Lecture 17:
Query Processing &
Optimization

CS348 Spring 2025:
Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

* Milestone 2 of group project
* Due today!

A query’s trip through the DBMS

SELECT name, uid
SO‘L uery FROM Member, Group
<Query> WHERE Member.gid =
| Group.gid;
S2hWa_
<select-list> | <where-cond> Parse tree
/1 <fr/om-@> N\
" <table> <table> Validator T .
| | ¥ | name, uid
Member Group ’-Og"CC‘l(’ plan ?-/\/lember.gidzcroup.gid
- . X
, Optimizer 7\
PROJ EfT (name, gid) ‘ P ¥ Member Group
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

(Recap) Physical plans

SELECT Group.name
FROM User, Member, Group

WHERE User.name = 'Bart’
AND User.uid = Member.uid AND Member.gid = Group.gid;

PROJ EICT (Group.name) PROJECT (Group.name)
|
INDEX-N ESTED-L%)P-JOIN (gid) SORT-MERGE-JOIN (gid)
Index on Group(gid) /SCAN (Group)
INDEX-NESTED-LOOP-JOIN (uid) SORT-MERGE- JQ\I (uid)

N
Adex on Member(uid) FILTER (name = “Bart”) SCAN (Member)
INDEX-SCAN (name = “Bart”)
|

|
Index on User(name) SCAN (User)

* Many physical plans for a single query

Outline

° Ali 9)
o Memory [F
e Table scan ’

* Selection, Duplicate-

Blocks transferred

preserving projection between main
* Nested-loop join memory and disk
T o
* External merge sort
* Duplicate elimination, Member
GrOUping.and (abc, Book club)
Aggregation (gov, student (Bart, boc)

* Sort-merge join, Union, govement)
Difference, Intersection

 Hash
* Index

_—

Notation and Assumption

e Relations: 7,

* Tuples: 7,

* Number of tuples: |R|,

 Number of disk blocks: ,

* Number of memory blocks available:

* Cost metric
* Number of I/O’s

* Memory requirement

* Not counting the cost of writing the result out
* Same for any algorithm

* Maybe not needed - results may be pipelined into
downstream operator

Hashing-based algorithms

http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

R Xpa=sp5 S
* Main idea

* Partition R and S by hashing their join attributes, and
then consider corresponding partitions of R and S

* If r.A and s. B get hashed to different partitions, they
don’t join

12 3,_1,2 4 5

-_—

Nested-loop join
considers all slots

Hash join considers only
those along the diagonal!

- -

w oA w ANy

Partitioning phase

* Partition R and S according to the same hash
function on their join attributes

Memory < Disk >
h []
— O
~
L]
L]

M — 1 partitions of R
SN—— -

Same for S

allocate 1 for input and
M-1 for output buffers

If the hash function is good, each

partition has a size of B(R)/(M-1)

Probing phase

* Read in each partition of R, stream in the
corresponding partition of §, join

* Typically build a hash table for the partition of R
* Not the same hash function used for partition, of course!

R <

partitions (_

A <

partitions (_

< Disk
_/

Memory

stream

0 I I

A .

For each S tuple,

= [probe and join

allocate M-1 blocks for R
and 1 block for S

10

Performance of hash join

* If hash join completes in two phases:
e |/O’s:

* Memory requirement:
* In the probing phase, we should have enough memory to fit
one partition of

* We can always pick R to be the smaller relation, so:

Generalizing for larger inputs

* What if a partition is too large for memory?
* Read it back in and partition it again!
» Re-partition 0 (log,,B(R)) times

(Recap) Optimized SMJ

 Produce sorted runs of R and S

* Merge the runs of R, merge the runs of S, and merge-
join the result streams as they are generated

I\/\emory
Me
n g -
C R ’l>
_; ~ [JOIﬂ
2 . / ‘
S S{ >
d Merge

13

(Recap) Performance of SMJ

* If SMJ completes in two passes:
e |/O’s:

* Memory requirement
* We must have enough memory to accommodate one block
from each run:

* Roughly

(Recap) Generalizing for larger inputs

* What if there are many number of sorted runs?

* Repeatedly merge to reduce number of runs as
necessary before final merge and join

* Merge O(log,, (B(R) + B(S5))) times

= ;—

;- /

15

(Two-pass) Hash Join v.s. SMJ

* |/O’s: same
* Memory requirement: hash join is lower

. \/min(B(R),B(S)) +1<+B(R) + B(S)

* Hash join wins when two relations have very different sizes

 Other factors

* Hash join performance depends on the quality of the hash
* Might not get evenly sized buckets

* SMJ can be adapted for inequality join predicates

* SMJ wins if R and/or § are already sorted

e SMJ wins if the result needs to be in sorted order

(Multi-pass) Hash Join v.s. SMJ

For both, let I denote “input”
B(I)

* # passes is 0 (logM (7)) = 0(logMB(I))

* For HJ, assuming hash function is “good” enough and there
IS no severe data skew

e Overall I/Osis O()

* For HJ
 The partition phase takes O() 1/Os

* The probing phase only takes 0() 1/Os

* For SMJ, assuming no external-memory mini nested loops
 The sorting phase takes O() 1/Os

* The merge phase only takes 0() 1/Os

Duality of Sort and Hash

* Handling very large inputs
* Sorting: recursive merge
* Hashing: recursive partitioning

* |/O patterns
* Sorting: sequential write, random read (merge)
* Hashing: random write, sequential read (partition)

Other hash-based algorithms

* Union (set), difference, intersection
* More or less like hash join

* Duplicate elimination
* Check for duplicates within each partition/bucket

* Grouping and aggregation
* Apply the hash functions to the group-by columns

* Tuplesin the same group must end up in the same
partition/bucket

* Keep a running aggregate value for each group
* Just like in the sorting case, this trick may not always work

Outline

* Scan
* Table scan
* Selection, Duplicate-preserving projection
* Nested-loop join

* Sort
* External merge sort
* Duplicate elimination, Grouping and Aggregation
* Sort-merge join, Union (set), Difference, Intersection
* Hash
* Hash join, union (set), difference, intersection, duplicate
elimination, grouping and aggregation

* Index

20

Index-based algorithms

e
[otk acenta
AMEEACTU ER |

http://il.trekearth.com/photos/28820/p2270994.jpg

21

Selection using index

* Equality predicate:
* Use an ISAM, B*-tree, or hash index on R(A)

* Range predicate:
e Use an index (e.g., ISAM or B*-tree) on R(A)
* Hash index is not applicable

Index versus table scan for selection

Situations where index clearly wins:

which do not require retrieving
actual tuples

* Example:

* Primary index clustered according to search key
* One lookup leads to all result tuples in their entirety

Index versus table scan (cont’d)

BUT(!):

* Consider and a secondary, non-clustered
index on R(A)
* Need to follow pointers to get the actual result tuples
* Say that 20% of R satisfies A > v
* |/O’s for index-based selection:
* |/O’s for scan-based selection:
* Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

* Idea: use a value of R. A to probe the index on S(B)

* For each block of R, and for each r in the block:
Use the index on S(B) to retrieve s withs.B =1.4
Output rs

¢ |/O’s:
 Typically, the cost of an index lookup is 2-4 1/O’s
* Beats other join methods if |R| is not too big
* Better pick R to be the smaller relation

* Memory requirement: (blocks)

Zig-zag join using ordered indexes

R Mp =55 S

* Idea: use the ordering provided by the indexes on R(A)
and S(B) to eliminate the sorting step of sort-merge join

* Use the larger key to probe the other index
* Possibly skipping many keys that don’t match

W) ey @) g e qq 12 17 '@ 19

26

Summary of techniques

OT1OTON
00010100010

* Scan

* Table scan

* Selection, Duplicate-preserving projection
* Nested-loop join

* Sort

* External merge sort

* Duplicate elimination, Grouping and Aggregation

* Sort-merge join, Union (set), Difference,
Intersection

e Hash

 Hash join, union (set), difference, intersection,
duplicate elimination, grouping and aggregation

* Index
* Selection, index nested-loop join, zig-zag join

27

Back to the trip

SELECT name, uid
SO‘L uery FROM Member, Group
<Query> WHERE Member.gid =
| Group.gid;
S2hWa_
<select-list> | <where-cond> Parse tree
/1 <fr/om-@> N\
" <table> <table> Validator T .
| | ¥ | name, uid
Member Group LOg"CC‘l(’ plan ?Member.gid:Group.gid
- . X
, Optimizer 7\
PROJ EfT (name, gid) ‘ P ¥ Member Group
MERGE-JOIN (gid) Physical plan

7
SORTED) oo croupy I

SCAN (Member) Result

28

Query optimization

* Why query optimization?
* Many different ways of processing the same query

* A query can have multiple logical plans

* Alogical plan can have numerous physical plans
* Scan? Sort? Hash? Index?

 Different ways make different assumptions about data
have different performance

* Often, the is not getting the optimum plan, but
instead avoiding the horrible ones

/ Any of these will do

—+ A - — —

1second 1 minute 1 hour

Outline

* Search space
* What are the possible equivalent logical plans?

* For each logical plan, what are the possible physical
plans?

* Search strategy
* Rule-based strategy
* Cost-estimation-based strategy

Logical plan

* An expression tree where nodes are operators
(often relational algebra operators)

* There are many equivalent logical plans

7|TGroup.name

OI-User.name:“Bart” A User.uid = Member.uid A Member.gid = Group.gid

X
7 N\
J % N Group T[Group name

User Member WMember.gid = Group.gid
/ Group

X User uid= Member.uid

/ Member

Io-name = “Bart”

User

Algebraic equivalences

* Apply algebraic equivalences in relational and/or
algebra to systematically transform a plan to new ones

* Convert g;,-X to/from

* X and X are and (except
column ordering, which is unimportant)

Algebraic equivalences

* Join reordering:

X X X
AN = AN = A -
/N /\N° /A °
R S R T T S

* Efficiently finding a good ordering for a join query has been a
long-standing database research problem until today
* The number of intermediate join results matters!
» Example: User(uid, ...) x Member (uid, gid) = Group(gid, ...)

Algebraic equivalences

* Merge/split o’s:
* Merge/split r’s:

* Merge/split —’s :

Algebraic equivalences

e Push down g into :

* pp involves only R;
* pginvolves only §;
* pand p’ involve both R and S

O-Ul.name:U2.name/\U1.p0p>0.8AU2.p0p>0.8
I

X ; ;
{1.uld#—'U2.Uld X % luid#U2.uidAUl.name=U2.name
Pifl pIUz OU1.pop>0.8 Oy2.pop>0.8
| |
User User Pu. Pu
1 2
| |

User User

Algebraic equivalences

e Push down m into o:

L' is the set of columns referenced by p

Tname,age Tname,age
I I
Upop>0.8/\age<18 O-pop>0.8Aage<18
I I
User TTname,age,pop

|
User

Algebraic equivalences

e Push down T into X:

* Ly is the set of columns referenced by p and L. for R
* L is the set of columns referenced by » and | for S

Tname, gid Tname,gid
l |
X . .
X useruid=Member.uid User.uid=Member.uid

o~ S

User Member Muidname Member
|

User

Algebraic equivalences

* Push down — into :
* Suppose R and T have the same schema:
(RXS)—(TxS)=(R—-T) xS

* Suppose S and W also have the same schema
(RxS)—(TxW)=?

R(A,B)xS(B,C,D) —T(A,B)xW(B,(,D)= ((R—T) x S)U (R x (S —W))

Direction =2:

* Forany (a,b,c,d) € ((R—T) x S), (a,b) €R, (b,c,d) € S, so (a,b,c,d) €
R S;(a,b) ¢T,so(a,b,c,d)&T =W

 Similarly, if (a,b,c,d) € (R < (S — W)), (a,b,c,d) € R ™« S and

(a,b,c,d) € T x W
Direction <:
For any (a,b,c,d) € RS —TxW, either (a,b) & T or (b,c,d) € W holds
« If(a,b) €T, (a,b,c,d) € ((R —T) S)
« If(b,c,d) & W, (a,b,c,d) € (R (S—W))

38

What is next?

* Search space
* What are the possible equivalent logical plans?

* Many rewrite rules to be further explored ...

* For each logical plan, what are the possible physical
plans?

