Lecture 18:
Query Processing &
Optimization

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

A query’s trip through the DBMS

SELECT name, uid
SO‘L uery FROM Member, Group
<Query> WHERE Member.gid =
| Group.gid;
S2hWa_
<select-list> | <where-cond> Parse tree
/1 <fr/om-@> N\
" <table> <table> Validator T .
| | ¥ | name, uid
Member Group ’-Og"CC‘l(’ plan ?-/\/lember.gidzcroup.gid
- . X
, Optimizer 7\
PROJ EfT (name, gid) ‘ P ¥ Member Group
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

(Recap) Query optimization

* Why query optimization?

* Search space
* What are the possible equivalent logical plans?
* What are the possible physical plans?

* Search strategy
* Rule-based strategy
* Cost-estimation-based strategy

/ Any of these will do
| : —_ —

1second 1 minute

1 hour

Search strategy

http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5Ql/AAAAAAAAAKE/mi8ejfZ857U/s1600/cornMaze.jpg

Rule-based query optimization

* Push g/m/— down as much as possible

* Join smaller relations first and avoid cross product
 (Many other rules to be further exploited)

Why? Reduce the size of intermediate results

An Example

7FGroup.name

OI-User.age:18 A User.uid = Member.uid A Member.gid = Group.gid
X

N
T\ Group
User Member T[Group name
O-Member gid = Group.gid
/ Group T[Group name
OI-User.uxd = Member.uid
X I\/lember gid = Group.gid
~ /
Member Group
O-age:18 X User uid = Member.uid
User IVlember

Io-age:18
User

From rule-based to cost-based opt.

* Rule-based optimization

* Apply algebraic equivalence to rewrite plans into
cheaper ones

* Cost-based optimization

* Rewrite logical plan to combine “blocks”
as much as possible

* Optimize query block by block
* Enumerate logical plans (already covered)
* Estimate the cost of the plans
* Pick a plan with an acceptable cost

* Focus: select-project-join blocks

“Selinger”-style query optimization « Patricia Selinger

Cost estimation

Physical plan example: PROJECT (Group.name)

INDEX-N ESTED-LC{)P-JOI N (gid)

Index on Group(gid)

Input to Join(uid): INDEX-NESTED-LOOP-JOIN (uid)

\ N
Index on Member(uid)

What is its input siz.e? . INDEX-SCAN (age = 18)
How many users with g

age 18?

* We have 1/O cost formula for each operator

- Example: INDEX-NESTED-LOOP-JOIN (uid) takes
O(B(R) + |R]| - lookup + fetch)

* We need the size of the intermediate results

Cardinality Estimation

http://www.learningresources.com/product/estimation+station.do

Selections with equality predicates

Consider

* DBMSs typically store the following in the catalog
* Size of R:
* Number of distinct 4 values in R:

: A-values are uniformly
distributed in tuples from R

* Selectivity factor of (4 = v) is

the probability that any row will satisfy a
predicate

Conjunctive predicates

Consider

:(A=u)
and (B = v) independently select tuplein R
* Counterexample: major and advisor, or A is the key

* Selectivity factorof (4 =u) is
* Selectivity factor of (B = v) is

* Reduce total size by all selectivity factors

Negated and disjunctive predicates

Consider
* Selectivity factor of —p is (1 — selectivity factor of p)
Consider
[~ o 1 1
|O-A=uVB=vR| ~ |R| (/|rcAR| T /lnBRI)?

* Tuples satisfying (A = u) and (B = v) are counted twice!

* Inclusion-exclusion principle

Range predicates
Consider g, , R

* DBMSs typically store the following in the catalog
* Largest R.A value: high(R. A) |
e Smallest R.A value: low(R. A) high(R.A) — low(R. 4)

I |
high(ra)—p L LT

high(R.A)—low(R.A)+1 high(R.A) — v
high(R.A)—v

high(R.A)—low(R.A)

’ |O_A>vR | ~ |R|)

* Selectivity factor is

13

Two-way natural join

.+ Q =
. every
tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation
* Thatis, if |T4R| < |m4S| then myR C m4S

* But holds many practical cases

* Selectivity factorof R.A=S5.4is

Multiway natural join

o Q:
* What is the number of distinct C values in the join
of R and §?

* A non-join attribute does not lose values from its set of
possible values

* Thatis, if C isin S but not R, thenm (R ® S) = S
* Certainly not true in general
* But holds many practical cases

Multiway natural join (cont’d)

° Q:
* Reduce the total size by the selectivity factor of each
join predicate

* R.B =5.B: 1/ ax(imgRl,|msS)

*+ (R®S).C=T.C:

Summary of Cardinality Estimation

* Lots of assumptions and very rough estimation
* An accurate estimator is not needed

* Maybe okay if we overestimate or underestimate,
since it may not change the query plan selection

* (MUCH) Better techniques
* Histograms
* Sketches

* Machine learning approaches (one of the most
popular topics in database research now)

User (uid int, name string, age int, pop float)

Group (gid string, name string)

Case StUdy Member (uid int, gid string)
PROJECT (Group.name)
L |

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
« |User| = 1000 N .
* |Member| = 50000 Index on Group(gid)
* |Group| = 100 INDEX-NESTED-LOOP-JOIN (uid)
* |mpameUser| =50 N

e |muMember| = 500 Index on Member(uid)
uil

. ﬂgidMember| — 100 INDEX-SCAN (age=18)

* |mgiaGroup| = 100 Index on User(age)

What are the sizes of intermediate join results?

User (uid int, name string, age int, pop float)

Case Study e (ud mt gid ig) -
PROJECT (Group.name)

Data statistics: INDEX-N ESTED-LI%)P-JOIN (gid)

+ |Member| = 50000 Index on Group(gid)

* |Group| =100 INDEX-NESTED-LOOP-JOIN (uid)

N

o |mygMember| =500 o Index on Member(uid)

| mgiaMember| = 100 | INDEX-SCAN (age =18)
* |mgiaGroup| = 100 . Index on User(age)

* Assumption of uniformity

1000
* Io-age=18(U59r)| ~ 0 20

User (uid int, name string, age int, pop float)

Group (gid string, name string)
Ca S e St U d y Member (uid int, gid string)

PROJECT (Group.name)

L |
Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
 |User| = 1000 N

+ |Group| = 100 INDEX-NESTED-LOOP-JOIN (uid)

* |mggeUser| =50 N

: Index on Member(uid)
. INDEX-SCAN (age = 18)
‘ |

ngidMember| = 100

T 4iqGroup| = 100 . Index on User(age)

* Assume uniformity of age in User

* Assume containment of value sets in User and Member on uid
|oage=18(User)|-|Member]|

* |0age=18(User) x Member | = — TaMember])

20-50000
" max(20,500) 2000

User (uid int, name string, age int, pop float)

Group (gid string, name string)

Case StUdy Member (uid int, gid string)
PROJECT (Group.name)
e |

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
e |User| = 1000 N
+ |Group| = 100 INDEX-NESTED-LOOP-JOIN (uid)
* |mggeUser| =50 N

: Index on Member(uid)
. INDEX-SCAN (age = 18)
‘ |

ngidMember| = 100

T 4iqGroup| = 100 . Index on User(age)

* Assume that within each group, users of different ages join with
equal probability

* |0age=18(User) x Member | = |044¢0=1g(User x Member)|
~ — - 50000 = 1000

User (uid int, name string, age int, pop float)

Group (gid string, name string)
Ca S e St U d y Member (uid int, gid string)

PROJ ECT (Group. name)

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)

« |User| =1000 N

+ |Member| = 50000 Index on G"OUP(g’d)g
. INDEX-NESTED-LOOP-JOIN (uid) ;

. ﬂageU53T| — 50 RSO U D RO G :

« |y Member| = 500 Index on Member(uid)

INDEX-SCAN (age = 18)

Index on User(age)

* Q' = 044e=18(User) x Member (suppose we use estimator)
|Q'|-|IGroupl| _ — 2000

max(|mgiaGroup|)

* |Q" @ Group | =

User (uid int, name string, age int, pop float)

Group (gid string, name string)
Case StUdy Member (uid int, gid string)
PROJ ECT (Group. name)

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
e |User| = 1000 N
e |Member| = 50000 Index on Group(gtd)g

INDEX-NESTED-LOOP-JOIN (uid)
° ﬂageU53T| — 50 T d \b d ’
« |myqMember| = 500 Index on Member(uid)

INDEX-SCAN (age = 18)

Index on User(age)

* Q' = 044e=18(User) x Member (suppose we use estimator)
* |Q" @ Group| = |Q'| = 2000

User (uid int, name string, age int, pop float)

Group (gid string, name string)
C a S e S t U d y Member (uid int, gid string)
- PROJECT (Group.name)
2000 rows |

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
. |User| = 1000 N

e |Member| = 50000 Adex on Group%

* |Group| =100 INDEX—NESTED\-LOOP-JOIN (uid)

* |mggeUser| = 50
. nag:MemILerl = 500 Index on Member(uid
- INDEX-SCAN (age = 18) 50000 rows

. ngidMember| = 100

|
* |mgiaGroup| = 100 Index on User(age
1000 rows

* What are the estimated I/O costs? (Some rough calculation)

* System requirements:
 Each disk/memory block can hold up to 10 rows (from any table);
* All tables are stored compactly on disk (10 rows per block);
* 8 memory blocks are available for query processing: M=8

24

User (uid int, name string, age int, pop float)

Group (gid string, name string)
C a S e S t U d y Member (uid int, gid string)
- PROJECT (Group.name)
2000 rows |

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
. |User| = 1000 N

e |Member| = 50000 Adex on Group%

* |Group| =100 INDEX—NESTED\-LOOP-JOIN (uid)
* |mggeUser| =50 '

* |myigMember| = 500 Index on I\/lember(ui:d

. ngidMember| =100 |NDEX—SCPI\N (age=18) 50000 rows

* |mgiaGroup| = 100 Index on User(age
1000 rows

INDEX-SCAN on User
* Index lookup: typically 4 1/Os
* Suppose tuples in the User table are clustered by uid but not age
* Inthe worst case, we need 20 |/Os to retrieve tuples
* Cache the intermediate results in main memory using 2 blocks

25

User (uid int, name string, age int, pop float)

Group (gid string, name string)
C a S e S t U d y Member (uid int, gid string)
- PROJECT (Group.name)
2000 rows |

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
. |User| = 1000 N

e |Member| = 50000 Adex on Group%

* |Group| =100 INDEX—NESTED\-LOOP-JOIN (uid)
* |mggeUser| =50 '

* |myigMember| = 500 Index on I\/lember(ui:d

. ngidMember| =100 |NDEX—SCPI\N (Gge=18) 50000 rows

* |mgiaGroup| = 100 Index on User(age
1000 rows

INDEX-NESTED-LOOP-JOIN on 044.=15(User) and Member

» Suppose tuplesin Member table clustered by uid
* Index lookup: typically 4 I/Os

+ Probing takes 20 - lookup + fetch = 20 + 4 + =% = 280 1/Os

2000

* Writing the intermediate results back to disk takes = = = 200 1/Os

26

User (uid int, name string, age int, pop float)

Group (gid string, name string)
C a S e S t U d y Member (uid int, gid string)
- PROJECT (Group.name)
2000 rows |

Data statistics: INDEX-NESTED-LOOP-JOIN (gid)
. |User| = 1000 N

e |Member| = 50000 Adex on Group%

* |Group| =100 INDEX-NESTED-LOOP-JOIN (uid)

* |mggeUser| =50 N .
« |myqMember| = 500 Index on Member(u:i —

. ngidMember| =100 |NDEX—SCAI\N (age=18)

* |mgiaGroup| = 100 Index on User(age
1000 rows

INDEX-NESTED-LOOP-JOIN on Q" and Group
* Q' = 04g4e=18(User) x Member
For each tuple in Q’, probe the index on Group(gid)
Suppose tuples in Group table are clustered by gid
It takes B(Q') + |Q’| - lookup + fetch = 200 + 2000 * 4 + 2000 I/Os
When a join result is generated in memory, compute the projection on the fly

27

From rule-based to cost-based opt.

* Rule-based optimization

* Apply algebraic equivalence to rewrite plans into
cheaper ones

* Cost-based optimization

* Rewrite logical plan to combine “blocks”
as much as possible

* Optimize the query block by block
* Enumerate logical plans (already covered)
* Estimate the cost of the plans
* Pick a plan with an acceptable cost

* Focus: select-project-join blocks

“Selinger”-style query optimization « Patricia Selinger

28

Search Good Join Ordering

Consider Ry M@ R, ™ - X R, : / \
* Search space is Huge!

* “Bushy” plan example: / \ / \
R, R{ R; / \

* Just considering different join orders, there are
30240 bushy plans for joining 6 tables!

* (there are more if we consider using different join
algorithms)

It is a matter of intermediate join size

* For simplicity, we use the sort-merge join algorithm
for demonstration

* R 4 S takes O (B(R) +B(S) +
Slide 44 in Lecture 16)

* Intermediate join results are needed to be written
back to disk, and serve as an input table for the

subsequent join X
N\

How to minimize the
intermediate join size? / \ / \

B(RNS)) /Os (see

30

Left-deep plans

|
T
| R:
~
4| R,
v
T R3
R, R4
* Heuristic: consider only “ ”? plans, in which

only the left child can be a join

* How many left-deep plans are there for R; ™ - X R,;?
» Significantly fewer, but still lots— 1! (720 forn = 6)

A greedy algorithm for deep-left plans

Consider Ry M R, ™ - 4 R,

* Start with the pair R;, R; with the smallest

estimated size for R; X R;
* Repeat until no relation is left: Pick R, from the
remaining relations such that the join of Ry, and the

current result yields an intermediate result of the
smallest estimated size

X ...,Rk,Rl,Rm,...
7 N\

A DP algorithm for bushy plans

* Dynamic Programming for computing the optimal
bushy plansin a
* Pass 1: Find the best single-table plans (for each table)

* Pass 2: Find the best two-table plans (for each pair of
tables) by combining best single-table plans

* Pass k: Find the best k-table plans (for each combination
of k tables) by combining two smaller best plans found
In previous passes

 Rationale: Any subplan of an optimal plan must also
be optimal (otherwise, just replace the subplan to
get a better overall plan)

Summary of Search Strategy

* Rule-based strategy
* Apply algebraic equivalence to rewrite plans

* Cost-based strategy

* Rewrite logical plan to combine “blocks”
as much as possible

* Optimize the query block by block

* Enumerate logical plans (already covered)
* Estimate the cost of the plans

* Pick a plan with an acceptable cost

A query’s trip through the DBMS

SELECT name, uid

SO‘L uery FROM Member, Group
WHERE Member.gid =
<Qu|ery> Group.gid;
S2hWa_

<select-list> | <where-cond> Parse tree

/1 <from-@:> N\ :

) <tabﬁ> <table> Validator

I I ¥ 7i’:name, uid
Member Group Logical plan ?‘Member_g,-dzcmup,g,-d
" X
. Imizer N
PROJECT (ame, g LS
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

35

