Lecture 17: Query Processing & Optimization

CS348 Spring 2025: Introduction to Database Management

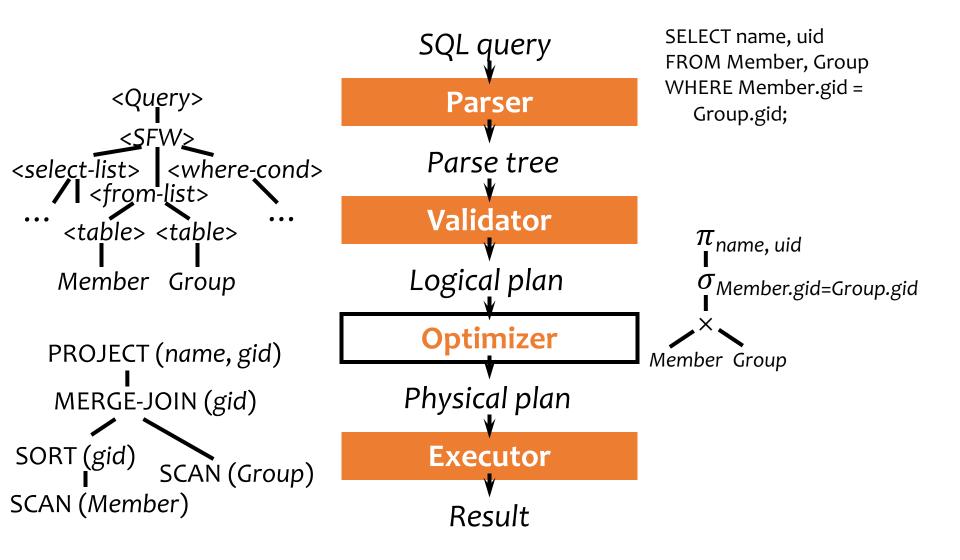
Instructor: Xiao Hu

Sections: 001, 002, 003

Announcements

- Milestone 2 of group project
 - Due today!

A query's trip through the DBMS



(Recap) Physical plans

```
SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;
```

```
PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Group(gid)

INDEX-NESTED-LOOP-JOIN (uid)

SCAN (Group)

SORT-MERGE-JOIN (uid)

SCAN (Group)

SORT-MERGE-JOIN (uid)

FILTER (name = "Bart")

SCAN (Member)

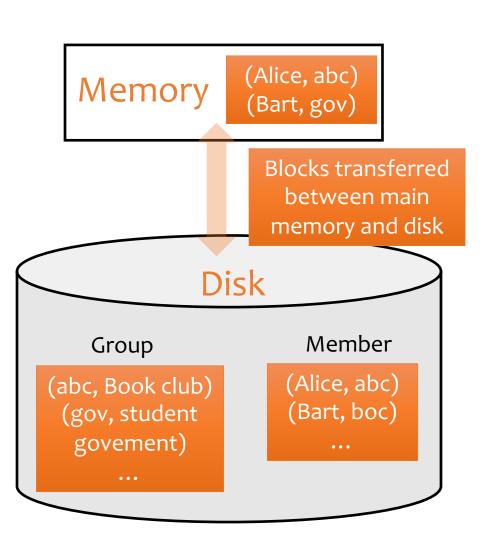
INDEX-SCAN (name = "Bart")

SCAN (User)
```

Many physical plans for a single query

Outline

- Scan
 - Table scan
 - Selection, Duplicatepreserving projection
 - Nested-loop join
- Sort
 - External merge sort
 - Duplicate elimination, Grouping and Aggregation
 - Sort-merge join, Union, Difference, Intersection
- Hash
- Index



Notation and Assumption

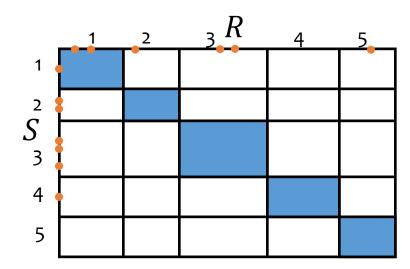
- Relations: R, S
- Tuples: *r* , *s*
- Number of tuples: |R|, |S|
- Number of disk blocks: B(R), B(S)
- Number of memory blocks available: M
- Cost metric
 - Number of I/O's (blocks transferred between memory and disk)
 - Memory requirement
- Not counting the cost of writing the result out
 - Same for any algorithm
 - Maybe not needed results may be pipelined into downstream operator

Hashing-based algorithms

Hash join

$$R\bowtie_{R.A=S.B} S$$

- Main idea
 - Partition R and S by hashing their join attributes, and then consider corresponding partitions of R and S
 - If r. A and s. B get hashed to different partitions, they don't join

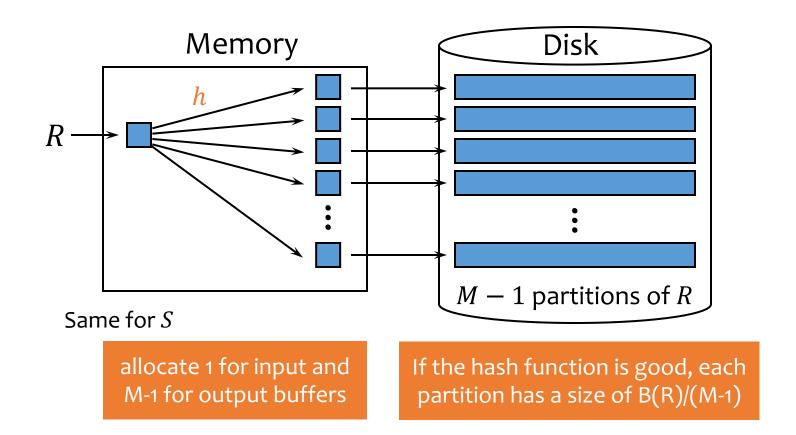


Nested-loop join considers all slots

Hash join considers only those along the diagonal!

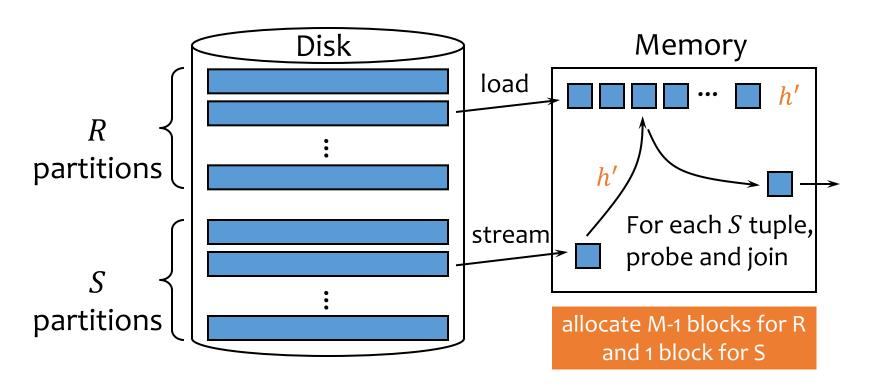
Partitioning phase

 Partition R and S according to the same hash function on their join attributes



Probing phase

- Read in each partition of R, stream in the corresponding partition of S, join
 - Typically build a hash table for the partition of R
 - Not the same hash function used for partition, of course!



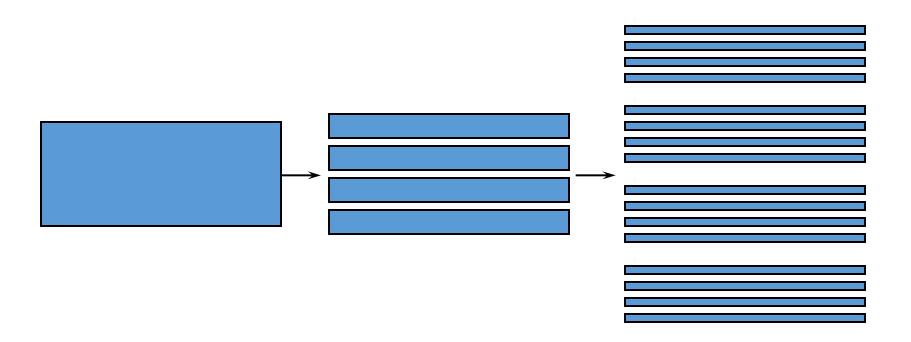
Performance of hash join

- If hash join completes in two phases:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - 1st phase: read B(R) + B(S) into memory to partition and write partitioned B(R) +B(S) to disk
 - 2nd phase: read B(R) + B(S) into memory to merge and join
 - Memory requirement:
 - In the probing phase, we should have enough memory to fit one partition of $R: M-1 > \frac{B(R)}{M-1}$
 - $M > \sqrt{B(R)} + 1$
 - We can always pick *R* to be the smaller relation, so:

$$M > \sqrt{\min(B(R), B(S))} + 1$$

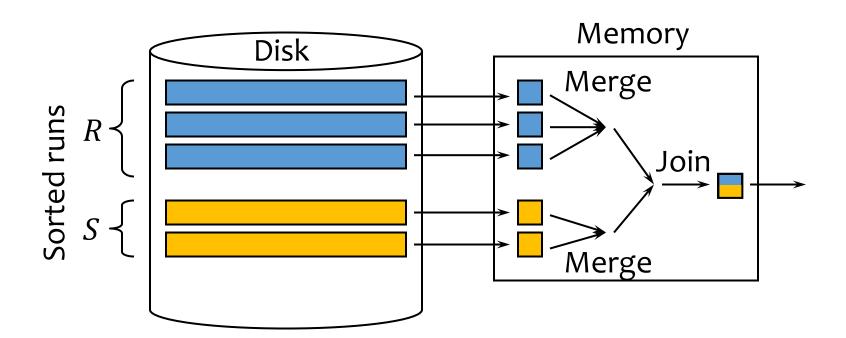
Generalizing for larger inputs

- What if a partition is too large for memory?
 - Read it back in and partition it again!
 - Re-partition $O(\log_M B(R))$ times



(Recap) Optimized SMJ

- Produce sorted runs of R and S
- Merge the runs of R, merge the runs of S, and mergejoin the result streams as they are generated

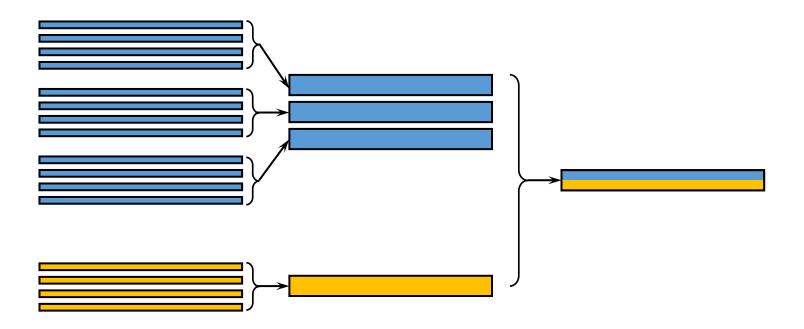


(Recap) Performance of SMJ

- If SMJ completes in two passes:
 - I/O's: $3 \cdot (B(R) + B(S))$
 - 1st phase: read B(R) + B(S) into memory to sort and write $\left[\frac{B(R)}{M}\right] + \left[\frac{B(S)}{M}\right]$ sorted runs to disk
 - 2nd phase: merge $\left[\frac{B(R)}{M}\right] + \left[\frac{B(S)}{M}\right]$ sorted runs in memory and join
 - Memory requirement
 - We must have enough memory to accommodate one block from each run: $M > \left[\frac{B(R)}{M}\right] + \left[\frac{B(S)}{M}\right]$
 - Roughly $M > \sqrt{B(R) + B(S)}$

(Recap) Generalizing for larger inputs

- What if there are many number of sorted runs?
 - Repeatedly merge to reduce number of runs as necessary before final merge and join
 - Merge $O(\log_M (B(R) + B(S)))$ times



(Two-pass) Hash Join v.s. SMJ

- I/O's: same
- Memory requirement: hash join is lower

•
$$\sqrt{\min(B(R), B(S))} + 1 < \sqrt{B(R) + B(S)}$$

- Hash join wins when two relations have very different sizes
- Other factors
 - Hash join performance depends on the quality of the hash
 - Might not get evenly sized buckets
 - SMJ can be adapted for inequality join predicates
 - SMJ wins if R and/or S are already sorted
 - SMJ wins if the result needs to be in sorted order

(Multi-pass) Hash Join v.s. SMJ

For both, let *I* denote "input"

- # passes is $O\left(\log_M\left(\frac{B(I)}{M}\right)\right) = O\left(\log_M B(I)\right)$
 - For HJ, assuming hash function is "good" enough and there is no severe data skew
- Overall I/Os is $O(B(I) \cdot \log_M B(I))$
 - For HJ
 - The partition phase takes $O(B(I) \cdot \log_M B(I))$ I/Os
 - The probing phase only takes O(B(I)) I/Os
 - For SMJ, assuming no external-memory mini nested loops
 - The sorting phase takes $O(B(I) \cdot \log_M B(I))$ I/Os
 - The merge phase only takes O(B(I)) I/Os

Duality of Sort and Hash

- Handling very large inputs
 - Sorting: recursive merge
 - Hashing: recursive partitioning
- I/O patterns
 - Sorting: sequential write, random read (merge)
 - Hashing: random write, sequential read (partition)

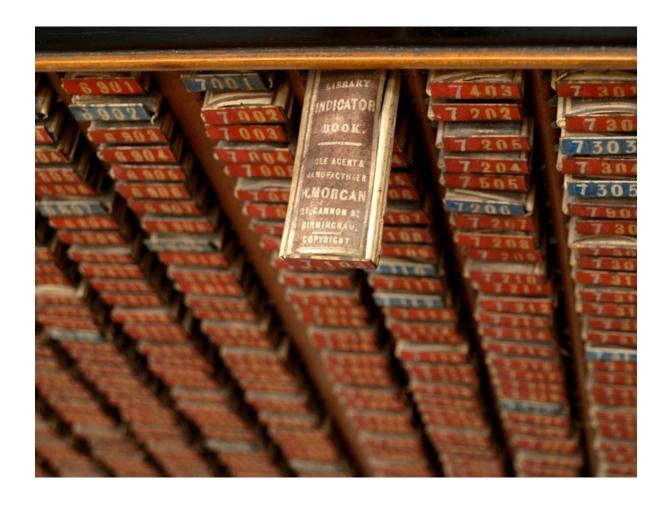
Other hash-based algorithms

- Union (set), difference, intersection
 - More or less like hash join
- Duplicate elimination
 - Check for duplicates within each partition/bucket
- Grouping and aggregation
 - Apply the hash functions to the group-by columns
 - Tuples in the same group must end up in the same partition/bucket
 - Keep a running aggregate value for each group
 - Just like in the sorting case, this trick may not always work

Outline

- Scan
 - Table scan
 - Selection, Duplicate-preserving projection
 - Nested-loop join
- Sort
 - External merge sort
 - Duplicate elimination, Grouping and Aggregation
 - Sort-merge join, Union (set), Difference, Intersection
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index

Index-based algorithms



Selection using index

- Equality predicate: $\sigma_{A=v}(R)$
 - Use an ISAM, B+-tree, or hash index on R(A)
- Range predicate: $\sigma_{A>v}(R)$
 - Use an ordered index (e.g., ISAM or B+-tree) on R(A)
 - Hash index is not applicable

Index versus table scan for selection

Situations where index clearly wins:

- Index-only queries which do not require retrieving actual tuples
 - Example: $\pi_A(\sigma_{A>v}(R))$
- Primary index clustered according to search key
 - One lookup leads to all result tuples in their entirety

Index versus table scan (cont'd)

BUT(!):

- Consider $\sigma_{A>v}(R)$ and a secondary, non-clustered index on R(A)
 - Need to follow pointers to get the actual result tuples
 - Say that 20% of R satisfies A>v
 - I/O's for index-based selection: lookup + 20% |R|
 - I/O's for scan-based selection: B(R)
 - Table scan wins if a block contains more than 5 tuples!

Index nested-loop join

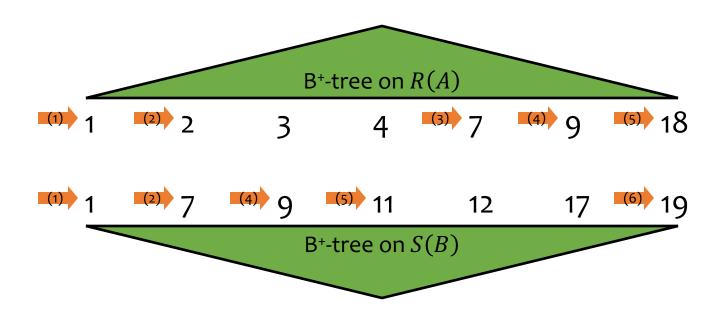
$R\bowtie_{R.A=S.B} S$

- Idea: use a value of R.A to probe the index on S(B)
- For each block of R, and for each r in the block: Use the index on S(B) to retrieve s with s.B = r.AOutput rs
- I/O's: $B(R) + |R| \cdot lookup + fetching cost$
 - Typically, the cost of an index lookup is 2-4 I/O's
 - Beats other join methods if |R| is not too big
 - Better pick R to be the smaller relation
- Memory requirement: $M \ge 3$ (blocks)

Zig-zag join using ordered indexes

$R\bowtie_{R.A=S.B} S$

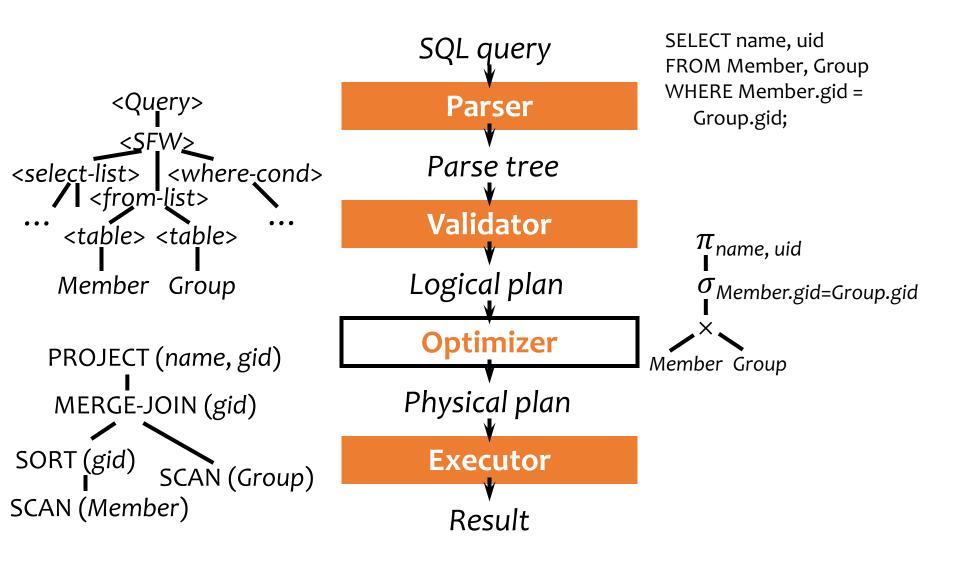
- Idea: use the ordering provided by the indexes on R(A) and S(B) to eliminate the sorting step of sort-merge join
- Use the larger key to probe the other index
 - Possibly skipping many keys that don't match



Summary of techniques

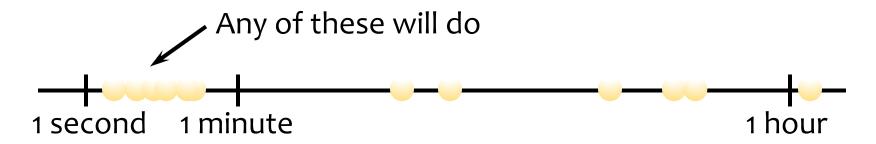
- Scan
 - Table scan
 - Selection, Duplicate-preserving projection
 - Nested-loop join
- Sort
 - External merge sort
 - Duplicate elimination, Grouping and Aggregation
 - Sort-merge join, Union (set), Difference, Intersection
- Hash
 - Hash join, union (set), difference, intersection, duplicate elimination, grouping and aggregation
- Index
 - Selection, index nested-loop join, zig-zag join

Back to the trip



Query optimization

- Why query optimization?
 - Many different ways of processing the same query
 - A query can have multiple logical plans
 - A logical plan can have numerous physical plans
 - Scan? Sort? Hash? Index?
 - Different ways make different assumptions about data have different performance
- Often, the goal is not getting the optimum plan, but instead avoiding the horrible ones



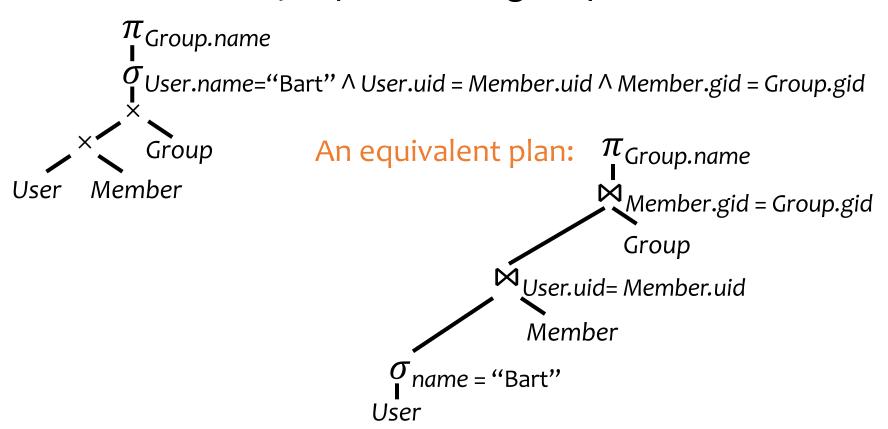
Outline

- Search space
 - What are the possible equivalent logical plans? (this lecture)
 - For each logical plan, what are the possible physical plans? (Lecture 16 17)

- Search strategy
 - Rule-based strategy
 - Cost-estimation-based strategy

Logical plan

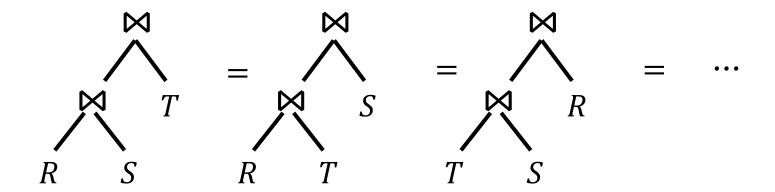
- An expression tree where nodes are logical operators (often relational algebra operators)
- There are many equivalent logical plans



 Apply algebraic equivalences in relational and/or algebra to systematically transform a plan to new ones

- Convert σ_p -× to/from \bowtie : $\sigma_p(R \times S) = R \bowtie_p S$
- × and ⋈ are associative and commutative (except column ordering, which is unimportant)
 - $R \times S = S \times R$
 - $(R \times S) \times T = R \times (S \times T)$
 - $R \bowtie S = S \bowtie R$
 - $(R \bowtie S) \bowtie T = R \bowtie (S \bowtie T)$

Join reordering:



- Efficiently finding a good ordering for a join query has been a long-standing database research problem until today
 - The number of intermediate join results matters!
 - Example: User(uid, ...) ⋈ Member (uid, gid) ⋈ Group(gid, ...)

- Merge/split σ 's: $\sigma_{p_1}(\sigma_{p_2}R) = \sigma_{p_1 \wedge p_2}R$
- Merge/split π 's: $\pi_{L_1}(\pi_{L_2}R) = \pi_{L_1 \cap L_2}R$
- Merge/split –'s:
 - $(R-T) \cup (S-T) = (R \cup S) T$
 - $\bullet (R T) \cap (S T) = (R \cap S) T$
 - $R S T = R (S \cup T)$

• Push down σ into \bowtie :

$$\sigma_{p \wedge p_R \wedge p_S}(R \bowtie_{p'} S) = (\sigma_{p_R} R) \bowtie_{p \wedge p'} (\sigma_{p_S} S)$$

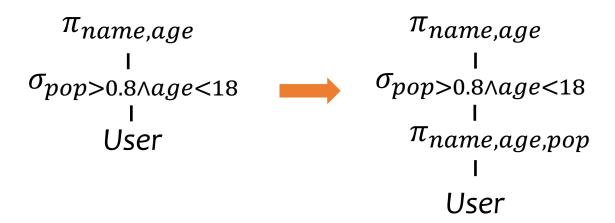
- p_R involves only R;
- p_S involves only S;
- p and p' involve both R and S

```
\sigma_{U1.name=U2.name \land U1.pop>0.8 \land U2.pop>0.8} \downarrow U_{U1.uid \neq U2.uid} \downarrow U_{U1.uid \neq U2.uid \land U1.name=U2.name} \rho_{U_1} \quad \rho_{U_2} \quad \sigma_{U1.pop>0.8} \quad \sigma_{U2.pop>0.8} \downarrow U_{U2.uid \land U1.name=U2.name} \downarrow U_{U3.uid \land U1.name=U2.name} \downarrow U_{U3.uid \land U1.name=U2.name} \downarrow U_{U3.uid \land U1.name=U2.name} \downarrow U_{U3.uid \land U3.name=U2.name} \downarrow U_{U3.uid \land U3.name=U2.name} \downarrow U3.uid \land U3.name=U3.name \downarrow U3.name=U3.name
```

• Push down π into σ :

$$\pi_L(\sigma_p R) = \pi_L(\sigma_p(\pi_{L \cup L'} R))$$

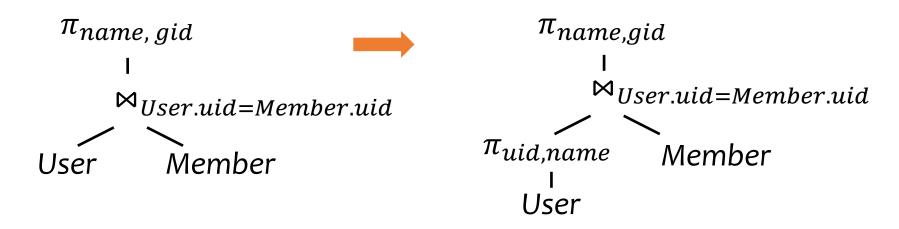
• L' is the set of columns referenced by p



• Push down π into \bowtie :

$$\pi_L(R \bowtie_p S) = \pi_L((\pi_{L_R}R) \bowtie_p (\pi_{L_S}S))$$

- L_R is the set of columns referenced by p and L for R
- L_S is the set of columns referenced by p and L for S



- Push down into ⋈:
 - Suppose *R* and *T* have the same schema:

$$(R \bowtie S) - (T \bowtie S) = (R - T) \bowtie S$$

Suppose S and W also have the same schema

$$(R \bowtie S) - (T \bowtie W) = ?$$

```
R(A,B)\bowtie S(B,C,D) - T(A,B)\bowtie W(B,C,D) = ((R-T)\bowtie S) \cup (R\bowtie (S-W))
Direction \supseteq:
```

- For any (a,b,c,d) ∈ ((R T) ⋈ S), (a,b) ∈ R, (b,c,d) ∈ S, so (a,b,c,d) ∈
 R ⋈ S; (a,b) ∉ T, so (a,b,c,d) ∉ T ⋈ W
- Similarly, if (a,b,c,d) ∈ (R ⋈ (S W)), (a,b,c,d) ∈ R ⋈ S and (a,b,c,d) ∉ T ⋈ W

Direction ⊆:

For any $(a,b,c,d) \in R \bowtie S - T \bowtie W$, either $(a,b) \notin T$ or $(b,c,d) \notin W$ holds

- If $(a,b) \notin T$, $(a,b,c,d) \in ((R-T) \bowtie S)$
- If (b,c,d) ∉ W, (a,b,c,d) ∈ (R ⋈ (S W))

What is next?

- Search space
 - What are the possible equivalent logical plans? (this lecture)
 - Many rewrite rules to be further explored ...
 - For each logical plan, what are the possible physical plans? (lecture 16 17)

- Search strategy
 - Rule-based strategy
 - Cost-estimation-based strategy