting

over the same set of pairs have the same order
transactions

{nlx]rlylnlzl },
{ralu] rylz]ws 2]},
{rslx] r3[u] rs[z]ws[y]},

fwaly] wal 1}

In class exercise

What are the conflicting pairs in Hy?
« Hy: mylx]rslx]wylylmlulwylz]m [yl [ulrz]lwa | 2] [2] [z]ws [V]

For x: no conflicts For z: w4[z], r2[z], w2[z], r3[z], r[z]
Fory: waly], ri[y], w3[y] = wals]=ml]
+ waly] <mfy] N
e wu[z] <r
* W4-[y] <W3[y] o Wi: ri[]

* byl <wsly] * 1,[z], w,[7] are not, as they are from the
same transactions
© wylz] <r3]Z]
* wylz] <ml7]

In class exercise

Are these execution

nistories conflict equivalent?

o Hy: rylx]rslx]walylr [ulwy|z]r [y]rs[ulr | zlwa | 2] s [2] [2]ws V]
* Hp: ri[x]wylylrslx]r[ulr [ylrs[u]lr[z]lwa | zlwy [2] [2] 2]ws [V]

* Checkif they are

* Check if all conflicting

over the same set of pairs have the same order

transactions

{rilx] iyl mlz] },
{rplu] rp|zlw, [2]},
{rslx] r3[u] r3]z]ws[y]

{waly]wylz]}

2

AN VAN VAN VAN
\Y4 N N N

Serializable

* A history H is said to be if there is
some history H' (conflict) equivalent to H.
T, ‘ T, Iy | T
wi(x wi1(x)
r2(x) r2(x)
wi(y) r2(y)
r2(y) wi(y)
1 C1
c2 c2 7
Hq|= Hp H. P

Serializable

* Serialization graph (V, E') for history H:
« V ={T: T is a committed transaction in H}
* E={T; > T;:3 0; € T; and o; € T; conflict; and 0; < o}

Two operations conflict if
* they belong to different transactions;

* they operate on the same data item;
 atleast one of the operations is write

* A history is serializable if and only if its serialization
graph is acyclic (i.e., no cycles)

35

Example

* Example: Hy, = wy [x]r, [x|wq[y]r;[y]cic;

Iy

I

w1(Xx

W1(I

1

Hq

r2(x)

r2(Y)

Cc2

wq[x] and 1, | x| conflict, and wq |x] < 1| x]
wq|y] and 1, [y] conflict, and wq|y] <

»
>

no cycles,
so serializable

36

Example

* Example: H, = wy [x]|r, [x]r, [y]wy [y]c ¢,

I | Tz

W1()q\

r2(x) wy[x] and r;[x] conflict, and w, [x] < 7, [x];
r2(y) wilylandr;[y] conflict, and r,[y] <w;[y]

wif
C1 ﬂ Not serializable
c2

H

37

In class exercise

Is the following execution history serializable?
o rylxlrslxlwalylra[ulwy|z]n [y [ulr[2]wa | z]rs | 2] [2lws [V]

* Conflicting pairs:
* Related to x: no conflicting pairs, as all are reads

» Related to y: w4[y], r1[y], w3[y]
* wuly] <mly] T4 > T1 @ @
* wuly] <wsly T4 2> T3

* rlyl <wsly] T1>T3
* Related to z: w4[z], r2[z], w2[z], r3[z], r1[z]

Wyl Z) Tz_: T49T2 @
walz] <wplz] T4->T2

* wylz] < 73]z T42>T3

* wylz] <mlZ] T4 > T

* 1,[7], wy|z] are not, as they are from the same transactions
* wylz] <m3]7] T2> T3

AHESAH T22>T1

In class exercise

Is the following execution history serializable?
ry xlrs[xlwalylrlulwa[2]r [y s [ulrs [2]w, [2] s [2] [2]ws [y]

* No cycles in this serialization graph @ @

* Topological sort: T4 -> T2 -> T1->T3
(™)

* The history above is (conflict) equivalent to
walylwalz]r[ulr | zlwo | 2]r [x]r [yl [2] s [x] s [ulrs [2]ws Y]

Summary

* Transactions
* Properties: ACID

e |solation

e Different isolation levels
* The lowest isolation level to set

* Serializability

Isolation level/anomaly

Possible

Possible

Possible

Possible

Possible

Possible

