
Lecture 17:
Query Processing &

Optimization
CS348 Spring 2025:

Introduction to Database Management

Instructor: Xiao Hu
Sections: 001, 002, 003

Announcements

• Milestone 2 of group project
• Due today!

2

A query’s trip through the DBMS

3

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

(Recap) Physical plans

• Many physical plans for a single query

4

PROJECT (Group.name)

INDEX-NESTED-LOOP-JOIN (gid)

Index on Member(uid)

Index on Group(gid)

Index on User(name)

INDEX-SCAN (name = “Bart”)

INDEX-NESTED-LOOP-JOIN (uid)

PROJECT (Group.name)

SORT-MERGE-JOIN (gid)

SCAN (Group)
SORT-MERGE-JOIN (uid)

SCAN (Member)

SCAN (User)

FILTER (name = “Bart”)

SELECT Group.name
FROM User, Member, Group
WHERE User.name = 'Bart'
AND User.uid = Member.uid AND Member.gid = Group.gid;

Outline
• Scan
• Table scan
• Selection, Duplicate-

preserving projection
• Nested-loop join

• Sort
• External merge sort
• Duplicate elimination,

Grouping and
Aggregation
• Sort-merge join, Union,

Difference, Intersection
• Hash
• Index

5

(abc, Book club)
(gov, student

govement)
…

(Alice, abc)
(Bart, boc)

…

MemberGroup

Blocks transferred
between main

memory and disk

Disk

Memory (Alice, abc)
(Bart, gov)

Notation and Assumption
• Relations: 𝑅, 𝑆
• Tuples: 𝑟, 𝑠
• Number of tuples: 𝑅 , 𝑆
• Number of disk blocks: 𝐵 𝑅 , 𝐵 𝑆
• Number of memory blocks available: 𝑀
• Cost metric
• Number of I/O’s (blocks transferred between memory

and disk)
• Memory requirement

• Not counting the cost of writing the result out
• Same for any algorithm
• Maybe not needed – results may be pipelined into

downstream operator
6

Hashing-based algorithms

7http://global.rakuten.com/en/store/citygas/item/041233/

Hash join

𝑅 ⋈!.#$%.& 𝑆
• Main idea
• Partition 𝑅 and 𝑆 by hashing their join attributes, and

then consider corresponding partitions of 𝑅 and 𝑆
• If 𝑟. 𝐴 and 𝑠. 𝐵 get hashed to different partitions, they

don’t join

8

Nested-loop join
considers all slots

1

2

1 2 3 4 5𝑅

𝑆
3

4

5

Hash join considers only
those along the diagonal!

Partitioning phase

• Partition 𝑅 and 𝑆 according to the same hash
function on their join attributes

9

𝑀 − 1 partitions of 𝑅

DiskMemory

𝑅

Same for 𝑆

… …
If the hash function is good, each
partition has a size of B(R)/(M-1)

allocate 1 for input and
M-1 for output buffers

ℎ

Probing phase

• Read in each partition of 𝑅, stream in the
corresponding partition of 𝑆, join
• Typically build a hash table for the partition of 𝑅

• Not the same hash function used for partition, of course!

10

Disk Memory

𝑅
partitions

𝑆
partitions

…
…

…load

stream For each 𝑆 tuple,
probe and join

ℎ!

ℎ!

allocate M-1 blocks for R
and 1 block for S

Performance of hash join

• If hash join completes in two phases:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆

• 1st phase: read B(R) + B(S) into memory to partition and write
partitioned B(R) +B(S) to disk

• 2nd phase: read B(R) + B(S) into memory to merge and join

• Memory requirement:
• In the probing phase, we should have enough memory to fit

one partition of 𝑅: 𝑀 − 1 > " #
$%&

• 𝑀 > 𝐵 𝑅 + 1
• We can always pick 𝑅 to be the smaller relation, so:

𝑀 > min 𝐵 𝑅 , 𝐵 𝑆 + 1

11

Generalizing for larger inputs

• What if a partition is too large for memory?
• Read it back in and partition it again!
• Re-partition 𝑂 log#𝐵 𝑅 times

12

(Recap) Optimized SMJ

• Produce sorted runs of 𝑅 and 𝑆
• Merge the runs of 𝑅, merge the runs of 𝑆, and merge-

join the result streams as they are generated

13

Merge

MergeSo
rt

ed
 ru

ns 𝑅

𝑆

Disk Memory

Join

(Recap) Performance of SMJ

• If SMJ completes in two passes:
• I/O’s: 3 ⋅ 𝐵 𝑅 + 𝐵 𝑆

• 1st phase: read 𝐵 𝑅 + 𝐵 𝑆 into memory to sort and write
" #
$

+ ⌈" '
$
⌉ sorted runs to disk

• 2nd phase: merge " #
$

+ ⌈" '
$
⌉ sorted runs in memory and join

• Memory requirement
• We must have enough memory to accommodate one block

from each run: 𝑀 > " #
$

+ " '
$

• Roughly 𝑀 > 𝐵 𝑅 + 𝐵 𝑆

14

(Recap) Generalizing for larger inputs

• What if there are many number of sorted runs?
• Repeatedly merge to reduce number of runs as

necessary before final merge and join
• Merge 𝑂 log# (𝐵 𝑅 + 𝐵(𝑆)) times

15

(Two-pass) Hash Join v.s. SMJ

• I/O’s: same
• Memory requirement: hash join is lower

• min 𝐵 𝑅 , 𝐵 𝑆 + 1 < 𝐵 𝑅 + 𝐵 𝑆

• Hash join wins when two relations have very different sizes

• Other factors
• Hash join performance depends on the quality of the hash

• Might not get evenly sized buckets
• SMJ can be adapted for inequality join predicates
• SMJ wins if 𝑅 and/or 𝑆 are already sorted
• SMJ wins if the result needs to be in sorted order

16

(Multi-pass) Hash Join v.s. SMJ

For both, let 𝐼 denote “input”

• # passes is 𝑂 log6
& 7
6

	 = 𝑂 log6𝐵 𝐼
• For HJ, assuming hash function is “good” enough and there

is no severe data skew

• Overall I/Os is 𝑂 𝐵 𝐼 ⋅ log6 𝐵 𝐼
• For HJ

• The partition phase takes 𝑂 𝐵 𝐼 ⋅ log$ 𝐵 𝐼 I/Os
• The probing phase only takes 𝑂 𝐵 𝐼 I/Os

• For SMJ, assuming no external-memory mini nested loops
• The sorting phase takes 𝑂 𝐵 𝐼 ⋅ log$ 𝐵 𝐼 I/Os
• The merge phase only takes 𝑂 𝐵 𝐼 I/Os

17

Duality of Sort and Hash

• Handling very large inputs
• Sorting: recursive merge
• Hashing: recursive partitioning

• I/O patterns
• Sorting: sequential write, random read (merge)
• Hashing: random write, sequential read (partition)

18

Other hash-based algorithms

• Union (set), difference, intersection
• More or less like hash join

• Duplicate elimination
• Check for duplicates within each partition/bucket

• Grouping and aggregation
• Apply the hash functions to the group-by columns
• Tuples in the same group must end up in the same

partition/bucket
• Keep a running aggregate value for each group

• Just like in the sorting case, this trick may not always work

19

Outline

• Scan
• Table scan
• Selection, Duplicate-preserving projection
• Nested-loop join

• Sort
• External merge sort
• Duplicate elimination, Grouping and Aggregation
• Sort-merge join, Union (set), Difference, Intersection

• Hash
• Hash join, union (set), difference, intersection, duplicate

elimination, grouping and aggregation

• Index
20

Index-based algorithms

21http://i1.trekearth.com/photos/28820/p2270994.jpg

Selection using index

• Equality predicate: 𝜎#$> 𝑅
• Use an ISAM, B+-tree, or hash index on 𝑅 𝐴

• Range predicate: 𝜎#?> 𝑅
• Use an ordered index (e.g., ISAM or B+-tree) on 𝑅(𝐴)
• Hash index is not applicable

22

Index versus table scan for selection

Situations where index clearly wins:
• Index-only queries which do not require retrieving

actual tuples
• Example: 𝜋$ 𝜎$%& 𝑅

• Primary index clustered according to search key
• One lookup leads to all result tuples in their entirety

23

Index versus table scan (cont’d)

BUT(!):
• Consider 𝜎#?> 𝑅 and a secondary, non-clustered

index on 𝑅(𝐴)
• Need to follow pointers to get the actual result tuples
• Say that 20% of 𝑅 satisfies 𝐴 > 𝑣
• I/O’s for index-based selection: lookup + 20% 𝑅
• I/O’s for scan-based selection: 𝐵 𝑅
• Table scan wins if a block contains more than 5 tuples!

24

Index nested-loop join

𝑅 ⋈!.#$%.& 𝑆
• Idea: use a value of 𝑅. 𝐴 to probe the index on 𝑆 𝐵
• For each block of 𝑅, and for each 𝑟 in the block:

 Use the index on 𝑆 𝐵 to retrieve 𝑠 with 𝑠. 𝐵 = 𝑟. 𝐴
 Output 𝑟𝑠
• I/O’s: 𝐵 𝑅 + 𝑅 ⋅ lookup + fetching cost
• Typically, the cost of an index lookup is 2-4 I/O’s
• Beats other join methods if 𝑅 is not too big
• Better pick 𝑅 to be the smaller relation

• Memory requirement: 𝑀 ≥ 3 (blocks)

25

Zig-zag join using ordered indexes
𝑅 ⋈!.#$%.& 𝑆
• Idea: use the ordering provided by the indexes on 𝑅 𝐴

and 𝑆 𝐵 to eliminate the sorting step of sort-merge join
• Use the larger key to probe the other index

• Possibly skipping many keys that don’t match

26

B+-tree on 𝑅 𝐴

B+-tree on 𝑆 𝐵

1 2 3 4 7 9 18

1 7 9 11 12 17 19

(1)

(1) (2)

(2) (3)

(4)

(4) (5)

(5) (6)

Summary of techniques
• Scan

• Table scan
• Selection, Duplicate-preserving projection
• Nested-loop join

• Sort
• External merge sort
• Duplicate elimination, Grouping and Aggregation
• Sort-merge join, Union (set), Difference,

Intersection
• Hash

• Hash join, union (set), difference, intersection,
duplicate elimination, grouping and aggregation

• Index
• Selection, index nested-loop join, zig-zag join

27

Back to the trip

28

Parser

Validator

Optimizer

Executor

Result

SQL query SELECT name, uid
FROM Member, Group
WHERE Member.gid =
 Group.gid;

Parse tree
<SFW>

<select-list>
<from-list>

<where-cond>

<table> <table>

<Query>

Member Group

……

Physical plan
PROJECT (name, gid)

MERGE-JOIN (gid)

SCAN (Member)
SCAN (Group)

SORT (gid)

Logical plan
𝜋name, uid

𝜎Member.gid=Group.gid

Member Group

×

Query optimization

• Why query optimization?
• Many different ways of processing the same query

• A query can have multiple logical plans
• A logical plan can have numerous physical plans

• Scan? Sort? Hash? Index?

• Different ways make different assumptions about data
have different performance

• Often, the goal is not getting the optimum plan, but
instead avoiding the horrible ones

29

1 second 1 hour1 minute

Any of these will do

Outline

• Search space
• What are the possible equivalent logical plans? (this

lecture)
• For each logical plan, what are the possible physical

plans? (Lecture 16 - 17)

• Search strategy
• Rule-based strategy
• Cost-estimation-based strategy

30

Logical plan

• An expression tree where nodes are logical operators
(often relational algebra operators)
• There are many equivalent logical plans

31

𝜋Group.name
𝜎User.name=“Bart” ∧ User.uid = Member.uid ∧ Member.gid = Group.gid
×

Member
Group×

User
An equivalent plan: 𝜋Group.name

⋈Member.gid = Group.gid

Member

Group

User

⋈User.uid= Member.uid

𝜎name = “Bart”

Algebraic equivalences

• Apply algebraic equivalences in relational and/or
algebra to systematically transform a plan to new ones

• Convert 𝜎@-× to/from ⋈ : 𝜎@ 𝑅×𝑆 = 𝑅 ⋈@ 𝑆

• × and ⋈ are associative and commutative (except
column ordering, which is unimportant)
• 𝑅×𝑆 = 𝑆×𝑅
• 𝑅×𝑆 ×𝑇 = 𝑅× 𝑆×𝑇
• 𝑅 ⋈ 𝑆 = 𝑆 ⋈ 𝑅
• 𝑅 ⋈ 𝑆 ⋈ 𝑇 = 𝑅 ⋈ (𝑆 ⋈ 𝑇)

32

Algebraic equivalences

• Join reordering:

• Efficiently finding a good ordering for a join query has been a
long-standing database research problem until today
• The number of intermediate join results matters!
• Example: User(uid, ...)⋈ Member (uid, gid)⋈ Group(gid, ...)

33

⋈

⋈
𝑅 𝑆

𝑇
…=

⋈

⋈
𝑅 𝑇

𝑆
=

⋈

⋈
𝑇 𝑆

𝑅
=

Algebraic equivalences
• Merge/split 𝜎’s: 𝜎@! 𝜎@"𝑅 = 𝜎@!∧@"𝑅

• Merge/split 𝜋’s: 𝜋CD 𝜋C"𝑅 = 𝜋C!∩C"𝑅

• Merge/split−’s ∶
• 𝑅 − 𝑇 ∪ 𝑆 − 𝑇 = 𝑅 ∪ 𝑆 − 𝑇
• 𝑅 − 𝑇 ∩ 𝑆 − 𝑇 = 𝑅 ∩ 𝑆 − 𝑇
• 𝑅 − 𝑆 − 𝑇 = 𝑅 − (𝑆 ∪ 𝑇)

34

Algebraic equivalences

• Push down 𝜎 into ⋈:

 𝜎@∧@#∧@$ 𝑅 ⋈@% 𝑆 = 𝜎@#𝑅 ⋈@∧@% 𝜎@$𝑆
• 𝑝* involves only 𝑅;
• 𝑝+ involves only 𝑆;
• 𝑝 and 𝑝, involve both 𝑅 and 𝑆

35

𝜎-..01234-5.0123∧-..787%9.:∧-5.787%9.:

User

⋈-..;<=>-5.;<=

User

𝜌-! 𝜌-"

User

⋈-..;<=>-5.;<=∧-..01234-5.0123

User

𝜌-! 𝜌-"

𝜎-..787%9.: 𝜎-5.787%9.:

Algebraic equivalences

• Push down 𝜋 into 𝜎:

 𝜋C 𝜎@𝑅 = 𝜋C 𝜎@ 𝜋C∪C%𝑅
• 𝐿, is the set of columns referenced by 𝑝

36

𝜋0123,1@3

User

𝜎787%9.:∧1@3A.:

𝜋0123,1@3

User

𝜎787%9.:∧1@3A.:
𝜋0123,1@3,787

Algebraic equivalences

• Push down 𝜋 into⋈:

 𝜋C 𝑅 ⋈@ 𝑆 = 𝜋C 𝜋C!𝑅 ⋈@ 𝜋C$𝑆

• 𝐿* is the set of columns referenced by 𝑝 and 𝐿 for 𝑅
• 𝐿+ is the set of columns referenced by 𝑝 and 𝐿 for 𝑆

37

𝜋0123, @<=

User Member

⋈-B3C.;<=4#32D3C.;<=

𝜋0123,@<=

User

𝜋;<=,0123 Member

⋈-B3C.;<=4#32D3C.;<=

Algebraic equivalences

• Push down − into⋈:
• Suppose 𝑅 and 𝑇 have the same schema:

𝑅 ⋈ 𝑆 − 𝑇 ⋈ 𝑆 = 𝑅 − 𝑇 ⋈ 𝑆
• Suppose 𝑆 and𝑊 also have the same schema

𝑅 ⋈ 𝑆 − 𝑇 ⋈ 𝑊 =?

38

R(A,B)⋈S(B,C,D)	−T(A,B)⋈W(B,C,D) = R − T ⋈ S ∪ R ⋈ S − W
Direction ⊇:
• For any (a,b,c,d) ∈ R − T ⋈ S , (a,b) ∈R, (b,c,d) ∈ S, so (a,b,c,d) ∈

R ⋈ S; (a,b) ∉ T, so (a,b,c,d) ∉ T ⋈ W
• Similarly, if (a,b,c,d) ∈ R ⋈ S − W , (a,b,c,d) ∈ R ⋈ S and

(a,b,c,d) ∉ T ⋈ W
Direction ⊆:
For any (a,b,c,d) ∈ R⋈S	−T⋈W, either (a,b) ∉ T or (b,c,d) ∉ W holds
• If (a,b) ∉ T, (a,b,c,d) ∈ R − T ⋈ S
• If (b,c,d) ∉ W, (a,b,c,d) ∈ R ⋈ S − W

What is next?

• Search space
• What are the possible equivalent logical plans? (this

lecture)
• Many rewrite rules to be further explored …

• For each logical plan, what are the possible physical
plans? (lecture 16 - 17)

• Search strategy
• Rule-based strategy
• Cost-estimation-based strategy

39

