
Lecture 18:
Query Processing &

Optimization
CS348 Spring 2025:

Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

A query’s trip through the DBMS

2

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

(Recap) Query optimization

• Why query optimization?
• Search space
• What are the possible equivalent logical plans? (lecture 17)
• What are the possible physical plans? (lectures 16-17)

• Search strategy
• Rule-based strategy
• Cost-estimation-based strategy

3

1 second 1 hour1 minute

Any of these will do

Search strategy

4http://1.bp.blogspot.com/-Motdu8reRKs/TgyAi4ki5QI/AAAAAAAAAKE/mi8ejfZ8S7U/s1600/cornMaze.jpg

Rule-based query optimization

5

• Push 𝜎/𝜋/−	 down as much as possible
• 𝜎"∧"!∧"" 𝑅 ⋈"# 𝑆 = 𝜎"!𝑅 ⋈"∧"# 𝜎""𝑆
• 𝜋$ 𝜎"𝑅 = 𝜋$ 𝜎" 𝜋$∪$#𝑅

• 𝜋$ 𝑅 ⋈" 𝑆 = 𝜋$ 𝜋$&𝑅 ⋈" 𝜋$"𝑆
• 𝑅 ⋈ 𝑆 − 𝑇 ⋈ 𝑆 = 𝑅 − 𝑇 ⋈ 𝑆
• 𝑅 ⋈ 𝑆 − 𝑇 ⋈ 𝑊 = R − T ⋈ S ∪ R ⋈ S − W

R ⋈ S − W
• Join smaller relations first and avoid cross product
• (Many other rules to be further exploited)

Why? Reduce the size of intermediate results

An Example

6

𝜋Group.name
𝜎User.age=18 ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User 𝜋Group.name
𝜎Member.gid = Group.gid
×

Member

Group

×

User

𝜎User.uid = Member.uid

𝜎age=18

Push down 𝝈
𝜋Group.name
⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid = Member.uid

𝜎age=18

Convert 𝝈𝒑-× to ⋈𝒑

From rule-based to cost-based opt.

• Rule-based optimization
• Apply algebraic equivalence to rewrite plans into

cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks”

as much as possible
• Optimize query block by block

• Enumerate logical plans (already covered)
• Estimate the cost of the plans
• Pick a plan with an acceptable cost

• Focus: select-project-join blocks

7

Patricia Selinger“Selinger”-style query optimization ←

Cost estimation

• We have I/O cost formula for each operator
• Example: INDEX-NESTED-LOOP-JOIN (uid) takes

O(𝐵 𝑅 + 𝑅 ⋅ lookup + fetch)
• We need the size of the intermediate results

8

Physical plan example:

Input to Join(uid):

Lectures 16- 17

What is its input size?
How many users with

age 18?

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age = 18)

INDEX-NESTED-LOOP-JOIN (uid)

9http://www.learningresources.com/product/estimation+station.do

Cardinality Estimation

Selections with equality predicates

Consider 𝜎#$%𝑅

• DBMSs typically store the following in the catalog
• Size of 𝑅: 𝑅
• Number of distinct 𝐴 values in 𝑅: 𝜋)𝑅

• Assumption of uniformity: A-values are uniformly
distributed in tuples from 𝑅
• 𝜎#$%𝑅 ≈)& '!&
• Selectivity factor of 𝐴 = 𝑣 is =* +$&
• Selectivity: the probability that any row will satisfy a

predicate
10

Conjunctive predicates

Consider 𝜎#$(∧	+$%𝑅

• Assumption of selection independence: 𝐴 = 𝑢
and 𝐵 = 𝑣 independently select tuple in 𝑅
• Counterexample: major and advisor, or 𝐴 is the key

• 𝜎#$(∧	+$%𝑅 ≈)& '!& ⋅ '"&
• Selectivity factor of 𝐴 = 𝑢 is =* +$&
• Selectivity factor of 𝐵 = 𝑣 is =* +%&
• Selectivity factor of (𝐴 = 𝑢) 	∧ (𝐵 = 𝑣) is =* +$& ⋅ +%&
• Reduce total size by all selectivity factors

11

Negated and disjunctive predicates

Consider 𝜎#-%𝑅
• 𝜎#-%𝑅 ≈ 𝑅 ⋅ 1 −). '!&
• Selectivity factor of ¬𝑝 is (1 − selectivity factor of 𝑝)

Consider 𝜎#$(∨	+$%𝑅
• 𝜎#$(∨	+$%𝑅 ≈ 𝑅 ⋅). '!& +). '"& 	 ?
• Tuples satisfying 𝐴 = 𝑢 and 𝐵 = 𝑣 are counted twice!

• 𝜎#$(∨	+$%𝑅 ≈ 𝑅 ⋅). '!& +). '"& −). '!& '"&
• Inclusion-exclusion principle

12

Range predicates

Consider 𝜎#0%𝑅

• DBMSs typically store the following in the catalog
• Largest R.A value: high 𝑅. 𝐴
• Smallest R.A value: low 𝑅. 𝐴

• 𝜎#0%𝑅 ≈ 𝑅 ⋅ 1231 &.# 5%
1231 &.# 5678 &.# 9.

• Selectivity factor is -./- &.) 12
-./- &.) 1345 &.)

13

low v high

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑣

ℎ𝑖𝑔ℎ 𝑅. 𝐴 − 𝑙𝑜𝑤(𝑅. 𝐴)

Two-way natural join

• 𝑄 = 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐴, 𝐶
• Assumption of containment of value sets: every

tuple in the “smaller” relation (one with fewer
distinct values for the join attribute) joins with some
tuple in the other relation
• That is, if 𝜋)𝑅 ≤ 𝜋)𝑆 then 𝜋)𝑅 ⊆ 𝜋)𝑆
• Certainly not true in general
• But holds many practical cases

• 𝑄 ≈ & ⋅ :
;<= '!& , '!:

• Selectivity factor of 𝑅. 𝐴 = 𝑆. 𝐴 is =* BCD +$& , +$F

14

Multiway natural join

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷
• What is the number of distinct 𝐶 values in the join

of 𝑅 and 𝑆?
• Assumption of preservation of value sets
• A non-join attribute does not lose values from its set of

possible values
• That is, if 𝐶 is in 𝑆 but not 𝑅, then 𝜋G 𝑅 ⋈ 𝑆 = 𝜋G𝑆
• Certainly not true in general
• But holds many practical cases

15

Multiway natural join (cont’d)

• 𝑄: 𝑅 𝐴, 𝐵 ⋈ 𝑆 𝐵, 𝐶 ⋈ 𝑇 𝐶, 𝐷
• Reduce the total size by the selectivity factor of each

join predicate
• 𝑅. 𝐵 = 𝑆. 𝐵: =* BCD +%& , +%F

• 𝑅 ⋈ 𝑆 = =& ⋅|F|
BCD +%& , +%F

• (𝑅 ⋈ 𝑆). 𝐶 = 𝑇. 𝐶: =* BCD +&(&⋈F) , +&I = =* BCD +&F , +&I

• 𝑄 ≈ & ⋅ F ⋅|I|
BCD +%& , +%F ⋅BCD +&F , +&I

16

Summary of Cardinality Estimation
• Lots of assumptions and very rough estimation
• An accurate estimator is not needed
• Maybe okay if we overestimate or underestimate,

since it may not change the query plan selection

• (MUCH) Better techniques
• Histograms
• Sketches
• Machine learning approaches (one of the most

popular topics in database research now)

17

Case Study

18

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age=18)

INDEX-NESTED-LOOP-JOIN (uid)

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋!"#$𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

• What are the sizes of intermediate join results?

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• What is the intermediate size?
• Assumption of uniformity

• |𝜎"($)*+ 𝑈𝑠𝑒𝑟 | ≈
*,,,
-,

= 20

19

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age = 18)

INDEX-NESTED-LOOP-JOIN (uid)

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• What is the intermediate join size?
• Assume uniformity of age in User
• Assume containment of value sets in User and Member on uid

• |𝜎"($)*+ 𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟 | ≈ .!"#$%& /0$1 ⋅ 3$#4$1
567 8'().!"#$%& /0$1 , 8'()3$#4$1

= :,⋅-,,,,
567 :,,-,,

= 2000
20

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age = 18)

INDEX-NESTED-LOOP-JOIN (uid)

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• What is the intermediate join size? (an alternative estimate)
• Assume the instance follows the foreign-key constraint
• Assume that within each group, users of different ages join with

equal probability
• |𝜎"($)*+ 𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟 | = |𝜎"($)*+ 𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟 |

≈ "
#$
⋅ 50000 = 1000

21

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age = 18)

INDEX-NESTED-LOOP-JOIN (uid)

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• What is the intermediate join size?
• Assumption of preservation of value sets
• 𝑄; = 𝜎"($)*+ 𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟 (suppose we use estimator 2000)

• |𝑄′ ⋈ 𝐺𝑟𝑜𝑢𝑝 | ≈ <* ⋅ =1>%?
567 8"()<* , 8"()=1>%?

= :,,,⋅*,,
567 *,,,*,,

= 2000

22

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age = 18)

INDEX-NESTED-LOOP-JOIN (uid)

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• What is the intermediate join size? (an alternative estimate)
• Assume the instance follows the foreign-key constraint
• 𝑄; = 𝜎"($)*+ 𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟 (suppose we use estimator 2000)
• |𝑄′ ⋈ 𝐺𝑟𝑜𝑢𝑝| ≈ 𝑄; = 2000

23

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age = 18)

INDEX-NESTED-LOOP-JOIN (uid)

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• What are the estimated I/O costs? (Some rough calculation)

• System requirements:
• Each disk/memory block can hold up to 10 rows (from any table);
• All tables are stored compactly on disk (10 rows per block);
• 8 memory blocks are available for query processing: M=8

24

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age = 18)

INDEX-NESTED-LOOP-JOIN (uid)

1000 rows

50000 rows

100 rows

20 rows

2000 rows

2000 rows

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• INDEX-SCAN on User
• Index lookup: typically 4 I/Os
• Suppose tuples in the User table are clustered by uid but not age
• In the worst case, we need 20 I/Os to retrieve tuples
• Cache the intermediate results in main memory using 2 blocks

25

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age=18)

INDEX-NESTED-LOOP-JOIN (uid)

1000 rows

50000 rows

100 rows

20 rows

2000 rows

2000 rows

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• INDEX-NESTED-LOOP-JOIN on 𝜎"($)*+ 𝑈𝑠𝑒𝑟 and Member
• Suppose tuples in Member table clustered by uid
• Index lookup: typically 4 I/Os

• Probing takes 20 ⋅ lookup + fetch = 20 ∗ 4 + %$$$
"$

= 280 I/Os

• Writing the intermediate results back to disk takes %$$$
"$

= 200 I/Os

26

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age=18)

INDEX-NESTED-LOOP-JOIN (uid)

1000 rows

50000 rows

100 rows

20 rows

2000 rows

2000 rows

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

Case Study

• INDEX-NESTED-LOOP-JOIN on 𝑄′ and Group
• 𝑄′ = 𝜎&'()"* 𝑈𝑠𝑒𝑟 ⋈ 𝑀𝑒𝑚𝑏𝑒𝑟
• For each tuple in 𝑄+, probe the index on Group(gid)
• Suppose tuples in Group table are clustered by gid
• It takes B Q+ + 𝑄+ ⋅ lookup + fetch = 200 + 2000 ∗ 4 + 2000 I/Os
• When a join result is generated in memory, compute the projection on the fly

27

Data statistics:
• 𝑈𝑠𝑒𝑟 = 1000
• 𝑀𝑒𝑚𝑏𝑒𝑟 = 50000
• 𝐺𝑟𝑜𝑢𝑝 = 100
• |𝜋"($𝑈𝑠𝑒𝑟| = 50
• 𝜋%&'𝑀𝑒𝑚𝑏𝑒𝑟 = 500
• 𝜋(&'𝑀𝑒𝑚𝑏𝑒𝑟 = 100
• |𝜋(&'𝐺𝑟𝑜𝑢𝑝| = 100

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(age)

INDEX-SCAN (age=18)

INDEX-NESTED-LOOP-JOIN (uid)

1000 rows

50000 rows

100 rows

20 rows

2000 rows

2000 rows

User (uid int, name string, age int, pop float)
Group (gid string, name string)
Member (uid int, gid string)

From rule-based to cost-based opt.

• Rule-based optimization
• Apply algebraic equivalence to rewrite plans into

cheaper ones

• Cost-based optimization
• Rewrite logical plan to combine “blocks”

as much as possible
• Optimize the query block by block

• Enumerate logical plans (already covered)
• Estimate the cost of the plans
• Pick a plan with an acceptable cost

• Focus: select-project-join blocks

28

Patricia Selinger“Selinger”-style query optimization ←

Search Good Join Ordering

Consider 𝑅. ⋈ 𝑅V ⋈ ⋯ ⋈ 𝑅W：
• Search space is Huge!
• “Bushy” plan example:

• Just considering different join orders, there are
30240 bushy plans for joining 6 tables！
• (there are more if we consider using different join

algorithms)

29

⋈

𝑅j 𝑅* 𝑅k
𝑅l 𝑅m

⋈ ⋈
⋈

It is a matter of intermediate join size

• For simplicity, we use the sort-merge join algorithm
for demonstration

• 𝑅 ⋈ 𝑆 takes 𝑂 𝐵 𝑅 + 𝐵 𝑆 + + &⋈:
X+

I/Os (see
Slide 44 in Lecture 16)
• Intermediate join results are needed to be written

back to disk, and serve as an input table for the
subsequent join

30

How to minimize the
intermediate join size?

⋈

𝑅j 𝑅* 𝑅k
𝑅l 𝑅m

⋈ ⋈
⋈

Left-deep plans

• Heuristic: consider only “left-deep” plans, in which
only the left child can be a join
• How many left-deep plans are there for 𝑅. ⋈ ⋯ ⋈ 𝑅W?
• Significantly fewer, but still lots— 𝑛! (720 for 𝑛 = 6)

31

⋈

𝑅j 𝑅*
𝑅k

𝑅l

𝑅m⋈
⋈

⋈

A greedy algorithm for deep-left plans

Consider 𝑅. ⋈ 𝑅V ⋈ ⋯ ⋈ 𝑅W
• Start with the pair 𝑅Y , 𝑅Z with the smallest

estimated size for 𝑅Y ⋈ 𝑅Z
• Repeat until no relation is left: Pick 𝑅[from the

remaining relations such that the join of 𝑅[and the
current result yields an intermediate result of the
smallest estimated size

32

Current subplan

… ,𝑅[, 𝑅\ , 𝑅] , …
Remaining

relations
to be joined

⋈
𝑅[

Minimize next size

A DP algorithm for bushy plans

• Dynamic Programming for computing the optimal
bushy plans in a bottom-up way:
• Pass 1: Find the best single-table plans (for each table)
• Pass 2: Find the best two-table plans (for each pair of

tables) by combining best single-table plans
• …
• Pass 𝑘: Find the best 𝑘-table plans (for each combination

of 𝑘 tables) by combining two smaller best plans found
in previous passes
• …

• Rationale: Any subplan of an optimal plan must also
be optimal (otherwise, just replace the subplan to
get a better overall plan)

33

Summary of Search Strategy

• Rule-based strategy
• Apply algebraic equivalence to rewrite plans

• But, we need more rewrite rules!
• Existing rewrite plan is blind to the data statistics

• Cost-based strategy
• Rewrite logical plan to combine “blocks”

as much as possible
• Optimize the query block by block

• Enumerate logical plans (already covered)
• Estimate the cost of the plans

• Cardinality estimation is still challenging for multiple tables!
• We need better end-to-end cost estimators

• Pick a plan with an acceptable cost

34

A query’s trip through the DBMS

35

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

